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New Eigenvalue Inequalities for the Hadamard Product and Fan Product of

Structured Tensors
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Abstract. The spectral radius of nonnegative tensors and the minimum H-eigenvalues

of strong M-tensors are two types of tensor eigenvalues with important research sig-

nificance, which promotes the tensor eigenvalue inequality to become an important

component in tensor analysis. In this paper, based on Brualdi-type and Brauer-type

eigenvalue inclusion sets of tensors, some Brualdi-type inequalities on the spectral

radius for Hadamard product of two nonnegative tensors and some Brauer-type in-

equalities on the minimum H-eigenvalue for the Fan product of two strong M-tensors

are provided, respectively. In addition, the theoretical comparisons between the newly

obtained inequalities and some previous ones are investigated. Finally, some numer-

ical examples are reported to show the feasibility and effectiveness of our theoretical

results.

1. Introduction

Let C (R) denote the set of all complex (real) numbers, R+ denote the set of all nonnegative

numbers, and Rn
++ denote be the set of n-dimensional positive vectors. An m-th order

n-dimensional complex (real) tensor A = (ai1i2···im) is a multidimensional array [19] with

entries

ai1i2···im ∈ C (ai1i2···im ∈ R), ij ∈ N = {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m}.

An m-th order n-dimensional tensor A = (ai1i2···im) is nonnegative if all its entries are

nonnegative, i.e., ai1i2···im ≥ 0. The m-th order unit tensor I = (δi1i2···im) [19] is defined

as a diagonal tensor with entries

δi1i2···im =

1 if i1 = i2 = · · · = im,

0 otherwise.
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In 2005, the concept on eigenvalue-eigenvector of a tensor was proposed by Qi [19] and

Lim [16], independently. For an m-order n-dimensional tensor A = (ai1i2···im), if there is

a λ ∈ C and a nonzero column vector x = (x1, x2, . . . , xn)
T ∈ Cn such that

Axm−1 = λx[m−1],

where Axm−1 and x[m−1] are n-dimensional column vectors whose i-th component is de-

fined as

(Axm−1)i =
∑

i2,...,im∈N
aii2···imxi2 · · ·xim , x[m−1] = (xm−1

1 , xm−1
2 , . . . , xm−1

n )T ,

then the pair (λ, x) is called an eigenvalue-eigenvector pair of A. In particular, the pair

(λ, x) is called an H-eigenpair of A if λ ∈ R and x ∈ Rn. The spectral radius of A is

defined as ρ(A) = max{|λ| : λ ∈ σ(A)}, and the minimum H-eigenvalue of A is defined

as τ(A) = min{Re(λ) : λ ∈ σ(A)}, where Re(λ) is the real part of the eigenvalue λ, and

σ(A) denotes the set of all eigenvalues of A.

Tensor eigenvalue theory plays an important role in different fields, such as magnetic

resonance imaging [19], positive definiteness of the multivariate polynomials [18], spectral

hypergraph theory [9,23] and etc. However, the accurate calculation of tensor eigenvalues

is a tedious and challenging task when the order and dimension of tensors are very large.

As a result, some researchers consider investigating the eigenvalues of tensors by the form

of inequality [2,3,10,11,13,32,34,35], which becomes one of the interesting topics in tensor

analysis. The spectral radius of nonnegative tensors and the minimum H-eigenvalue of

strong M-tensors as two important tensor eigenvalues have attracted the attention of a

large number of scholars, and the detailed inequalities can be found in [2,3,7,10,12–14,37].

The Hadamard product of two m-th order n-dimensional tensors A = (ai1i2···im) and

B = (bi1i2···im) [20] is defined by A◦B = C = (ci1i2···im), where ci1i2···im = ai1i2···imbi1i2···im .

Under the Hadamard product of tensors, the closed properties of some structured tensors

including complete Hankel tensors, strong Hankel tensors, completely positive tensors and

strong H-tensors, strictly diagonally dominant tensors, doubly strictly diagonally dom-

inant tensors, B-tensors and C-tensors are obtained in [21, 22, 30, 39]. The Hadamard

product of matrices, as we know, has been involved in estimations of spectral radius for

nonnegative matrices, and readers can refer to the related literature [5, 8, 15,17,38]. As a

high-order generalization of the matrix, some authors consider using the Hadamard prod-

uct of tensors as an effective tool to investigate spectral radius inequalities of nonnegative

tensors. By extending to some spectral radius inequalities of nonnegative matrices, some

inequalities on spectral radius for Hadamard product of two nonnegative tensors are given

in [25, 29–31, 33], but in some cases, the previous inequalities may not be well approxi-

mated the spectral radius for Hadamard product of two nonnegative tensors. Based the
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above facts, this paper will give some new inequalities on the spectral radius ρ(A ◦ B) for
two nonnegative tensors A and B.

For a real number s > 0 and a nonnegative tensor B, a Z-tensor A = (ai1i2···im) can

be written as A = sI − B, where A is called a Z-tensor if its all off-diagonal entries are

nonpositive, i.e., ai1i2···im ≤ 0. If s ≥ ρ(B), then A is called an M-tensor. If s > ρ(B), then
A is called a strong M-tensor. More results of M-tensors can refer to the literature [4,36].

Given two m-th order n-dimensional tensors A = (ai1i2···im) and B = (bi1i2···im). The Fan

product of A and B [22] is defined as A ⋆ B = C = (ci1i2···im) with its entries

ci1i2···im =

aii···ibii···i if i1 = i2 = · · · = im = i,

−|ai1i2···imbi1i2···im | otherwise.

As shown in [22], it is not difficult to know that the Fan product of two strong M-

tensors is a strong M-tensor. The above facts are the higher-order generalization of

the matrix cases. In the past few decades, the Fan product of matrices is a useful tool

for investigating the minimum H-eigenvalue of matrices [5, 15, 17, 38]. Analogous with

spectral radius inequalities for the Hadamard product of two nonnegative tensors, the

minimum H-eigenvalue inequalities for the Fan product of two strong M-tensors has also

caused extensive attention from scholars, and some of the latest papers can be found

in [24, 26–28, 33]. In this paper, we will continue to focus on the minimum H-eigenvalue

inequalities for the Fan product of two strong M-tensors.

This paper is organized as follows: In Section 2, we reviewed some existing concepts

and results which are useful in the subsequent analysis. In Section 3, we provide some

inequalities on spectral radius for the Hadamard product of two nonnegative tensors. In

Section 4, some inequalities on minimum H-eigenvalue for the Fan product of two strong

M-tensors are obtained. To verify the effectiveness and sharpness of newly proposed

results, some numerical examples are reported in Section 5.

2. Preliminaries

For the convenience, some used concepts on the directed graph are recalled as follows.

Definition 2.1. [1] Let A = (aij) with n ≥ 2 be an n×n matrix. Then ΓA is the directed

graph on n vertices V = {vi}ni=1, consisting of an arc −−→vivj from vi to vertex vj if and only

if aij ̸= 0 for any i ̸= j. Moreover, a circuit of ΓA is a sequence γ of vertices i1, i2, . . . , ip,

ip+1 = i1, where p ≥ 2, i1, i2, . . . , ip are distinct, and −−−→vi1vi2 ,
−−−→vi2vi3 , . . . ,

−−−→vipvi1 are arcs of

ΓA.

Note that a digraph ΓA [3, 6] is associated with A = (ai1i2···im) as follows: the vertex

set of ΓA is V (A) = {1, 2, . . . , n}, and the arc set of ΓA is E(A) =
{
(i, j) : aii2···im ̸= 0, j ∈

{i2, i3, . . . , im} ≠ {i, i, . . . , i}
}
.
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Definition 2.2. [1] Let V = {vi}ni=1 be the set of n vertices. If there exist directed paths

from vi to vj and vj to vi for any i, j ∈ V (i ̸= j), then Γ is called strongly connected.

Definition 2.3. [1] Let A = (ai1i2···im) be an m-th order n-dimensional tensor. If ΓA is

strongly connected, then A is said to be weakly irreducible.

As a high-order generalization of matrix spectral results, we revisit Perron Frobenius

theorem in [6] and spectral invariance under the diagonal similarity transformation of

tensors in [35] as follows.

Lemma 2.4. [6] Let A = (ai1i2···im) be an m-th order n-dimensional weakly irreducible

nonnegative tensor. Then A has a positive eigenpair (ρ(A), x), and x is unique up to a

multiplicative constant.

Lemma 2.5. [35] Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

tensors. If there is a positive diagonal matrix E = diag(e1, e2, . . . , en) such that B =

A · E−(m−1)

m−1︷ ︸︸ ︷
E · · ·E, where Bi1···im = ai1···ime

1−m
i1

ei2 · · · eim, then σ(A) = σ(B).

Inspired by the spectral results of nonnegative tensors, there are the following minimum

H-eigenvalue results of strong M-tensors, and the readers can refer to the literature

[7, 25,28].

Lemma 2.6. [7,28] Let A = (ai1i2···im) be an m-th order n-dimensional weakly irreducible

strong M-tensor. Then there is a positive vector u such that

Aum−1 = τ(A)u[m−1].

Lemma 2.7. [25] Let A = (ai1i2···im) be an m-th order n-dimensional strong M-tensor.

Then

τ(A) ≤ min
i∈N

aii···i.

The eigenvalue inclusion sets of tensors, which can be found in [2,3], play an important

role in investigation of tensor eigenvalue inequalities. Before concluding this section, we

restate the related results as the following lemmas.

Lemma 2.8. [3] Let A = (ai1i2···im) be an m-th order n-dimensional tensor such that ΓA

is weakly connected. Then

σ(A) ⊆
⋃

γ∈C(A)

{
λ ∈ C :

∏
i∈γ

(λ− aii···i) ≤
∏
i∈γ

Ri(A)

}
,

where C(A) is the set of circuits of ΓA, and Ri(A) =
∑

i2,...,im∈N,
δii2···im=0

|aii2···im |.

Lemma 2.9. [2] Let A = (ai1i2···im) be an m-th order n-dimensional tensor. Then

σ(A) ⊆
⋃

i,j∈N,
i ̸=j

{
z ∈ C : |z − aii···i|m−1|z − ajj···j | ≤ (Ri(A))m−1Rj(A)

}
.
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3. Brualdi-type inequalities for spectral radius of the Hadamard product of two

nonnegative tensors

In this section, some Brualdi-type inequalities of the Hadamard product of two nonneg-

ative tensors are given, and some theoretical comparisons between the newly proposed

inequalities are established.

3.1. Brualdi-type inequalities for ρ(A ◦ B)

Theorem 3.1. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

nonnegative tensors such that ΓA◦B is weakly connected. Then

(3.1)
∏
i∈γ

(ρ(A ◦ B)− aii···ibii···i) ≤ max
γ∈C(A◦B)

{∏
i∈γ

(ρ(A)− aii···i)(ρ(B)− bii···i)

}
.

Proof. We prove the inequality (3.1) by the following cases.

Case 1. If both A and B are weakly irreducible. According to Lemma 2.4, there

exist two vectors x = (x1, x2, . . . , xn)
T ∈ Rn

++ and y = (y1, y2, . . . , yn)
T ∈ Rn

++ such that

Axm−1 = ρ(A)x[m−1] and Bym−1 = ρ(B)y[m−1], which implies that

(3.2) aii···ix
m−1
i +

∑
i2,...,im∈N,
δii2···im=0

aii2···imxi2 · · ·xim = ρ(A)xm−1
i

and

(3.3) bii···iy
m−1
i +

∑
i2,...,im∈N,
δii2···im=0

bii2···imyi2 · · · yim = ρ(B)ym−1
i

for all i ∈ N . Define a positive diagonal matrix D = diag(x1y1, . . . , xnyn). It follows from

Lemma 2.5 that σ(A ◦ B) = σ((A ◦ B)D−(m−1)

m−1︷ ︸︸ ︷
D · · ·D). Combining Lemma 2.8 and the

equalities (3.2) and (3.3), there is a circuit γ ∈ C(A ◦ B) such that∏
i∈γ

(ρ(A ◦ B)− aii···ibii···i)

≤
∏
i∈γ

∑
i2,...,im∈N,
δii2···im=0

aii2···imxi2 · · ·ximbii2···imyi2 · · · yim
xm−1
i ym−1

i

≤
∏
i∈γ

( ∑
i2,...,im∈N,
δii2···im=0

aii2···imxi2 · · ·xim
xm−1
i

)( ∑
i2,...,im∈N,
δii2···im=0

bii2···imyi2 · · · yim
ym−1
i

)

=
∏
i∈γ

(ρ(A)− aii···i)(ρ(B)− bii···i) ≤ max
γ∈C(A◦B)

{∏
i∈γ

(ρ(A)− aii···i)(ρ(B)− bii···i)

}
.

(3.4)
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Case 2. Either A or B is weakly reducible. Without loss of generality, suppose that

both A and B are weakly reducible. Let Aϵ = A + 1
ϵK and Bϵ = B + 1

ϵK, where K =

(ki1i2···im) is a tensor with its entries ki1i2···im = 1. Obviously, both Aϵ and Bϵ are weakly

irreducible tensors for the sufficiently large number ϵ > 0. Substituting A and B by

Aϵ and Bϵ in the inequality (3.4) of Case 1, respectively. Then limϵ→+∞Aϵ = A and

limϵ→+∞ Bϵ = B, and hence the inequality (3.1) is derived by the continuity [35] of ρ(Aϵ)

and ρ(Bϵ) with letting ϵ → +∞. The proof is completed.

Suppose that A = (ai1i2···im) and B = (bi1i2···im) are two m-th order n-dimensional

nonnegative tensors, two useful notations are defined as αi = maxδii2···im=0
aii2···im and

βi = maxδii2···im=0
bii2···im . With the help of the quantities αi and βi, we provide the

following results.

Theorem 3.2. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

nonnegative tensors such that ΓA◦B is weakly connected. Then

(3.5)
∏
i∈γ

(ρ(A ◦ B)− aii···ibii···i) ≤ max
γ∈C(A◦B)

{∏
i∈γ

[
αiβi(ρ(A)− aii···i)(ρ(B)− bii···i)

]1/2}
.

Proof. For the inequality (3.5), we prove the result under two cases.

Case 1. If both A and B are weakly irreducible. Then it follows from Lemma 2.4 that

there are two vectors u = (x21, x
2
2, . . . , x

2
n)

T ∈ Rn
++ and v = (y21, y

2
2, . . . , y

2
n)

T ∈ Rn
++ such

that Aum−1 = ρ(A)u[m−1] and Bvm−1 = ρ(B)v[m−1], and then for all i ∈ N , it yields

(3.6) aii···ix
2(m−1)
i +

∑
i2,...,im∈N,
δii2···im=0

aii2···imx
2
i2 · · ·x

2
im = ρ(A)x

2(m−1)
i

and

(3.7) bii···iy
2(m−1)
i +

∑
i2,...,im∈N,
δii2···im=0

bii2···imy
2
i2 · · · y

2
im = ρ(B)y2(m−1)

i .

Let E = (eij) be an n×n positive diagonal matrix with its entries eii = xiyi for all i ∈ N .

According to Lemma 2.5, σ(A◦B) = σ((A◦B)E−(m−1)

m−1︷ ︸︸ ︷
E · · ·E). By the Cauchy–Schwarz

inequality and combining Lemma 2.8 and the equalities (3.6) and (3.7), there is a circuit

γ ∈ C(A ◦ B) such that∏
i∈γ

(ρ(A ◦ B)− aii···ibii···i)

≤
∏
i∈γ

∑
i2,...,im∈N,
δii2···im=0

aii2···imxi2 · · ·ximbii2···imyi2 · · · yim
xm−1
i ym−1

i
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≤
∏
i∈γ

( ∑
i2,...,im∈N,
δii2···im=0

a2ii2···imx
2
i2
· · ·x2im

x
2(m−1)
i

)1/2( ∑
i2,...,im∈N,
δii2···im=0

b2ii2···imy
2
i2
· · · y2im

y
2(m−1)
i

)1/2

=
∏
i∈γ

(
αiβi(ρ(A)− aii···i)(ρ(B)− bii···i)

)1/2
≤ max

γ∈C(A◦B)

{∏
i∈γ

(
αiβi(ρ(A)− aii···i)(ρ(B)− bii···i)

)1/2}
.

Case 2. Either A or B is weakly reducible. Without loss of generality, suppose that A
and B are two weakly reducible tensors. Similar to the proof of Case 2 in Theorem 3.1,

the inequality (3.5) follows. The proof is completed.

Theorem 3.3. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

nonnegative tensors such that ΓA◦B is weakly connected. Then

(3.8)
∏
i∈γ

(ρ(A ◦ B)− aii···ibii···i) ≤ max
γ∈C(A◦B)

{∏
i∈γ

βi(ρ(A)− aii···i)

}
.

Proof. The presented argument is divided into two cases as follows.

Case 1. If A is weakly irreducible. From Lemma 2.4, it follows that there exists a

vector x = (x1, x2, . . . , xn)
T ∈ Rn

++ such that Axm−1 = ρ(A)x[m−1], and for all i ∈ N ,

then

(3.9) aii···ix
m−1
i +

∑
i2,...,im∈N,
δii2···im=0

aii2···imxi2 · · ·xim = ρ(A)xm−1
i .

Define a positive diagonal matrix D = diag(x1, x2, . . . , xn). According to Lemma 2.5,

σ(A ◦ B) = σ((A ◦ B)D−(m−1)

m−1︷ ︸︸ ︷
D · · ·D). Combining Lemma 2.8 and the equality (3.9),

there is a circuit γ ∈ C(A ◦ B) such that∏
i∈γ

(ρ(A ◦ B)− aii···ibii···i)

≤
∏
i∈γ

∑
i2,...,im∈N,
δii2···im=0

aii2···imbii2···imxi2 · · ·xim
xm−1
i

≤
∏
i∈γ

βi
∑

i2,...,im∈N,
δii2···im=0

aii2···imxi2 · · ·xim
xm−1
i

=
∏
i∈γ

βi(ρ(A)− aii···i) ≤ max
γ∈C(A◦B)

{∏
i∈γ

βi(ρ(A)− aii···i)

}
.

(3.10)

Case 2. If A is weakly reducible. Let Aϵ = A + 1
ϵK, where K = (ki1i2···im) is an

m-th order n-dimensional tensor with its entries ki1i2···im = 1. Obviously, Aϵ is a weakly

irreducible tensor for the sufficiently large number ϵ > 0. Substituting A by Aϵ in the
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inequality (3.10) of Case 1, it is evident that limϵ→+∞Aϵ = A, and hence the inequal-

ity (3.8) is obtained by the continuity [35] of ρ(Aϵ) with respect to ϵ → +∞. The proof

is completed.

Due to the fact that the Hadamard product of two nonnegative tensors satisfies the

commutative law, the following result is immediately derived similar to the proof of The-

orem 3.3.

Corollary 3.4. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

nonnegative tensors such that ΓA◦B is weakly connected. Then

(3.11)
∏
i∈γ

(ρ(A ◦ B)− aii···ibii···i) ≤ max
γ∈C(A◦B)

{∏
i∈γ

αi(ρ(B)− bii···i)

}
.

Combining Theorem 3.3 and Corollary 3.4, we obtain the following inequality for

ρ(A ◦ B), which improves the inequalities (3.8) and (3.11).

Corollary 3.5. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

nonnegative tensors such that ΓA◦B is weakly connected. Then∏
i∈γ

(ρ(A ◦ B)− aii···ibii···i)

≤ min

{
max

γ∈C(A◦B)

∏
i∈γ

βi(ρ(A)− aii···i), max
γ∈C(A◦B)

∏
i∈γ

αi(ρ(B)− bii···i)

}
.

(3.12)

3.2. The comparisons of the Brualdi-type inequalities for ρ(A ◦ B)

Define h(u) =
∏

i∈γ(u−aii···ibii···i), where u belongs to H =
(
maxi∈N aii···ibii···i,+∞

)
. For

two nonnegative real numbers k1 and k2, set

Sk1 = {u ∈ H : h(u) ≤ k1}, Sk2 = {u ∈ H : h(u) ≤ k2}.

Then Sk1 ⊆ Sk2 if k1 ≤ k2. Given two m-th order n-dimensional nonnegative tensors

A = (ai1i2···im) and B = (bi1i2···im) such that ΓA◦B is weakly connected. For γ ∈ C(A ◦ B)
and i ∈ γ, if (ρ(A)− aii···i)(ρ(B)− bii···i) ≤ (≥)αiβi, then∏

i∈γ
(ρ(A)− aii···i)(ρ(B)− bii···i) ≤ (≥)

∏
i∈γ

(
αiβi(ρ(A)− aii···i)(ρ(B)− bii···i)

)1/2
.

Based on the above analysis, we obtain the following comparisons between the upper

bounds for ρ(A◦B) characterized by the inequality (3.1) in Theorem 3.1 and the inequal-

ity (3.5) in Theorem 3.2.



New EVIs for the HFP of Structured Tensors 9

Theorem 3.6. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

nonnegative tensors such that ΓA◦B is weakly connected. Then the following conclusions

hold:

(1) If (ρ(A)− aii···i)(ρ(B)− bii···i) ≤ αiβi for all i ∈ γ and γ ∈ C(A◦B), then the upper

bound for ρ(A ◦ B) in Theorem 3.2 is not less than the one in Theorem 3.1.

(2) If (ρ(A)− aii···i)(ρ(B)− bii···i) ≥ αiβi for all i ∈ γ and γ ∈ C(A◦B), then the upper

bound for ρ(A ◦ B) in Theorem 3.1 is not less than the one in Theorem 3.2.

The following is the theoretical comparison between the upper bound for ρ(A ◦ B) in
Corollary 3.5 and the one in Theorem 3.1 under certain conditions.

Theorem 3.7. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

nonnegative tensors such that ΓA◦B is weakly connected, and

min

{∏
i∈γ

βi(ρ(A)− aii···i),
∏
i∈γ

αi(ρ(B)− bii···i)

}
=

∏
i∈γ

βi(ρ(A)− aii···i).

Then the following conclusions hold:

(1) If (ρ(B) − bii···i) ≤ βi for all i ∈ γ and γ ∈ C(A ◦ B), then the upper bound for

ρ(A ◦ B) in Corollary 3.5 is not less than the one in Theorem 3.1.

(2) If (ρ(B) − bii···i) ≥ βi for all i ∈ γ and γ ∈ C(A ◦ B), then the upper bound for

ρ(A ◦ B) in Corollary 3.5 is not larger than the one in Theorem 3.1.

Proof. (1) For all i ∈ γ and γ ∈ C(A ◦ B), it follows that
∏

i∈γ(ρ(A) − aii···i)(ρ(B) −
bii···i) ≤

∏
i∈γ βi(ρ(A)−aii···i), which yield that the upper bound for ρ(A◦B) characterized

by the inequality (3.1) in Theorem 3.1 is not more than the one characterized by the

inequality (3.12) in Corollary 3.5. The proof is completed.

(2) It is similar to the proof of Theorem 3.7(1), and hence we will not elaborate further.

The proof is completed.

Remark 3.8. When min
{∏

i∈γ βi(ρ(A)− aii···i),
∏

i∈γ αi(ρ(B)− bii···i)
}
=

∏
i∈γ αi(ρ(B)−

bii···i), and then similar to Theorem 3.7, the following comparisons can be obtained.

(1) If (ρ(A) − aii···i) ≤ αi for all i ∈ γ and γ ∈ C(A ◦ B), then the upper bound for

ρ(A ◦ B) characterized by the inequality (3.1) in Theorem 3.1 is not more than the

one characterized by the inequality (3.12) in Corollary 3.5.

(2) If (ρ(A)− aii···i) ≥ αi for all i ∈ γ and γ ∈ C(A ◦ B), the upper bound for ρ(A ◦ B)
characterized by the inequality (3.1) in Theorem 3.1 is not smaller than the one

characterized by the inequality (3.12) in Corollary 3.5.
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To illustrate the sharpness of the upper bound for ρ(A ◦ B) in Corollary 3.5, the

relationship between the upper bounds for ρ(A◦B) characterized by the inequality (3.12)

in Corollary 3.5 and the inequality (3.5) in Theorem 3.2 is obtained as follows.

Theorem 3.9. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

nonnegative tensors such that ΓA◦B is weakly connected. Then the upper bound for ρ(A◦B)
characterized by the inequality (3.12) in Corollary 3.5 is sharper than the one characterized

by the inequality (3.5) in Theorem 3.2.

Proof. If min
{∏

i∈γ βi(ρ(A) − aii···i),
∏

i∈γ αi(ρ(B) − bii···i)
}
=

∏
i∈γ βi(ρ(A) − aii···i) for

all γ ∈ C(A ◦ B), and obviously, βi(ρ(A)− aii···i) ≤ αi(ρ(B)− bii···i) for all i ∈ γ, then∏
i∈γ

(
αiβi(ρ(A)− aii···i)(ρ(B)− bii···i)

)1/2 ≥ ∏
i∈γ

βi(ρ(A)− aii···i).

If min
{∏

i∈γ βi(ρ(A) − aii···i),
∏

i∈γ αi(ρ(B) − bii···i)
}
=

∏
i∈γ αi(ρ(B) − bii···i) for all

γ ∈ C(A ◦ B), then βi(ρ(A)− aii···i) ≥ αi(ρ(B)− bii···i) for all i ∈ γ, and hence∏
i∈γ

(
αiβi(ρ(A)− aii···i)(ρ(B)− bii···i)

)1/2 ≥ ∏
i∈γ

αi(ρ(B)− bii···i).

Therefore, the upper bound for ρ(A ◦ B) characterized by the inequality (3.12) in Corol-

lary 3.5 is sharper than the one characterized by the inequality (3.5) in Theorem 3.2.

4. Brauer-type inequalities on the minimum H-eigenvalue for the Fan product of

two strong M-tensors

In this section, we give some Brauer-type inequalities for the Fan product of two strongM-

tensors, and establish the theoretical comparisons between the lower bounds for τ(A ⋆ B)
characterized by newly obtained inequalities and some existing ones in [24,26,33].

4.1. Brauer-type inequalities for τ(A ⋆ B)

Theorem 4.1. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

strong M-tensors. Then

(aii···ibii···i − τ(A ⋆ B))m−1(ajj···jbjj···j − τ(A ⋆ B))

≤ max
(i,j)∈Q

{
(aii···i − τ(A))m−1(bii···i − τ(B))m−1(ajj···j − τ(A))(bjj···j − τ(B))

}
,

(4.1)

where Q = {(i, j) | i ∈ N, j ∈ N, i ̸= j} is a double indicator set.

Proof. In order to prove the inequality (4.1), we consider two cases as follows.
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Case 1. If both A and B are weakly irreducible. Then both A and B are two

weakly irreducible strong M-tensors. According to Lemma 2.6, there are two vectors x =

(x1, x2, . . . , xn)
T ∈ Rn

++ and y = (y1, y2, . . . , yn)
T ∈ Rn

++ such that Axm−1 = τ(A)x[m−1]

and Bym−1 = τ(B)y[m−1], and for all i ∈ N , we obtain

(4.2) aii···ix
m−1
i +

∑
i2,...,im∈N,
δii2···im=0

aii2···imxi2 · · ·xim = τ(A)xm−1
i

and

(4.3) bii···iy
m−1
i +

∑
i2,...,im∈N,
δii2···im=0

bii2···imyi2 · · · yim = τ(B)ym−1
i .

Define an n×n diagonal matrix E = diag(x1y1, . . . , xnyn), and it follows from Lemma 2.5

that σ(A ⋆ B) = σ((A ⋆ B)E−(m−1)

m−1︷ ︸︸ ︷
E · · ·E). By Lemma 2.9 and the equalities (4.2) and

(4.3), we have

(aii···ibii···i − τ(A ⋆ B))m−1(ajj···jbjj···j − τ(A ⋆ B))

≤
( ∑

i2,...,im∈N,
δii2···im=0

aii2···imxi2 · · ·ximbii2···imyi2 · · · yim
xm−1
i ym−1

i

)m−1

×
( ∑

i2,...,im∈N,
δii2···im=0

aji2···imxi2 · · ·ximbji2···imyi2 · · · yim
xm−1
j ym−1

j

)

≤
( ∑

i2,...,im∈N,
δii2···im=0

−aii2···imxi2 · · ·xim
xm−1
i

)m−1( ∑
i2,...,im∈N,
δii2···im=0

−bii2···imyi2 · · · yim
ym−1
i

)m−1

×
( ∑

i2,...,im∈N,
δii2···im=0

−aji2···imxi2 · · ·xim
xm−1
j

)( ∑
i2,...,im∈N,
δii2···im=0

−bji2···imyi2 · · · yim
ym−1
j

)

= (aii···i − τ(A))m−1(bii···i − τ(B))m−1(ajj···j − τ(A))(bjj···j − τ(B))

≤ max
(i,j)∈Q

{
(aii···i − τ(A))m−1(bii···i − τ(B))m−1(ajj···j − τ(A))(bjj···j − τ(B))

}
.

Case 2. Either A or B is weakly reducible. Without loss of generality, assume that

A and B are two weakly reducible strong M-tensors. Let K′ = (k′i1i2···im) be an m-order

n-dimensional tensor, where

k′ii2···im =

1 if i2 = i3 = · · · = im ̸= i,

0 otherwise.
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For every positive value of ϵ, both A − 1
ϵK

′ and B − 1
ϵK

′ are two weakly irreducible

tensors. Assert that for sufficiently small positive value of 1
ϵ . Given that A and B are

strong M-tensors, there are two positive diagonal matrices E = diag(e1, e2, . . . , en) and

F = diag(f1, f2, . . . , fn) such that

E = (Ei1i2···im) = A · E−(m−1)

m−1︷ ︸︸ ︷
E · · ·E and F = (Fi1i2···im) = B · F−(m−1)

m−1︷ ︸︸ ︷
F · · ·F

with

|Eii···i| = |aii···i| >
∑

i2,...,im∈N,
δii2···im=0

|aii2···im | =
∑

i2,...,im∈N,
δii2···im=0

|Eii2···im |e1−m
i ei2 · · · eim

and

|Fii···i| = |bii···i| >
∑

i2,...,im∈N,
δii2···im=0

|bii2···im | =
∑

i2,...,im∈N,
δii2···im=0

|Fii2···im |f1−m
i fi2 · · · fim .

Suppose that

T = max
i,j∈N, i̸=j

{
em−1
j

em−1
i

,
fm−1
j

fm−1
i

}
and

ϵ0 = min
i,j∈N,
i ̸=j

{ |aii···i| −
∑

i2,...,im∈N,
δii2···im=0

|aii2···im |e1−m
i ei2 · · · eim

(n− 1)T
,

|bii···i| −
∑

i2,...,im∈N,
δii2···im=0

|bii2···im |f1−m
i fi2 · · · fim

(n− 1)T

}
.

Then for any 0 < 1
ϵ < ϵ0, A − 1

ϵK
′ and B − 1

ϵK
′ are also two strong M-tensors. By

replacing A with A − 1
ϵK

′ and B with B − 1
ϵK

′ in Case 1, and then taking the limit as

ϵ → +∞, we achieve the desired inequality utilizing the continuity of τ
(
A − 1

ϵK
′) and

τ
(
B − 1

ϵK
′) deduced from Lemma 2.4 in [24]. The proof is completed.

For twom-th order n-dimensional strongM-tensorsA = (ai1i2···im) and B = (bi1i2···im),

we define two useful quantities µi = maxδii2···im=0
−aii2···im and νi = maxδii2···im=0

−bii2···im ,

which contributes to achieve the following inequalities (4.4) and (4.7) on τ(A ⋆B) for two
strong M-tensors A and B.

Theorem 4.2. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

strong M-tensors. Then

(aii···ibii···i − τ(A ⋆ B))m−1(ajj···jbjj···j − τ(A ⋆ B))

≤ max
(i,j)∈Q

{(
µm−1
i νm−1

i µjνj(aii···i − τ(A))m−1(bii···i − τ(B))m−1

× (ajj···j − τ(A))(bjj···j − τ(B))
)1/2}

.

(4.4)
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Proof. For the proof of the inequality (4.4), it needs to consider the following cases.

Case 1. If both A and B are weakly irreducible. Obviously, both A and B are weakly

irreducible strong M-tensors. From Lemma 2.6, it follows that there are two positive

vectors r = (x21, x
2
2, . . . , x

2
n)

T ∈ Rn
++ and s = (y21, y

2
2, . . . , y

2
n)

T ∈ Rn
++ associated with

τ(A) and τ(B) respectively, satisfying the following relations

(4.5) aii···ix
2(m−1)
i +

∑
i2,...,im∈N,
δii2···im=0

aii2···imx
2
i2 · · ·x

2
im = τ(A)x

2(m−1)
i

and

(4.6) bii···iy
2(m−1)
i +

∑
i2,...,im∈N,
δii2···im=0

bii2···imy
2
i2 · · · y

2
im = τ(B)y2(m−1)

i .

Define an n×n positive diagonal matrix E = diag(x1y1, x2y2, . . . , xnyn). From Lemma 2.5,

it yields that σ(A ⋆ B) = σ((A ⋆ B)E−(m−1)

m−1︷ ︸︸ ︷
E · · ·E), and then by the Cauchy–Schwarz

inequality and combining Lemma 2.9 with the equalities (4.5) and (4.6), we derive

(aii···ibii···i − τ(A ⋆ B))m−1(ajj···jbjj···j − τ(A ⋆ B))

≤
( ∑

i2,...,im∈N,
δii2···im=0

aii2···imxi2 · · ·ximbii2···imyi2 · · · yim
xm−1
i ym−1

i

)m−1

×
( ∑

i2,...,im∈N,
δii2···im=0

aji2···imxi2 · · ·ximbji2···imyi2 · · · yim
xm−1
j ym−1

j

)

≤
( ∑

i2,...,im∈N,
δii2···im=0

a2ii2···imx
2
i2
· · ·x2im

x
2(m−1)
i

)(m−1)/2( ∑
i2,...,im∈N,
δii2···im=0

b2ii2···imy
2
i2
· · · y2im

y
2(m−1)
i

)(m−1)/2

×
( ∑

i2,...,im∈N,
δii2···im=0

a2ji2···imx
2
i2
· · ·x2im

x
2(m−1)
j

)1/2( ∑
i2,...,im∈N,
δii2···im=0

b2ji2···imy
2
i2
· · · y2im

y
2(m−1)
j

)1/2

≤
(
µm−1
i νm−1

i µjνj(aii···i − τ(A))m−1(bii···i − τ(B))m−1(ajj···j − τ(A))(bjj···j − τ(B))
)1/2

≤ max
(i,j)∈Q

{(
µm−1
i νm−1

i µjνj(aii···i − τ(A))m−1(bii···i − τ(B))m−1

× (ajj···j − τ(A))(bjj···j − τ(B))
)1/2}

.

Case 2. Either A or B is weakly reducible. Without loss of generality, assume that

A and B are two weakly reducible strong M-tensors. Similar to the proof of Case 2 in

Theorem 4.1, we obtain the inequality (4.4). The proof is completed.



14 Yangyang Xu, Guinan He, Licai Shao and Zimo Chen

Theorem 4.3. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

strong M-tensors. Then

(aii···ibii···i − τ(A ⋆ B))m−1(ajj···jbjj···j − τ(A ⋆ B))

≤ max
(i,j)∈Q

{
νm−1
i νj(aii···i − τ(A))m−1(ajj···j − τ(A))

}
.

(4.7)

Proof. To prove the inequality (4.7), we divide it into two distinct cases as follows.

Case 1. If A is weakly irreducible. Then A is a weakly irreducible strong M-tensor.

According to Lemma 2.6, there is a vector x = (x1, x2, . . . , xn)
T ∈ Rn

++ corresponding to

τ(A) such that Axm−1 = τ(A)x[m−1], and for all i ∈ N , this implies that

(4.8) aii···ix
m−1
i +

∑
i2,...,im∈N,
δii2···im=0

aii2···imxi2 · · ·xim = τ(A)xm−1
i .

Define an n× n positive diagonal matrix D = diag(x1, x2, . . . , xn). By Lemma 2.5, σ(A ⋆

B) = σ((A ⋆ B)D−(m−1)

m−1︷ ︸︸ ︷
D · · ·D). Combining Lemma 2.9 and the equality (4.8), we have

(aii···ibii···i − τ(A ⋆ B))m−1(ajj···jbjj···j − τ(A ⋆ B))

≤
( ∑

i2,...,im∈N,
δii2···im=0

aii2···imxi2 · · ·ximbii2···im
xm−1
i

)m−1( ∑
i2,...,im∈N,
δii2···im=0

aji2···imxi2 · · ·ximbji2···im
xm−1
j

)

≤ νm−1
i νj

( ∑
i2,...,im∈N,
δii2···im=0

−aii2···imxi2 · · ·xim
xm−1
i

)m−1( ∑
i2,...,im∈N,
δii2···im=0

−aji2···imxi2 · · ·xim
xm−1
j

)

= νm−1
i νj(aii···i − τ(A))m−1(ajj···j − τ(A))

≤ max
(i,j)∈Q

{
νm−1
i νj(aii···i − τ(A))m−1(ajj···j − τ(A))

}
.

Case 2. If A is weakly reducible. Then A is a weakly reducible strong M-tensor.

Similar to the proof of Case 2 in Theorem 4.1, the inequality (4.7) holds. The proof is

completed.

Due to the Fan product of two strong M-tensors satisfying the commutative law, we

derive the following result, which is similar to the proof of Theorem 4.3.

Corollary 4.4. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

strong M-tensors. Then

(aii···ibii···i − τ(A ⋆ B))m−1(ajj···jbjj···j − τ(A ⋆ B))

≤ max
(i,j)∈Q

{
µm−1
i µj(bii···i − τ(B))m−1(bjj···j − τ(B))

}
.
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Combining Theorem 4.3 and Corollary 4.4, we give the following inequality (4.9) for

τ(A ⋆ B).

Corollary 4.5. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

strong M-tensors. Then

(aii···ibii···i − τ(A ⋆ B))m−1(ajj···jbjj···j − τ(A ⋆ B))

≤ min

{
max
(i,j)∈Q

νm−1
i νj(aii···i − τ(A))m−1(ajj···j − τ(A)),

max
(i,j)∈Q

µm−1
i µj(bii···i − τ(B))m−1(bjj···j − τ(B))

}
.

(4.9)

4.2. The comparisons of the Brauer-type inequalities for τ(A ⋆ B)

To compare the inequalities in Theorems 4.1 and 4.2 with the ones of Theorem 4.3 in [33]

(i.e., Theorem 3.6 in [26] and Theorem 3.3 in [24]) and Theorem 3.8 in [26], we revisited

the above results on τ(A ⋆ B) as follows:

τ(A ⋆ B) ≥ min
i∈N

{(aii···iτ(B) + bii···iτ(A))− τ(A)τ(B)}

and

τ(A ⋆ B) ≥ min
i∈N

{
aii···ibii···i −

(
µiνi(aii···i − τ(A))(bii···i − τ(B))

)1/2}
.

The following presents Theorems 4.6 and 4.7, which illustrates the theoretical comparisons

between the lower bounds for τ(A ⋆ B) characterized by newly obtained inequalities in

Theorems 4.1 and 4.2 and some existing ones in [26,33].

Theorem 4.6. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

strong M-tensors. Then the lower bound for τ(A ⋆ B) in Theorem 4.1 provides the more

accurate estimate compared to the one of Theorem 4.3 in [33].

Proof. By Theorem 4.3 in [33], it is seen that

τ(A ⋆ B) ≥ min
i∈N

{(aii···iτ(B) + bii···iτ(A))− τ(A)τ(B)}.

Let η be the lower bound of τ(A ⋆B) in Theorem 4.1. Using the method of contradiction,

assume that

η < min
i∈N

{(aii···iτ(B) + bii···iτ(A))− τ(A)τ(B)},

and immediately, we obtain

η < aii···iτ(B) + bii···iτ(A)− τ(A)τ(B) + aii···ibii···i − aii···ibii···i,
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which is equivalent to

(4.10) aii···ibii···i − η > (aii···i − τ(A))(bii···i − τ(B)).

From the above condition and Lemma 2.7, it follows that

η ≤ τ(A ⋆ B) ≤ min
i∈N

aii···ibii···i,

and further, we have

(4.11) aii···ibii···i − η ≥ 0, ∀ i ∈ N.

Combining the inequalities (4.10) and (4.11), for all (i, j) ∈ Q, we obtain

(aii···ibii···i − η)m−1(ajj···jbjj···j − η)

> (aii···i − τ(A))m−1(bii···i − τ(B))m−1(ajj···j − τ(A))(bjj···j − τ(B)),

which implies that there is the pair (i0, j0) ∈ Q such that

(ai0i0···i0bi0i0···i0 − η)m−1(aj0j0···j0bj0j0···j0 − η)

> max
(i,j)∈Q

{
(aii···i − τ(A))m−1(bii···i − τ(B))m−1(ajj···j − τ(A))(bjj···j − τ(B))

}
.

Obviously, this is a contradiction with the inequality (4.1) in Theorem 4.1, and therefore

the desired conclusion holds. The proof is completed.

Theorem 4.7. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

strong M-tensors. Then the lower bound for τ(A ⋆ B) in Theorem 4.2 provides a more

accurate estimate compared to the one of Theorem 3.8 in [26].

Proof. According to Theorem 3.8 in [26], we derive the following inequality

τ(A ⋆ B) ≥ min
i∈N

{
aii···ibii···i −

(
µiνi(aii···i − τ(A))(bii···i − τ(B))

)1/2}
.

Let ζ be the lower bound of τ(A ⋆ B) in Theorem 4.2. The following proof will use the

method of contradiction, and suppose that

ζ < min
i∈N

{
aii···ibii···i −

(
µiνi(aii···i − τ(A))(bii···i − τ(B))

)1/2}
,

and then it is obvious that

(4.12) aii···ibii···i − ζ >
(
µiνi(aii···i − τ(A))(bii···i − τ(B))

)1/2
, ∀ i ∈ N.

By the above condition and Lemma 2.7, we obtain

ζ ≤ τ(A ⋆ B) ≤ min
i∈N

aii···ibii···i,
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which means that

(4.13) aii···ibii···i − ζ ≥ 0, ∀ i ∈ N.

From the inequalities (4.12) and (4.13), for all (i, j) ∈ Q, it follows that

(aii···ibii···i − ζ)m−1(ajj···jbjj···j − ζ)

>
(
µm−1
i νm−1

i µjνj(aii···i − τ(A))m−1(bii···i − τ(B))m−1(ajj···j − τ(A))(bjj···j − τ(B))
)1/2

.

Then there exists the pair (i0, j0) ∈ Q such that

(ai0i0···i0bi0i0···i0 − ζ)m−1(aj0j0···j0bj0j0···j0 − ζ)

> max
(i,j)∈Q

{(
µm−1
i νm−1

i µjνj(aii···i − τ(A))m−1(bii···i − τ(B))m−1

× (ajj···j − τ(A))(bjj···j − τ(B))
)1/2}

,

which contradicts with the inequality (4.4) in Theorem 4.2. Therefore, the desired result

is obtained. The proof is completed.

Let g(v) = (aii···ibii···i−v)m−1(ajj···jbjj···j−v) for all v ∈ G =
(
−∞,mini∈N aii···ibii···i

)
.

If there exist two nonnegative real numbers satisfying k1 ≤ k2, then

Tk1 = {v ∈ G : g(v) ≤ k1} ⊆ Tk2 = {v ∈ G : g(v) ≤ k2}.

For two m-th order n-dimensional strong M-tensors A = (ai1i2···im) and B = (bi1i2···im), if

µm−1
i νm−1

i µjνj ≤ (≥)
(
aii···i − τ(A)

)m−1(
bii···i − τ(B)

)m−1
(ajj···j − τ(A))(bjj···j − τ(B)) for

all (i, j) ∈ Q, then(
µm−1
i νm−1

i µjνj(aii···i − τ(A))m−1(bii···i − τ(B))m−1(ajj···j − τ(A))(bjj···j − τ(B))
)1/2

≤ (≥) (aii···i − τ(A))m−1(bii···i − τ(B))m−1(ajj···j − τ(A))(bjj···j − τ(B)).

Based on the above facts, the following provides the comparison between the lower bound

for τ(A ⋆ B) in Theorem 4.1 and the one in Theorem 4.2 as follows.

Theorem 4.8. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

strong M-tensors. Then the following conclusions hold.

(1) If µm−1
i νm−1

i µjνj ≤ (aii···i− τ(A))m−1(bii···i− τ(B))m−1(ajj···j − τ(A))(bjj···j − τ(B))
for all (i, j) ∈ Q, then the lower bound for τ(A ⋆ B) in Theorem 4.2 is not less than

the one in Theorem 4.1.

(2) If µm−1
i νm−1

i µjνj ≥ (aii···i− τ(A))m−1(bii···i− τ(B))m−1(ajj···j − τ(A))(bjj···j − τ(B))
for all (i, j) ∈ Q, then the lower bound for τ(A ⋆ B) in Theorem 4.2 is not greater

than the one in Theorem 4.1.
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Under certain conditions, we establish the relationship between the lower bound for

τ(A ⋆ B) in Theorem 4.1 and the one in Corollary 4.5, which is stated as the following

theorem.

Theorem 4.9. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

strong M-tensors, and

νm−1
i νj(aii···i − τ(A))m−1(ajj···j − τ(A)) ≤ µm−1

i µj(bii···i − τ(B))m−1(bjj···j − τ(B))

for all (i, j) ∈ Q. Then the following conclusions hold.

(1) If νm−1
i νj ≤ (bii···i − τ(B))m−1(bjj···j − τ(B)) for all (i, j) ∈ Q, then the lower bound

for τ(A ⋆ B) in Corollary 4.5 is not less than the one in Theorem 4.1.

(2) If νm−1
i νj ≥ (bii···i − τ(B))m−1(bjj···j − τ(B)) for all (i, j) ∈ Q, then the lower bound

for τ(A ⋆ B) in Corollary 4.5 is not greater than the one in Theorem 4.1.

Proof. (1) Since νm−1
i νj ≤ (bii···i − τ(B))m−1(bjj···j − τ(B)) for all (i, j) ∈ Q, we have

νm−1
i νj(aii···i − τ(A))m−1(ajj···j − τ(A))

≤ (aii···i − τ(A))m−1(bii···i − τ(B))m−1(ajj···j − τ(A))(bjj···j − τ(B)).

This implies that the lower bound for τ(A ⋆B) in Corollary 4.5 is not less than the one in

Theorem 4.1. The proof is concluded.

(2) This follows similarly to the proof of Theorem 4.9(1), so we will not provide further

details. The proof is concluded.

Remark 4.10. When µm−1
i µj(bii···i−τ(B))m−1(bjj···j−τ(B)) ≤ νm−1

i νj(aii···i−τ(A))m−1×
(ajj···j − τ(A)) for all (i, j) ∈ Q. Similar to Theorem 4.9, we can conclude the following

results.

(1) If µm−1
i µj ≤ (aii···i−τ(A))m−1(ajj···j−τ(A)) for all (i, j) ∈ Q, then the lower bound

for τ(A ⋆ B) in Corollary 4.5 is not less than the one in Theorem 4.1.

(2) If µm−1
i µj ≥ (aii···i−τ(A))m−1(ajj···j−τ(A)) for all (i, j) ∈ Q, then the lower bound

for τ(A ⋆ B) in Corollary 4.5 is not greater than the one in Theorem 4.1.

In the following, we establish the comparison between the lower bound for τ(A ⋆B) in
Theorem 4.2 and the one in Corollary 4.5, which shows that the lower bound for τ(A ⋆B)
in Corollary 4.5 is sharper than the one in Theorem 4.2.

Theorem 4.11. Let A = (ai1i2···im) and B = (bi1i2···im) be two m-th order n-dimensional

strong M-tensors. Then

max
(i,j)∈Q

{(
µm−1
i νm−1

i µjνj(aii···i − τ(A))m−1(bii···i − τ(B))m−1
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× (ajj···j − τ(A))(bjj···j − τ(B))
)1/2}

≥ min

{
max
(i,j)∈Q

{
νm−1
i νj(aii···i − τ(A))m−1(ajj···j − τ(A))

}
,

max
(i,j)∈Q

{
µm−1
i µj(bii···i − τ(B))m−1(bjj···j − τ(B))

}}
.

Proof. We first divide the set Q into two disjoint subsets I and Q \ I, where I =
{
(i, j) ∈

Q | µm−1
i µj(bii···i − τ(B))m−1(bjj···j − τ(B)) ≥ νm−1

i νj(aii···i − τ(A))m−1(ajj···j − τ(A))
}
.

To prove the conclusion, two cases are considered as follows.

Case 1. For all (i, j) ∈ I, we have(
µm−1
i νm−1

i µjνj(aii···i − τ(A))m−1(bii···i − τ(B))m−1(ajj···j − τ(A))(bjj···j − τ(B))
)1/2

≥ νm−1
i νj(aii···i − τ(A))m−1(ajj···j − τ(A)),

which implies that

max
(i,j)∈I

{(
µm−1
i νm−1

i µjνj(aii···i − τ(A))m−1(bii···i − τ(B))m−1

× (ajj···j − τ(A))(bjj···j − τ(B))
)1/2}

≥ max
(i,j)∈I

{
νm−1
i νj(aii···i − τ(A))m−1(ajj···j − τ(A))

}
= min

{
max
(i,j)∈I

νm−1
i νj(aii···i − τ(A))m−1(ajj···j − τ(A)),

max
(i,j)∈I

µm−1
i µj(bii···i − τ(B))m−1(bjj···j − τ(B))

}
.

(4.14)

Case 2. For all (i, j) ∈ Q \ I, we obtain(
µm−1
i νm−1

i µjνj(aii···i − τ(A))m−1(bii···i − τ(B))m−1(ajj···j − τ(A))(bjj···j − τ(B))
)1/2

> µm−1
i µj(bii···i − τ(B))m−1(bjj···j − τ(B)),

and similarly, it yields that

max
(i,j)∈Q\I

{(
µm−1
i νm−1

i µjνj(aii···i − τ(A))m−1(bii···i − τ(B))m−1

× (ajj···j − τ(A))(bjj···j − τ(B))
)1/2}

> max
(i,j)∈Q\I

{
µm−1
i µj(bii···i − τ(B))m−1(bjj···j − τ(B))

}
= min

{
max

(i,j)∈Q\I
νm−1
i νj(aii···i − τ(A))m−1(ajj···j − τ(A)),

max
(i,j)∈Q\I

µm−1
i µj(bii···i − τ(B))m−1(bjj···j − τ(B))

}
.

(4.15)

Summarizing the deduction of Cases 1 and 2, the proved result follows according to the

inequalities (4.14) and (4.15). The proof is completed.
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5. Numerical examples

To verify the rationality and validity of our main results, some numerical examples are

given as follows.

Example 5.1. Consider two 4-th order 3-dimensional nonnegative tensors A = (aijkl)

and B = (bijkl) defined as follows:

a1111 = 5, a1222 = 0.5, a1223 = a1211 = 0.2, a2222 = 2, a2333 = 0.2,

a2111 = 0.5, a2122 = 0.3, a3333 = 3, a3111 = 0.5,

a3122 = 2, a3113 = 0.2, other aijkl = 0,

b1111 = 2, b1232 = 0.5, b1222 = 2.5, b2222 = 6, b2111 = 2.5,

b2122 = 1, b2333 = 0.1, b3333 = b3111 = 5, other bijkl = 0.

Obviously, ΓA◦B is weakly connected, and there exist the following circuits in ΓA◦B:

1 → 2 → 1, 2 → 2, 3 → 1 → 2 → 3.

By the calculations and analysis, the numerical comparisons between the newly proposed

Brualdi-type inequalities for ρ(A◦B) in Theorems 3.1, 3.2, Corollary 3.5 and some existing

ones in [25,29,30,33] is shown in Figure 5.1 below.
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Figure 5.1: Numerical comparisons on the upper bounds for ρ(A ◦ B).

By observing Figure 5.1, it is not difficult to conclude that the estimated values of the

newly proposed inequalities for ρ(A◦B) in Theorems 3.1, 3.2 and Corollary 3.5 are closed

to the true values of ρ(A ◦ B), and it also shows the feasibility of the newly proposed
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inequalities for ρ(A◦B) in Theorems 3.1, 3.2 and Corollary 3.5. Comparing some existing

results in [25, 29, 30, 33], we find that the upper bounds characterized by the inequality

for ρ(A ◦ B) in Theorems 3.1, 3.2 and Corollary 3.5 are sharper than the existing ones in

Theorem 4.3 of [30], Theorems 3.2, 3.4, 3.6 and 3.7 of [25], Theorem 3.3 of [33] as well as

Theorems 1–2 and Corollary 5 of [29].

Example 5.2. Consider two 4-th order 3-dimensional Z-tensors A = (aijkl) and B =

(bijkl) defined as follows:

a1111 = 5, a1222 = −2.5, a1223 = a1112 = −0.2, a2222 = 1.5, a2111 = −0.5,

a2122 = −0.3, a2113 = −0.2, a3333 = 3, a3111 = −0.5,

a3122 = −0.3, a3113 = −0.2, other aijkl = 0,

b1111 = 2, b1113 = b1222 = −0.5, b2222 = 4, b2111 = −2.5, b2122 = −0.8,

b2133 = −0.2, b3333 = 7, b3111 = −1, other bijkl = 0.

Obviously, both A and B are two strong M-tensors. Moreover, ΓA⋆B is weakly connected,

and there exist the following circuits in ΓA⋆B:

1 → 2 → 1, 2 → 2, 3 → 1 → 2 → 3.

By the calculations and analysis, the numerical comparisons between the newly obtained

Brauer-type inequalities for τ(A⋆B) in Theorems 4.1, 4.2, Corollary 4.5 and some existing

ones in [24,26,28,33] is shown in Figure 5.2 below.
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Figure 5.2: Numerical comparisons on the lower bounds for τ(A ⋆ B).

By observing Figure 5.2, we find that the estimated values of the newly obtained

inequalities for τ(A⋆B) in Theorems 4.1, 4.2 and Corollary 4.5 are closed to the true value
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of τ(A⋆B), which verifies the correctness of the newly obtained inequalities for τ(A⋆B) in
Theorems 4.1, 4.2 and Corollary 4.5. Comparing to some existing results in [24,26,28,33],

the detailed numerical comparison results are concluded as follows: (1) The lower bound

described by the inequality for τ(A ⋆B) in Theorem 4.1 is better than some existing ones

in Theorem 4.3 of [33], Theorems 3.5 and 3.8 of [26], the inequality (3.4) from Theorem 3.6

of [24] and Theorems 3.4–3.6 of [28]; (2) The lower bounds characterized by the inequality

for τ(A ⋆ B) in Theorem 4.2 and Corollary 4.5 are tighter than the previous ones in

Theorems 4.3–4.4 of [33], Theorems 3.5 and 3.8 of [26], the inequalities (3.3) and (3.4)

from Theorem 3.6 of [24] and Theorems 3.4–3.7 of [28].

6. Conclusions

In the presented paper, we have proposed some Brualdi-type inequalities on the spectral

radius for Hadamard product of two nonnegative tensors and some Brauer-type inequal-

ities on the minimum H-eigenvalue for the Fan product of two strong M-tensors. Based

on the newly proposed inequalities, we have established the theoretical and numerical

comparisons between the newly obtained inequalities and some existing ones, which has

shown the validity and effectiveness of the main results.
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