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Algebraic Gromov Ellipticity: A Brief Survey

Mikhail Zaidenberg

Abstract. We survey on algebraically elliptic varieties in the sense of Gromov.

1. Introduction

Gromov ellipticity is often considered to be a chapter of complex analysis. However, in his

foundational paper [42] Gromov also presented and studied an algebraic counterpart of

this notion. In this survey, we mainly focus on the algebraic part. All algebraic varieties

considered below are defined over an algebraically closed field K with charK = 0. In

what follows by Gromov spray and Gromov ellipticity we mean algebraic Gromov spray

and algebraic Gromov ellipticity ; otherwise we talk about analytic Gromov spray and

analytic Gromov ellipticity. We address the comprehensive monograph [35] and the survey

article [37] by F. Forstnerič for a thorough introduction to Gromov ellipticity, especially

for its complex analytic counterpart.

1.1. Prehistory: the Oka–Grauert principle

The origin of Gromov ellipticity in complex analysis lies in the following Oka–Grauert

principle; see [35, Sec. 5.1] for a historical account.

Theorem 1.1. (see Oka [66], Frenkel [38], Grauert [40,41], H. Cartan [18], Ramspott [75],

Henkin–Leiterer [43]) Given a complex Lie group G, the classifications of principal G-

fiber bundles over a Stein complex manifold S in topological and holomorphic categories

coincide. The same holds for the classes up to homotopy of sections of the associated fiber

bundles with G-homogeneous fibers.

Among important properties of a complex Lie group G linked to the Oka–Grauert

principle, we distinguish the following.

Theorem 1.2. (Grauert [40], Gromov [42, Sec. 1.4D′]) For a complex Lie group G and a

complex Stein manifold S, the following hold.

(A) Every continuous map S → G is homotopic to a holomorphic map S → G.

(B) Every holomorphic map D → G, where D ⊂ Cn is a bounded convex domain, can be

approximated by holomorphic maps Cn → G uniformly on D.

Received September 11, 2024; Accepted September 30, 2024.

Communicated by Ivan Cheltsov.

2020 Mathematics Subject Classification. Primary: 14J60, 14M25, 14M27; Secondary: 32Q56.

Key words and phrases. Gromov ellipticity, spray, unirationality, uniformly rational variety.

1



2 Mikhail Zaidenberg

1.2. Analytic Gromov ellipticity

Loosely speaking, in his paper [42] Gromov answers the following question.

Question 1.3. What do you need to know about a complex manifold X to be sure that

the analogues of (A) and (B) hold for holomorphic maps S → X?

The following answer is a manifestation of Gromov’s h-principle for complex manifolds

(see Subsection 1.5 below):

Every analytically elliptic complex manifold X verifies analogues of (A) and (B).

In the following two subsections, we give the definitions of Gromov spray and Gromov

ellipticity.

1.3. Gromov spray

Definitions 1.4. (Gromov [42]) Let X be a complex manifold. A spray on X is a triple

(E, p, s), where

� p : E → X is a holomorphic vector bundle on X with zero section Z, and

� s : E → X is a holomorphic map such that s|Z = p|Z , i.e., s(0x) = x for all x ∈ X,

where 0x is the origin of the vector space Ex = p−1(x).

A spray (E, p, s) on X is called dominating if for every x ∈ X the differential ds : T0xEx →
TxX is onto.

1.4. Ellipticity and subellipticity

Definition 1.5. (cf. Gromov [42, Sec. 0.5 and 3.5B])

(1) X is called analytically elliptic if it admits a dominating spray (E, p, s).

(2) X is called locally analytically elliptic if it admits an open covering (Ui)i with dom-

inating sprays (Ei, pi, si) on Ui with values in X, i.e., si is a holomorphic map

Ui → X.

Definition 1.6. (Forstnerič [31, Definition 2]) X is called analytically subelliptic if it

admits a dominating family of sprays (Ei, pi, si) on X, i.e., for each x ∈ X we have

(1.1) TxX = span

(⋃
i

dsi(T0xEi,x)

)
.
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1.5. Gromov’s h-principle for complex manifolds

Definition 1.7. (Gromov [42, Sec. 0]) Let X and Y be complex manifolds. We say that

holomorphic maps Y → X satisfy the h-principle (h for homotopy) if every continuous

map Y → X is homotopic to a holomorphic map.

Theorem 1.8. (Gromov [42, Sec. 1.4D′], Forstnerič [33, Theorem 1.2]) Let S be a Stein

complex space and X be a complex manifold. If X is analytically elliptic, then the following

hold.

(A′) Every continuous map S → X is homotopic to a holomorphic one; the same holds

for sections of holomorphic fiber bundles over S with fiber X.

(B′) Every holomorphic map f : D → X, where D ⊂ Cn is a bounded convex domain,

can be uniformly on D approximated by holomorphic maps Cn → X.

A complex manifold X verifying (B′) is called an Oka manifold, see [32, 34] and [35,

Definition 5.4.1]. An Oka manifold verifies a stronger convex approximation property

(CAP, for short), see [35, Theorem 5.4.4]. Any analytically elliptic complex manifold

is Oka, it verifies the CAP and a condition Ell1 of Gromov, see [35, Proposition 8.8.11].

Actually, the Oka property is equivalent to the condition Ell1 (Kusakabe [56, Theorem 1.3])

and does not imply analytic ellipticity, in general, see Kusakabe [55] and [60, Corollary 1.5.]

for corresponding examples.

1.6. Algebraic Gromov ellipticity

As we have already mentioned, Gromov [42, Sec. 3.5A] also introduced the notions of

algebraic spray, algebraic ellipticity, etc., where complex manifolds are replaced by smooth

algebraic varieties (i.e., algebraic manifolds) defined over K, holomorphic vector bundles

by algebraic vector bundles and holomorphic maps by regular maps. In the algebraic

category, we have the following equivalences.

Theorem 1.9. (Gromov [42, Sec. 3.5.B′], Kaliman–Zaidenberg [50, Theorem 1.1]) For a

smooth algebraic variety X, the following are equivalent:

(1) X is algebraically Gromov elliptic;

(2) X is locally algebraically Gromov elliptic;

(3) X is algebraically subelliptic.

An analogue of (1) ⇔ (3) in the analytic category is known to hold for complex Stein

manifolds X, see [31, Lemma 2.2].
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The proof of (2) ⇒ (1) uses the Gromov’s Localization Lemma [42, Sec. 3.5.B]; see

also [35, Propositions 6.4.1–6.4.2] and [49, Proposition 8.1].

Lemma 1.10. Let X be a smooth algebraic variety, D be a reduced effective divisor on X

and (E, p, s) be a Gromov spray on U = X \supp(D) with values in X such that p : E → U

is a trivial vector bundle. Then there exists a spray (Ẽ, p̃, s̃) on X whose restriction to

U is isomorphic to (E, p, s). In particular, if (E, p, s) is dominating on U , then so is

(Ẽ, p̃, s̃)|U .

Yet another important ingredient in the proofs of (2) ⇒ (1) and (3) ⇒ (1) is the

composition of Gromov sprays, see Gromov [42, Sec. 1.3.B]. Given two sprays (E1, p2, s1)

and (E2, p2, s2) on X, we consider their composition (E, p, s) where

� E = {(e1, e2) ∈ E1 × E2 | s1(e1) = p2(e2)}, and so pr1 |E : E = s∗1E2 → E1 is the

induced vector bundle;

� p = p1 ◦ pr1 : E → X;

� s = s2 ◦ pr2 : E → X.

In general, p : E → X is not a projection of a vector bundle. However, p happens to be

such a projection provided that p2 : E2 → X is a line bundle, see [50, Proposition 2.1].

If X is algebraically subelliptic, then we can find m ≥ dim(X) rank 1 sprays (Li, pi, si)

on X which satisfy an analogue of (1.1). The iterated composition of these sprays yields

a dominating Gromov spray (E, p, s) on X of rank m and provides the ellipticity of X.

It is easily seen that the product of Gromov elliptic smooth algebraic varieties is

Gromov elliptic. The converse is also true.

Lemma 1.11. (Lárusson’s Lemma, see e.g. [5, Lemma 3.6]) If the product X1 × X2 of

two smooth algebraic varieties is Gromov elliptic, then X1 and X2 are Gromov elliptic.

Lemma 1.12. (Forstnerič [35, Proposition 6.4.10], Lárusson–Truong [62, Theorem 1 and

Remark 2(a)]) Let X̃ → X be a proper étale morphism of smooth complex algebraic vari-

eties. If X is Gromov elliptic, then also X̃ is.

2. Flexible varieties

2.1. Flexibility versus Gromov ellipticity

Example 2.1. Let Ga = (K,+) be the additive group of the field K, let X be a smooth

algebraic Ga-variety and s : Ga × X → X be the action morphism. Consider the trivial

line bundle p : L = Ga × X → X of rank 1, where p is the second projection. Then

(L, p, s) is a rank 1 spray on X dominating in directions of the one dimensional Ga-orbits

s(Ex) = Ga.x. The latter means that rank(ds|T0xEx) = 1 provided dim(Ga.x) = 1.
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Definition 2.2. A smooth quasiaffine algebraic variety X is called flexible if there exists

a collection U1, . . . , Uk of Ga-subgroups of Aut(X) such that for each x ∈ X the velocity

vectors of U1, . . . , Uk at x span TxX. It is said to be locally flexible is X admits a Zariski

open covering by flexible quasiaffine varieties.

Given a flexible algebraic manifold X, consider rank 1 sprays (Li, pi, si) associated with

the Ga-subgroups U1, . . . , Uk as above, see Example 2.1. The composition of these sprays

provides the subellipticity of X. Together with Theorem 1.9 this leads to the following

result, see Gromov [42, Sec. 0.5.B] and also [4, Appendix], [35, Proposition 5.6.22(C)]

and [46, Theorem 3.1].

Proposition 2.3. A locally flexible smooth algebraic variety is Gromov elliptic.

Definition 2.4. One says that a smooth algebraic variety X is stably flexible if X×Ak is

flexible for some k ≥ 0, and locally stably flexible if X admits an open covering by stably

flexible affine charts.

If X admits a covering by copies of An, then it is certainly locally flexible. Using The-

orem 1.9, Proposition 2.3 and Lárusson’s Lemma 1.11 one deduces the following strength-

ening of Proposition 2.3.

Theorem 2.5. (cf. [46, Corollary 3.2]) Every locally stably flexible smooth algebraic variety

is Gromov elliptic.

Let us give examples of non-flexible, but stably flexible affine surfaces.

Example 2.6. [46, Example 0.4] Consider the smooth affine Danielewski surfaces Sk given

in C3 by equations {xky−z2+1 = 0}. The surface F1 is flexible, while Fk with k > 1 is not.

This follows e.g. from the description of the automorphism groups Aut(Fk), see Makar-

Limanov [64]. For every k ≥ 2 we have Fk × C ∼= F1 × C (Danielewski [27, Theorem 1]).

Since F1 × C is flexible, Fk with k > 1 is stably flexible, while being non-flexible. Due to

Theorem 2.5, Fk is Gromov elliptic for every k ≥ 1.

Another characteristic property of flexible varieties are their homogeneity properties,

see [4, Theorem 1.1], [29, Theorem 1.1], and [1, Theorem 11].

Theorem 2.7. Let X be a smooth quasiaffine variety of dimension ≥ 2 and SAut(X) be

the subgroup of Aut(X) generated by all Ga-subgroups of Aut(X). Then X is flexible if

and only if SAut(X) acts transitively on X, if and only if it acts m-transitively on X for

any m ≥ 1.

Definition 2.8. (Bogomolov–Karzhemanov–Kuyumzhiyan [14, Definition 1.2]) An alge-

braic variety X is birationally stably flexible if the field extension K(X)(y1, . . . , yn) admits

a flexible model.
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See [14, Theorems 2.1 and 2.2] for criteria of the birational stable flexibility.

Clearly, any stably rational variety is birationally stably flexible. On the other hand,

a birationally stably flexible variety is unirational. There is the following conjecture.

Conjecture 2.9. [14, Conjecture 1.4] Any unirational algebraic variety X is birationally

stably flexible.

2.2. Examples of flexible varieties and of Gromov elliptic varieties

(1) Let G be a connected complex Lie group with Lie algebra g, let Y = G/H be a

homogeneous manifold of G and exp: g → G be the exponential map. Then the map

Y × g → Y , (y, v) 7→ exp(v)y is a dominating analytic spray on Y , see [37, Sec. 3.1].

Hence, the homogeneous space Y is analytically elliptic.

In particular, C∗ = C\{0} is elliptic in analytic sense, but is not elliptic in algebraic

sense. The same holds for any smooth projective curve of genus 1.

(2) If G is a semisimple linear algebraic group, then G/H is flexible, see [4, Proposi-

tion 5.4], and so Gromov elliptic. In particular, every flag variety G/P , where P ⊂ G

is a parabolic subgroup, is Gromov elliptic.

(3) The affine space An is Gromov elliptic.

(4) Let X be an algebraic variety. If X admits a Zariski open covering (Ui) where

Ui ≃ An, then X is locally Gromov elliptic, hence Gromov elliptic by Theorem 1.9.

(5) Every smooth complete spherical variety X admits an open covering by affine spaces

(Brion–Luna–Vust [15, Sec. 1.5, Corollaire]). By (4), X is Gromov elliptic. In

particular, every smooth complete toric variety is Gromov elliptic. Moreover, a

smooth toric variety with no torus factor is covered by affine spaces, hence is Gromov

elliptic, cf. [5, Remark 4.7].

(6) A smooth hypersurface X in An+2 given by equation

uv − p(x1, . . . , xn) = 0,

where p ∈ K[x1, . . . , xn] is a nonconstant polynomial, is flexible, see [47, Theorem 5.1]

and [4, Theorem 0.1], or alternatively [7, Theorem 0.2(3)]. So, X is Gromov elliptic

(cf. Example 2.6).

(7) Every smooth complete rational surface S admits a covering by copies of A2. By

(4), S is Gromov elliptic.
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(8) A flexible smooth quasiaffine algebraic variety remains flexible after deleting a closed

subvariety of codimension ≥ 2 (Flenner–Kaliman–Zaidenberg [29, Theorem 0.1]).

Likewise, a locally flexible algebraic variety remains locally flexible after deleting a

closed subvariety of codimension ≥ 2.

(9) Let X be a smooth algebraic variety covered by open charts isomorphic to An and

A ⊂ X be a closed algebraic subvariety of codimension ≥ 2. Then X \A is Gromov

elliptic (see Forstnerič [35, Proposition 6.4.5]). Actually, this follows immediately

from (8) due to Theorem 1.9 and Proposition 2.3. Cf. also Gromov [42, Sec. 3.5C]

and Kusakabe [56] for stronger results.

(10) The configuration spaces of a flexible quasiaffine variety X of dimension dim(X) ≥ 2

are flexible (Kusakabe [60, Proposition 3.4]).

For more examples of flexible varieties, see [19, Sec. 4.1]. See also Theorem 5.4 below

for examples of non-flexible Gromov elliptic quasiaffine varieties.

For the following classes of birationally stably flexible varieties, see [14, Sections 3.1–

3.4].

Examples 2.10. (1) Let G ⊂ PGL(n + 1,K) be a finite subgroup. Then the quotient

Pn/G is birationally stably flexible.

(2) Let X be an algebraic variety. Assume that X carries a collection of distinct

birational structures of Pmi-bundles, πi : X → Si such that the tangent spaces of generic

fibers of πi span the tangent space of X at the generic point. Then X is birationally stably

flexible.

(3) Every smooth cubic hypersurface X ⊂ Pn+1, n ≥ 2, is birationally stably flexible.

The same holds for quartic hypersurfaces X ⊂ Pn+1, n ≥ 3 that have a line of double

singularities, and for smooth complete intersections of three quadrics in P6.

3. Properties of Gromov elliptic varieties

3.1. Approximation results

In the algebraic category we have the following analogue of the Oka property (B′).

Theorem 3.1. (Forstnerič [35, Corollary 6.15.2]) Let X be a smooth complex algebraic

variety and D be a bounded convex domain in Cn. If X is Gromov elliptic, then any

holomorphic map D → X can be approximated by morphisms Cn → X uniformly on D.

Remark 3.2. The approximation property in the conclusion of Theorem 3.1 is called the

algebraic convex approximation property, abbreviated as aCAP. Thus, according to The-

orem 3.1 Gromov ellipticity implies aCAP. We don’t know if the converse is true.
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According to Forstnerič [32, Theorem 1.1 and Corollary 1.2] and Lárusson–Truong

[62, Theorem 1], the algebraic Gromov ellipticity is equivalent to two other important

properties.

Definition 3.3. [57, Definition 1.1] A smooth algebraic variety X over K is called alge-

braically Oka (abbreviated as aOka, or aEll1 after Gromov) if for each morphism f : Y →
X, where Y is an affine algebraic manifold, there exists a morphism F : Y ×AN → X such

that F |Y×{0} = f and F |{y}×AN : AN → X is a submersion at 0 ∈ AN for each y ∈ Y , i.e.,

dF |T(y,0)({y}×Cm) : T(y,0)({y} × Am
C ) → Tf(y)X

is onto for every y ∈ Y .

Theorem 3.4. (Lárusson–Truong [62, Theorem 1]) For a smooth complex algebraic variety

X, the following are equivalent.

(1) X is Gromov elliptic;

(2) X is aOka;

(3) given a morphism f0 : Y → X from a complex affine variety Y , a holomorphically

convex compact subset K ⊂ Y , a subset U ⊃ K of X open in the complex topology of

X, and a homotopy of holomorphic maps ft : U → X, t ∈ [0, 1], there is a morphism

F : Y × A1
C → X with F ( ·, 0) = f0 and F ( ·, t) as close to ft as desired, uniformly

on K.

In the analytic setup, the properties analogous to (1)–(3) of Theorem 3.4 are known

to be equivalent provided that the complex manifold X is Stein, see e.g. [35, Sec. 5.5], [62]

and the references therein.

Remark 3.5. In fact, the equivalence (1) ⇔ (2) of Theorem 3.4 holds for algebraic varieties

defined over a general algebraically closed field K of characteristic zero. This can be shown

by inspecting the arguments in the proof. For the reader’s convenience, we provide a proof

of the equivalence (1) ⇔ (2) in this generality.

Proof of Theorem 3.4. (1) ⇒ (2). Assume that X is Gromov elliptic, and let (E, p, s) be

a dominating spray over X. Let Y be an affine variety and f : Y → X be a morphism.

Consider the pullback (Ẽ, p̃, s̃) = f∗(E, p, s), where p̃ : Ẽ → Y is the induced vector bundle

and s̃ = s◦f : Ẽ → X. Since Y is affine, the vector bundle p̃ : Ẽ → Y is globally generated,

see Serre [77, Sec. 45, p. 238, Corollaire 1]. Let η1, . . . , ηm be global sections of p̃ : Ẽ → Y

that span every fiber p̃−1(y), y ∈ Y . Then the morphism of vector bundles

φ : Y × Am →Y Ẽ, (y, (a1, . . . , am)) 7→
m∑
i=1

aiηi(y)
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identical on the base Y yields a fiberwise linear surjection. It is easily seen that the

conditions of Definition 3.3 are fulfilled for the morphism

F = s̃ ◦ φ = s ◦ f ◦ φ : Y × Am → X.

Thus, X is aOka.

(2) ⇒ (1). Suppose X is aOka. Let Y ⊂ X be an affine dense open subset, f : Y → X

be the identical embedding, and F : Y × Am → X be the extension of f that satisfies the

conditions of Definition 3.3. Then (E, p, s) with E = Y ×Am, p = pr1 : E → Y , and s = F

is a dominating spray over Y . It follows that X is locally Gromov elliptic, hence Gromov

elliptic by Theorem 1.9.

From Theorems 2.5 and 3.4 we deduce the following corollary, cf. [37, Theorem 6.2].

Corollary 3.6. Every locally stably flexible smooth algebraic variety X over K is aOka.

The following approximation result concerns a (not necessary complete) homogeneous

spaces; cf. (3) in Theorem 3.4.

Theorem 3.7. (Bochnak–Kucharz [10, Theorem 1.1 and Corollaries 1.2–1.3]) Let X =

G/H be a homogeneous space of a linear complex algebraic group G, Y be a complex

affine algebraic manifold, and K be a holomorphically convex compact set in Y . Given a

holomorphic map f : K → X, the following conditions are equivalent:

(1) f can be uniformly approximated by regular maps K → X.

(2) f is homotopic to a regular map K → X.

In particular, every null homotopic holomorphic map K → X can be approximated by

regular maps K → X.

By a regular map K → X one means the restriction to K of a morphism U → X,

where U is a Zariski open neighborhood of K in X.

It is worth mentioning also the following approximation theorem.

Theorem 3.8. (Demailly–Lempert–Shiffman [28, Theorem 1.1]) Let X and Y be smooth

algebraic varieties, where Y is affine and X is quasiprojective. Let D ⊂ X be a Runge

domain, i.e., every holomorphic function on D can be approximated, uniformly on com-

pacts in D, by holomorphic functions on Y . Then every holomorphic map D → X can be

approximated, uniformly on compacts in D, by Nash algebraic maps.

Recall that a holomorphic map f : U → X from an open domain U ⊂ Y is Nash

algebraic if its graph Γ(f) ⊂ U × X is contained in a closed algebraic subset Z ⊂ Y ×
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X of dimension dim(Z) = dim(Y ). In fact, the approximation in Theorem 3.8 can be

accompanied by an interpolation on a fixed submanifold of Y , see [28, Theorem 1.1].

Finally, we address Kusakabe [57] for a complex algebraic version of Thom’s jet

transversality theorem and its applications.

3.2. Domination by affine spaces

According to Theorems 3.9 and 3.10 below, Gromov elliptic algebraic manifolds are dom-

inated by affine spaces. We use the following notation. Given a surjective morphism

f : Y → X of smooth algebraic varieties, we let Dsmooth(f) stand for the subset of points

y ∈ Y such that df |TyY : TyY → Tf(y)X is onto. If dim(X) = dim(Y ) and f is dominant,

then Dsmooth(f) is the complement of the ramification divisor of f . In general, Dsmooth(f)

is the maximal open subset U in Y such that the restriction of f |U is a smooth morphism

onto its image.

Theorem 3.9. (Forstnerič [36, Theorem 1.1]) Let X be a complete smooth complex al-

gebraic variety of dimension n. If X is Gromov elliptic, then X admits a morphism

f : Cn → X such that the restriction f |Dsmooth(f) : Dsmooth(f) → X is surjective.

The proof exploits the approximation provided by Theorem 3.1, and the latter involves

transcendental tools. The next result is valid over any algebraically closed field K of

characteristic zero.

Theorem 3.10. (Kusakabe [58, Theorem 1.2]) Every Gromov elliptic smooth algebraic

variety X of dimension n admits a morphism f : An+1 → X such that the restriction

f |Dsmooth(f) is surjective.

See also [5, Remark 1.9.4] for a modified and short proof of Theorem 3.10 in the case

of a complete variety.

This theorem immediately leads to the following interpolation result.

Corollary 3.11. (Kusakabe [58, Corollary 1.5]) Let X be a Gromov elliptic smooth al-

gebraic variety, Y be a quasiaffine algebraic variety, and Z ⊂ Y be a zero-dimensional

subscheme. Then for every morphism f : Z → X there exists a morphism f̃ : Y → X such

that f̃ |Z = f .

Using Corollary 3.11 we can deduce the following weak version of Theorem 2.7 for

Gromov elliptic varieties. Let End(X) stand for the monoid of regular self-maps X → X.

Corollary 3.12. (Kaliman–Zaidenberg [49, Proposition 6.1]) Let X be a smooth quasi-

affine algebraic variety. If X is Gromov elliptic, then End(X) acts m-transitively on X

for every m ≥ 1.
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See also Arzhantsev [2,3], Balch Barth [8] and Kusakabe [58, Corollary 1.4] for examples

of affine varieties that admit surjective morphisms from affine spaces. However, in some

of these examples the surjectivity of morphisms restricted to their smooth loci is not

guaranteed.

4. Gromov ellipticity and birational geometry

4.1. Gromov ellipticity versus (uni)rationality

Recall that an algebraic variety is called unirational if it admits a dominant rational map

from a projective space. An elliptic algebraic variety X is unirational. Indeed, let (E, p, s)

be a dominating spray on X. Then each fiber Ex = p−1(x) is an affine space which

dominates X. Gromov [42, Sec. 3.5E′′] asked whether the opposite is true:

Question 4.1. Is every smooth (uni)rational complete algebraic variety Gromov elliptic?

More generally, one can ask:

Question 4.2. Is every smooth rationally connected complete algebraic variety Gromov

elliptic?

Since any Gromov elliptic manifold is unirational, an affirmative answer to Question 4.2

would imply that a rationally connected algebraic variety is unirational, thus resolving in

the affirmative the old open problem on coincidence of the unirationality and the rational

connectedness. However, the answer to the latter problem is expected to be negative.

We say that a projective variety is special if it does not admit a dominant rational map

to a variety of general type, cf. Campana [16, Definition 2.1.2]. Gromov [42, Sec. 3.4.F]

proposed “the most optimistic” conjecture:

Conjecture 4.3. Every special smooth projective variety is analytically elliptic.

See also Campana–Winkelmann [17] for some results and conjectures on the relation-

ships between specialness properties of Campana and Gromov ellipticity.

4.2. Is Gromov ellipticity birationally invariant?

This is a question of Gromov, see [42, Remark 3.5.E′′′]. More specifically, we consider the

following question.

Question 4.4. (cf. [62, Remark 2(f)]) Is Gromov ellipticity a birational property in the

category of smooth complete algebraic varieties and compositions of blowups and blow-

downs with smooth centers as morphisms?
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Indeed, a birational map between smooth complete varieties can be factored in a

sequence of blowups and blowdowns with smooth centers, see [80].

The behavior of Gromov ellipticity under blowdowns with smooth centers remains a

mystery. However, Gromov ellipticity is preserved under blowups with smooth centers

modulo certain additional assumptions.

Theorem 4.5. (Kaliman–Kutzschebauch–Truong [46, Theorem 0.6])1 Let X be an alge-

braic manifold and Z ⊂ X be a smooth closed subvariety of codimension ≥ 2. Suppose X

is locally stably flexible. Then X blown up along Z is Gromov elliptic.

In general, a blowup of X along a smooth center Z does not need to preserve local

stable flexibility, even if X admits a covering by copies of An. However, this is the case

if for any element Ui
∼= An of the latter covering, the pair (Ui, Z ∩ Ui) with a nonempty

intersection Z ∩ Ui is isomorphic to a pair (An,Ak), where Ak ⊂ An is a linear subspace,

see [6].

The algebraic convex approximation property (the aCAP, see Remark 3.2) occurs to

be stable under blowups with smooth centers.

Theorem 4.6. (Kusakabe [54, Corollary 4.3]) Let X be a smooth complex algebraic variety

and A ⊂ X be a smooth closed algebraic subvariety of codimension ≥ 2. Then the blowup

of X along A enjoys aCAP provided that X does so.

It is not known whether the algebraic resp. analytic ellipticity of a smooth algebraic

variety X are preserved under a blowup with smooth center. However, the blowup of X

with smooth center is analytically elliptic provided that X is algebraically Gromov elliptic,

see Kusakabe [54, Corollary 1.5].

4.3. The Poincaré group of a Gromov elliptic manifold

Let X be a complete smooth complex algebraic variety. If X is unirational, then π1(X) = 1

by Serre’s theorem, see [78]. Since every Gromov elliptic manifold is unirational, π1(X) = 1

provided X is Gromov elliptic.

For a not necessary complete Gromov elliptic manifold X the following holds.

Theorem 4.7. (Kusakabe [59, Theorem 1.3], [60, Theorems 3.1 and 3.3]) Let X be a

smooth complex algebraic variety. If X is Gromov elliptic, then π1(X) is finite and the

universal covering X̃ of X is a Gromov elliptic algebraic variety. For any finite group Γ

there exists a smooth complex quasiaffine variety X such that X is flexible, hence Gromov

elliptic, and π1(X) = Γ.

1Cf. also Gromov [42, Sec. 3.5D′′] and Lárusson–Truong [61, Main Theorem].
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The following question arises; cf. [35, Problem 6.4.11].

Question 4.8. Consider a finite morphism X → Y between smooth complete algebraic

varieties. Suppose X is Gromov elliptic. Is it true that Y is Gromov elliptic?

4.4. Gromov ellipticity versus uniform rationality

Definition 4.9. An algebraic variety X of dimension n is called uniformly rational2 if X

can be covered by open sets isomorphic to open sets in An. X is called stably uniformly

rational if X × Ak is uniformly rational for some k ≥ 0.

Question 4.10. (Gromov [42, Sec. 3.5.E′′′]) Is every rational smooth algebraic variety

(stably) uniformly rational?

The affirmative answer is known for homogeneous spaces of connected affine algebraic

groups, see V. L. Popov [73, Corollary 1]. As we have already mentioned, a complete

smooth spherical variety admits an open covering by copies of affine spaces, see Brion–

Luna–Vust [15, Sec. 1.5, Corollaire]. Furthermore, a smooth spherical variety is uniformly

rational, see V. L. Popov [73, Theorem 4]. The total space of a locally trivial fiber bundle

over a uniformly rational base with a uniformly rational general fiber is uniformly rational,

cf. V. L. Popov [73, Theorem 2]. The next Theorems 4.11 and 4.12 provide more classes

of uniformly rational varieties.

Theorem 4.11. (V. L. Popov [73, Theorem 1]) Let X be a rational algebraic variety. If

Aut(X) acts transitively on X, then X is uniformly rational.

Theorem 4.12. (V. L. Popov [73, Theorem 3]) Let G be a connected reductive algebraic

group and X be a smooth affine G-variety. Assume that every G-invariant regular function

on X is constant, and so there is a unique closed G-orbit in X. If this orbit is rational,

then X is uniformly rational.

The uniform rationality survives successive blowups with smooth centers.

Theorem 4.13. (Bogomolov, see [42, Proposition 3.5E], see also Bodnár–Hauser–Schicho–

Villamayor U [11, Theorem 4.4] and Bogomolov–Böhning [13, Proposition 2.6]) The blowup

of a uniformly rational variety along a smooth center is uniformly rational.

Theorem 4.14. (Arzhantsev–Kaliman–Zaidenberg [5, Theorem 1.3]) A stably uniformly

rational smooth complete algebraic variety X is Gromov elliptic.

Due to Theorem 4.13, Gromov ellipticity of a uniformly rational smooth complete

algebraic variety survives successive blowups with smooth irreducible centers.

From Theorems 4.11 and 4.14 we deduce such a corollary.

2There are many other names attributed to this same property; see [73, Sec. 3].
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Corollary 4.15. A (stably) locally flexible smooth rational algebraic variety X is (stably)

uniformly rational. If such a variety X is complete, then it is Gromov elliptic.

The latter conclusion also holds for complete smooth G-varieties verifying locally the

assumptions of Theorem 4.12.

4.5. Unirationality versus uniform rationality

Proposition 4.16. (Arzhantsev–Kaliman–Zaidenberg [5, Theorem 1.7]) Let X be a uni-

rational complete variety of dimension n. Then there is a surjective morphism X̃ → X

from a uniformly rational complete variety X̃ of dimension n. If X is rational, then the

morphism X̃ → X can be chosen to be birational.

Proof. By Chow’s Lemma we may assume that X is projective. Choose a generically finite

dominant rational map h : Pn 99K X which is birational if X is rational. By Hironaka’s

elimination of indeterminacy we have a commutative diagram

X̃

Pn X

�
��
f [

[]g

w

h

where f is a composition of blowups with smooth irreducible centers. By Theorem 4.13,

X̃ is uniformly rational.

Remark 4.17. In the case of a rational smooth projective variety X, Proposition 4.16

follows from [42, Proposition 3.5.E′′] due to F. Bogomolov.

Corollary 4.18. [5, Corollary 1.8] A complete algebraic variety X is unirational if and

only if X admits a surjective morphism AN → X for some N ≥ dim(X).

Proof. By Proposition 4.16 a complete unirational X is dominated by a complete uniformly

rational variety X̃, where X̃ is Gromov elliptic due to Theorem 4.14. By Forstnerič’ and

Kusakabe’s Theorems 3.9–3.10, there is a surjective morphism An+1 → X̃ (resp., An → X̃

if X̃ is defined over C). Anyway, there is a surjective morphism An+1 → X.

We address the article [14] for a closely related subject.

4.6. Examples of uniformly rational algebraic manifolds

Theorem 4.19. (Bogomolov–Böhning [13])

(a) Every rational smooth cubic hypersurface in Pn+1, n ≥ 2 is uniformly rational. The

same conclusion also applies to a small algebraic resolution of a nodal cubic threefold

in P4.
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(b) Every smooth complete intersection of two quadric hypersurfaces in Pn+2, n ≥ 3, is

uniformly rational.

(c) The moduli space M0,n of stable n-pointed rational curves is a uniformly rational

complete variety.

Applying Theorem 4.14 we deduce the following corollary.

Corollary 4.20. The varieties in Theorem 4.19 are Gromov elliptic.

Cf. a discussion in Gromov [42, Sec. 3.5.E′′′].

Example 4.21. A smooth cubic hypersurface of even dimension n = 2k is rational pro-

vided that it contains a pair of skew linear k-spaces. By Theorem 4.19(a), such a hyper-

surface is uniformly rational, and so Gromov elliptic by Theorem 4.14. See Remarks 4.28

and the references therein for further examples of this type. Cf. also Theorem 4.26 below.

Example 4.22. (Prokhorov–Zaidenberg [74]) Every smooth Fano fourfold X with Picard

number 1 and of genus 10, except at most one, up to isomorphism, such fourfold X0,

can be covered by copies of A4. The exceptional fourfold X0 contains a projective line L

such that X0 \ L is covered by copies of A4. Additionally, L is covered in X0 by open

A2-cylinders Si × A2, where the Si are rational smooth affine surfaces. It follows that

every such fourfold X, including X0, is uniformly rational, and so Gromov elliptic.

Corollary 4.23. Every smooth Fano fourfold X with Picard number 1 of genus 10 is

Gromov elliptic.

See also Liendo–Petitjean [63] and Petitjean [70] for examples of uniformly rational

affine T -varieties.

4.7. Gromov ellipticity and irrationality

There are examples of irrational smooth affine and projective varieties that are Gromov

elliptic. Let us start with an affine example.

Example 4.24. (cf. V. L. Popov [71, Example 1.22] and [72]) Recall that an algebraic

variety X of dimension n is called stably rational if X × Pk is birationally equivalent to

Pn+k for a natural number k. There are irrational but stably rational varieties, see [9].

According to Saltman [76, Theorem 3.6] (see also e.g. [12] and [26]) for certain values of

n ≥ 1 and for some finite subgroups F of SL(n,C) the quotient X = SL(n,C)/F is stably

irrational (i.e., is not stably rational). Since X is a homogeneous space of a semisimple

algebraic group, it is flexible, see [4, Proposition 5.4]. So, by Proposition 2.3 X is Gromov

elliptic. Thus, X is a Gromov elliptic smooth affine variety that is stably irrational.
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To deduce a projective example of this kind, it is necessary to know the answer to the

following question.

Question 4.25. Is it true that a Gromov elliptic smooth algebraic variety admits a

Gromov elliptic smooth completion?

The following theorem provides examples of irrational Gromov elliptic projective va-

rieties, see Corollary 4.27 below.

Theorem 4.26. (Kaliman–Zaidenberg [51]) Every smooth cubic hypersurface X ⊂ Pn+1,

n ≥ 2, is Gromov elliptic.

Sketch of the proof. Let X ⊂ Pn+1 be a smooth cubic hypersurface. The projection from

a point u ∈ X gives a generically 2-to-1 rational map πu : X 99K Pn. By permuting the

pair of points on a generic fiber of πu we obtain a birational Galois involution τu on X.

Fix y ∈ X and choose a general x ∈ X. The line (xy) intersects X at a third point

u different from x and y. The involution τu biregularly sends a neighborhood Ux of x to

a neighborhood Uy of y and sends a line L on X passing through x to a conic C on X

passing through y.

Fix x and L and vary u′ in a neighborhood V of u. Then the image y′ = τu′(x) runs

over the neighborhood V ′ = τx(V ) of y. The image of L varies in a family of conics

Cy′ = τu′(L) passing through the points y′ = τx(u′) ∈ V ′.

Now letting z = L ∩ TuX and L∗ = L \ {z} and choosing x for zero of the vector line

L∗ ∼= A1, we obtain a spray (E, p, s) of rank 1 on V ′ which is dominating along each orbit

s(Ey′) = τu′(L∗) = Cy′ \ τu′(z).

We can choose n lines L1, . . . , Ln on X passing through x in n independent directions.

This gives a dominating family of n rank 1 sprays (Ei, pi, si) on a neighborhood V0 of y

with values in X. By Gromov’s Localization Lemma 1.10, each of these sprays admits an

extension to a spray on X dominating its one-dimensional orbits inside V0.

Choosing a finite covering of X by such neighborhoods we obtain a dominating family

of rank 1 sprays on X. The composition of all these rank 1 sprays yields a dominating

spray on X. Thus, X is Gromov elliptic.

By Clemens–Griffiths’ theorem [25] every smooth cubic threefold X in P4 is irrational.

We can therefore deduce the following corollary. This confirms a conjecture of Gromov [42,

Sec. 3.4.F].

Corollary 4.27. The smooth cubic threefolds in P4 are irrational Gromov elliptic projec-

tive varieties.
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Remarks 4.28. For n ≥ 3 each smooth cubic hypersurface in Pn is unirational, see

e.g. Kollár [53]. However, we do not know if a general cubic threefold is stably irrational.

There is a 18-dimensional family of rational cubic fourfolds in P5 which contain a pair

of skew planes. Another 19-dimensional family of rational cubic fourfolds in P5 consists of

those cubic fourfolds which contain a quartic surface scroll. See e.g. [67,79] and references

therein for other examples. A general belief is that a very general cubic fourfold in P5

is irrational. However, at present, no example of an irrational smooth cubic fourfold is

known.

4.8. Open questions

Likewise a smooth cubic threefold, a smooth quartic double solid admits a lot of birational

involutions.

Question 4.29. Is there any Gromov elliptic smooth quartic double solid?

See [24] for examples of rational nodal quartic double solids that admit Gromov elliptic

algebraic small resolutions.

Question 4.30. (cf. [62, Remark 2(g)]) Is there a birationally (super)rigid Fano manifold

which is Gromov elliptic? Especially, is a unirational smooth Segre quartic threefold in

P4 Gromov elliptic?

The superrigidity of smooth quartic threefolds in P4 was proven by Iskovskikh and

Manin, see [44]; see also [ibid] for Segre examples of unirational smooth quartic threefolds.

Question 4.31. Is the Gromov ellipticity of a smooth complete algebraic variety stable

under smooth deformations? Moreover, given a proper smooth deformation family X → S

over a smooth base S, is the locus of points s ∈ S such that the fiber Xs is Gromov elliptic

open, or closed, or constructible in the Zariski topology, or, over C, in classical topology?

Question 4.32. Let X → S be a smooth morphism of smooth complete varieties. Suppose

S and each fiber Xs, s ∈ S, are Gromov elliptic. Is it true that X is Gromov elliptic?

The last two questions can be addressed for (stable) uniform rationality and (stable)

local flexibility replacing the Gromov ellipticity.

5. Ellipticity of affine cones versus flexibility

5.1. Gromov elliptic affine cones

Theorem 5.1. (Arzhantsev–Kaliman–Zaidenberg [5, Theorem 1.3]) Let X ⊂ Pn be a

uniformly rational projective variety and Ŷ ⊂ An+1 be the affine cone over X. Then the

punctured cone Y = Ŷ \ {0} is Gromov elliptic.
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Note that p : Y → X, where p is a natural projection, is a principal Gm-bundle. The

conclusion of Theorem 5.1 stays true for every principal Gm-bundle Y → X, provided

that the associated line bundle L → X is ample or anti-ample. However, the assumption

of ampleness is not necessary, due to the next stronger result.

Theorem 5.2. (Kaliman [45, Theorem 6.1]) Let X be a complete uniformly rational

algebraic variety and L → X be a nontrivial line bundle on X with zero section Z. Then

Y = L \ Z is Gromov elliptic.

For the trivial line bundle L = X×C over a complex smooth complete algebraic variety

X we have Y ∼= X ×C∗. So, the group π1(Y ) is infinite. Therefore, Y cannot be Gromov

elliptic, because otherwise π1(Y ) must be finite by Kusakabe’s Theorem 4.7. Thus, the

hypothesis of Theorem 5.2 that L is nontrivial is necessary.

There is the following analogue of Corollary 4.18 for affine cones (which are not com-

plete!).

Theorem 5.3. (Arzhantsev [3, Theorem 1]) The affine cone Ŷ ⊂ An+1 over a projective

variety X ⊂ Pn admits a surjective morphism Am → Ŷ for some positive integer m if

and only if Ŷ is unirational or, equivalently, X is unirational. Furthermore, we can take

m = dim(X) + 2.

5.2. Flexible affine cones

The following results certify that the flexibility of punctured affine cones is much stronger

property than Gromov ellipticity.

Theorem 5.4. (Kishimoto–Prokhorov–Zaidenberg [52], Perepechko [69], Cheltsov–Park–

Won [20]; cf. Park–Won [68]) Let X = Xd be a del Pezzo surface of degree d pluri-

anticanonically embedded in Pn, and let Y ⊂ An+1 be the punctured affine cone over X.

Then

(1) Y is flexible for 4 ≤ d ≤ 9;

(2) Y admits no nontrivial Ga-action for d ≤ 3. In particular, Y is not flexible for

d ≤ 3;

(3) Y is Gromov elliptic for every d = 1, . . . , 9.

The last statement follows from Theorem 5.1 due to uniform rationality of the smooth

complete rational surface X = Xd, see Example (7) in Section 2.2.

The following example answers in negative the question in [30, Question 2.22].
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Example 5.5. (Cheltsov–Park–Won [20, Corollary 1.8], Freudenburg–Moser-Jauslin [39,

Theorem 8.1(c)]) Let Y ⊂ A4 be the Fermat cubic cone

Y = {x31 + x32 + x33 + x34 = 0},

i.e., the affine cone over the Fermat cubic surface in P3. Then the coordinate ring OY (Y ) is

rigid, i.e., it does not admit any locally nilpotent derivation. In particular, the punctured

cone Y = Y \ {0} is not flexible. However, Y is Gromov elliptic by Theorem 5.1.

Example 5.6. More generally, consider a Pham–Brieskorn hypersurface Y ⊂ An+1, n ≥ 2,

defined by

xa00 + xa11 + · · · + xann = 0 where 2 ≤ a0 ≤ a1 ≤ · · · ≤ an.

There is a conjecture [19, Conjecture 1.22], based on [48] and [30, p. 551 and Example 2.21],

claiming that the coordinate ring OY (Y ) is rigid if and only if a1 ≥ 3. This conjecture is

known to hold for n = 2 [48, Lemma 4] and for n = 3 [23, Main theorem], see also [22]

and [21, Theorem 4.8.3].

Example 5.7. Let X be a Fano fourfold with Picard number 1 of genus 10 embedded

half-anticanonically in P12, and let Y be the punctured affine cone over X. Since X is

uniformly rational, see Example 4.22, Y is Gromov elliptic by Theorem 5.1. Moreover, Y

is flexible, see Prokhorov–Zaidenberg [74].

See Arzhantsev–Perepechko–Süß [6] and Micha lek–Perepechko–Süß [65] for further ex-

amples of flexible affine cones and universal torsors, i.e., the spectra of Cox rings.
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