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New Results for Second Order Discrete Hamiltonian Systems

Huiwen Chen*, Zhimin He, Jianli Li and Zigen Ouyang

Abstract. In this paper, we deal with the second order discrete Hamiltonian system

∆[p(n)∆u(n − 1)] − L(n)u(n) + ∇W (n, u(n)) = 0, where L : Z → RN×N is positive

definite for sufficiently large |n| ∈ Z and W (n, x) is indefinite sign. By using critical

point theory, we establish some new criteria to guarantee that the above system has

infinitely many nontrivial homoclinic solutions under the assumption that W (n, x) is

asymptotically quadratic and supquadratic, respectively. Our results generalize and

improve some existing results in the literature.

1. Introduction

In this paper, we investigate the following second order discrete Hamiltonian system

(1.1) ∆[p(n)∆u(n− 1)]− L(n)u(n) +∇W (n, u(n)) = 0, ∀n ∈ Z,

where u ∈ RN , p, L : Z→ RN×N , ∆u(n) = u(n+ 1)− u(n) is the forward difference, and

∇W (n, u) denotes the gradient of W (n, u) with respect to u. As usual, we say that a

solution u(n) of system (1.1) is homoclinic (to 0) if u(n) → 0 as |n| → ∞. In addition,

if u(n) 6≡ 0 then u(n) is called a nontrivial homoclinic solution. IN denotes the N × N
identity matrix.

Discrete Hamiltonian system can be applied in many different areas, such as chemistry,

control theory, physics, and so on [11, 15]. The discrete Hamiltonian system has found

a great deal of interest last years because not only it is important in applications but it

provides a good model for developing mathematical methods. For more information on

discrete Hamiltonian systems, we refer the reader to [1, 2].
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In the past ten years, many authors have studied the existence and multiplicity of

homoclinic solutions for system (1.1) via variational methods, see [5–8, 12–14, 16–20, 23].

Most of them treated the superquadratic case [5, 6, 8, 12–14, 16, 19, 23]; the subquadratic

case can be found in [17,18,23]; and except for [7], there are only a few papers that have

studied the asymptotically quadratic case. Besides, among them, except for [6,7,16,18,23]

all known results were obtained under the assumption that L(n) is positive definite for all

n ∈ Z.

In this paper, motivated by the above papers, we study the existence of infinitely

homoclinic solutions for system (1.1) under more relaxed assumptions on L and W , which

generalize and improve some results in the references that we have mentioned above.

1.1. The asymptotically quadratic case

In 2014, by using the variant fountain theorem, Chen and He [7] obtained the following

theorem.

Theorem 1.1. Assume that the following conditions are satisfied.

(F1) L(n) is an N ×N real symmetric matrix for all n ∈ Z and l(n) = infu∈RN ,|u|=1

(L(n)u, u)→ +∞ as |n| → ∞.

(F2) W : Z× RN → R and W (n, u) is continuously differentiable in u for every n ∈ Z.

(F3) W (n, u) = 1
2µ
′ |u|2 +F (n, u), where µ′ > 0 and µ′ /∈ σ(A) (A is defined in (2.1), and

σ denotes the spectrum).

(F4) â(n) |u|γ ≤ (∇F (n, u), u), |∇F (n, u)| ≤ b̂(n) |u|γ−1 + ĉ(n) |u|ν−1, ∀ (n, u) ∈ Z ×
RN , where â, b̂, ĉ : Z → R are positive functions such that â, b̂ ∈ l2/(2−γ)(Z,R), ĉ ∈
l2/(2−ν)(Z,R) and 1 < γ < 2, 1 < ν < 2 are constants, F (n, 0) = 0, F (n, u) =

F (n,−u) for all (n, u) ∈ Z× RN .

Then system (1.1) (with p = IN ) possesses infinitely many nontrivial homoclinic solutions.

A natural question is whether system (1.1) possesses infinitely many nontrivial homo-

clinic solutions if µ′ ∈ σ(A) or µ′ < 0. In order to solve the question, the main difficulties

are: how to prove the boundedness of the (PS) (or (C)) sequence of the corresponding

functional and how to check that the variational functional has mountain pass geometry.

To overcome these difficulties, we have to find some new methods and techniques.

We will use the following conditions:

(R1) L(n) is a real symmetric matrix for all n ∈ Z and there exists 0 < σ < 2 such that

l(n) |n|−σ →∞ as |n| → ∞ where l(n) = infu∈RN ,|u|=1(L(n)u, u).
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(R2) ∇W (n, u) = V (n)u+∇F (n, u), where V : Z→ RN×N is bounded symmetric N ×N
matrix-valued function.

(R3) F (n, 0) = 0 and there exist m′1,m
′
2 > 0 and max

{
1
2 ,

1
1+σ

}
< ν1 < ν2 < 1 such that

|∇F (n, u)| ≤ m′1 |u|
ν1 +m′2 |u|

ν2 , ∀ (n, u) ∈ Z× RN .

(R4) W : Z× RN → R and W (n, u) is continuously differentiable in u for every n ∈ Z.

(R5) W (n,−u) = W (n, u), ∀ (n, u) ∈ Z× RN .

(R6) lim|u|→0
W (n,u)

|u|2 = +∞ uniformly in n ∈ Z.

(R7) Ŵ (n, u) = 2W (n, u)− (∇W (n, u), u)→ +∞ as |u| → ∞ uniformly in n ∈ Z.

(R8) Ŵ (n, u) ≥ 0, ∀ (n, u) ∈ Z× RN .

Up to now, we state our main result.

Theorem 1.2. Assume that (R1)–(R8) hold. Then system (1.1) (with p = IN ) possesses

infinitely many nontrivial homoclinic solutions.

1.2. The supquadratic case

In 2006, by using the symmetric mountain pass theorem, Ma and Guo [13] obtained the

following theorem.

Theorem 1.3. Assume that the following conditions are satisfied.

(W1) p(n) > 0 for all n ∈ Z.

(W2) L(n) > 0 for all n ∈ Z and lim|n|→∞ L(n) = +∞.

(W3) There exists a constant ρ̃ > 2 such that

0 < ρ̃W (n, x) ≤ ∇W (n, x)x, ∀ (n, x) ∈ Z× R \ {0} .

(W4) |∇W (n, x)| = o(|x|) as |x| → 0 uniformly for n ∈ Z.

(W5) W (n,−x) = W (n, x), ∀ (n, x) ∈ Z× R.

Then system (1.1) (with N = 1) possesses an unbounded sequence of homoclinic solutions.

Remark 1.4. The condition (W3) implies that lim|x|→∞
W (n,x)

|x|2 = +∞ uniformly for all

n ∈ Z, and

1

2
∇W (n, x)x−W (n, x) ≥

(
ρ̃

2
− 1

)
W (n, x)→ +∞ as |u| → ∞.
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In 2011, by using the symmetric mountain pass theorem, Lin and Tang [12] obtained

the following theorem.

Theorem 1.5. Assume that the following conditions are satisfied.

(W6) p(n) is a real symmetric positive definite matrix for all n ∈ Z.

(W7) L(n) is a real symmetric positive definite matrix for all n ∈ Z and there exists a

function l̂ : Z→ (0,∞) such that l̂(n)→∞ as n→∞ and

(L(n)u, u) ≥ l̂(n) |u|2 , ∀ (n, u) ∈ Z× RN .

(W8) W (n, u) = W1(n, u) − W2(n, u) for every n ∈ Z, W1 and W2 are continuously

differentiable in u, and

1

l̂(n)
|∇W (n, u)| = o(|u|) as |u| → 0

uniformly in n ∈ Z.

(W9) W (n,−u) = W (n, u), ∀ (n, u) ∈ Z× RN .

(W10) For any τ̂ > 0, there exist τ̂1, τ̂2 > 0 and ν̃1 < 2 such that

0 ≤

(
2 +

1

τ̂1 + τ̂2 |u|ν̃1

)
W (n, u) ≤ (∇W (n, u), u),

∀ (n, u) ∈ Z×
{
u ∈ RN : |u| ≥ τ̂

}
.

(W11) For any n ∈ Z, lims→+∞ s
−2 min|u|=1W (n, su) = +∞.

Then system (1.1) possesses an unbounded sequence of homoclinic solutions.

Remark 1.6. The conditions (W10) and (W11) imply that

1

2
(∇W (n, u), u)−W (n, u) ≥ 1

2τ̂1 + 2τ̂2 |u|ν̃1
W (n, u)→ +∞ as |u| → ∞.

In 2013, by using fountain theorem, Chen and He [6] obtained the following theorems.

Theorem 1.7. Assume that (W6), (W9) and the following conditions hold.

(B1) L(n) is a real symmetric matrix for all n ∈ Z and l(n) = infu∈RN ,|u|=1(L(n)u, u)→
+∞ as |n| → ∞.

(B2) lim|u|→∞
W (n,u)

|u|2 = +∞ uniformly for all n ∈ Z.
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(B3) There exists λ > 0 such that W (n, u) ≥ −λ |u|2 for all (n, u) ∈ Z× RN .

(B4) W (n, 0) = 0 and there exist M0 > 0 and ν > 2 such that

|∇W (n, u)| ≤M0

(
|u|+ |u|ν−1

)
, ∀ (n, u) ∈ Z× RN .

(B5) There exist ρ > 2, m0 > 0, 0 ≤ m1 < (ρ− 2)/2 and 0 < θ < 2 such that

(∇W (n, u), u)− ρW (n, u) ≥ −m0 |u|2 −m1(L(n)u, u)−m2(n) |u|θ −m3(n),

∀ (n, u) ∈ Z× RN , where m2 ∈ l2/(2−θ)(Z,R+) and m3 ∈ l1(Z,R+).

Then system (1.1) possesses an unbounded sequence of homoclinic solutions.

Theorem 1.8. Assume that (W6), (W9), (B1)–(B4) and the following condition hold.

(B6) There exist ν̃2 ≥ γ − 1, c > 0 and T1 > 0 such that

(∇W (n, u), u)− 2W (n, u) ≥ c |u|ν̃2 , ∀n ∈ Z, ∀ |u| ≥ T1,

(∇W (n, u), u) ≥ 2W (n, u), ∀n ∈ Z, ∀ |u| ≤ T1.

Then system (1.1) possesses an unbounded sequence of homoclinic solutions.

Remark 1.9. The conditions (B2) and (B6) imply that

1

2
(∇W (n, u), u)−W (n, u) ≥ c

2
|u|ν̃2 → +∞ as |u| → ∞.

In 2013, by using the symmetric mountain pass theorem, Tang and Chen [16] obtained

the following theorems.

Theorem 1.10. Assume that (W6), (W9), (B1) and the following conditions hold.

(B7) W (n, u) is continuously differentiable in u for every n ∈ Z, W (n, 0) = 0, and there

exist constants c0 > 0 and T̃0 > 0 such that

|∇W (n, u)| ≤ c0 |u| , ∀ (n, u) ∈ Z× RN , |u| ≤ T̃0.

(B8) lim|u|→∞
W (n,u)

|u|2 = +∞ for all n ∈ Z, and

W (n, u) ≥ 0, forall (n, u) ∈ Z× RN , |u| ≥ T̃0.

(B9) W̃ (n, u) := 1
2(∇W (n, u), u)−W (n, u) ≥ g(n), ∀ (n, u) ∈ Z×RN , where |g| ∈ l1(Z,R),

and there exists c1 > 0 such that

|W (n, u)| ≤ c1 |u|2 W̃ (n, u), ∀ (n, u) ∈ Z× RN , |u| ≥ T̃0.



408 Huiwen Chen, Zhimin He, Jianli Li and Zigen Ouyang

Then system (1.1) possesses an unbounded sequence of homoclinic solutions.

Remark 1.11. The conditions (B8) and (B9) imply that

W̃ (n, u) ≥ |W (n, u)|
c1 |u|2

→ +∞ as |u| → ∞.

Theorem 1.12. Assume that (W6), (W9), (B1), (B7)–(B8) and the following condition

hold.

(B10) There exist ρ̂1 > 2 and ρ̂2 > 0 such that

ρ̂1W (n, u) ≤ (∇W (n, u), u) + ρ̂2 |u|2 , ∀ (n, u) ∈ Z× RN .

Then system (1.1) possesses an unbounded sequence of homoclinic solutions.

Remark 1.13. The conditions (B8) and (B10) imply that

W̃ (n, u)→ +∞ as |u| → ∞.

In this paper, using a different approach to that of [6, 12, 13, 16], we establish the

existence of infinitely many nontrivial homoclinic solutions for system (1.1) under more

general conditions, which generalize and improve the results mentioned above.

We will use the following conditions:

(H1) lim|u|→∞
W (n,u)

|u|2 = +∞ uniformly for all n ∈ Z, and there exists M > 0 such that

W (n, u) ≥ 0, ∀ (n, u) ∈ Z× RN , |u| ≥M.

(H2) W̃ (n, u) := 1
2(∇W (n, u), u)−W (n, u) ≥ h(n), ∀ (n, u) ∈ Z×RN , where h ∈ l1(Z,R),

lim|u|→∞ W̃ (n, u) = +∞ for all n ∈ Z and there exists T0 > 0 such that

W̃ (n, u) ≥ 0, ∀ (n, u) ∈ Z× RN , |u| ≥ T0.

(H3) There exist η > 2, k0 > 0, 0 ≤ k1 < (η − 2)/2, 0 < κ < 2 and T > 0 such that

(∇W (n, u), u)− ηW (n, u) ≥ −k0 |u|2 − k1(L(n)u, u)− k2(n) |u|κ − k3(n),

∀ (n, u) ∈ Z× RN , |u| ≥ T , where k2 ∈ l2/(2−κ)(Z,R+) and k3 ∈ l1(Z,R+).

Up to now, we state our main results.

Theorem 1.14. Assume that (W6), (W9), (B1), (B4) and (H1)–(H2) hold. Then sys-

tem (1.1) possesses an unbounded sequence of homoclinic solutions.



New Results for Second Order Discrete Hamiltonian Systems 409

Remark 1.15. Theorem 1.14 generalizes and improves Theorems 1.3 and 1.5. First, it

is easy to see that condition (B1) is weaker than (W2) in Theorem 1.3 and (W7) in

Theorem 1.5. Secondly, we remove (W4) in Theorem 1.3 and (W8) in Theorem 1.5.

Lastly, (W3) in Theorem 1.3 implies (H2), as do (W10) and (W11) in Theorem 1.5, see

Remarks 1.4 and 1.6.

Remark 1.16. Theorem 1.14 generalizes and improves Theorems 1.8, 1.10 and 1.12. In

fact, as stated in Remarks 1.9, 1.11 and 1.13, we can deduce condition (H2) from the

supquadratic conditions of Theorems 1.8, 1.10 and 1.12.

Remark 1.17. There are many functions W (n, u) satisfy our Theorem 1.14, but they do

not satisfy Theorems 1.3, 1.5, 1.8, 1.10 and 1.12. For example, let W (n, u) = |u|2 (|u|2 +

sin |u|2) + |u|2 (1− 1/(1 + |u|))− 20 |u|2.

Theorem 1.18. Assume that (W6), (W9), (B1), (B4), (H1) and (H3) hold. Then sys-

tem (1.1) possesses an unbounded sequence of homoclinic solutions.

Remark 1.19. Theorem 1.18 generalizes and improves Theorems 1.3, 1.7 and 1.12. In

fact, (W3) in Theorem 1.3, (B5) in Theorem 1.7 or (B10) in Theorem 1.12 implies our

condition (H3). Furthermore, there are many functions W (n, u) satisfy our Theorem 1.18,

but they do not satisfy Theorems 1.3, 1.7 and 1.12. For example, let W (n, u) = 1
1+n2 |u|6−

2 |u|2 (1− 1/(1 + |u|)).

The remainder of this paper is organized as follows. In Section 2, we give the proof of

Theorem 1.2. In Section 3, we give the proofs of Theorems 1.14 and 1.18.

2. The asymptotically quadratic case

In the following, we will present some definitions and lemmas that will be used in the

proof of our result. As usual, for 1 ≤ q < +∞, j = 1 or N , let

lq(Z,Rj) =

{
{u(n)}n∈Z : u(n) ∈ Rj , n ∈ Z,

∑
n∈Z
|u(n)|q < +∞

}

and

l∞(Z,Rj) =

{
{u(n)}n∈Z : u(n) ∈ Rj , n ∈ Z, sup

n∈Z
|u(n)| < +∞

}
,

and their norms are defined by

‖u‖q =

(∑
n∈Z
|u(n)|q

)1/q

, ∀u ∈ lq(Z,Rj); ‖u‖∞ = sup
n∈Z
|u(n)| , ∀u ∈ l∞(Z,Rj),
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respectively. It is well known that lq(Z,RN ) is a Banach space for each q ≥ 1 and l2(Z,RN )

is a Hilbert space with the following inner product:

(u, v)2 =
∑
n∈Z

(u(n), v(n)), u, v ∈ l2(Z,RN ).

Now, we study the following difference operator:

A(u)(n) = −∆2u(n− 1) + L(n)u(n), u = {u(n)}n∈Z ∈ D(A),

D(A) =
{
u ∈ l2(Z,RN ) : Au ∈ l2(Z,RN )

}
.

(2.1)

Lemma 2.1. [23] Assume that L satisfies (R1). Then, operator A is self-adjoint, has a

pure discrete spectrum, and is bounded from below.

Let D(A) and R(A) be the domain and range of K, respectively.

Lemma 2.2. [23] Let A be a self-adjoint operator on a Hilbert space Y . Then, A =

U |A|, where |A| is nonnegative and self-adjoint and U is partially isometric operator

on R(|A|). And, |A| has one nonnegative and self-adjoint second root |A|1/2. Further,

D(A) = D(|A|) ⊂ D(|A|1/2), D(|A|) is the core of |A|1/2, |A| = UA = AU , |A|U = U |A|,
and |A|1/2 U = U |A|1/2.

If A is self-adjoint, then there is a spectral family E such that A =
∫
ς dE(ς) (see, [21,

Theorem 7.17]). And, by the discussions on [10, p. 358], one has

(2.2) |A| =
∫ +∞

−∞
|µ| dE(µ), |A|1/2 =

∫ +∞

−∞
|µ|1/2 dE(µ), U = I − E(0)− E(0−),

where I is the identity operator. By Lemma 2.1, the distinct eigenvalues of A can be

ordered as µ1 < µ2 < · · · → ∞. Let Hi be the eigenspace of A with respect to µi, Pi be the

orthogonal projection from l2(Z,RN ) to Hi. Hence, the spectral family of A is

(2.3) E(µ) =
∑
µi≤µ

Pi.

Let X := D(|A|1/2) be the domain of the self-adjoint operator |A|1/2, which is a Hilbert

space equipped with the inner product and norm given by

(u, v)0 = (|A|1/2 u, |A|1/2 v)2 + (u, v)2, ‖u‖0 = (u, u)
1/2
0

for u, v ∈ X.

Lemma 2.3. [23] If (R1) holds, then (X, ‖ · ‖0) is compactly embedded in lq(Z,RN ) for

each 1 < q ∈ (2/(1 + σ),+∞].
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By Lemma 2.1, the spectrum σ(A) consists of eigenvalues numbered by η1 ≤ η2 ≤
· · · ≤ ηm ≤ · · · → ∞ (counted in their multiplicities) and a corresponding system of

eigenfunctions {em}, Kem = ηmem which forms an orthogonal basis in l2(Z,RN ).

Set

(2.4) n− = ] {i | ηi < 0} , n0 = ] {i | ηi = 0} , n+ = n− + n0,

and let

(2.5) l2(Z,RN ) = l− ⊕ l0 ⊕ l+

be the orthogonal decomposition in l2(Z,RN ) with

l− = span {e1, . . . , en−} , l0 = span {en−+1, . . . , en0} ,

l+ = (l− ⊕ l0)⊥ = span {en++1, . . .}.

Now we introduce on X the following inner product

(2.6) (u, v)∗ = (|A|1/2 u, |A|1/2 v)2 + (u0, v0)2

and the norm

(2.7) ‖u‖ = (u, u)
1/2
∗ ,

where u = u−+u0 +u+ and v = v−+ v0 + v+ with respect to the decomposition (2.5). It

is easy to verify that ‖ · ‖ and ‖ · ‖0 are equivalent, see [23]. Thus, there exist M1,M2 > 0

such that

(2.8) M1 ‖u‖ ≤ ‖u‖0 ≤M2 ‖u‖

for any u ∈ X. By Lemma 2.3, there exists Nq, Cq > 0 such that

(2.9) ‖u‖q ≤ Nq ‖u‖ , ‖u‖q ≤ Cq ‖u‖0

for any u ∈ X and 1 < q ∈ (2/(1 + σ),+∞].

Remark 2.4. It is easy to check that X possesses the orthogonal decomposition

X = X− ⊕X0 ⊕X+

with

X− = l−, X0 = l0 and X+ = X ∩ l+ = span {en++1, . . .},

where the closure is taken with respect to the norm ‖ · ‖0. Evidently, the above decompo-

sition is also orthogonal in l2(Z,RN ).
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By (2.2) and (2.3), we have

(2.10) Uu = (I − E(0)− E(0−))u = u− (u− + u0)− u− = u+ − u−

for any u ∈ l2(Z,RN ). For g ∈ C1(X,R), by D0g(x) denote the Fréchet derivative of g at

x in (X, (· , ·)0). Introduce the following functional on D(|K|1/2):

(2.11) f(u) :=
1

2
(|A|1/2 Uu, |A|1/2 u)2, ∀u ∈ D(|K|1/2).

By (2.10), we obtain

f(u) =
1

2
(|A|1/2 (u+ − u−), |A|1/2 u)2

=
1

2
(|A|1/2 (u+ − u−), |A|1/2 (u+ + u−))2

=
1

2
(
∥∥u+

∥∥2 −
∥∥u−∥∥2

), ∀u ∈ D(|A|1/2).

(2.12)

Lemma 2.5. [23] If (R1) holds, then the functional f is C1 in (X, (· , ·)0), and

(2.13) D0f(u)v = ((I − (|A|+ I)−1)Uu, v)0 = (|A|1/2 Uu, |A|1/2 v)2, ∀u, v ∈ X.

Lemma 2.6. Assume that (R1)–(R4) hold. Then the functional Φ: X → R defined by

Φ(u) = f(u)−
∑
n∈Z

W (n, u(n))

=
1

2
(
∥∥u+

∥∥2 −
∥∥u−∥∥2

)−
∑
n∈Z

W (n, u(n)), ∀u ∈ E
(2.14)

is well defined and of class C1(X,R) and

(2.15) D0Φ(u)v = (|A|1/2 Uu, |A|1/2 v)2 − (∇W (· , u), v)2, ∀u, v ∈ X.

Furthermore, the critical points of Ψ in X are solutions of system (1.1) with u(±∞) = 0.

Proof. By using the same methods in [7, Lemma 2.6], we easily obtain the aforementioned

result, and we omit it here.

Lemma 2.7. [9] Let X be an infinite-dimensional Banach space and Φ ∈ C1(X,R) be

even, satisfy the (PS) condition, and Φ(0) = 0. If X = Y ⊕ Z, where Y is finite-

dimensional, and Φ satisfies

(G1) Φ is bounded from below on Z;

(G2) for each finite-dimensional subspace X̃ ⊂ X, there are positive constants ρ = ρ(X̃)

and α = α(X̃) such that Φ|
Bρ∩X̃ ≤ 0 and Φ|

∂Bρ∩X̃ ≤ −α, where Bρ = {x ∈ X :

‖x‖0 ≤ ρ}.
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Then Φ possesses infinitely many nontrivial critical points.

Remark 2.8. As shown in [3], a deformation lemma can be proved with (C) condition

replacing (PS) condition, and it turns out that Lemma 2.7 holds true under (C) condition.

We say that Φ satisfies (C) condition, i.e., for any {um} ⊂ X, {um} has a convergent

subsequence if Φ(um) is bounded and (1 + ‖um‖0) ‖D0Φ(um)‖ → 0 as m→∞.

Define Xj = Rej ,

(2.16) Yk =
k⊕
j=0

Xj , Zk =
∞⊕
j=k

Xj , k ∈ N.

Lemma 2.9. Under assumption (R1), for 1 < τ ∈ (2/(1 + σ),+∞],

(2.17) βk(τ) = sup
u∈Zk
‖u‖0=1

‖u‖τ → 0 ask →∞.

Proof. It is clear that 0 < βk+1(τ) ≤ βk(τ), so that βk(τ) → β(τ), k → ∞. For every

k ≥ 0, there exists uk ∈ Zk such that ‖uk‖0 = 1 and ‖uk‖τ > βk/2. For any v ∈ X, let

v =
∑∞

i=1 biei, by the Cauchy-Schwartz inequality, one has

|(uk, v)0| =

∣∣∣∣∣
(
uk,

∞∑
i=1

biei

)
0

∣∣∣∣∣ =

∣∣∣∣∣
(
uk,

∞∑
i=k

biei

)
0

∣∣∣∣∣
≤ ‖uk‖0

∥∥∥∥∥
∞∑
i=k

biei

∥∥∥∥∥
0

=
∞∑
i=k

∥∥biei∥∥0
→ 0 as k →∞,

which implies that uk ⇀ 0. It follows from Lemma 2.3 that uk → 0 in lq(Z,RN ). Thus

we have proved that β(τ) = 0.

By Lemma 2.9, we can choose a positive integer k0 ≥ n+ + 1 such that

(2.18) ‖u‖22 ≤
1

4m′0M
2
2

‖u‖20 ,

where m′0 = supn∈Z

[
supx∈RN ,|x|=1(V (n)x, x)

]
.

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let Y = Yk0 , Z = Zk0 . Obviously, Φ ∈ C1(X,R) be even and

Φ(0) = 0. In the following, we will check that all conditions in Lemma 2.7 are satisfied.
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First, we verify condition (G1) in Lemma 2.7. By (R2), (R3), (2.8), (2.9) and (2.18),

we have

Φ(u) =
1

2

∥∥u+
∥∥2 − 1

2

∥∥u−∥∥2 −
∑
n∈Z

W (n, u(n))

=
1

2
‖u‖2 −

∑
n∈Z

W (n, u(n))

≥ 1

2M2
2

‖u‖20 −m
′
0 ‖u‖

2
2 −m

′
1 ‖u‖

ν1+1
ν1+1 −m

′
2 ‖u‖

ν2+1
ν2+1

≥ 1

4M2
2

‖u‖20 −m
′
1C

ν1+1
ν1+1 ‖u‖

ν1+1
0 −m′2C

ν2+1
ν2+1 ‖u‖

ν2+1
0 → +∞

(2.19)

as ‖u‖0 →∞ and u ∈ Zk0 .

Secondly, we verify condition (G2) in Lemma 2.7. Let X̃ ⊂ X be any finite-dimensional

subspace. Then there exists T > 0 such that

(2.20)
1

M2
1

‖u‖20 ≤ T ‖u‖
2
2 , ∀u ∈ X̃.

By virtue of (R6), for T given above, there exists a constant δ > 0

(2.21) W (n, u) ≥ T |u|2 , ∀n ∈ Z and |u| ≤ δ.

By (2.9), for any u ∈ X̃ with ‖u‖0 ≤ δ/C∞, there holds

(2.22) ‖u‖∞ ≤ δ.

In view of (2.8) and (2.20)–(2.22), we have

Φ(u) =
1

2

∥∥u+
∥∥2 − 1

2

∥∥u−∥∥2
+
∑
n∈Z

W (n, u(n))

≤ 1

2

∥∥u+
∥∥2 −

∑
n∈Z

W (n, u(n))

≤ 1

2

∥∥u+
∥∥2 − T

∑
n∈Z
|u(n)|2

≤ − 1

2M2
1

‖u‖20

(2.23)

for any u = u− + u0 + u+ ∈ X̃ with ‖u‖0 ≤ δ/C∞. Then there exist ρ = ρ(X̃) > 0 and

α = α(X̃) > 0 such that

Φ(u) ≤ 0, ∀u ∈ Bρ ∩ X̃; Φ(u) ≤ −α, ∀u ∈ ∂Bρ ∩ X̃.

Finally, we will show that Φ satisfies (C) condition. Assume that {um} ⊂ X is a

(C) sequence of Φ, that is, {Φ(um)} is bounded and

(2.24) (1 + ‖um‖0) ‖D0Φ(um)‖ → 0 as m→∞,
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then there exists a constant T̃0 > 0 such that

(2.25) |Φ(um)| ≤ T̃0, (1 + ‖um‖0) ‖D0Φ(um)‖ ≤ T̃0

for every m ∈ N. Since the norms ‖ · ‖ and ‖ · ‖0 are equivalent, we will use the norm ‖ · ‖
in the following discussions for convenience. We choose k ≥ n+ +1 large enough such that

(2.26) ‖u‖2 ≥ 2m′0 ‖u‖
2
2 , ∀u ∈ Zk,

where m′0 = supn∈Z

[
supx∈RN ,|x|=1(V (n)x, x)

]
. We now prove that {um} is bounded

in X. In fact, if not, we may assume by contradiction that ‖um‖ → ∞ as m → ∞.

Let um = wm + vm, zm = um/‖um‖, then ‖zm‖ = 1, zm = wm + vm ∈ X, where

wm = wm/‖um‖, vm = vm/‖um‖, wm ∈ Yk, vm ∈ Zk. After passing a subsequence, we

obtain zm ⇀ z, wm → w, and ζ = limm→∞ ‖vm‖ exists.

Case 1: ζ = 0. Since dimYk < ∞, then we obtain that ‖wm‖ → ‖w‖ = 1. By virtue

of (2.25) that

3T̃0 ≥ 2Φ(um)−D0Φ(um)um

≥
∑
n∈Z

(2W (n, um(n))− (∇W (n, um(n)), um(n))) .
(2.27)

By (R7), for R̃1 > 3T̃0, there exists R̃2 > 0 such that

Ŵ (n, u) = 2W (n, u)− (∇W (n, u), u) ≥ R̃1, ∀n ∈ Z, |u| ≥ R̃2.(2.28)

For any ε > 0, define Λε := {n ∈ Z : |w(n)| ≥ ε} and Λmε := {n ∈ Z : |vm(n)| ≥ ε/2}.
First, we claim that there exists ε0 > 0 such that

{n ∈ Z : |u(n)| ≥ ε0} 6= ∅, ∀u ∈ Yk with ‖u‖ = 1.

Arguing indirectly, for any positive integer i, there exists ui ∈ Yk \ {0} such that

(2.29) Υ1 =

{
n ∈ Z : |wi(n)| ≥ 1

i

}
= ∅,

where wi = ui/‖ui‖. Passing to a subsequence if necessary, we may assume wi → w0 in

X for some w0 ∈ Yk since dimYk < ∞. Evidently, ‖w0‖ = 1. By the equivalence of the

norms on the finite-dimensional space Yk, we have wi → w0 in l2(Z,RN ), i.e.,

(2.30)
∑
n∈Z
|wi(n)− w0(n)|2 → 0 as i→∞.

Thus there exists ε1 > 0 such that

(2.31) Υ2 = {n ∈ Z : |w0(n)| ≥ ε1} 6= ∅.
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In fact, if not, for all positive integers i, we have

(2.32) Υ2 =

{
n ∈ Z : |w0(n)| ≥ 1

i

}
= ∅.

This implies that

0 ≤
∑
n∈Z
|w0(n)|4 < 1

i2
‖w0‖22 → 0 as i→∞.

Hence w0 = 0 which contradicts that ‖w0‖0 = 1. Thus, (2.31) holds.

Now let

Ω0 = {n ∈ Z : |w0(n)| ≥ ε1} , Ωi =

{
n ∈ Z : |wi(n)| < 1

i

}
.

By (2.29) and (2.31), we have
Ω0 ∩ Ωi 6= ∅

for all positive integers i. Let i be large enough such that 1
2ε1 − 1

i > 0. Then we have∑
n∈Z
|wi(n)− w0(n)|2 ≥

∑
n∈Ω0∩Ωi

|wi(n)− w0(n)|2

≥ 1

2

∑
n∈Ω0∩Ωi

|w0(n)|2 −
∑

n∈Ω0∩Ωi

|wi(n)|2

≥
∑

n∈Ω0∩Ωi

(
1

2
ε1 −

1

i

)
> 0

for all large i, which is a contradiction to (2.30). Thus, the claim above is true. Hence,

there exists ε > 0 such that Λε := {n ∈ Z : |w(n)| ≥ ε} 6= ∅.
By (2.9), we obtain

]Λmε ≤
4

ε2

∑
n∈Z
|vm(n)|2 ≤ 4N2

2

ε2
‖vm‖2 → 0 as m→∞.

Then we have ](Λε \ Λmε) → ]Λε as m → ∞. Therefore, there exists N ′0 > 0 such that

|zm(n)| ≥ ε/3, ∀n ∈ Λε\Λmε and m ≥ N ′0, then we have |um(n)| ≥ ε
3 ‖um‖, ∀n ∈ Λε\Λmε

and m ≥ N ′0. By (R8), (2.27) and (2.28), we get

3T̃0 ≥
∑
n∈Z

Ŵ (n, um(n)) ≥
∑

n∈Λε\Λmε

R̃1 ≥ R̃1 as m→∞,

which gives a contradiction, since R̃1 > 3T̃0.

Case 2: ζ > 0. By (R2), (R3), (2.26), (2.9) and Hölder’s inequality, we get

T0 ≥ D0Φ(um)vm = ‖ṽm‖2 −
∑
n∈Z

(∇W (n, um(n)), vm(n))

≥ ‖vm‖2 −
∑
n∈Z

[
(V (n)um(n), vm(n)) +

(
m′1 |um(n)|ν1 +m′2 |um(n)|ν2

)
|vm(n)|

]
≥ ‖vm‖2 −m′0 ‖vm‖

2
2 −m

′
1 ‖um‖

ν1
2ν1
‖vm‖2 −m

′
2 ‖um‖

ν2
2ν2
‖vm‖2

≥ 1

2
‖vm‖2 −m′1N2N

ν1
2ν1
‖um‖ν1+1 −m′2N2N

ν2
2ν2
‖um‖ν2+1 .

(2.33)
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Divided by ‖um‖2 on both sides of (2.33), we obtain

0 ≥ ζ2

2
> 0,

which gives a contradiction.

Therefore, {um} is bounded in ‖ · ‖. Consequently, {um} is bounded in ‖ · ‖0. Next,

we show that {um} has a convergent subsequence in ‖ · ‖0. In view of the boundness of

{um}, without loss of generality, we may assume that

(2.34) um ⇀ u, u+
m ⇀ u+, u−m → u−, u0

m → u0 in ‖ · ‖0.

Now, we show that um → u in ‖ · ‖. By (2.15), we easily obtain that∥∥u+
m − u+

∥∥2
= (D0Φ(um)−D0Φ(u))(u+

m − u+)

+ (∇W (· , um)−∇W (· , u), u+
m − u+)2.

(2.35)

It is clear that

(2.36) (D0Φ(um)−D0Φ(u))(u+
m − u+)→ 0 as m→∞.

By (2.9), (2.34), Lemma 2.3 and the Hölder’s inequality, we have

(∇W (· , um)−∇W (· , u), u+
m − u+)2

=
∑
n∈Z

(∇W (n, um(n))−∇W (n, u(n)), u+
m(n)− u+(n))

≤ (m′0 ‖um‖2 +m′1 ‖um‖
ν1
2ν1

+m′2 ‖um‖
ν2
2ν2

)
∥∥u+

m − u+
∥∥

2

+ (m′0 ‖u‖2 +m′1 ‖u‖
ν1
2ν1

+m′2 ‖u‖
ν2
2ν2

)
∥∥u+

m − u+
∥∥

2

≤ (m′0N2 ‖um‖+m′1N
ν1
2ν1
‖um‖ν1 +m′2N

ν2
2ν2
‖um‖ν2)

∥∥u+
m − u+

∥∥
2

+ (m′0N2 ‖u‖+m′1N
ν1
2ν1
‖u‖ν1 +m′0N

ν2
2ν2
‖u‖ν2)

∥∥u+
m − u+

∥∥
2
→ 0

(2.37)

as m → ∞. Therefore, by (2.35)–(2.37), we get ‖u+
m − u+‖ → 0 as m → ∞, which,

together with the fact that dim(X−⊕X0) <∞, yields that um → u in ‖ · ‖. Consequently,

um → u in ‖ · ‖0. Hence, Φ satisfies (C) condition.

By Lemma 2.7, we get that Φ possesses infinitely many nontrivial critical points, that

is, system (1.1) possesses infinitely many nontrivial homoclinic solutions.

3. The supquadratic case

Before establishing the variational setting for system (1.1), we have the following:

Remark 3.1. It follows from (B1) that there exist a > 0 such that L(n) := L(n) + aIN are

real symmetric positive definite matrices for all n ∈ Z.



418 Huiwen Chen, Zhimin He, Jianli Li and Zigen Ouyang

In what follows, we always assume that p(n) and L(n) are real symmetric positive

definite matrices for all n ∈ Z. Let l(n) = infu∈RN ,|u|=1(L(n)u, u),

H =
{
{u(n)}n∈Z : u(n) ∈ RN , n ∈ Z

}
,

X =

{
u ∈ H :

∑
n∈Z

[
(p(n+ 1)∆u(n),∆u(n)) + (L(n)u(n), u(n))

]
< +∞

}
and for u, v ∈ X, let

〈u, v〉 =
∑
n∈Z

[
(p(n+ 1)∆u(n),∆v(n)) + (L(n)u(n), v(n))

]
,

and the corresponding norm is

‖u‖ =

{∑
n∈Z

[
(p(n+ 1)∆u(n),∆u(n)) + (L(n)u(n), u(n))

]}1/2

, ∀u ∈ X.

Then X is a Hilbert space with the above inner product. As usual, for 1 ≤ q < +∞, j = 1

or N , let

lq(Z,Rj) =

{
{u(n)}n∈Z : u(n) ∈ Rj , n ∈ Z,

∑
n∈Z
|u(n)|q < +∞

}
and

l∞(Z,Rj) =

{
{u(n)}n∈Z : u(n) ∈ Rj , n ∈ Z, sup

n∈Z
|u(n)| < +∞

}
,

and their norms are defined by

‖u‖q =

(∑
n∈Z
|u(n)|q

)1/q

, ∀u ∈ lq(Z,Rj); ‖u‖∞ = sup
n∈Z
|u(n)| , ∀u ∈ l∞(Z,Rj),

respectively.

Lemma 3.2. [17] For u ∈ X,

(3.1) ‖u‖∞ ≤
1

4
√

(%2 + 4%1)%2

‖u‖ ,

where %1 = inf
{

(p(n)x, x) : n ∈ Z, x ∈ RN , |x| = 1
}

and %2 = inf
{
l(n) : n ∈ Z

}
.

Lemma 3.3. [18] Assume that L satisfies (B1). Then X is compactly embedded in

lq(Z,RN ) for any 2 ≤ q <∞, and

‖u‖qq ≤ %
−1
2 [(%2 + 4%1)%2](2−q)/4 ‖u‖q , ∀u ∈ X,(3.2) ∑

|n|>N

|u(n)|q ≤ [(%2 + 4%1)%2](2−q)/4

min|s|≥N0
l(s)

‖u‖q , ∀u ∈ X, N0 ≥ 1.(3.3)
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Define the functional Φ on X by

(3.4) Φ(u) =
1

2
‖u‖2 − a

2
‖u‖22 −

∑
n∈Z

W (n, u(n)).

Then Φ ∈ C1(X,R) and one can easily check that

(3.5)〈
Φ′(u), v

〉
=
∑
n∈Z

[(p(n+ 1)∆u(n),∆v(n)) + (L(n)u(n), v(n))− (∇W (n, u(n)), v(n))]

for any u, v ∈ X. Furthermore, the critical points of Φ in X are the solutions of sys-

tem (1.1) with u(±∞) = 0, see [7, 18].

In this section, the following fountain theorem will be needed in our argument. Assume

that X is a Banach with the norm ‖ · ‖ and X =
⊕

j∈NXj , where Xj are finite-dimensional

subspaces of X. For each k ∈ N, let Yk =
⊕k

j=0Xj , Zk =
⊕∞

j=kXj . The functional Φ

is said to satisfy (PS) condition if any sequence {ui} such that {Φ(ui)} is bounded and

Φ′(ui)→ 0 as i→∞ has a convergent subsequence.

Theorem 3.4. [4, 22] Suppose that the functional Φ ∈ C1(X,R) is even. If, for every

k ∈ N, there exist ρk > rk > 0 such that

(A1) ak := maxu∈Yk,‖u‖=ρk Φ(u) ≤ 0;

(A2) bk := infu∈Zk,‖u‖=rk Φ(u)→ +∞ as k →∞;

(A3) Φ satisfies (PS) condition.

Then Φ possesses an unbounded sequence of critical values.

Remark 3.5. As shown in [3], a deformation lemma can be proved with (C) condition

replacing (PS) condition, and it turns out that Theorem 3.4 holds true under (C) condition.

We say that Φ satisfies (C) condition, i.e., for any {um} ⊂ X, {um} has a convergent

subsequence if Φ(um) is bounded and (1 + ‖um‖) ‖Φ′(um)‖ → 0 as m→∞.

Now we give the proof of Theorem 1.14.

Proof of Theorem 1.14. We choose a completely orthonormal basis {ej} of X and define

Xj := Rej , then Zk and Yk can be defined as that in Theorem 3.4. Obviously, Φ ∈
C1(X,R) is even. Next we will check that all conditions in Theorem 3.4 are satisfied.

Step 1. We verify condition (A2) in Theorem 3.4. Let λk = supu∈Zk,‖u‖=1 ‖u‖2 and

βk = supu∈Zk,‖u‖=1 ‖u‖ν , then λk → 0 and βk → 0 as k →∞. The proof is similar to the
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proof of Lemma 2.9. In view of (3.4) and (B4), we have

Φ(u) =
1

2
‖u‖2 − a

2
‖u‖22 −

∑
n∈Z

W (n, u(n))

≥ 1

2
‖u‖2 − a

2
‖u‖22 −M0

(
‖u‖22 + ‖u‖νν

)
≥ 1

2
‖u‖2 − λ2

k

(a
2

+M0

)
‖u‖2 −Dβνk ‖u‖

ν .

(3.6)

Since λk → 0 as k →∞, there exists a positive constant N1 such that

(3.7) λ2
k

(a
2

+M0

)
≤ 1

4
, ∀ k ≥ N1.

By (3.6) and (3.7), we obtain

(3.8) Φ(u) ≥ 1

4
‖u‖2 −M0β

ν
k ‖u‖

ν , ∀ k ≥ N1.

We choose rk = (8M0β
ν
k )1/(2−ν), then

(3.9) bk = inf
u∈Zk
‖u‖=rk

Φ(u) ≥ 1

8
r2
k, ∀ k ≥ N1.

Since βk → 0 as k →∞ and γ > 2, we have

bk → +∞ as k →∞.

Step 2. We verify condition (A1) in Theorem 3.4. Since dimYk <∞ and all norms of

a finite-dimensional normed space are equivalent, there exists M1 > 0 such that

(3.10) ‖u‖ ≤M1 ‖u‖∞ , ∀u ∈ Yk.

In view of (H1) and (B4), there exists τ̃ > 0 such that

(3.11) W (n, u) ≥ −τ̃ |u|2 , ∀ (n, u) ∈ Z× RN .

By (H1), for M2 =
(

1 + τ̃
%2

+ a
2%2

)
M

2
1, there exists δ = δ(M2) > 0 such that

(3.12) W (n, u) ≥M2 |u|2 , ∀ |u| ≥ δ, ∀n ∈ Z,

where τ̃ is given in (3.11) and a is given in Remark 3.1. For any u ∈ Yk, there exists

n0 = n0(u) ∈ Z such that |u(n0)| = ‖u‖∞. In view of (3.2), (3.4) and (3.10)–(3.12), we
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get

Φ(u) =
1

2
‖u‖2 − a

2
‖u‖22 −

∑
n∈Z

W (n, u(n))

=
1

2
‖u‖2 − a

2
‖u‖22 −

∑
n∈Z\{n0}

W (n, u(n))−W (n0, u(n0))

≤ 1

2
‖u‖2 − a

2
‖u‖22 −M2 |u(n0)|2 −

∑
n∈Z\{n0}

W (n, u(n))

≤ 1

2
‖u‖2 +

a

2
‖u‖22 + τ̃

∑
n∈Z\{n0}

|u(n)|2 −M2 ‖u‖2∞

≤
(

1

2
+

τ̃

%2
+

a

2%2

)
‖u‖2 −M2 ‖u‖2∞

≤

(
1

2
+

τ̃

%2
+

a

2%2
− M2

M
2
1

)
‖u‖2

≤ −1

2
‖u‖2

for all u ∈ Yk with ‖u‖ ≥ M1δ. Thus, we can choose ‖u‖ = ρk large enough (ρk > rk)

such that

ak = max
u∈Yk
‖u‖=ρk

Φ(u) ≤ 0.

Step 3. We prove that Φ satisfies (C) condition. Let {ui} be a (C) condition sequence,

that is, {Φ(ui)} is bounded, and (1 + ‖ui‖) ‖Φ′(ui)‖ → 0 as i → ∞. Hence there exists

D2 > 0 such that

(3.13) D2 ≥
1

2

〈
Φ′(ui), ui

〉
− Φ(ui).

We now prove that {ui} is bounded in X. In fact, if not, we may assume by contradic-

tion that ‖ui‖ → ∞ as i → ∞. Let vi := ui/‖ui‖. Clearly, ‖vi‖ = 1 and there is v0 ∈ X
such that, up to a subsequence,

vi ⇀ v0 in X,(3.14)

vi → v0 in lq(Z,RN ), 2 ≤ q < +∞ as i→∞.(3.15)

Since vi ⇀ v0 in X, it is easy to verify that vi(n) converges to v0(n) pointwise for all

n ∈ N, that is,

(3.16) lim
i→∞

vi(n) = v0(n), ∀n ∈ N.

Case 1: v0 = 0.
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Case 1.1. Assume that for any n ∈ Z, there exists a constant D3 such that |ui(n)| ≤ D3

as i→∞. By (B4), there exists D4 > 0 such that

(3.17) W (n, ui(n)) ≤ M0

2
|ui(n)|2 +

M0D
ν−2
4

ν
|ui(n)|2 , ∀ i ∈ N, n ∈ N.

In view of (3.4) and (3.17), we get

Φ(ui) =
1

2
‖ui‖2 −

a

2
‖ui‖22 −

∑
n∈Z

W (n, ui(n))

≥ 1

2
‖ui‖2 −

a

2
‖ui‖22 −

∑
n∈Z

(
M0

2
|ui(n)|2 +

M0D
ν−2
4

ν
|ui(n)|2

)

≥ 1

2
‖ui‖2 −

(
a

2
+
M0

2
+
M0D

ν−2
4

ν

)
‖ui‖22 .

(3.18)

Divided by ‖ui‖2 on both sides of (3.18), it follows from (3.15) and {Φ(ui)} is bounded

that there exit ε ∈ (0, 1/2) and N0 ∈ Z such that

(3.19)
1

2
> ε ≥ 1

2

for i ≥ N0, which is a contradiction.

Case 1.2. Assume that there exists n0 ∈ Z such that |ui(n0)| → ∞ as i → ∞. For

0 ≤ a1 < a2, let

(3.20) Ωi(a1, a2) = {n ∈ Z : a1 ≤ |ui(n)| < a2} .

Thus, n0 ∈ Ωi(T0,+∞) for large i ∈ N, and it follows from (3.4), (3.5), (3.13), (H2) and

Fatou’s Lemma that

D2 ≥
1

2

〈
Φ′(ui), ui

〉
− Φ(ui)

=
∑
n∈Z

(
1

2
(∇W (n, ui(n)), ui(n))−W (n, ui(n))

)
≥ W̃ (n0, ui(n0))− ‖h‖1 → +∞ as i→∞,

which is a contradiction.

Case 2: v0 6= 0. Since {Φ(ui)} is bounded, there exists M3 > 0 such that

(3.21) Φ(ui) =
1

2
‖ui‖2 −

a

2
‖ui‖22 −

∑
n∈Z

W (n, ui(n)) ≥ −M3.

Divided by ‖ui‖2 on both sides of (3.21), it follows from Remark 3.1 that

(3.22)
∑
n∈Z

W (n, ui(n))

‖ui‖2
≤ 1

2
+

M3

‖ui‖2
< +∞.
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Let Λ := {n ∈ Z : v0(n) 6= 0}, then Λ 6= ∅. For any n ∈ Λ, we have limi→∞ |ui(n)| = +∞.

Hence Λ ⊂ Ωi(M,+∞) for large i ∈ N, it follows from (H1), and Fatou’s Lemma that∑
n∈Z

W (n, ui(n))

‖ui‖2
=

∑
n∈Ωi(M,∞)

W (n, ui(n))

‖ui‖2
+

∑
n∈Ωi(0,M)

W (n, ui(n))

‖ui‖2

≥
∑

n∈Ωi(M,∞)

W (n, ui(n))

‖ui‖2
−M0

(
1

2
+
Mν−2

ν

) ∑
n∈Ωi(0,M)

|vi(n)|2

≥
∑

n∈Ωi(M,∞)

W (n, ui(n))

|ui(n)|2
|vi(n)|2 − M0

%2

(
1

2
+
Mν−2

ν

)
→ +∞

as i→∞. This contradicts (3.22). Therefore, {ui} is bounded in X, that is, there exists

M4 > 0 such that

(3.23) ‖ui‖ ≤M4.

In view of the boundedness of {ui}, we may extract a weakly convergent subsequence that,

for simplicity, we call {ui}, ui ⇀ u in X. Next we will verify that ui → u in X. By virtue

of (B4), (3.2) and (3.23), we have∑
n∈Z

(∇W (n, ui(n))−∇W (n, u(n)), ui(n)− u(n))

≤
∑
n∈Z

(|∇W (n, ui(n))|+ |∇W (n, u(n))|) |ui(n)− u(n)|

≤M0

∑
n∈Z

(
|ui(n)|+ |ui(n)|ν−1

)
|ui(n)− u(n)|

+M0

∑
n∈Z

(
|u(n)|+ |u(n)|ν−1

)
|ui(n)− u(n)|

≤M0

(
‖ui‖2 + ‖ui‖ν−1

2ν−2

)
‖ui − u‖2 +M0

(
‖u‖2 + ‖u‖ν−1

2ν−2

)
‖ui − u‖2

≤M0

(
1
√
%2
‖ui‖+ C ‖ui‖ν−1

)
‖ui − u‖2 +M0

(
‖u‖2 + ‖u‖ν−1

2ν−2

)
‖ui − u‖2

≤M5 ‖ui − u‖2 → 0 as i→∞,

(3.24)

where C =
[
%−1

2 [(%2 + 4%1)%2]−2ν/4
]1/2

and M5 = M0( 1√
%2
M4 +CMν−1

4 +‖u‖2 +‖u‖ν−1
2ν−2).

It follows from ui ⇀ u and (3.24) that

‖ui − u‖2 =
〈
Φ′(ui)− Φ′(u), ui − u

〉
+
∑
n∈Z

(∇W (n, ui(n))−∇W (n, u(n)), ui(n)− u(n))→ 0,

as i→∞. Thus, Φ satisfies (C) condition.
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It follows from Theorem 3.4 that Φ possesses an unbounded sequence {cj} of critical

values with cj = Φ(uj), where uj is such that Φ′(uj) = 0 for j = 1, 2, . . .. If {‖uj‖} is

bounded, then there exists R > 0 such that

(3.25) ‖uj‖ ≤ R for j ∈ N.

Thus, from (3.4) and (B4), we have

1

2
‖uj‖2 = cj +

a

2
‖uj‖22 +

∑
n∈Z

W (n, uj(n))

≥ cj −M0

∑
n∈Z

(
|uj(n)|2 + |uj(n)|ν

)
≥ cj −M0

(
1

%2
‖uj‖2 + C1 ‖uj‖ν

)
,

where C1 = %−1
2 [(%2 + 4%1)%2](2−ν)/4. It follows that

cj ≤
1

2
‖uj‖2 +M0

(
1

%2
‖uj‖2 + C1 ‖uj‖ν

)
< +∞.

This contradicts the fact that {cj} is unbounded, and so {‖uj‖} is unbounded. The proof

is completed.

Now we give the proof of Theorem 1.18.

Proof of Theorem 1.18. The proof of Theorem 1.18 is similar to that of Theorem 1.14. In

fact, we only need to prove that Φ satisfies (C) condition. Let {ui} be a (C) condition

sequence, that is, {Φ(ui)} is bounded, and (1 + ‖ui‖) ‖Φ′(ui)‖ → 0 as i → ∞. We now

prove that {ui} is bounded in X. In fact, if not, we may assume by contradiction that

‖ui‖ → ∞ as i→∞. We take vi as in the proof of Theorem 1.14.

Case 1: v0 = 0. In view of Remark 3.1, (3.2), (3.4), (3.5), (B4), (H3) and the Hölder’s

inequality, we get

D5 ≥ ηΦ(ui)− 〈Φ′(ui), ui〉

=
(η

2
− 1
)
‖ui‖2 − a

(η
2
− 1
)
‖ui‖22 +

∑
n∈Z

[(∇W (n, ui(n)), ui(n))− ηW (n, ui(n))]

≥
(η

2
− 1
)
‖ui‖2 − a

(η
2
− 1
)
‖ui‖22 −M0(1 + η)

∑
n∈Ωi(0,T )

(
|ui(n)|2 + |ui(n)|ν

)
−

∑
n∈Ωi(T,+∞)

[
k0 |ui(n)|2 + k1(L(n)ui(n), ui(n)) + k2(n) |ui(n)|κ + k3(n)

]
=
(η

2
− 1
)
‖ui‖2 − a

(η
2
− 1
)
‖ui‖22 −M0(1 + η)

∑
n∈Ωi(0,T )

(
|ui(n)|2 + |ui(n)|ν

)
(3.26)

−
∑

n∈Ωi(T,+∞)

[
k0 |ui(n)|2 + k1(L(n)ui(n), ui(n))
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+ k2(n) |ui(n)|κ + k3(n)− ak1 |ui(n)|2
]

≥
(
η − 2

2
− k1

)
‖ui‖2 −

[
a
(η

2
− 1
)

+M0(1 + η)
(
1 + T ν−2

)
+ k0

]
‖ui‖22

− ‖k2‖2/(2−κ) ‖ui‖
κ
2 − ‖k3‖1

≥
(
η − 2

2
− k1

)
‖ui‖2 −

[
a
(η

2
− 1
)

+M0(1 + η)
(
1 + T ν−2

)
+ k0

]
‖ui‖22

−
(

1

%2

)κ/2
‖k2‖2/(2−κ) ‖ui‖

κ − ‖k3‖1

for some D5 > 0. Divided by ‖ui‖2 on both sides of (3.26), noting that 0 ≤ k1 < (η−2)/2

and 0 < κ < 2, we obtain

(3.27) ‖vi‖22 ≥
(η − 2)/2− k1

D6
> 0 as i→∞,

where D6 =
[
(η2 − 1)a+M0(1 + η)(1 + T ν−2) + k0

]
. It follows from (3.15) and (3.27) that

v0 6= 0. That is a contradiction.

Case 2: v0 6= 0. The proof is the same as the one in Theorem 1.14, and we omit it

here. Therefore, {ui} is bounded in X. Similar to the proof of Theorem 1.14, we can

prove that {ui} has a convergent subsequence in X. Hence, Φ satisfies (C) condition. The

proof is completed.
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