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Stability of Traveling Wavefronts for a Delayed Lattice System with Nonlocal

Interaction

Jingwen Pei, Zhixian Yu* and Huiling Zhou

Abstract. In this paper, we mainly investigate exponential stability of traveling wave-

fronts for delayed 2D lattice differential equation with nonlocal interaction. For all

non-critical traveling wavefronts with the wave speed c > c∗(θ), where c∗(θ) > 0 is the

critical wave speed and θ is the direction of propagation, we prove that these traveling

waves are asymptotically stable, when the initial perturbation around the traveling

waves decay exponentially at far fields, but can be allowed arbitrarily large in other

locations. Our approach adopted in this paper is the weighted energy method and

the squeezing technique with the help of Gronwall’s inequality. Furthermore, from

stability result, we prove the uniqueness (up to shift) of the traveling wavefront. Our

results can apply to the discrete diffusive Mackey-Glass model and the dicrete diffusive

Nicholson’s blowflies model on 2D lattices.

1. Introduction

In this paper, we study the exponential stability of traveling waves for the following time-

delayed population model with the nonlocal interaction on 2D spatial lattices

dwi,j(t)

dt
= D[wi+1,j(t) + wi−1,j(t) + wi,j+1(t) + wi,j−1(t)− 4wi,j(t)]− dwi,j(t)

+ ε
∞∑

l=−∞

∞∑
q=−∞

β(l)γ(q)b(wi+l,j+q(t− r)),
(1.1)

with the initial condition

(1.2) wi,j(s) = w0
i,j(s), s ∈ [−r, 0], i, j ∈ Z.

This model describes the population distribution of a single species with age-structure in

a two-dimensional patchy environment [2,20], where wi,j(t) > 0 is the population density

of the species at time t and spatial lattice (i, j) ∈ Z × Z; and D > 0 and d > 0 are

Received October 12, 2016; Accepted January 15, 2017.

Communicated by Cheng-Hsiung Hsu.

2010 Mathematics Subject Classification. 35C07, 92D25, 35B35.

Key words and phrases. traveling wavefronts, stability, 2D lattice, weighted energy method, squeezing

technique.

*Corresponding author.

997



998 Jingwen Pei, Zhixian Yu and Huiling Zhou

diffusion and death rates of the population, respectively; ε > 0 represents the impact of

the death rate for the immature; r > 0 is the matured age and is called the delay-time

mathematically; and β(l) and γ(q) are non-negative and symmetrical kernels (nonlocal

interactions) for directions i ∈ Z and j ∈ Z, respectively.

Throughout the paper, we assume that:

(H1) Non-negative and symmetrical kernels: β(l) = β(−l) ≥ 0 and γ(l) = γ(−l) ≥
0 for any l ∈ Z; and

∑∞
l=−∞ β(l) =

∑∞
q=−∞ γ(q) = 1; and there exists λ] > 0

such that χ(λ) =:
∑∞

l=0

∑∞
q=0 β(l)γ(q)eλ(l+q) is convergent when λ ∈ [0, λ]), but

limλ→λ] χ(λ) = +∞, where λ] may be +∞;

(H2) Two constant-equilibria w±: there exist w− = 0 and w+ = K > 0 such that b(0) = 0,

εb(K) = dK, b ∈ C2[0,K] and for all w ∈ (0,K), εb(w) > dw;

(H3) Mono-stable type: εb′(0) > d (unstable node: w− = 0) and d > εb′(K) (stable node:

w+ = K);

(H4) Sub-linearity : b′(w) ≥ 0 and b′′(w) ≤ 0 for w ∈ [0,K].

When the immature population is non-mobile, then (1.1) can be reduced to the delayed

local lattice differential equation [1, 3, 7, 26]

dwi,j(t)

dt
= D[wi+1,j(t) + wi−1,j(t) + wi,j+1(t) + wi,j−1(t)− 4wi,j(t)]

− dwi,j(t) + εb(wi,j(t− r)).
(1.3)

The main purpose of the present paper is to investigate the stability of traveling

wavefronts for the 2D time-delayed differential-lattice equation (1.1). A traveling wave

solution of (1.1) connecting w− = 0 and w+ = K is a special solution with the form ofwi,j(t) = φ(i cos θ + j sin θ + ct) =: φ(ξ),

ξ := i cos θ + j sin θ + ct,
for i, j ∈ Z, and θ ∈ [0, π/2],

i.e., φ satisfies the following wave profile equation

c
dφ(ξ)

dξ
= D[φ(ξ + cos θ) + φ(ξ − cos θ) + φ(ξ + sin θ) + φ(ξ − sin θ)− 4φ(ξ)]

− dφ(ξ) + ε
∞∑

l=−∞

∞∑
q=−∞

β(l)γ(q)b(φ(ξ + l cos θ + q sin θ − cr)),

φ(±∞) = w±.

(1.4)

The constant θ represents the direction of the wave. We call c the wave speed and φ the

wave profile. Moreover, we say φ is a traveling wavefront if φ : R→ R is monotone.
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The existence of traveling wavefronts for the 2D lattice model (1.1) with monotone

birth rate function b(w) has been obtained by Cheng et al. [2] and Weng et al. [20] by

using the methods developed in [12, 19] for 1D lattice differential equations. Recently,

when the birth function b(u) is non-monotone, the existence of the wavefronts to (1.1)

was further investigated by Yu et al. [27], and the uniqueness of the wavefronts (including

the critical wave) was showed by Yu and Mei in [24], recently, where the birth function

is non-monotone but the nonlocal interactions β(l) and γ(q) are compactly supported.

Furthermore, the stability of wavefronts for (1.1) (including the local case (1.3)) was

studied in [3, 23, 26] by using the weighted energy method (see also [9–11, 13, 14, 16–18,

21, 22, 25]), where, for the local case (1.3), Cheng et al. [3] obtained the stability for the

wavefronts with large wave speed c� 1 and restricted the initial perturbation to be small

enough, and Yu and Yuan [26] further showed the stability with large speed c � 1, but

allowed the initial perturbation to be arbitrarily large in certain weighted space due to the

comparison principle, while, for the nonlocal case (1.1), Wu and Liu [23] similarly proved

stability in the case of the large wave speed with a large initial perturbation. However, the

most interesting but also challenging case is to study the stability of the wavefronts with

the speed c arbitrarily close to the critical wave speed c∗(θ) > 0, particularly, the case of

c = c∗(θ) > 0, because the spreading speed is just the minimum wave speed c∗(θ) > 0.

In this paper, for the nonlocal lattice equation (1.1), we shall prove that all non-critical

wavefronts with c > c∗(θ) are globally stable. The exponential convergence rate will be

also derived. These essentially improve the existing wave stability results [3, 23, 26]. The

approach adopted is still the weighted energy method and the squeezing technique with

the help of Gronwall’s inequality, but the chosen weight function is optimal and depends

on the eigenvalue of the characteristic equation for the wave profiles. As a corollary of

the stability result, we also obtain the uniqueness of traveling waves without assuming

β(l) and γ(q) to be compactly supported. This also improves the existing uniqueness

obtained in [24] where the compact support needs for the nonlocal interactions β(l) and

γ(q). Regarding the case c = c∗(θ), unfortunately it still remains open, because the

l2-weighted energy method doesn’t work out for this critical case.

The rest of this paper is organized as follows. In Section 2, we state the property of

the characteristic equation and the existence result for traveling wavefronts. Based on the

property of the characteristic equation, we then introduce a non-piecewise function ekx for

some carefully selected positive number k, which is the eigenvalue for the characteristic

equation of the wave profiles. Lastly, we list the stability and uniqueness on the traveling

wave front. In Section 3, by using the weighted energy method and the comparison

principle with the help of Gronwall’s inequality, we prove the stability for all traveling

wavefronts c > c∗(θ). There will be no restriction on the delay time r, the wave speed c
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and the initial perturbation. This essentially improves and develops the previous stability

results in [3, 23,26]. Section 4 is devoted to proving uniqueness of traveling wavefronts.

Notations. Throughout this paper, l2v denotes the weighted l2-space with weight 0 <

v(ξ) ∈ C(R) and a fixed θ ∈ [0, π/2], that is,

l2v :=

ζ = {ζi,j}i,j∈Z , ζi,j ∈ R
∣∣∣∣ ∑
i,j

v(i cos θ + j sin θ)ζ2
i,j <∞


and its norm is defined by

‖ζ‖l2v =

∑
i,j

v(i cos θ + j sin θ)ζ2
i,j

1/2

and ζ ∈ l2v.

In particular, when v ≡ 1, we denote l2v by l2.

For given positive number T > 0, we also define a uniform continuous space by

Cunif [−r, T ]

:=

{
ζi,j(t) ∈ C[−r, T ], i, j ∈ Z

∣∣∣ lim
i,j→∞

ζi,j(t) exists uniformaly in t ∈ [−r, T ]

}
.

2. Preliminaries and main theorems

Let φ(ξ) = φ(i cos θ + j sin θ + ct) be the wavefronts satisfying (1.4), and let us linearize

(1.4) around φ = 0 to have

c
dφ(ξ)

dξ
= D[φ(ξ + cos θ) + φ(ξ − cos θ) + φ(ξ + sin θ) + φ(ξ − sin θ)− 4φ(ξ)]

− dφ(ξ) + ε

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(0)φ(ξ + l cos θ + q sin θ − cr).

Consider φ(ξ) = eλξ for ξ → −∞ as the eigenfunction to the above equation, then we

obtain the following characteristic equation for (1.4):

∆(c, λ) := −cλ+D
(
eλ cos θ + e−λ cos θ + eλ sin θ + e−λ sin θ − 4

)
+ εb′(0)

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)eλ(l cos θ+q sin θ−cr) − d

= 0.

Now we recall some properties of ∆(c, λ), which was investigated in [3, 20,24].

Lemma 2.1. Assume that (H1) and εb′(0) > d hold. Then, there exist a unique pair of

c∗(θ) > 0 and λ∗(θ) > 0 for any fixed θ ∈ [0, π/2] such that the following assertions hold.
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(i) ∆(c∗(θ), λ∗(θ)) = 0, ∂∆(c,λ)
∂λ

∣∣
c=c∗(θ),λ=λ∗(θ)

= 0;

(ii) For any c ∈ (0, c∗(θ)) and λ > 0, ∆(c, λ) > 0;

(iii) For any c > c∗(θ), ∆(c, λ) = 0 has two positive roots 0 < λ1 < λ2. Moreover,

∆(c, λ) < 0 for any λ ∈ (λ1, λ2).

The result on the existence of traveling wavefronts of (1.1) comes from Theorem 5.4

of [2] and Theorem 3.1 of [20].

Proposition 2.2. Assume that (H1)–(H4) hold. Then, for every θ ∈ [0, π/2], there exists

c∗(θ) > 0 such that for any c ≥ c∗(θ), (1.1) admits a traveling wavefront φ(i cos θ+j sin θ+

ct) satisfying the boundary conditions

lim
ξ→−∞

φ(ξ) = 0 and lim
ξ→+∞

φ(ξ) = K,

and for any c ∈ (0, c∗(θ)), there are no non-trivial wavefront φ(i cos θ + j sin θ + ct) satis-

fying φ(ξ) ∈ [0,K]. Moreover, for c > c∗(θ), φ satisfies

lim
ξ→−∞

φ(ξ)e−λ1ξ = 1 and lim
ξ→−∞

φ′(ξ)e−λ1ξ = λ1,

where c∗(θ) and λ1 are given in Lemma 2.1.

Define a weight function v(ξ) by

(2.1) v(ξ) = e−2λξ, λ ∈ (λ1, λ2).

Now we state our main result as follows.

Theorem 2.3 (Stability). Assume that (H1)–(H4) hold. For all traveling wavefronts

φ(i cos θ + j sin θ + ct) with the wave speed c > c∗(θ), if the initial data satisfies

0 ≤ w0
i,j(s) ≤ K for s ∈ [−r, 0], i, j ∈ Z,

and the initial perturbation w0
i,j(s) − φ(i cos θ + j sin θ + cs) is in C([−r, 0], l2v ∩ l∞) ∩

Cunif [−r, 0], where v = v(i cos θ + j sin θ + ct) is the weight function given in (2.1), then

the solution {wi,j(t)}i,j∈Z of (1.1) and (1.2) satisfies

0 ≤ wi,j(t) ≤ K for t ∈ [0,+∞), i, j ∈ Z,

and

{wi,j(t)− φ(i cos θ + j sin θ + ct)}i,j∈Z ∈ C([0,∞), l2v ∩ l∞) ∩ Cunif [0,∞).

In particular, the solution {wi,j(t)}i,j∈Z converges to the traveling wave front φ(i cos θ +

j sin θ + ct) exponentially in time t, that is,

sup
i,j∈Z

|wi,j(t)− φ(i cos θ + j sin θ + ct)| ≤ Ce−µt, t ≥ 0

for some positive constants C and µ.
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As a corollary of the stability results, we easily prove the following uniqueness.

Corollary 2.4 (Uniqueness). Assume that (H1)–(H4) hold. For any given θ ∈ [0, π/2],

let φ1(i cos θ+ j sin θ+ ct) and φ2(i cos θ+ j sin θ+ ct) be two different traveling wavefronts

of (1.1) with the same speed c > c∗(θ). Then φ1 is a translation of φ2; more precisely,

there exists ξ0 ∈ R such that φ1(ξ) = φ2(ξ + ξ0), ξ ∈ R.

Remark 2.5. (i) Motivated by the weight function in [4,8], we can also choose the same

weight function (2.1) to overcome this difficulty caused by the nonlocal terms, which

is different from the weight functions in [10,13–15]. Thus, we can obtain the stability

of traveling wavefront for (1.1) with the wave speed c > c∗(θ). This improves the

stability results for the case with the larger wave speed in [3, 23,26].

(ii) The condition d > εb′(K) + 2D(e − 1) (i.e., (H3) in [3]) and the condition d >

D(e − 1) + 1
2εb
′(K)(1 + L2) (i.e., inequality (2.3) in [23]) can be weaken to the

present condition (H3): d > εb′(K).

(iii) As a corollary of the stability result, the uniqueness of traveling waves is obtained

without assuming β(l) and γ(q) to be compactly supported.

(iv) When β(0) = γ(0) = 1, β(l) = γ(l) = 0 for l ∈ Z/{0}, then (1.1) is reduced to the

local delayed lattice differential equation (1.3). Thus Theorem 2.3 and Corollary 2.4

still hold for (1.3).

3. Stability

Throughout this section, we assume that (H1)–(H4) hold. First of all, we recall the

existence and the comparison principle presented in [3, 23] for the Cauchy problem (1.1)

and (1.2), then prove our stability result by using the weighted energy method and the

squeezing technique with the help of Gronwall’s inequality.

Lemma 3.1 (Existence). For any initial function w0(s) = {w0
i,j(s)}i,j∈Z ∈ C([−τ, 0], l∞),

(1.1) with the initial condition (1.2) has a unique solution w(t) = {wi,j(t)}i,j∈Z ∈ C([−τ, 0],

l∞). Furthermore, if {w0
i,j(s)− φ(i cos θ + j sin θ + cs)}i,j∈Z ∈ C([−τ, 0], l2), then {wi,j(t)

− φ(i cos θ + j sin θ + ct)}i,j∈Z ∈ C([0,∞), l2). Similarly, if {w0
i,j(s)− φ(i cos θ + j sin θ +

cs)}i,j∈Z ∈ Cunif [−τ, 0], then {wi,j(t)− φ(i cos θ + j sin θ + ct)}i,j∈Z ∈ Cunif [0,∞).

Lemma 3.2 (Comparison principle). Let {wi,j(t)}i,j∈Z and
{
wi,j(t)

}
i,j∈Z be the solutions

of (1.1) and (1.2) with the initial data {w0
i,j(t)}i,j∈Z and {w0

i,j(t)}i,j∈Z, respectively. If

0 ≤ w0
i,j(s) ≤ w0

i,j(s) ≤ K for s ∈ [−r, 0], i, j ∈ Z

then

0 ≤ wi,j(t) ≤ wi,j(t) ≤ K for t ∈ [0,+∞), i, j ∈ Z.
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In what follows, we shall prove the stability theorem by using the comparison principle

together with the weighed energy method.

We assume that the initial data w0
i,j(s) satisfy 0 ≤ w0

i,j(s) ≤ K for s ∈ [−r, 0], i, j ∈ Z,

and w0
i,j(s)− φ(i cos θ + j sin θ + cs) ∈ C([−r, 0], l2v ∩ l∞) ∩ Cunif [−r, 0]. TakeW

0
i,j(s) = max

{
w0
i,j(s), φ(i cos θ + j sin θ + cs)

}
,

W 0
i,j(s) = min

{
w0
i,j(s), φ(i cos θ + j sin θ + cs)

} for s ∈ [−r, 0], i, j ∈ Z.

According to Lemmas 3.1 and 3.2, it is easily seen that

(3.1)

0 ≤W i,j(t) ≤ wi,j(t), φ(i cos θ + j sin θ + ct) ≤W i,j(t) ≤ K for t ∈ [0,+∞), i, j ∈ Z

and

W i,j(t)− φ(i cos θ + j sin θ + ct), W i,j(t)− φ(i cos θ + j sin θ + ct)

∈ C([−r, 0], l2v ∩ l∞) ∩ Cunif [−r, 0],

where W
0
i,j(t) and W 0

i,j(t) are the corresponding solutions of (1.1) and (1.2) with the

initial data W
0
i,j(s) and W 0

i,j(s), respectively.

3.1. A prior estimates

For the sake of convenience, we always let ξ = ξ(t, i, j) := i cos θ + j sin θ + ct. Take

ui,j(t) = W i,j(t)− φ(i cos θ + j sin θ + ct), t ∈ [0,+∞), i, j ∈ Z

and

u0
i,j(s) = W

0
i,j(s)− φ(i cos θ + j sin θ + cs), s ∈ [−r, 0], i, j ∈ Z.

Therefore, it follows from (3.1) that

ui,j(t) ≥ 0 and u0
i,j(s) ≥ 0.

From (1.1) and (1.2), ui,j(t) satisfies

dui,j(t)

dt
= D[ui+1,j(t) + ui−1,j(t) + ui,j+1(t) + ui,j−1(t)− 4ui,j(t)]− dui,j(t)

+ ε

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(t, i, j))ui+l,j+q(t− r) +Qi,j(t− r), t > 0

u0i,j(s) = W
0

i,j(s)− φ(ξ(s, i, j)), i, j ∈ Z, s ∈ [−r, 0],

(3.2)
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where

Qi,j(t− r) = ε
∞∑

l=−∞

∞∑
q=−∞

β(l)γ(q)
[
b(ui+l,j+q(t− r) + φ(ξ̃(t, i, j))− b(φ(ξ̃(t, i, j)))

− b′(φ(ξ̃(t, i, j)))ui+l,j+q(t− r)
]
,

ξ̃(t, i, j) = ξ(t, i, j) + l cos θ + q sin θ − cr

and

ui±1,j(t) = W i±1,j(t)− φ(ξ(t, i, j)± cos θ), ui,j±1(t) = W i,j±1(t)− φ(ξ(t, i, j)± sin θ).

By Taylor’s formula and assumption (H2), we have Qi,j(t− r) ≤ 0.

Now we are going to establish a priori estimate for the solution ui,j(t). Let

ui,j(t) ∈ C([0, T ]; l2v ∩ l∞) ∩ Cunif [0, T ] =: X(0, T )

for any given T > 0, where X(0, T ) is called the solution space. We are going to prove the

exponential decay of the solution in serval lemmas. In order to obtain a weighted energy

estimate, we need the following key inequality.

Let

Bµ,v(ξ(t, i, j)) := Aµ,v(ξ(t, i, j))− 2µ

− (e2µr − 1)ε
∞∑

l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(t, i, j)))
v((t+ r, i− l, j − q))

v(ξ(t, i, j))

1

κ5
,

where

Aµ,v(ξ(t, i, j))

:= −c
v′ξ(ξ(t, i, j))

v(ξ(t, i, j))
−D

{[
κ1 +

1

κ1

v(ξ(t, i− 1, j))

v(ξ(t, i, j))

]
+

[
κ2 +

1

κ2

v(ξ(t, i+ 1, j))

v(ξ(t, i, j))

]
+

[
κ3 +

1

κ3

v(ξ(t, i, j − 1))

v(ξ(t, i, j))

]
+

[
κ4 +

1

κ4

v(ξ(t, i, j + 1))

v(ξ(t, i, j))

]
− 8

}
+ 2d

− ε
∞∑

l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(t, i, j)))

[
κ5 +

v((t+ r, i− l, j − q))
v(ξ(t, i, j))

1

κ5

]
and

κ1 = eλ cos θ, κ2 = e−λ cos θ, κ3 = eλ sin θ, κ4 = e−λ sin θ, κ5 = eλ(l cos θ+j sin θ−cr).

Lemma 3.3. For any c > c∗(θ) and λ ∈ (λ1, λ2), Aµ,v(ξ(t, i, j)) ≥ C2 > 0 for some

positive constant C2, which is independent on t, i, j, µ.
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Proof. Notice that 0 ≤ b′(w) ≤ b′(0) for any w ∈ [0,K] and

v′ξ(ξ(t, i, j))

v(ξ(t, i, j))
= −2λ,

v(ξ(t, i− 1, j))

v(ξ(t, i, j))
= e2λ cos θ,

v(ξ(t, i+ 1, j))

v(ξ(t, i, j))
= e−2λ cos θ,

v(ξ(t, i, j − 1))

v(ξ(t, i, j))
= e2λ sin θ,

v(ξ(t, i, j + 1))

v(ξ(t, i, j))
= e−2λ sin θ,

v(ξ(t+ r, i− l, j − q))
v(ξ(t, i, j))

= e2λ(l cos θ+q sin θ−cr).

Thus, we have

Aµ,v(ξ(t, i, j)) ≥ 2cλ−D
{[

κ1 +
1

κ1
e2λ cos θ

]
+

[
κ2 +

1

κ2
e−2λ cos θ

]
+

[
κ3 +

1

κ3
e−2λ cos θ

]
+

[
κ4 +

1

κ4
e−2λ sin θ

]
− 8

}
+ 2d

− ε
∞∑

l=−∞

∞∑
q=−∞

β(l)γ(q)b′(0)

[
κ5 + e2λ(l cos θ+j sin θ−cr) 1

κ5

]
= 2cλ− 2D

(
eλ cos θ + e−λ cos θ + eλ sin θ + e−λ sin θ − 4

)
+ 2d

− 2ε
∞∑

l=−∞

∞∑
q=−∞

β(l)γ(q)b′(0)eλ(l cos θ+j sin θ−cr)

= −2∆(c, λ) =: C2 > 0 for λ ∈ (λ1, λ2)

according to Lemma 2.1. This completes the proof.

Lemma 3.4 (Key inequality). For any c > c∗(θ) and λ ∈ (λ1, λ2), there exists a positive

number µ1 such that Bµ,v(ξ(t, i, j)) > 0 for 0 < µ < µ1, where µ1 is the unique root of the

following equation

C2 − 2µ− (e2µr − 1)ε
∞∑

l=−∞

∞∑
q=−∞

β(l)γ(q)b′(0)eλ(l cos θ+j sin θ−cr) = 0.

Proof. Let

F (µ) = C2 − 2µ− (e2µr − 1)ε

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(0)eλ(l cos θ+j sin θ−cr)

for µ ∈ [0,+∞). Since F (0) = C2 > 0 by Lemma 3.3 and F (+∞) = −∞ < 0, there exists

a positive number µ1 such that F (µ1) = 0 according to Intermediate Value Theorem. In

addition, this conclusion holds since F ′(µ) < 0. This completes the proof.

Lemma 3.5. For any c > c∗(θ), it holds that

(3.3) e2µt ‖u(t)‖2l2v ≤
∥∥u0(0)

∥∥2

l2v
+ C1

∫ 0

−r

∥∥u0(s)
∥∥2

l2v
ds, t ≥ 0, 0 < µ < µ1.
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Proof. Let v(ξ) be the weight function defined in (2.1). Multiplying (3.2) by e2µtui,j(t)

v(ξ(t, i, j)), where µ > 0 will be given in Lemma 3.4, we have

1

2

d

dt

[
e2µtu2

i,j(t)v(ξ(t, i, j))
]

−De2µtui,j(t)v(ξ(t, i, j))[ui+1,j(t) + ui−1,j(t) + ui,j+1(t) + ui,j−1(t)− 4ui,j(t)]

+ e2µtu2
i,j(t)v(ξ(t, i, j))

[
−c

v′ξ(ξ(t, i, j))

2v(ξ(t, i, j))
+ d− µ

]

− ε
∞∑

l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(t, i, j)))e2µtv(ξ(t, i, j))ui,j(t)ui+l,j+q(t− r)

= Qi,j(t− r)e2µtui,j(t)v(ξ(t, i, j)) ≤ 0.

By the Cauchy-Schwarz inequality |xy| ≤ κi
2 x

2 + 1
2κi
y2 for any κi > 0, i = 1, 2, 3, 4, 5, we

obtain

ui,j(t)ui±1,j±1(t) ≤
κiu

2
i,j(t)

2
+
u2
i±1,j±1(t)

2κi
.

Summing about all i, j ∈ Z and integrating over [0, t], this yields

e2µt ‖u(t)‖2l2v −
∥∥u0(0)

∥∥2

l2v
+

∫ t

0

∑
i,j

e2µsu2
i,j(s)v(ξ(s, i, j))

{
−c

v′ξ(ξ(s, i, j))

v(ξ(s, i, j))
+ 2d− 2µ

}
ds

≤
∫ t

0

∑
i,j

De2µs

{[
κ1u

2
i,j(s) +

1

κ1
u2
i+1,j(s)

]
+

[
κ2u

2
i,j(s) +

1

κ2
u2
i−1,j(s)

]

+

[
κ3u

2
i,j(s) +

1

κ3
u2
i,j+1(s)

]
+

[
κ4u

2
i,j(s) +

1

κ4
u2
i,j−1(s)

]
− 8u2

i,j(s)

}
v(ξ(s, i, j)) ds

+ 2ε

∫ t

0

∑
i,j

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(t, i, j)))e2µsv(ξ(s, i, j))ui,j(s)ui+l,j+q(s− r) ds

≤
∫ t

0

∑
i,j

De2µsu2
i,j(s)v(ξ(s, i, j))

{[
κ1 +

1

κ1

v(ξ(s, i− 1, j))

v(ξ(t, i, j))

]
+

[
κ2 +

1

κ2

v(ξ(s, i+ 1, j))

v(ξ(t, i, j))

]

+

[
κ3 +

1

κ3

v(ξ(s, i, j − 1))

v(ξ(t, i, j))

]
+

[
κ4 +

1

κ4

v(ξ(s, i, j + 1))

v(ξ(t, i, j))

]
− 8

}
ds

+ 2ε

∫ t

0

∑
i,j

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(t, i, j)))e2µsv(ξ(s, i, j))ui,j(s)ui+l,j+q(s− r) ds.

(3.4)

Now we begin to estimate last term

2ε

∫ t

0

∑
i,j

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(s, i, j)))e2µsv(ξ(s, i, j))ui,j(s)ui+l,j+q(s− r) ds

in (3.4).



Stability of Traveling Wavefronts for a Delayed Lattice System with Nonlocal Interaction 1007

In view of (H1), there exists some positive number C1 > 0 such that

ε
∞∑

l=−∞

∞∑
q=−∞

β(l)γ(q)b′(0)e2µr v(ξ(s+ r, i− l, j − q))
v(ξ(s, i, j))

1

κ5

= εb′(0)e2µr
∞∑

l=−∞

∞∑
q=−∞

β(l)γ(q)eλ(l cos θ+q sin θ−cr)

≤ εb′(0)e2µr
∞∑

l=−∞

∞∑
q=−∞

β(l)γ(q)eλ(|l|+|q|)

≤ C1 for all i, j ∈ Z.

It follows from (H4) that 0 ≤ b′(w) ≤ b′(0) for any w ∈ [0,K]. Thus, we obtain

2ε

∫ t

0

∑
i,j

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(s, i, j)))e2µsv(ξ(s, i, j))ui,j(s)ui+l,j+q(s− r) ds

≤ ε
∫ t

0

∑
i,j

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(s, i, j))e2µsv(ξ(s, i, j))κ5u
2
i,j(s) ds

+ ε

∫ t

0

∑
i,j

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(s, i, j))e2µsv(ξ(s, i, j))
1

κ5
u2i+l,j+q(s− r) ds

= ε

∫ t

0

∑
i,j

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(s, i, j))e2µsv(ξ(s, i, j))κ5u
2
i,j(s) ds

+ ε

∫ t−r

−r

∑
i,j

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(s, i, j)))e2µsv(ξ(s+ r, i− l, j − q)) 1

κ5
u2i,j(s)e

2µr ds

= ε

∫ t

0

∑
i,j

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(s, i, j))e2µsv(ξ(s, i, j))κ5u
2
i,j(s) ds

+ ε

∫ t−r

0

∑
i,j

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(s, i, j))e2µsv(ξ(s+ r, i− l, j − q)) 1

κ5
u2i,j(s)e

2µr ds

+ ε

∫ 0

−r

∑
i,j

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(s, i, j))e2µs
v(ξ(s+ r, i− l, j − q))

v(ξ(s, i, j))
v(ξ(s, i, j))

× 1

κ5
u2i,j(s)e

2µr ds

≤ ε
∫ t

0

∑
i,j

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(s, i, j))e2µsv(ξ(s, i, j))κ5u
2
i,j(s) ds

+ ε

∫ t

0

∑
i,j

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(s, i, j))e2µsv(ξ(s+ r, i− l, j − q) 1

κ5
u2i,j(s)e

2µr ds

+ C1

∫ 0

−r

∥∥u0(s)
∥∥2
l2v
ds.

(3.5)

Thus, it follows from (3.4) and (3.5) that
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e2µt ‖u(t)‖2l2v +

∫ t

0

∑
i,j

e2µsu2
i,j(s)v(ξ(s, i, j))Bµ,v(ξ(s, i, j)) ds

≤
∥∥u0(0)

∥∥2

l2v
+ C1

∫ 0

−r

∥∥u0(s)
∥∥2

l2v
ds.

(3.6)

According to Lemma 3.4 and dropping the positive term∫ t

0

∑
i,j

e2µsu2
i,j(s)v(ξ(s, i, j))Bµ,ν(ξ(s, i, j)) ds

in (3.6), we obtain the this basic energy estimate. This completes the proof.

Lemma 3.6. For any c > c∗(θ), there exists a large number N � 1 (independent of t and

ξ) such that

sup
i,j≥N

|ui,j(t)| ≤ C3e
−µ2t, t ≥ 0

for some positive constants C3 and 0 < µ2 ≤ d− εb′(K).

Proof. According to Qi,j(t− r) ≤ 0, (3.2) can be reduced to

dui,j(t)

dt
≤ D[ui+1,j(t) + ui−1,j(t) + ui,j+1(t) + ui,j−1(t)− 4ui,j(t)]− dui,j(t)

+ ε

∞∑
l=−∞

∞∑
q=−∞

β(l)γ(q)b′(φ(ξ̃(t, i, j))ui+l,j+q(t− r).
(3.7)

Since ui,j(t) ∈ Cunif([0, T ], namely, limi,j→∞ ui,j(t) := u∞(t) exists uniformly in t ∈ [0, T ].

Now, let us take limits as i, j →∞, then from (3.7) we have

(3.8)
du∞(t)

dt
≤ −du∞(t) + εb′(K)u∞(t− r).

Since b′(K) > 0, integrating (3.8) over [0, t], we can obtain∫ t

0
u∞(s− r) ds =

∫ t−r

−r
u∞(s) ds ≤

∫ t

0
u∞(s) ds+

∫ 0

−r
u0
∞(s) ds

and

(3.9) u∞(t) ≤ [εb′(K)− d]

∫ t

0
u∞(s) ds+ εb′(K)

∫ 0

−r
u0
∞(s) ds+ u0

∞(0).

By the Gronwall’s inequality, (3.9) yields

lim
i,j→∞

|ui,j(t)| := |u∞(t)| ≤ C4e
−µ2t,

where 0 < µ2 ≤ d−εb′(K). Thus, we immediately obtain that, there exists a large number

N � 1 which is independent of t and ξ such that

sup
i,j≥N

|ui,j(t)| ≤ C3e
−µ2t, t ≥ 0.

This completes the proof.
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Lemma 3.7. For any c > c∗(θ), it holds that

sup
i,j∈(−∞,N ]

|ui,j(t)| ≤ C4e
−µt
(∥∥u0(0)

∥∥2

l2v
+

∫ 0

−r

∥∥u0(s)
∥∥2

l2v
ds

)1/2

, t ≥ 0, 0 < µ < µ1

for all t ≥ 0 and some positive constant C4.

Proof. Since the weight function satisfies

v(ξ) = e−2λξ ≥ e−2λN > 0 for ξ ∈ (−∞, N ],

by the standard Sobolev’s embedding inequality l2 ↪→ l∞, then it follows from (3.3) in

Lemma 3.5 that

sup
i,j∈(−∞,N ]

|ui,j(t)| ≤ ‖u(t)‖l2(−∞,N ] ≤ e
λN ‖u(t)‖l2v(−∞,N ] ≤ e

λN ‖u(t)‖l2v(R)

≤ C4e
−µt
(∥∥u0(0)

∥∥2

l2v
+

∫ 0

−r

∥∥u0(s)
∥∥2

l2v
ds

)1/2

for t ≥ 0, 0 < µ < µ1 and some positive constant C4. The proof is complete.

According to the Lemmas 3.6 and 3.7, one has immediately the conclusion.

Lemma 3.8. For any c > c∗(θ), it holds that

sup
i,j

∣∣W i,j(t)− φ(i cos θ + j sin θ + ct)
∣∣ = sup

i,j
|ui,j(t)| ≤ C5e

−µt

for some positive constant C5, where µ ∈ (0,min {µ1, µ2}).

3.2. Proof of Theorem 2.3

Let

vi,j(t) = W i,j(t)− φ(i cos θ + j sin θ + ct)

and

v0
i,j(s) = W 0

i,j(s)− φ(i cos θ + j sin θ + cs).

We can similarly prove that W i,j(t) converges to φ(i cos θ+ j sin θ+ ct), i.e., the following

lemma holds.

Lemma 3.9. For any c > c∗(θ), it holds that

sup
i,j

∣∣W i,j(t)− φ(i cos θ + j sin θ + ct)
∣∣ = sup

i,j
|ui,j(t)| ≤ C6e

−µt

for all t ≥ 0 and some positive constant C6, where µ ∈ (0,min {µ1, µ2}).
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Thus, we can easily obtain the following lemma.

Lemma 3.10. For any c > c∗(θ), it holds that

sup
i,j
|Wi,j(t)− φ(i cos θ + j sin θ + ct)| ≤ Ce−µt

for all t ≥ 0 and some positive constant C, where µ ∈ (0,min {µ1, µ2}).

Proof of Theorem 2.3. Since the initial data satisfy W i,j(s) ≤ Wi,j(s) ≤ W i,j(s), s ∈
[−r, 0], it follows from Lemma 3.2 that the corresponding solutions of (1.1) and (1.2)

satisfy

W i,j(t) ≤Wi,j(t) ≤W i,j(t) for all t ≥ 0, i, j ∈ Z.

According to Lemmas 3.5–3.8, the squeeze method yields

sup
i,j
|Wi,j(t)− φ(i cos θ + j sin θ + ct)| ≤ Ce−µt

for all t ≥ 0 and some positive constant C. This completes the proof.

4. Uniqueness of traveling waves

This section is devoted to the proof of Corollary 2.4, i.e., the uniqueness of the traveling

wavefronts can be obtained.

Proof of Corollary 2.4. According to Theorem 2.3 of [24], any two traveling wavefronts

possess the same exponential decay at −∞. Therefore, there exist two positive constants

A and B such that

φ1(ξ) ∼ Ae−λ1|ξ|, φ2(ξ) ∼ Be−λ1|ξ| as ξ → −∞

where λ1 = λ1(c) > 0 is defined in Lemma 2.1 and ∼ is the sign of equivalence. Let us shift

φ2(i cos θ+ j sin θ+ ct) to φ2(i cos θ+ j sin θ+ ct+m cos θ+n sin θ) with the constant shift

ξ0 := m cos θ + n sin θ. By taking ξ → −∞, obviously ξ + ξ0 < 0. Choosing ξ0 = 1
λ1

ln A
B ,

we have

φ2(ξ + ξ0) ∼ Be−λ1|ξ+ξ0| = Beλ1(ξ+ξ0) = Beλ1ξ0e−λ1|ξ| = Ae−λ1|ξ| as ξ → −∞

and

|φ2(ξ + ξ0)− φ1(ξ)| = O(1)e−α|ξ| ∈ l2v, for α < λ1, as ξ → −∞.

And then, we take the initial data for (1.1) by

w0
i,j(s) = φ2(i cos θ + j sin θ + cs+ ξ0), s ∈ [−r, 0], i, j ∈ Z.
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Obviously, the corresponding solution to (1.1) is

wi,j(t) = φ2(i cos θ + j sin θ + ct+ ξ0).

Applying the stability theorem, i.e., Theorem 2.3, we obtain

lim
t→∞

sup
i,j∈Z

|φ2(i cos θ + j sin θ + ct+ ξ0)− φ1(i cos θ + j sin θ + ct)| = 0,

i.e., φ2(i cos θ + j sin θ + ct + ξ0) = φ1(i cos θ + j sin θ + ct) for all i, j ∈ Z, as t � 1. In

view of the arbitrary of i, j we have ξ = i cos θ + j sin θ + ct ∈ R and φ2(ξ + ξ0) = φ1(ξ).

This completes the proof.

5. Applications

In this section, we apply our results to some biological models.

Example 5.1. We first investigate the discrete diffusive Nicholson’s blowflies model on

2D lattices

dwi,j(t)

dt
= D[wi+1,j(t) + wi−1,j(t) + wi,j+1(t) + wi,j−1(t)− 4wi,j(t)]− dwi,j(t)

+ εp
∞∑

l=−∞

∞∑
q=−∞

β(l)γ(q)wi+l,j+q(t− r)e−awi+l,j+q(t−r),
(5.1)

which is the discrete-version in [5,6,13,14]. Let b(u) = pue−au for 1 < εp/d ≤ e, where a, p,

d are positive constants, then w− = 0 and w+ = K := 1
a ln εp

d are the two equilibria of (5.1).

It is easily checked that (H2)–(H4) hold. According to Theorem 2.3 and Corollary 2.4, we

can obtain the following results.

Theorem 5.2. Assume that (H1) and 1 < εp/d ≤ e hold. For all traveling wavefronts

φ(i cos θ + j sin θ + ct) with the wave speed c > c∗(θ), if the initial data satisfies

0 ≤ w0
i,j(s) ≤ K for s ∈ [−r, 0], i, j ∈ Z,

and the initial perturbation w0
i,j(s) − φ(i cos θ + j sin θ + cs) is in C([−r, 0], l2v ∩ l∞) ∩

Cunif [−r, 0], where v = v(i cos θ + j sin θ + ct) is the weight function given in (2.1), then

the solution {wi,j(t)}i,j∈Z converges to the traveling wave front φ(i cos θ + j sin θ + ct)

exponentially in time t, that is,

sup
i,j∈Z

|wi,j(t)− φ(i cos θ + j sin θ + ct)| ≤ Ce−µt, t ≥ 0

for some positive constants C and µ.
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Corollary 5.3. Assume that (H1) and 1 < εp/d ≤ e hold. For any given θ ∈ [0, π/2], let

φ1(i cos θ+ j sin θ+ ct) and φ2(i cos θ+ j sin θ+ ct) be two different traveling wavefronts of

(5.1) with the same speed c > c∗(θ). Then there exists ξ0 ∈ R such that φ1(ξ) = φ2(ξ+ξ0),

ξ ∈ R.

Example 5.4. Now we consider the discrete diffusive Mackey-Glass model model on 2D

lattices

dwi,j(t)

dt
= D[wi+1,j(t) + wi−1,j(t) + wi,j+1(t) + wi,j−1(t)− 4wi,j(t)]− dwi,j(t)

+ εp
∞∑

l=−∞

∞∑
q=−∞

β(l)γ(q)
wi+l,j+q(t− r)

1 + awi+l,j+q(t− r)
,

(5.2)

where D, d, p, a are positive constants. (5.2) can be regarded as a discrete version in

[5,6,13,14]. If εp/d > 1, then (5.2) has two equilibria w− = 0 and w+ = K := (εp−d)/(ad).

Moreover, b(w) = pw/(1 + aw) satisfies (H2)–(H4). Thus, we easily obtain the following

results.

Theorem 5.5. Assume that (H1) and εp/d > 1 hold. For all traveling wavefronts

φ(i cos θ + j sin θ + ct) with the wave speed c > c∗(θ), if the initial data satisfies

0 ≤ w0
i,j(s) ≤ K for s ∈ [−r, 0], i, j ∈ Z,

and the initial perturbation w0
i,j(s) − φ(i cos θ + j sin θ + cs) is in C([−r, 0], l2v ∩ l∞) ∩

Cunif [−r, 0], where v = v(i cos θ + j sin θ + ct) is the weight function given in (2.1), then

the solution {wi,j(t)}i,j∈Z converges to the traveling wave front φ(i cos θ + j sin θ + ct)

exponentially in time t, that is,

sup
i,j∈Z

|wi,j(t)− φ(i cos θ + j sin θ + ct)| ≤ Ce−µt, t ≥ 0

for some positive constants C and µ.

Corollary 5.6. Assume that (H1) and εp/d > 1 hold. For any given θ ∈ [0, π/2], let

φ1(i cos θ+ j sin θ+ ct) and φ2(i cos θ+ j sin θ+ ct) be two different traveling wavefronts of

(5.1) with the same speed c > c∗(θ). Then there exists ξ0 ∈ R such that φ1(ξ) = φ2(ξ+ξ0),

ξ ∈ R.
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