On Abelian Canonical n-folds of General Type

Rong Du^{*} and Yun Gao

Abstract

Let X be a Gorenstein minimal projective n-fold with at worst locally factorial terminal singularities, and suppose that the canonical map of X is generically finite onto its image. When $n<4$, the canonical degree is universally bounded. While the possibility of obtaining a universal bound on the canonical degree of X for $n \geq 4$ may be inaccessible, we give a uniform upper bound for the degrees of certain abelian covers. In particular, we show that if the canonical divisor K_{X} defines an abelian cover over \mathbb{P}^{n}, i.e., when X is an abelian canonical n-fold, then the canonical degree of X is universally upper bounded by a constant which only depends on n for X nonsingular. We also construct two examples of nonsingular minimal projective 4 -folds of general type with canonical degrees 81 and 128.

1. Introduction

The study of the canonical maps of n-dimensional projective varieties of general type is one of the central problems in algebraic geometry. For nonsingular algebraic surfaces, Beauville [1] proved that the degree of the canonical map is less than or equal to 36 and that equality holds if and only if X is a ball quotient surface with $K_{X}^{2}=36, p_{g}=3, q=0$, and $\left|K_{X}\right|$ is base point free. For $n=3$, Chen posed an open problem in [5] as follows. Let X be a minimal projective 3 -fold with at worst locally factorial terminal singularities, and suppose that the canonical map is generically finite onto its image. Is the generic degree of the canonical map universally bounded from above? Later, Hacon 10 gave some examples of 3 -folds of general type with terminal singularities such that the canonical degrees of these 3 -folds can be arbitrarily large, but he also showed that the answer of Chen's question is "yes" if one adds the Gorenstein condition. More precisely, he showed

[^0]that if X is a Gorenstein minimal projective 3 -fold with at worst locally factorial terminal singularities, then the canonical degree of X is at most 576 . Recently, the first and the second authors improved Hacon's upper bound to 360, and showed that equality holds if and only if $p_{g}(X)=4, q(X)=2, \chi\left(\omega_{X}\right)=5, K_{X}^{3}=360$ and $\left|K_{X}\right|$ is base point free. For $n<4$, the Miyaoka-Yau inequality plays a vital role in the proof. For $n \geq 4$ however, the Miyaoka-Yau inequality is not effective enough to give a universal bound to control K_{X}^{n}.

Another open question in this direction is to determine the positive degree of the canonical map. Progress in this direction for surfaces appears in [1, 3, 7, 12, 17] and for 3folds in [2,8]. Explicit examples are often constructed by taking abelian covers. Since the canonical degree may not be universally bounded, it is natural to ask the following question: Can one construct nonsingular minimal projective n-folds whose canonical divisors define abelian covers over \mathbb{P}^{n} with arbitrarily large degrees?

Definition 1.1. Let X be a minimal projective n-fold of general type with at worst locally factorial terminal singularities. If $\left|K_{X}\right|$ defines abelian cover over \mathbb{P}^{n}, then we call X an abelian canonical n-fold.

In [7], the first and the second authors obtained a complete classification of abelian canonical surfaces. The universal upper bound for such surfaces is 16. In [8], they showed that for Gorenstein minimal projective 3-folds of general type with at worst locally factorial terminal singularities, the upper bound of the canonical degrees of such 3 -folds is 32 . Although we do not know if the canonical degree is universally bounded or not for higher dimensional projective varieties, there is evidence suggesting that the canonical degrees of nonsingular abelian canonical n-folds may be universally bounded due to the fact that there are very strong restrictions on the defining data of abelian covers. In this paper, we show that the degrees of certain abelian covers are uniformly bounded. In particular, we give a negative answer to the above question. More precisely, we show that the canonical degrees of nonsingular abelian canonical n-folds are universally bounded. We also construct two examples of nonsingular minimal projective 4 -folds of general type with canonical degrees 81 and 128 in the last section.

2. Basics on abelain covers

The theory of covering is a very important tool in algebraic geometry. The cyclic covers of algebraic surfaces were first studied by Comessatti in [6]. Later, F. Catanese [4] studied smooth abelian covers in the case $\left(\mathbb{Z}_{2}\right)^{\oplus 2}$. While R. Pardini analyzed the general case in [11], F. Catanese [4] pointed out that it is difficult to give the defining data of abelian covers by Pardini's method. Recently, the second author studied abelian covers of algebraic varieties from another point of view by calculating the normalization bases of the covering
spaces which made the constructions more explicit [9]. In this section, we shall recall some basic definitions and results of abelian covers which will facilitate our subsequent discussion. As our goal is to determine the defining equations for covering spaces by explicit calculation, we use the method appearing in 9 .

Let X and Y be projective algebraic varieties such that X is normal, Y is nonsingular and $\varphi: X \rightarrow Y$ is an abelian cover associated with the abelian group $G \cong \mathbb{Z}_{n_{1}} \oplus \cdots \oplus \mathbb{Z}_{n_{k}}$, where $n_{1}\left|n_{2}\right| \cdots \mid n_{k}$ (i.e., the function field $\mathbb{C}(X)$ of X is an abelian extension of the rational function field $\mathbb{C}(Y)$ with Galois group G).

Definition 2.1. Let $G \cong \mathbb{Z}_{n_{1}} \oplus \cdots \oplus \mathbb{Z}_{n_{k}}$. The data of an abelian cover over Y with group G consists of k effective divisors D_{1}, \ldots, D_{k}, and k linear equivalence relations

$$
D_{1} \sim n_{1} L_{1}, \ldots, D_{k} \sim n_{k} L_{k}
$$

Let $\mathscr{L}_{i}=\mathscr{O}_{Y}\left(L_{i}\right)$ and f_{i} be the defining equation of D_{i}, i.e., $D_{i}=\operatorname{div}\left(f_{i}\right)$, where $f_{i} \in H^{0}\left(Y, \mathscr{L}_{i}^{n_{i}}\right)$. Denote by $V\left(\mathscr{L}_{i}\right)=\operatorname{Spec} S\left(\mathscr{L}_{i}\right)$ the line bundle corresponding to \mathscr{L}_{i}, where $S\left(\mathscr{L}_{i}\right)$ is the sheaf of the symmetric \mathscr{O}_{Y} algebra, and let z_{i} be the fiber coordinate of $V\left(\mathscr{L}_{i}\right)$. Then the abelian cover can be realized by the normalization of the variety V defined by the system of equations

$$
\begin{equation*}
z_{1}^{n_{1}}=f_{1}, \ldots, z_{k}^{n_{k}}=f_{k} \tag{2.1}
\end{equation*}
$$

The above paragraph is summarized schematically via the following diagram:

We often make the abuse of saying X is defined by equations (2.1), although it should be clear from the context that X is in fact the normalization of the solution V of these equations.

We now list some useful results which will be crucial later on.
Theorem 2.2. 9] Denote by $[Z]$ the integral part of $a \mathbb{Q}$-divisor Z, and $-L_{g}=-\sum_{i=1}^{k} g_{i} L_{i}$ $+\left[\sum_{i=1}^{k} \frac{g_{i}}{n_{i}} D_{i}\right]$, where $g=\left(g_{1}, \ldots, g_{k}\right) \in G$. Then

$$
\begin{equation*}
\varphi_{*} \mathcal{O}_{X}=\bigoplus_{g \in G} \mathcal{O}_{Y}\left(-L_{g}\right) \tag{2.2}
\end{equation*}
$$

We remark that equation (2.2) implies the decomposition of $\varphi_{*} \mathcal{O}_{X}$ is completely determined by the data of an abelian cover.

Corollary 2.3. [9] If X is nonsingular, D is a divisor on Y, then

$$
h^{i}\left(X, \varphi^{*} \mathcal{O}_{Y}(D)\right)=\sum_{g \in G} h^{i}\left(Y, \mathcal{O}_{Y}\left(D-L_{g}\right)\right)
$$

The following result will be used to calculate the ramification index, since the branching locus is uniformly ramified for an abelian cover.

Theorem 2.4. 9] Let P be an irreducible and reduced hypersurface in Y, let $\bar{P}=\pi^{-1}(P)$ be the reduced preimage of P in X, and let a_{i} be the multiplicity of P in $D_{i}=\operatorname{div}\left(f_{i}\right)$. Then

$$
\pi^{*} P=\frac{|G|}{d_{P}} \bar{P}
$$

where

$$
d_{P}=\operatorname{gcd}\left(|G|,|G| \frac{a_{1}}{n_{1}}, \ldots,|G| \frac{a_{k}}{n_{k}}\right)
$$

is the number of points in the preimage of a generic point on P.

3. Abelian canonical n-folds

Let X and Y be projective algebraic varieties, with X normal and Y nonsingular, and let $\varphi: X \rightarrow Y$ be an abelian cover associated to the abelian group $G \cong \mathbb{Z}_{n_{1}} \oplus \cdots \oplus \mathbb{Z}_{n_{k}}$, where $n_{1}\left|n_{2}\right| \cdots \mid n_{k}$. Using the notations after Definition 2.1, we have that X is the normalization of the n-fold defined by

$$
\begin{equation*}
z_{1}^{n_{1}}=f_{1}, \ldots, z_{k}^{n_{k}}=f_{k} \tag{3.1}
\end{equation*}
$$

We say that an abelian cover $\varphi: X \rightarrow Y$ is totally ramified if the inertia subgroups of the divisorial components of the branch locus of φ generate G, or, equivalently, if φ does not factorize through a cover $X^{\prime} \rightarrow Y$ that is étale over Y. Note that if $\mathrm{Cl}(Y)$ has no torsion, then every connected abelian cover of Y is totally ramified.

Lemma 3.1. With notations as above, suppose that the cover is totally ramified and $D_{1}, D_{2}, \ldots, D_{m}$ are the irreducible components of the branch loci of the abelian cover φ with ramification indices $r_{1}, r_{2}, \ldots, r_{m}$ respectively. Then $n_{k} \leq \prod_{i=1}^{m} r_{i}$.

Proof. Suppose $n_{t}=p_{1}^{e_{t_{1}}} \cdots p_{s}^{e_{t_{s}}}, 1 \leq t \leq k$, is the prime decomposition of n_{t}. Without loss of generality, we only need to show that there exists D_{j} such that its ramification index r_{j} is divisible by $p_{s}^{e_{k_{s}}}$. Otherwise, for any irreducible component of the branch locus, we would have for the ramification index

$$
\frac{|G|}{d}=p_{1}^{e_{1}} \cdots p_{s}^{e_{s}}
$$

such that $e_{s}<e_{k_{s}}$, where

$$
d=\operatorname{gcd}\left(|G|,|G| \frac{a_{1}}{n_{1}}, \ldots,|G| \frac{a_{k}}{n_{k}}\right),
$$

and a_{i} is the multiplicity of the irreducible component in $\operatorname{div}\left(f_{i}\right)$ by Theorem 2.4. Thus

$$
d=p_{1}^{\sum_{j=1}^{k} e_{j_{1}}-e_{1}} \cdots p_{s}^{\sum_{j=1}^{k} e_{j_{s}}-e_{s}}
$$

which yields

$$
d \mid p_{1}^{\sum_{j=1}^{k-1} e_{j_{1}}} \cdots p_{s}^{\sum_{j=1}^{k-1} e_{j s}} a_{k}
$$

Hence $p_{s}^{e_{k_{s}}-e_{s}} \mid a_{k}$, which implies equations (3.1) split and so X is not irreducible, a contradiction.

Theorem 3.2. Let Y be a nonsingular projective n-fold such that the divisor class group $\mathrm{Cl}(Y)$ torsion free, and fix both a divisor L and an ample divisor A on Y. Consider the following set of abelian covers

$$
\mathscr{C}_{L}:=\left\{\varphi: X \rightarrow Y \mid X \text { is nonsingular and } K_{X}=\varphi^{*} L\right\} .
$$

Then there exists a constant $C_{L, A}$ such that for any $\varphi \in \mathscr{C}_{L}$, $\operatorname{deg} \varphi \leq C_{L, A}$.
Proof. Since $\mathrm{Cl}(Y)$ is torsion free, all D_{i} 's in the defining data of each abelian cover over Y as in Definition 2.1 are nonzero. Suppose that $D_{1}, D_{2}, \ldots, D_{m}$ are the irreducible components of the branch locus of an abelian cover $\varphi \in \mathscr{C}_{L}$ with the ramification indices $r_{1}, r_{2}, \ldots, r_{m}$, where $r_{i} \geq 2, i=1,2, \ldots, m$. Fix an ample divisor A on Y and write $d_{i}=D_{i} A^{n-1}$. By the Hurwitz formula,

$$
K_{X}=\varphi^{*}\left(K_{Y}+\sum_{i=1}^{m} \frac{r_{i}-1}{r_{i}} D_{i}\right) .
$$

On the other hand, $K_{X}=\varphi^{*}(L)$, thus

$$
\left(L-K_{Y}\right) A^{n-1}=\sum_{i=1}^{m} \frac{r_{i}-1}{r_{i}} d_{i},
$$

i.e.,

$$
\begin{equation*}
\sum_{i=1}^{m} \frac{1}{r_{i}} d_{i}=m-\left(L-K_{Y}\right) A^{n-1} \tag{3.2}
\end{equation*}
$$

We then have

$$
\left(L-K_{Y}\right) A^{n-1}<m \leq \sum_{i=1}^{m} d_{i} \leq 2 \cdot\left(L-K_{Y}\right) A^{n-1} .
$$

Without loss of generality suppose $r_{1} \leq r_{2} \leq \cdots \leq r_{m}$. Then from (3.2) we have

$$
\frac{1}{r_{1}} \sum_{i=1}^{m} d_{i} \geq m-\left(L-K_{Y}\right) A^{n-1}
$$

thus

$$
r_{1} \leq \sum_{i=1}^{m} d_{i} \leq 2 \cdot\left(L-K_{Y}\right) A^{n-1}=: C_{1}
$$

For fixed m, r_{1} and d_{1},

$$
\frac{1}{r_{2}} \sum_{i=2}^{m} d_{i} \geq \sum_{i=2}^{m} \frac{1}{r_{i}} d_{i}=m-\left(L-K_{Y}\right) A^{n-1}-\frac{d_{1}}{r_{1}}
$$

which yields

$$
r_{2} \leq \frac{2 \cdot\left(L-K_{Y}\right) A^{n-1}}{m-\left(L-K_{Y}\right) A^{n-1}-d_{1} / r_{1}}
$$

As such, there exists a constant C_{2} with $r_{2} \leq C_{2}$. By induction, there exists a constant C_{m} such that $r_{m} \leq C_{m}$. By Lemma 3.1, $n_{k} \leq \prod_{i=1}^{m} r_{i} \leq \prod_{i=1}^{m} C_{i}$, and since n_{k}, m and $\sum_{i=1}^{m} d_{i}$ are finite, the number of the equations (3.1) is also finite, say w. So for any $\varphi \in \mathscr{C}_{L}, \operatorname{deg} \varphi$ is bounded by the constant

$$
C_{L, A}:=\left(\prod_{i=1}^{m} C_{i}\right)^{w}
$$

Now let X be a minimal projective n-fold of general type with at worst locally factorial terminal singularities. As we have defined in Section 1, if $\left|K_{X}\right|$ defines an abelian cover over \mathbb{P}^{n} then we call X an abelian canonical n-fold.

Corollary 3.3. If X is an abelian canonical n-fold, then there exists a constant $C(n)$ depending only on n such that the canonical degree of X is universally bounded by $C(n)$.

Proof. Take $L=H$ in the theorem above, where H corresponds to a hyperplane in \mathbb{P}^{n}.

Proposition 3.4. Let X be a nonsingular abelian canonical n-fold and φ be the finite abelian cover of degree d over \mathbb{P}^{n} defined by $\left|K_{X}\right|$, then $c_{1}\left(\left(\varphi_{*} \mathcal{O}_{X}\right)^{\vee}\right)=\frac{n+2}{2} \cdot d$ and

$$
\begin{aligned}
\varphi_{*} \mathcal{O}_{X}= & \mathcal{O}_{\mathbb{P}^{n}} \oplus \mathcal{O}_{\mathbb{P}^{n}}(-n-2) \oplus\left(\mathcal{O}_{\mathbb{P}^{n}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{n}}(-n)\right)^{\oplus k_{2}} \\
& \oplus\left(\mathcal{O}_{\mathbb{P}^{n}}(-3) \oplus \mathcal{O}_{\mathbb{P}^{n}}(-n+1)\right)^{\oplus k_{3}} \oplus \cdots \\
& \oplus\left(\mathcal{O}_{\mathbb{P}^{n}}(-t) \oplus \mathcal{O}_{\mathbb{P}^{n}}(-n-2+t)\right)^{\oplus k_{t}} \oplus \cdots,
\end{aligned}
$$

where $\mathcal{O}_{\mathbb{P}^{n}}(-t)$ appears the same number of times as $\mathcal{O}_{\mathbb{P}^{n}}(-n-2+t)$ in the direct sum.

Proof. If φ is a finite abelian cover, $\varphi_{*} \mathcal{O}_{X}$ is a direct sum of line bundles by Theorem 2.2, i.e.,

$$
\varphi_{*} \mathcal{O}_{X} \cong \mathcal{O}_{\mathbb{P}^{n}} \oplus \bigoplus_{i=1}^{d-1} \mathcal{O}_{\mathbb{P}^{n}}\left(-l_{i}\right)
$$

Now assume $0<l_{1} \leq l_{2} \leq \cdots \leq l_{d-1}$. By relative duality,

$$
\varphi_{*} \omega_{X} \cong\left(\varphi_{*} \mathcal{O}_{X}\right)^{\vee} \otimes \omega_{\mathbb{P}^{n}} \cong\left(\varphi_{*} \mathcal{O}_{X}\right)^{\vee} \otimes \mathcal{O}_{\mathbb{P}^{n}}(-n-1),
$$

and since $\omega_{X}=\varphi^{*}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)$, by the projection formula we have

$$
\varphi_{*} \omega_{X} \cong \varphi_{*} \varphi^{*}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right) \cong \mathcal{O}_{\mathbb{P}^{n}}(1) \otimes \varphi_{*} \mathcal{O}_{X}
$$

so that

$$
\left(\varphi_{*} \mathcal{O}_{X}\right)^{\vee} \cong \varphi_{*} \mathcal{O}_{X} \otimes \mathcal{O}_{\mathbb{P}^{n}}(n+2)
$$

from which it follows $\mathcal{O}_{\mathbb{P}^{n}}(-t)$ appears the same number of times as $\mathcal{O}_{\mathbb{P}^{n}}(-n-2+t)$ in the direct sum. Therefore $2 c_{1}\left(\left(\varphi_{*} \mathcal{O}_{X}\right)^{\vee}\right)=(n+2) d$, i.e., $c_{1}\left(\left(\varphi_{*} \mathcal{O}_{X}\right)^{\vee}\right)=\frac{n+2}{2} \cdot d$, so we only need to show that $t \geq 2$. For this, it follows by the definition of an abelian canonical n-fold that

$$
p_{g}(X)=h^{0}\left(K_{X}\right)=h^{0}\left(\varphi^{*}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)\right)=n+1,
$$

thus by the projection formula we have

$$
h^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}(1)\right)+\sum_{i=1}^{d-1} h^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}\left(1-l_{i}\right)\right)=n+1
$$

We then have

$$
h^{0}\left(\mathcal{O}_{\mathbb{P}^{n}}\left(1-l_{i}\right)\right)=0, \quad 1 \leq i \leq d-1
$$

thus $l_{i} \geq 2$.
Now suppose $\varphi: X \rightarrow \mathbb{P}^{n}$ is an abelian cover associated to an abelian group $G \cong$ $\mathbb{Z}_{n_{1}} \oplus \cdots \oplus \mathbb{Z}_{n_{k}}$, such that $n_{1}\left|n_{2}\right| \cdots \mid n_{k}$. Then X is the normalization of the n-fold defined by

$$
z_{1}^{n_{1}}=f_{1}=\prod_{\alpha} p_{\alpha}^{\alpha_{1}}, \ldots, z_{k}^{n_{k}}=f_{k}=\prod_{\alpha} p_{\alpha}^{\alpha_{k}}
$$

where the p_{α} 's are coprime and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in G, \alpha_{1}, \ldots, \alpha_{k}<n_{k}$. Denote by x_{α} the degree of $p_{\alpha}, e_{i}=(0, \ldots, 0,1,0, \ldots, 0) \in G$ with $1 \leq i \leq k$, and denote by l_{g} the degree of L_{g}. The x_{α} and l_{g} are then integers. We then have

$$
\begin{gather*}
n_{i} l_{e_{i}}=\sum_{\alpha} \alpha_{i} x_{\alpha}, \quad i=1, \ldots, k, \tag{3.3}\\
l_{g}=\sum_{i=1}^{k} g_{i} l_{e_{i}}-\sum_{\alpha}\left[\sum_{i=1}^{k} \frac{g_{i} \alpha_{i}}{n_{i}}\right] x_{\alpha} . \tag{3.4}
\end{gather*}
$$

4. Abelian canonical 4-folds

Since the canonical degrees of nonsingular abelian canonical 4-folds have universal bounds, it is interesting to find some examples of such 4 -folds such that the canonical degree is as close to the bound as possible.

By Proposition 3.4 and equations (3.3) and (3.4), we construct two examples of nonsingular abelian canonical 4-folds (cf. [8, Theorem 3.6]).

Example 4.1. Let X be the canonical abelian 4 -fold which is the normalization of the variety whose defining equations are given by

$$
\begin{array}{lll}
z_{1}^{2}=h_{1} h_{8} h_{9} h_{10}, & z_{2}^{2}=h_{2} h_{8} h_{9} h_{11}, & z_{3}^{2}=h_{3} h_{8} h_{9} h_{12},
\end{array} z_{4}^{2}=h_{4} h_{8} h_{10} h_{11},
$$

where the hyperplanes H_{i} 's defined by h_{i} 's are normal crossing in \mathbb{P}^{4}.
First, we will show that X is nonsingular. Obviously, the possible singularities of X lie in the preimages of the intersections of the branch locus. Without loss of generality, we assume that P is the intersection point of H_{8}, H_{9}, H_{10} and H_{11}. The cover is locally defined by the following equations at P :

$$
z_{1}^{2}=x y u, z_{2}^{2}=x y t, z_{3}^{2}=x y, z_{4}^{2}=x u t, z_{5}^{2}=x u, z_{6}^{2}=y u t, z_{7}^{2}=y u
$$

After normalization, the cover X is locally defined by

$$
\bar{z}_{1}^{2}=x, \quad \bar{z}_{2}^{2}=t, \quad \bar{z}_{3}^{2}=u, \quad \bar{z}_{4}^{2}=y
$$

thus X is smooth at the preimages of P.
Similarly, it is easy to show that X is nonsingular on the preimage of the sets $H_{i} \cap$ $H_{j} \cap H_{k} \cap H_{l}, H_{i} \cap H_{j} \cap H_{k}$ and $H_{i} \cap H_{j}$ for all i, j, k, l. So X is nonsingular.

Next, we want to calculate l_{g} by (3.4). Note that in this example $x_{i}=\operatorname{deg}\left(h_{i}\right)=1$ for $1 \leq i \leq 12$. It is easy to check by (3.3) that $l_{e_{i}}=2$ for all i. For other l_{g} 's, we take $g=(1,1,0,0,0,0,0)$ and $g^{\prime}=(1,1,1,1,1,1,1)$ for example:

$$
\begin{aligned}
l_{g}= & l_{e_{1}}+l_{e_{2}}-\left[\frac{1+0}{2}\right] x_{1}-\left[\frac{0+1}{2}\right] x_{2}-\sum_{i=3}^{7}\left[\frac{0+0}{2}\right] x_{i} \\
& -\left[\frac{1+1}{2}\right] x_{8}-\left[\frac{1+1}{2}\right] x_{9}-\left[\frac{1+0}{2}\right] x_{10}-\left[\frac{0+1}{2}\right] x_{11}-\left[\frac{0+0}{2}\right] x_{12} \\
= & 4-x_{8}-x_{9} \\
= & 2
\end{aligned}
$$

$$
\begin{aligned}
l_{g^{\prime}}= & \sum_{i=1}^{7} l_{e_{i}}-\sum_{i=1}^{7}\left[\frac{1}{2}\right] x_{i}-\left[\frac{1+1+1+1+1+0+0}{2}\right] x_{8} \\
& -\left[\frac{1+1+1+0+0+1+1}{2}\right] x_{9}-\left[\frac{1+0+0+1+1+1+1}{2}\right] x_{10} \\
& -\left[\frac{0+1+0+1+0+1+0}{2}\right] x_{11}-\left[\frac{0+0+1+0+1+0+1}{2}\right] x_{12} \\
= & 14-\left[\frac{5}{2}\right] x_{8}-\left[\frac{5}{2}\right] x_{9}-\left[\frac{5}{2}\right] x_{10}-\left[\frac{3}{2}\right] x_{11}-\left[\frac{3}{2}\right] x_{12} \\
= & 6 .
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
& l_{(0,0,0,0,0,0,1)}=l_{(0,0,0,0,0,1,0)}=l_{(0,0,0,0,0,1,1)}=l_{(0,0,0,0,1,0,0)}=l_{(0,0,0,0,1,0,1)} \\
& =l_{(0,0,0,1,0,0,0)}=l_{(0,0,0,1,0,1,0)}=l_{(0,0,0,1,1,0,0)}=l_{(0,0,0,1,1,1,1)}=l_{(0,0,1,0,0,0,0)} \\
& =l_{(0,0,1,0,0,0,1)}=l_{(0,0,1,0,1,0,0)}=l_{(0,0,0,0,1,0,1)}=l_{(0,0,0,0,1,1,0)}=l_{(0,0,1,1,0,0,1)} \\
& =l_{(0,0,1,1,0,1,0)}=l_{(0,1,0,0,0,0,0)}=l_{(0,1,0,0,0,1,0)}=l_{(0,1,0,0,1,0,1)}=l_{(0,1,0,0,1,1,0)} \\
& =l_{(0,1,0,1,0,0,0)}=l_{(0,1,0,0,0,0,1)}=l_{(0,1,0,1,0,1,0)}=l_{(0,1,1,0,0,0,0)}=l_{(0,1,1,0,0,1,1)} \\
& =l_{(0,1,1,1,1,0,0)}=l_{(1,0,0,0,0,0,0)}=l_{(1,0,0,0,0,0,1)}=l_{(1,0,0,0,0,1,0)}=l_{(1,0,0,0,1,0,0)} \\
& =l_{(1,0,0,0,1,0,1)}=l_{(1,0,0,1,0,0,0)}=l_{(1,0,0,1,0,1,0)}=l_{(1,0,1,0,0,0,0)}=l_{(1,0,1,0,0,0,1)} \\
& =l_{(1,0,1,0,1,0,0)}=l_{(1,1,0,0,0,0,0)}=l_{(1,1,0,0,0,1,0)}=l_{(1,1,0,1,0,0,0)}=2 \text {, } \\
& l_{(0,0,0,0,1,1,0)}=l_{(0,0,0,0,1,1,1)}=l_{(0,0,0,1,0,0,1)}=l_{(0,0,0,1,0,1,1)}=l_{(0,0,0,1,1,0,1)} \\
& =l_{(0,0,0,1,1,1,0)}=l_{(0,0,1,0,0,1,0)}=l_{(0,0,1,0,0,1,1)}=l_{(0,0,1,1,0,0,0)}=l_{(0,0,1,1,0,1,1)} \\
& =l_{(0,0,1,1,1,0,0)}=l_{(0,0,1,1,1,1,0)}=l_{(0,1,0,0,0,0,1)}=l_{(0,1,0,0,0,1,1)}=l_{(0,1,0,0,1,0,0)} \\
& =l_{(0,1,0,0,1,1,1)}=l_{(0,1,0,1,1,0,0)}=l_{(0,1,0,1,1,0,1)}=l_{(0,1,1,0,0,0,1)}=l_{(0,1,1,0,0,1,0)} \\
& =l_{(0,1,1,0,1,0,0)}=l_{(0,1,1,0,1,1,0)}=l_{(0,1,1,1,0,0,0)}=l_{(0,1,1,1,0,0,1)}=l_{(1,0,0,0,1,1,0)} \\
& =l_{(1,0,0,0,1,1,1)}=l_{(1,0,0,1,0,0,1)}=l_{(1,0,0,1,0,1,1)}=l_{(1,0,0,1,1,0,1)}=l_{(1,0,0,1,1,1,0)} \\
& =l_{(1,0,1,0,0,1,0)}=l_{(1,0,1,0,0,1,1)}=l_{(1,0,1,1,0,0,0)}=l_{(1,0,1,1,0,1,1)}=l_{(1,0,1,1,1,0,0)} \\
& =l_{(1,0,1,1,1,1,0)}=l_{(1,1,0,0,0,0,1)}=l_{(1,1,0,0,0,1,1)}=l_{(1,1,0,0,1,0,0)}=l_{(1,1,0,0,1,1,1)} \\
& =l_{(1,1,0,1,1,0,0)}=l_{(1,1,0,1,1,0,1)}=l_{(1,1,1,0,0,0,1)}=l_{(1,1,1,0,0,1,0)}=l_{(1,1,1,0,1,0,0)} \\
& =l_{(1,1,1,0,1,1,0)}=l_{(1,1,1,1,0,0,0)}=l_{(1,1,1,1,0,0,1)}=3 \text {, } \\
& l_{(0,0,1,0,1,1,1)}=l_{(0,0,1,1,1,0,1)}=l_{(0,0,1,1,1,1,1)}=l_{(0,1,0,1,0,1,1)}=l_{(0,1,0,1,1,1,0)} \\
& =l_{(0,1,0,1,1,1,1)}=l_{(0,1,1,0,1,0,1)}=l_{(0,1,1,0,1,1,1)}=l_{(0,1,1,1,0,1,0)}=l_{(0,1,1,1,0,1,1)} \\
& =l_{(0,1,1,1,1,0,1)}=l_{(0,1,1,1,1,1,0)}=l_{(0,1,1,1,1,1,1)}=l_{(1,0,0,0,0,1,1)}=l_{(1,0,0,1,1,0,0)}
\end{aligned}
$$

$$
\begin{gathered}
=l_{(1,0,0,1,1,1,1)}=l_{(1,0,1,0,1,0,1)}=l_{(1,0,1,0,1,1,0)}=l_{(1,0,1,0,1,1,1)}=l_{(1,0,1,1,0,0,1)} \\
=l_{(1,0,1,1,0,1,0)}=l_{(1,0,1,1,1,0,1)}=l_{(1,0,1,1,1,1,1)}=l_{(1,1,0,0,1,0,1)}=l_{(1,1,0,0,1,1,0)} \\
=l_{(1,1,0,1,0,0,1)}=l_{(1,1,0,1,0,1,0)}=l_{(1,1,0,1,0,1,1)}=l_{(1,1,0,1,1,1,0)}=l_{(1,1,0,1,1,1,1)} \\
=l_{(1,1,1,0,0,0,0)}=l_{(1,1,1,0,0,1,1)}=l_{(1,1,1,0,1,1,0)}=l_{(1,1,1,0,1,1,1)}=l_{(1,1,1,1,0,1,0)} \\
=l_{(1,1,1,1,0,1,1)}=l_{(1,1,1,1,1,0,0)}=l_{(1,1,1,1,1,0,1)}=l_{(1,1,1,1,1,1,0)}=4, \\
l_{(0,0,0,0,0,0,0)}=0 \quad \text { and } \quad l_{(1,1,1,1,1,1,1)}=6 .
\end{gathered}
$$

Therefore, by Theorem 2.2,

$$
\varphi_{*} \mathcal{O}_{X}=\mathcal{O}_{\mathbb{P}^{4}} \oplus \mathcal{O}_{\mathbb{P}^{4}}(-6) \oplus \mathcal{O}_{\mathbb{P}^{4}}(-2)^{\oplus 39} \oplus \mathcal{O}_{\mathbb{P}^{4}}(-3)^{\oplus 48} \oplus \mathcal{O}_{\mathbb{P}^{4}}(-4)^{\oplus 39}
$$

Thus, by Corollary 2.3,

$$
p_{g}(X)=5, \quad q=h^{2,0}=h^{3,0}=0, \quad \chi\left(\omega_{X}\right)=6
$$

and by the Hurwitz formula, $K_{X}=\varphi^{*} \mathcal{O}_{\mathbb{P}^{4}}(1)$. So X is minimal and the canonical degree of X is $K_{X}^{4}=128$.

Similarly, we have the following example.
Example 4.2. Let X be the canonical abelian 4 -fold which is the normalization of the variety whose defining equations are given by

$$
z_{1}^{3}=h_{1} h_{5}^{2} h_{6}^{2} h_{7}, \quad z_{2}^{3}=h_{2} h_{6}^{2} h_{7} h_{8}^{2}, \quad z_{3}^{3}=h_{3} h_{7} h_{8}^{2} h_{9}^{2}, \quad z_{4}^{3}=h_{4} h_{5}^{2} h_{7} h_{9}^{2},
$$

where the hyperplanes H_{i} 's defined by h_{i} 's intersect with normal crossings in \mathbb{P}^{4}.
The arguments of smoothness of X and the calculation of l_{g} 's are as similar as the above example. Finally, we have

$$
\begin{aligned}
& l_{(0,0,0,1)}=l_{(0,0,0,2)}=l_{(0,0,1,0)}=l_{(0,0,1,2)}=l_{(0,0,2,0)}=l_{(0,0,2,1)}=l_{(0,1,0,0)} \\
= & l_{(0,1,2,0)}=l_{(0,2,0,0)}=l_{(0,2,1,0)}=l_{(1,0,0,0)}=l_{(1,0,0,2)}=l_{(1,2,0,0)}=l_{(1,2,1,2)} \\
= & l_{(2,0,0,0)}=l_{(2,0,0,1)}=l_{(2,1,0,0)}=l_{(2,1,2,1)}=2, \\
& l_{(0,0,1,1)}=l_{(0,0,2,2)}=l_{(0,1,0,2)}=l_{(0,1,1,0)}=l_{(0,1,1,1)}=l_{(0,1,1,2)}=l_{(0,1,2,1)} \\
= & l_{(0,2,0,1)}=l_{(0,2,0,2)}=l_{(0,2,1,1)}=l_{(0,2,1,2)}=l_{(0,2,2,0)}=l_{(1,0,0,1)}=l_{(1,0,1,1)} \\
= & l_{(1,0,1,2)}=l_{(1,0,2,0)}=l_{(1,0,2,1)}=l_{(1,1,0,0)}=l_{(1,1,0,1)}=l_{(1,1,0,2)}=l_{(1,1,1,0)} \\
= & l_{(1,1,1,1)}=l_{(1,1,1,2)}=l_{(1,1,2,0)}=l_{(1,1,2,1)}=l_{(1,1,2,2)}=l_{(1,2,0,1)}=l_{(1,2,0,2)} \\
= & l_{(1,2,1,0)}=l_{(1,2,1,1)}=l_{(1,2,2,1)}=l_{(2,0,0,2)}=l_{(2,0,1,0)}=l_{(2,0,1,1)}=l_{(2,0,2,0)} \\
= & l_{(2,0,2,1)}=l_{(2,1,0,1)}=l_{(2,1,1,0)}=l_{(2,1,1,1)}=l_{(2,1,1,2)}=l_{(2,1,2,0)}=l_{(2,2,0,0)} \\
= & l_{(2,2,1,1)}=3,
\end{aligned}
$$

$$
\begin{gathered}
l_{(0,1,0,1)}=l_{(0,1,2,2)}=l_{(0,2,2,1)}=l_{(0,2,2,2)}=l_{(1,0,1,0)}=l_{(1,0,2,2)}=l_{(1,2,2,0)} \\
=l_{(1,2,2,2)}=l_{(2,0,1,2)}=l_{(2,0,2,2)}=l_{(2,1,0,2)}=l_{(2,1,2,2)}=l_{(2,2,0,1)}=l_{(2,2,0,2)} \\
=l_{(2,2,1,0)}=l_{(2,2,1,2)}=l_{(2,2,2,0)}=l_{(2,2,2,1)}=4, \\
l_{(0,0,0,0)}=0 \quad \text { and } l_{(1,1,1,1)}=6 .
\end{gathered}
$$

So

$$
\varphi_{*} \mathcal{O}_{X}=\mathcal{O}_{\mathbb{P}^{4}} \oplus \mathcal{O}_{\mathbb{P}^{4}}(-6) \oplus \mathcal{O}_{\mathbb{P}^{4}}(-2)^{\oplus 18} \oplus \mathcal{O}_{\mathbb{P}^{4}}(-3)^{\oplus 43} \oplus \mathcal{O}_{\mathbb{P}^{4}}(-4)^{\oplus 18}
$$

Thus, by Corollary 2.3, $p_{g}(X)=5, q=h^{2,0}=h^{3,0}=0, \chi\left(\omega_{X}\right)=6$ and by the Hurwitz formula, $K_{X}=\varphi^{*} \mathcal{O}_{\mathbb{P}^{4}}(1)$. So X is minimal and the canonical degree of X is $K_{X}^{4}=81$.

Acknowledgments

Both authors would like to thank the referee for comments which lead to a generalization of the main theorem, and for other useful suggestions which lead to a considerable improvement of the paper.

References

[1] A. Beauville, L’application canonique pour les surfaces de type général, Invent. Math. 55 (1979), no. 2, 121-140. https://doi.org/10.1007/bf01390086
[2] J.-X. Cai, Degree of the canonical map of a Georenstein 3-fold of general type, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1565-1574. https://doi.org/10.1090/s0002-9939-07-09254-4
[3] G. Casnati, Covers of algebraic varieties II: Covers of degree 5 and construction of surfaces, J. Algebraic Geom. 5 (1996), no. 3, 461-477.
[4] F. Catanese, On the moduli spaces of surfaces of general type, J. Differential Geom. 19 (1984), no. 2, 483-515.
[5] M. Chen, Weak boundedness theorems for canonically fibered Gorenstein minimal 3folds, Proc. Amer. Math. Soc. 133 (2005), no. 5, 1291-1298.
https://doi.org/10.1090/s0002-9939-04-07680-4
[6] A. Comessatti, Sulle superfici multiple cicliche, Rend. Sem. Mat. Univ. Padova 1 (1930), 1-45.
[7] R. Du and Y. Gao, Canonical maps of surfaces defined by abelian covers, Asian J. Math. 18 (2014), no. 2, 219-228. https://doi.org/10.4310/ajm.2014.v18.n2.a2
[8] , On the canonical degrees of Gorenstein threefolds of general type, Geom. Dedicata 185 (2016), no. 1, 123-130. https://doi.org/10.1007/s10711-016-0171-3
[9] Y. Gao, A note on finite abelian covers, Sci. China Math. 54 (2011), no. 7, 1333-1342. https://doi.org/10.1007/s11425-011-4201-1
[10] C. D. Hacon, On the degree of the canonical maps of 3-folds, Proc. Japan Acad. Ser. A Math. Sci. 80 (2004), no. 8, 166-167. https://doi.org/10.3792/pjaa.80.166
[11] R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417 (1991), 191-213. https://doi.org/10.1515/crll.1991.417.191
[12] U. Persson, Double coverings and surfaces of general type, in Algebraic Geometry, 168-195, Lecture Notes in Math. 687, Springer, Berlin, 1978.
https://doi.org/10.1007/bfb0062932
[13] C. Rito, New canonical triple covers of surfaces Proc. Amer. Math. Soc. 143 (2015), no. 11, 4647-4653. https://doi.org/10.1090/s0002-9939-2015-12599-3
[14] _, A surface with $q=2$ and canonical map of degree 16. arXiv:1506.05987
[15] , A surface with canonical map of degree 24. arXiv:1509.04132
[16] S.-L. Tan, Surfaces whose canonical maps are of odd degrees, Math. Ann. 292 (1992), no. 1, 13-29. https://doi.org/10.1007/bf01444606
[17] S.-K. Yeung, A surface of maximal canonical degree, to appear in Math. Ann., 19 pp. https://doi.org/10.1007/s00208-016-1450-x

Rong Du
Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, Rm. 312, Math. Bldg, No. 500, Dongchuan Road, Shanghai 200241, China E-mail address: rdu@math.ecnu.edu.cn

Yun Gao

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China E-mail address: gaoyunmath@sjtu.edu.cn

[^0]: Received October 10, 2016; Accepted December 15, 2016.
 Communicated by De-Qi Zhang.
 2010 Mathematics Subject Classification. 14J40, 14J35, 14E20.
 Key words and phrases. Abelian canonical n-fold, Canonical degree, Canonical map, Abelian cover.
 Du is supported by the National Natural Science Foundation of China (Grant No. 11471116) and Science and Technology Commission of Shanghai Municipality (Grant No. 13dz2260400).
 Gao is supported by the National Natural Science Foundation of China (Grant Nos. 11271250, 11271251) and SMC program of Shanghai Jiao Tong University.
 Both authors are supported by China NSF (Grant No. 11531007).
 *Corresponding author.

