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On Abelian Canonical n-folds of General Type

Rong Du* and Yun Gao

Abstract. Let X be a Gorenstein minimal projective n-fold with at worst locally

factorial terminal singularities, and suppose that the canonical map of X is generically

finite onto its image. When n < 4, the canonical degree is universally bounded. While

the possibility of obtaining a universal bound on the canonical degree of X for n ≥ 4

may be inaccessible, we give a uniform upper bound for the degrees of certain abelian

covers. In particular, we show that if the canonical divisor KX defines an abelian cover

over Pn, i.e., when X is an abelian canonical n-fold, then the canonical degree of X is

universally upper bounded by a constant which only depends on n for X nonsingular.

We also construct two examples of nonsingular minimal projective 4-folds of general

type with canonical degrees 81 and 128.

1. Introduction

The study of the canonical maps of n-dimensional projective varieties of general type is

one of the central problems in algebraic geometry. For nonsingular algebraic surfaces,

Beauville [1] proved that the degree of the canonical map is less than or equal to 36 and

that equality holds if and only if X is a ball quotient surface with K2
X = 36, pg = 3, q = 0,

and |KX | is base point free. For n = 3, Chen posed an open problem in [5] as follows. Let

X be a minimal projective 3-fold with at worst locally factorial terminal singularities, and

suppose that the canonical map is generically finite onto its image. Is the generic degree

of the canonical map universally bounded from above? Later, Hacon [10] gave some

examples of 3-folds of general type with terminal singularities such that the canonical

degrees of these 3-folds can be arbitrarily large, but he also showed that the answer of

Chen’s question is “yes” if one adds the Gorenstein condition. More precisely, he showed

Received October 10, 2016; Accepted December 15, 2016.

Communicated by De-Qi Zhang.

2010 Mathematics Subject Classification. 14J40, 14J35, 14E20.

Key words and phrases. Abelian canonical n-fold, Canonical degree, Canonical map, Abelian cover.

Du is supported by the National Natural Science Foundation of China (Grant No. 11471116) and Science

and Technology Commission of Shanghai Municipality (Grant No. 13dz2260400).

Gao is supported by the National Natural Science Foundation of China (Grant Nos. 11271250, 11271251)

and SMC program of Shanghai Jiao Tong University.

Both authors are supported by China NSF (Grant No. 11531007).

*Corresponding author.

653

http://journal.tms.org.tw


654 Rong Du and Yun Gao

that if X is a Gorenstein minimal projective 3-fold with at worst locally factorial terminal

singularities, then the canonical degree of X is at most 576. Recently, the first and the

second authors improved Hacon’s upper bound to 360, and showed that equality holds if

and only if pg(X) = 4, q(X) = 2, χ(ωX) = 5, K3
X = 360 and |KX | is base point free. For

n < 4, the Miyaoka-Yau inequality plays a vital role in the proof. For n ≥ 4 however, the

Miyaoka-Yau inequality is not effective enough to give a universal bound to control Kn
X .

Another open question in this direction is to determine the positive degree of the

canonical map. Progress in this direction for surfaces appears in [1, 3, 7, 12–17] and for 3-

folds in [2,8]. Explicit examples are often constructed by taking abelian covers. Since the

canonical degree may not be universally bounded, it is natural to ask the following ques-

tion: Can one construct nonsingular minimal projective n-folds whose canonical divisors

define abelian covers over Pn with arbitrarily large degrees?

Definition 1.1. Let X be a minimal projective n-fold of general type with at worst locally

factorial terminal singularities. If |KX | defines abelian cover over Pn, then we call X an

abelian canonical n-fold.

In [7], the first and the second authors obtained a complete classification of abelian

canonical surfaces. The universal upper bound for such surfaces is 16. In [8], they showed

that for Gorenstein minimal projective 3-folds of general type with at worst locally facto-

rial terminal singularities, the upper bound of the canonical degrees of such 3-folds is 32.

Although we do not know if the canonical degree is universally bounded or not for higher

dimensional projective varieties, there is evidence suggesting that the canonical degrees

of nonsingular abelian canonical n-folds may be universally bounded due to the fact that

there are very strong restrictions on the defining data of abelian covers. In this paper,

we show that the degrees of certain abelian covers are uniformly bounded. In particu-

lar, we give a negative answer to the above question. More precisely, we show that the

canonical degrees of nonsingular abelian canonical n-folds are universally bounded. We

also construct two examples of nonsingular minimal projective 4-folds of general type with

canonical degrees 81 and 128 in the last section.

2. Basics on abelain covers

The theory of covering is a very important tool in algebraic geometry. The cyclic covers

of algebraic surfaces were first studied by Comessatti in [6]. Later, F. Catanese [4] studied

smooth abelian covers in the case (Z2)
⊕2. While R. Pardini analyzed the general case

in [11], F. Catanese [4] pointed out that it is difficult to give the defining data of abelian

covers by Pardini’s method. Recently, the second author studied abelian covers of algebraic

varieties from another point of view by calculating the normalization bases of the covering
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spaces which made the constructions more explicit [9]. In this section, we shall recall

some basic definitions and results of abelian covers which will facilitate our subsequent

discussion. As our goal is to determine the defining equations for covering spaces by

explicit calculation, we use the method appearing in [9].

Let X and Y be projective algebraic varieties such that X is normal, Y is nonsingular

and ϕ : X → Y is an abelian cover associated with the abelian group G ∼= Zn1 ⊕· · ·⊕Znk
,

where n1 | n2 | · · · | nk (i.e., the function field C(X) of X is an abelian extension of the

rational function field C(Y ) with Galois group G).

Definition 2.1. Let G ∼= Zn1⊕· · ·⊕Znk
. The data of an abelian cover over Y with group

G consists of k effective divisors D1, . . . , Dk, and k linear equivalence relations

D1 ∼ n1L1, . . . , Dk ∼ nkLk.

Let Li = OY (Li) and fi be the defining equation of Di, i.e., Di = div(fi), where

fi ∈ H0(Y,L ni
i ). Denote by V (Li) = SpecS(Li) the line bundle corresponding to Li,

where S(Li) is the sheaf of the symmetric OY algebra, and let zi be the fiber coordinate

of V (Li). Then the abelian cover can be realized by the normalization of the variety V

defined by the system of equations

(2.1) zn1
1 = f1, . . . , z

nk
k = fk.

The above paragraph is summarized schematically via the following diagram:

X V

k⊕
i=1

V (Li)

Y

w

normalization
�

ϕ

y w[
[
[
[
[[]

f

u

p

We often make the abuse of saying X is defined by equations (2.1), although it should

be clear from the context that X is in fact the normalization of the solution V of these

equations.

We now list some useful results which will be crucial later on.

Theorem 2.2. [9] Denote by [Z] the integral part of a Q-divisor Z, and−Lg = −
∑k

i=1 giLi

+
[∑k

i=1
gi
ni
Di

]
, where g = (g1, . . . , gk) ∈ G. Then

(2.2) ϕ∗OX =
⊕
g∈G
OY (−Lg).

We remark that equation (2.2) implies the decomposition of ϕ∗OX is completely de-

termined by the data of an abelian cover.
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Corollary 2.3. [9] If X is nonsingular, D is a divisor on Y , then

hi(X,ϕ∗OY (D)) =
∑
g∈G

hi(Y,OY (D − Lg)).

The following result will be used to calculate the ramification index, since the branching

locus is uniformly ramified for an abelian cover.

Theorem 2.4. [9] Let P be an irreducible and reduced hypersurface in Y , let P = π−1(P )

be the reduced preimage of P in X, and let ai be the multiplicity of P in Di = div(fi).

Then

π∗P =
|G|
dP

P ,

where

dP = gcd

(
|G| , |G| a1

n1
, . . . , |G| ak

nk

)
is the number of points in the preimage of a generic point on P .

3. Abelian canonical n-folds

Let X and Y be projective algebraic varieties, with X normal and Y nonsingular, and

let ϕ : X → Y be an abelian cover associated to the abelian group G ∼= Zn1 ⊕ · · · ⊕ Znk
,

where n1 | n2 | · · · | nk. Using the notations after Definition 2.1, we have that X is the

normalization of the n-fold defined by

(3.1) zn1
1 = f1, . . . , z

nk
k = fk.

We say that an abelian cover ϕ : X → Y is totally ramified if the inertia subgroups of

the divisorial components of the branch locus of ϕ generate G, or, equivalently, if ϕ does

not factorize through a cover X ′ → Y that is étale over Y . Note that if Cl(Y ) has no

torsion, then every connected abelian cover of Y is totally ramified.

Lemma 3.1. With notations as above, suppose that the cover is totally ramified and

D1, D2, . . . , Dm are the irreducible components of the branch loci of the abelian cover ϕ

with ramification indices r1, r2, . . . , rm respectively. Then nk ≤
∏m
i=1 ri.

Proof. Suppose nt = p
et1
1 · · · p

ets
s , 1 ≤ t ≤ k, is the prime decomposition of nt. Without

loss of generality, we only need to show that there exists Dj such that its ramification index

rj is divisible by p
eks
s . Otherwise, for any irreducible component of the branch locus, we

would have for the ramification index

|G|
d

= pe11 · · · p
es
s ,



On Abelian Canonical n-folds of General Type 657

such that es < eks , where

d = gcd

(
|G| , |G| a1

n1
, . . . , |G| ak

nk

)
,

and ai is the multiplicity of the irreducible component in div(fi) by Theorem 2.4. Thus

d = p
∑k

j=1 ej1−e1
1 · · · p

∑k
j=1 ejs−es

s ,

which yields

d
∣∣∣ p∑k−1

j=1 ej1
1 · · · p

∑k−1
j=1 ejs

s ak.

Hence p
eks−es
s | ak, which implies equations (3.1) split and so X is not irreducible, a

contradiction.

Theorem 3.2. Let Y be a nonsingular projective n-fold such that the divisor class group

Cl(Y ) torsion free, and fix both a divisor L and an ample divisor A on Y . Consider the

following set of abelian covers

CL := {ϕ : X → Y | X is nonsingular and KX = ϕ∗L} .

Then there exists a constant CL,A such that for any ϕ ∈ CL, degϕ ≤ CL,A.

Proof. Since Cl(Y ) is torsion free, all Di’s in the defining data of each abelian cover

over Y as in Definition 2.1 are nonzero. Suppose that D1, D2, . . . , Dm are the irreducible

components of the branch locus of an abelian cover ϕ ∈ CL with the ramification indices

r1, r2, . . . , rm, where ri ≥ 2, i = 1, 2, . . . ,m. Fix an ample divisor A on Y and write

di = DiA
n−1. By the Hurwitz formula,

KX = ϕ∗

(
KY +

m∑
i=1

ri − 1

ri
Di

)
.

On the other hand, KX = ϕ∗(L), thus

(L−KY )An−1 =
m∑
i=1

ri − 1

ri
di,

i.e.,

(3.2)

m∑
i=1

1

ri
di = m− (L−KY )An−1.

We then have

(L−KY )An−1 < m ≤
m∑
i=1

di ≤ 2 · (L−KY )An−1.
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Without loss of generality suppose r1 ≤ r2 ≤ · · · ≤ rm. Then from (3.2) we have

1

r1

m∑
i=1

di ≥ m− (L−KY )An−1,

thus

r1 ≤
m∑
i=1

di ≤ 2 · (L−KY )An−1 =: C1.

For fixed m, r1 and d1,

1

r2

m∑
i=2

di ≥
m∑
i=2

1

ri
di = m− (L−KY )An−1 − d1

r1
,

which yields

r2 ≤
2 · (L−KY )An−1

m− (L−KY )An−1 − d1/r1
.

As such, there exists a constant C2 with r2 ≤ C2. By induction, there exists a constant

Cm such that rm ≤ Cm. By Lemma 3.1, nk ≤
∏m
i=1 ri ≤

∏m
i=1Ci, and since nk, m and∑m

i=1 di are finite, the number of the equations (3.1) is also finite, say w. So for any

ϕ ∈ CL, degϕ is bounded by the constant

CL,A :=

(
m∏
i=1

Ci

)w
.

Now let X be a minimal projective n-fold of general type with at worst locally factorial

terminal singularities. As we have defined in Section 1, if |KX | defines an abelian cover

over Pn then we call X an abelian canonical n-fold.

Corollary 3.3. If X is an abelian canonical n-fold, then there exists a constant C(n)

depending only on n such that the canonical degree of X is universally bounded by C(n).

Proof. Take L = H in the theorem above, where H corresponds to a hyperplane in Pn.

Proposition 3.4. Let X be a nonsingular abelian canonical n-fold and ϕ be the finite

abelian cover of degree d over Pn defined by |KX |, then c1((ϕ∗OX)∨) = n+2
2 · d and

ϕ∗OX = OPn ⊕OPn(−n− 2)⊕ (OPn(−2)⊕OPn(−n))⊕k2

⊕ (OPn(−3)⊕OPn(−n+ 1))⊕k3 ⊕ · · ·

⊕ (OPn(−t)⊕OPn(−n− 2 + t))⊕kt ⊕ · · · ,

where OPn(−t) appears the same number of times as OPn(−n− 2 + t) in the direct sum.
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Proof. If ϕ is a finite abelian cover, ϕ∗OX is a direct sum of line bundles by Theorem 2.2,

i.e.,

ϕ∗OX ∼= OPn ⊕
d−1⊕
i=1

OPn(−li).

Now assume 0 < l1 ≤ l2 ≤ · · · ≤ ld−1. By relative duality,

ϕ∗ωX ∼= (ϕ∗OX)∨ ⊗ ωPn ∼= (ϕ∗OX)∨ ⊗OPn(−n− 1),

and since ωX = ϕ∗(OPn(1)), by the projection formula we have

ϕ∗ωX ∼= ϕ∗ϕ
∗(OPn(1)) ∼= OPn(1)⊗ ϕ∗OX ,

so that

(ϕ∗OX)∨ ∼= ϕ∗OX ⊗OPn(n+ 2),

from which it follows OPn(−t) appears the same number of times as OPn(−n − 2 + t) in

the direct sum. Therefore 2c1((ϕ∗OX)∨) = (n + 2)d, i.e., c1((ϕ∗OX)∨) = n+2
2 · d, so we

only need to show that t ≥ 2. For this, it follows by the definition of an abelian canonical

n-fold that

pg(X) = h0(KX) = h0(ϕ∗(OPn(1))) = n+ 1,

thus by the projection formula we have

h0(OPn(1)) +
d−1∑
i=1

h0(OPn(1− li)) = n+ 1.

We then have

h0(OPn(1− li)) = 0, 1 ≤ i ≤ d− 1,

thus li ≥ 2.

Now suppose ϕ : X → Pn is an abelian cover associated to an abelian group G ∼=
Zn1 ⊕ · · · ⊕ Znk

, such that n1 | n2 | · · · | nk. Then X is the normalization of the n-fold

defined by

zn1
1 = f1 =

∏
α

pα1
α , . . . , z

nk
k = fk =

∏
α

pαk
α ,

where the pα’s are coprime and α = (α1, . . . , αk) ∈ G, α1, . . . , αk < nk. Denote by xα the

degree of pα, ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ G with 1 ≤ i ≤ k, and denote by lg the degree of

Lg. The xα and lg are then integers. We then have

nilei =
∑
α

αixα, i = 1, . . . , k,(3.3)

lg =

k∑
i=1

gilei −
∑
α

[
k∑
i=1

giαi
ni

]
xα.(3.4)
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4. Abelian canonical 4-folds

Since the canonical degrees of nonsingular abelian canonical 4-folds have universal bounds,

it is interesting to find some examples of such 4-folds such that the canonical degree is as

close to the bound as possible.

By Proposition 3.4 and equations (3.3) and (3.4), we construct two examples of non-

singular abelian canonical 4-folds (cf. [8, Theorem 3.6]).

Example 4.1. Let X be the canonical abelian 4-fold which is the normalization of the

variety whose defining equations are given by

z21 = h1h8h9h10, z22 = h2h8h9h11, z23 = h3h8h9h12, z24 = h4h8h10h11,

z25 = h5h8h10h12, z26 = h6h9h10h11, z27 = h7h9h10h12,

where the hyperplanes Hi’s defined by hi’s are normal crossing in P4.

First, we will show that X is nonsingular. Obviously, the possible singularities of X

lie in the preimages of the intersections of the branch locus. Without loss of generality,

we assume that P is the intersection point of H8, H9, H10 and H11. The cover is locally

defined by the following equations at P :

z21 = xyu, z22 = xyt, z23 = xy, z24 = xut, z25 = xu, z26 = yut, z27 = yu.

After normalization, the cover X is locally defined by

z21 = x, z22 = t, z23 = u, z24 = y,

thus X is smooth at the preimages of P .

Similarly, it is easy to show that X is nonsingular on the preimage of the sets Hi ∩
Hj ∩Hk ∩Hl, Hi ∩Hj ∩Hk and Hi ∩Hj for all i, j, k, l. So X is nonsingular.

Next, we want to calculate lg by (3.4). Note that in this example xi = deg(hi) = 1

for 1 ≤ i ≤ 12. It is easy to check by (3.3) that lei = 2 for all i. For other lg’s, we take

g = (1, 1, 0, 0, 0, 0, 0) and g′ = (1, 1, 1, 1, 1, 1, 1) for example:

lg = le1 + le2 −
[

1 + 0

2

]
x1 −

[
0 + 1

2

]
x2 −

7∑
i=3

[
0 + 0

2

]
xi

−
[

1 + 1

2

]
x8 −

[
1 + 1

2

]
x9 −

[
1 + 0

2

]
x10 −

[
0 + 1

2

]
x11 −

[
0 + 0

2

]
x12

= 4− x8 − x9
= 2,
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lg′ =

7∑
i=1

lei −
7∑
i=1

[
1

2

]
xi −

[
1 + 1 + 1 + 1 + 1 + 0 + 0

2

]
x8

−
[

1 + 1 + 1 + 0 + 0 + 1 + 1

2

]
x9 −

[
1 + 0 + 0 + 1 + 1 + 1 + 1

2

]
x10

−
[

0 + 1 + 0 + 1 + 0 + 1 + 0

2

]
x11 −

[
0 + 0 + 1 + 0 + 1 + 0 + 1

2

]
x12

= 14−
[

5

2

]
x8 −

[
5

2

]
x9 −

[
5

2

]
x10 −

[
3

2

]
x11 −

[
3

2

]
x12

= 6.

Finally, we have

l(0,0,0,0,0,0,1) = l(0,0,0,0,0,1,0) = l(0,0,0,0,0,1,1) = l(0,0,0,0,1,0,0) = l(0,0,0,0,1,0,1)

= l(0,0,0,1,0,0,0) = l(0,0,0,1,0,1,0) = l(0,0,0,1,1,0,0) = l(0,0,0,1,1,1,1) = l(0,0,1,0,0,0,0)

= l(0,0,1,0,0,0,1) = l(0,0,1,0,1,0,0) = l(0,0,0,0,1,0,1) = l(0,0,0,0,1,1,0) = l(0,0,1,1,0,0,1)

= l(0,0,1,1,0,1,0) = l(0,1,0,0,0,0,0) = l(0,1,0,0,0,1,0) = l(0,1,0,0,1,0,1) = l(0,1,0,0,1,1,0)

= l(0,1,0,1,0,0,0) = l(0,1,0,0,0,0,1) = l(0,1,0,1,0,1,0) = l(0,1,1,0,0,0,0) = l(0,1,1,0,0,1,1)

= l(0,1,1,1,1,0,0) = l(1,0,0,0,0,0,0) = l(1,0,0,0,0,0,1) = l(1,0,0,0,0,1,0) = l(1,0,0,0,1,0,0)

= l(1,0,0,0,1,0,1) = l(1,0,0,1,0,0,0) = l(1,0,0,1,0,1,0) = l(1,0,1,0,0,0,0) = l(1,0,1,0,0,0,1)

= l(1,0,1,0,1,0,0) = l(1,1,0,0,0,0,0) = l(1,1,0,0,0,1,0) = l(1,1,0,1,0,0,0) = 2,

l(0,0,0,0,1,1,0) = l(0,0,0,0,1,1,1) = l(0,0,0,1,0,0,1) = l(0,0,0,1,0,1,1) = l(0,0,0,1,1,0,1)

= l(0,0,0,1,1,1,0) = l(0,0,1,0,0,1,0) = l(0,0,1,0,0,1,1) = l(0,0,1,1,0,0,0) = l(0,0,1,1,0,1,1)

= l(0,0,1,1,1,0,0) = l(0,0,1,1,1,1,0) = l(0,1,0,0,0,0,1) = l(0,1,0,0,0,1,1) = l(0,1,0,0,1,0,0)

= l(0,1,0,0,1,1,1) = l(0,1,0,1,1,0,0) = l(0,1,0,1,1,0,1) = l(0,1,1,0,0,0,1) = l(0,1,1,0,0,1,0)

= l(0,1,1,0,1,0,0) = l(0,1,1,0,1,1,0) = l(0,1,1,1,0,0,0) = l(0,1,1,1,0,0,1) = l(1,0,0,0,1,1,0)

= l(1,0,0,0,1,1,1) = l(1,0,0,1,0,0,1) = l(1,0,0,1,0,1,1) = l(1,0,0,1,1,0,1) = l(1,0,0,1,1,1,0)

= l(1,0,1,0,0,1,0) = l(1,0,1,0,0,1,1) = l(1,0,1,1,0,0,0) = l(1,0,1,1,0,1,1) = l(1,0,1,1,1,0,0)

= l(1,0,1,1,1,1,0) = l(1,1,0,0,0,0,1) = l(1,1,0,0,0,1,1) = l(1,1,0,0,1,0,0) = l(1,1,0,0,1,1,1)

= l(1,1,0,1,1,0,0) = l(1,1,0,1,1,0,1) = l(1,1,1,0,0,0,1) = l(1,1,1,0,0,1,0) = l(1,1,1,0,1,0,0)

= l(1,1,1,0,1,1,0) = l(1,1,1,1,0,0,0) = l(1,1,1,1,0,0,1) = 3,

l(0,0,1,0,1,1,1) = l(0,0,1,1,1,0,1) = l(0,0,1,1,1,1,1) = l(0,1,0,1,0,1,1) = l(0,1,0,1,1,1,0)

= l(0,1,0,1,1,1,1) = l(0,1,1,0,1,0,1) = l(0,1,1,0,1,1,1) = l(0,1,1,1,0,1,0) = l(0,1,1,1,0,1,1)

= l(0,1,1,1,1,0,1) = l(0,1,1,1,1,1,0) = l(0,1,1,1,1,1,1) = l(1,0,0,0,0,1,1) = l(1,0,0,1,1,0,0)
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= l(1,0,0,1,1,1,1) = l(1,0,1,0,1,0,1) = l(1,0,1,0,1,1,0) = l(1,0,1,0,1,1,1) = l(1,0,1,1,0,0,1)

= l(1,0,1,1,0,1,0) = l(1,0,1,1,1,0,1) = l(1,0,1,1,1,1,1) = l(1,1,0,0,1,0,1) = l(1,1,0,0,1,1,0)

= l(1,1,0,1,0,0,1) = l(1,1,0,1,0,1,0) = l(1,1,0,1,0,1,1) = l(1,1,0,1,1,1,0) = l(1,1,0,1,1,1,1)

= l(1,1,1,0,0,0,0) = l(1,1,1,0,0,1,1) = l(1,1,1,0,1,1,0) = l(1,1,1,0,1,1,1) = l(1,1,1,1,0,1,0)

= l(1,1,1,1,0,1,1) = l(1,1,1,1,1,0,0) = l(1,1,1,1,1,0,1) = l(1,1,1,1,1,1,0) = 4,

l(0,0,0,0,0,0,0) = 0 and l(1,1,1,1,1,1,1) = 6.

Therefore, by Theorem 2.2,

ϕ∗OX = OP4 ⊕OP4(−6)⊕OP4(−2)⊕39 ⊕OP4(−3)⊕48 ⊕OP4(−4)⊕39.

Thus, by Corollary 2.3,

pg(X) = 5, q = h2,0 = h3,0 = 0, χ(ωX) = 6

and by the Hurwitz formula, KX = ϕ∗OP4(1). So X is minimal and the canonical degree

of X is K4
X = 128.

Similarly, we have the following example.

Example 4.2. Let X be the canonical abelian 4-fold which is the normalization of the

variety whose defining equations are given by

z31 = h1h
2
5h

2
6h7, z32 = h2h

2
6h7h

2
8, z33 = h3h7h

2
8h

2
9, z34 = h4h

2
5h7h

2
9,

where the hyperplanes Hi’s defined by hi’s intersect with normal crossings in P4.

The arguments of smoothness of X and the calculation of lg’s are as similar as the

above example. Finally, we have

l(0,0,0,1) = l(0,0,0,2) = l(0,0,1,0) = l(0,0,1,2) = l(0,0,2,0) = l(0,0,2,1) = l(0,1,0,0)

= l(0,1,2,0) = l(0,2,0,0) = l(0,2,1,0) = l(1,0,0,0) = l(1,0,0,2) = l(1,2,0,0) = l(1,2,1,2)

= l(2,0,0,0) = l(2,0,0,1) = l(2,1,0,0) = l(2,1,2,1) = 2,

l(0,0,1,1) = l(0,0,2,2) = l(0,1,0,2) = l(0,1,1,0) = l(0,1,1,1) = l(0,1,1,2) = l(0,1,2,1)

= l(0,2,0,1) = l(0,2,0,2) = l(0,2,1,1) = l(0,2,1,2) = l(0,2,2,0) = l(1,0,0,1) = l(1,0,1,1)

= l(1,0,1,2) = l(1,0,2,0) = l(1,0,2,1) = l(1,1,0,0) = l(1,1,0,1) = l(1,1,0,2) = l(1,1,1,0)

= l(1,1,1,1) = l(1,1,1,2) = l(1,1,2,0) = l(1,1,2,1) = l(1,1,2,2) = l(1,2,0,1) = l(1,2,0,2)

= l(1,2,1,0) = l(1,2,1,1) = l(1,2,2,1) = l(2,0,0,2) = l(2,0,1,0) = l(2,0,1,1) = l(2,0,2,0)

= l(2,0,2,1) = l(2,1,0,1) = l(2,1,1,0) = l(2,1,1,1) = l(2,1,1,2) = l(2,1,2,0) = l(2,2,0,0)

= l(2,2,1,1) = 3,
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l(0,1,0,1) = l(0,1,2,2) = l(0,2,2,1) = l(0,2,2,2) = l(1,0,1,0) = l(1,0,2,2) = l(1,2,2,0)

= l(1,2,2,2) = l(2,0,1,2) = l(2,0,2,2) = l(2,1,0,2) = l(2,1,2,2) = l(2,2,0,1) = l(2,2,0,2)

= l(2,2,1,0) = l(2,2,1,2) = l(2,2,2,0) = l(2,2,2,1) = 4,

l(0,0,0,0) = 0 and l(1,1,1,1) = 6.

So

ϕ∗OX = OP4 ⊕OP4(−6)⊕OP4(−2)⊕18 ⊕OP4(−3)⊕43 ⊕OP4(−4)⊕18.

Thus, by Corollary 2.3, pg(X) = 5, q = h2,0 = h3,0 = 0, χ(ωX) = 6 and by the Hurwitz

formula, KX = ϕ∗OP4(1). So X is minimal and the canonical degree of X is K4
X = 81.
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