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Evolution Families of (X,Y, φ)-type and Periodic Solutions to

Nonautonomous Evolution Equations

Ngoc Huy Nguyen, Thieu Huy Nguyen* and Thi Ngoc Ha Vu

Abstract. Consider nonautonomous evolution equation u̇ = A(t)u(t) + Bg(u)(t) in

which the family of operators (A(t))t≥0 generates the evolution family (U(t, s))t≥s≥0 of

(X,Y, φ)-type, i.e., ∥U(t, 0)x∥Y ≤ φ(t)∥x∥X , t > 0, for certain couple of Banach spaces

(X,Y ) and real-valued, positive function φ satisfying limt→∞ φ(t) = 0. Inspired by

Serrin’s technique, we develop a unified approach toward the problems on the existence

of periodic solutions to above equation. As illustrations of our abstract results, we give

applications to the existence and uniqueness of periodic solutions to Oseen–Navier–

Stokes and damped wave equations, as well as the existence of local stable manifolds

nearby the periodic solution to the damped wave equations.

1. Introduction and preliminaries

Consider the semilinear equation

(1.1) u′(t)−A(t)u(t) = Bg(u)(t)

where the family of operators (A(t))t≥0 is T -periodic and generates an evolution family

(U(t, s))t≥s≥0, the nonlinear operator g maps T -periodic functions to T -periodic functions,

and the linear operator B is the “connection” operator between relevant spaces under con-

sideration. The investigation of existence and uniqueness of a T -periodic solution to (1.1)

is an important research direction related to dynamics of such evolution equations. Here,

we want to mentioned some approaches, such as Massera methodology [23,39], Tikhonov’s

fixed-point principle [30] or the Lyapunov functionals [38]. The most popular approaches

for proving the existence of a periodic solution are the use of ultimate boundedness of

solutions and the fixed-point of Poincaré map realized through some compact embeddings

(see [4,21,30–32,38]). As a well-known methodology, the so-called Massera-type theorem

can be roughly explained that if a differential equation posses a time-bounded solution

then it has a time-periodic one. Practically, to invoke the Massera’s principle we have to
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combine somehow the boundedness of solutions with some compactness at least at the level

of weak-∗ topology (e.g., Alaoglu’s theorem). At this point, it is worth noting that Ser-

rin [32] was the first one who proved the stability of solutions to Navier–Stokes equations

(NSE) in L2-spaces (on bounded domains) implies the existence of periodic solutions. The

ideas and methods of Seerin have been extended by many others such as Kaniel and Shin-

brot [17], Miyakawa and Teramoto [24], Maremonti, Kozono and Nakao [20]. The existence

results of such solutions to NSE on certain exterior domains were shown by Maremonti

and Padula [22] under conditions related to symmetry and small complements. Further-

more, Galdi and Sohr [8] proved the existence of periodic solutions to NSE in arbitrary

exterior domain using the spaces featuring the decay of the solutions at spatial infinity.

Yamazaki [37] used interpolation spaces and the iteration scheme introduced by [9,18] to

obtain the existence and uniqueness of periodic weak mild solutions in weak Ln spaces on

exterior domains. For further results in unbounded domain, we refer to Taniuchi [34] and

van Baalen and Wittwer [36], Galdi and Silvestre [7].

In the present paper, inspired by the Serrin’s methodology, we introduce a general

method to obtain the existence and uniqueness of the periodic solution to the abstract

evolution equation (1.1). Namely, we combine the boundedness and (X,Y, φ)-type of

the corresponding evolution family (see Definition 2.4 below) to construct a Cauchy se-

quence which converges to the initial vector from which emanates a periodic solution to

nonhomogeneous linearized equations. Then we pass to the semilinear equations by using

fixed-point arguments. This can be considered as a generalization of our previous approach

(see [15,27]) which corresponds to the hyperbolic semigroups and wave equations. In the

present paper we extend such an approach so that we can widen the range of applications

not only to hyperbolic PDE but also to parabolic PDE in unbounded domains related to

Lp − Lq smoothing properties of the evolution family. On the other hand, in the present

paper, we also extend the results achieved in [28] to the case of nonautonomous equations

and evolution family. Another advantage of our approach here is lying in the fact that

we do not use any compactness arguments. Consequently, we can prove the existence and

uniqueness of general linear inhomogeneous evolution equations in a direct and elegant

manner. Our main result is contained in Theorems 2.5 and 2.6. Then, in Section 3, we

apply the abstract results to Oseen–Navier–Stokes equations in exterior domains as well

as exponentially dichotomic evolution families and damped wave equations. These appli-

cations related to two kinds of the function φ, namely, φ(t) = C
tα , α > 0, (polynomial

decaying) or φ(t) = Ce−αt (exponential decaying).

2. Periodic solutions to evolution equations

We first consider Banach spaces X and Y which are continuously embedded in a Hausdorff

topological vector space. Suppose that there is a family of operators U(t, s) ∈ L(X + Y ),
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t ≥ 0, such that U(t, s)|X and U(t, s)|Y are strongly continuous, exponentially bounded

on X and Y , respectively. Then, let us consider the following linear evolution equation

(2.1) u′ −A(t)u = Bf(t) for t ≥ 0, u(0) = u0,

where the family of operators (A(t))t≥0 is T -periodic, f belongs to Fτ (R+, Z) := {h : R+ →
Z | h is continuous in topology τ of Z and supt≥0 ∥h(t)∥Z < ∞} endowed with norm

∥h∥Fτ (R+,Z) := supt≥0 ∥h(t)∥Z . The operator B is the “connection” operator, which is

a linear operator from Z to Y . Note that in the case of fluid flow equations drove from

Navier–Stokes equations, B = P div, the composition of Helmholtz and divergent opera-

tors, meanwhile, as in other cases, one may take B = Id, the identity operator on Y .

The family of partial differential operators (A(t))t≥0 is given such that the homoge-

neous Cauchy problem

(2.2) u′ = A(t)u for t > s ≥ 0, u(s) = x ∈ X

is well-posed in the sense, roughly speaking, that there is an evolution family (U(t, s))t≥s≥0

such that the solution to (2.2) is given by u(t) = U(t, s)x for t > s and x ∈ X. The reader

is referred to [25,29] for details on the concept of evolution families, well-posedness for non-

autonomous abstract Cauchy problems as well as their applications to partial differential

equations. The precise concept of an evolution family is given in the following definition.

Definition 2.1. A family of bounded linear operators (U(t, s))t≥s≥0 on a Banach space

X is a (strongly continuous, exponentially bounded) evolution family if

(i) U(t, t) = Id and U(t, r)U(r, s) = U(t, s) for all t ≥ r ≥ s ≥ 0,

(ii) the map (t, s) 7→ U(t, s)x is continuous for every x ∈ X, where (t, s) ∈ {(t, s) ∈ R2 :

t ≥ s ≥ 0},

(iii) there are constants K, α such that ∥U(t, s)x∥X ≤ Keα(t−s)∥x∥X for all t ≥ s ≥ 0

and x ∈ X.

The existence of the evolution family (U(t, s))t≥s≥0 allows us to define a notion of

mild solutions as follows. By the mild solution to (2.1), we mean a function u : R+ → Y

satisfying the following integral equation

(2.3) u(t) = U(t, 0)u0 +
∫ t

0
U(t, s)Bf(s) ds.

We now assume the following assumption that will be used in the rest of the paper.

Assumption 2.2. We assume that A(t) is T -periodic, i.e., A(t + T ) = A(t) for a fixed

constant T > 0 and all t ∈ R+. Then (U(t, s))t≥s≥0 becomes T -periodic in the sense that

(2.4) U(t+ T, s+ T ) = U(t, s) for all t ≥ s ≥ 0.
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Remark 2.3. We would like to note that the relation (2.4) is a consequence of the as-

sumption that A(t) is T -periodic in combination with the well-posedness (existence and

uniqueness) of the solution of the Cauchy problem (2.2). Indeed, for any x ∈ X, we

have that u(t) = U(t, s)x is a solution to (2.2). Put ũ(t) = U(t + T, s + T )x. Then, by

Pazy [29, Chapter 5, Theorem 6.1] we have

∂ũ

∂t
=

∂U(t+ T, s+ T )x

∂t
= A(t+ T )U(t+ T, s+ T )x = A(t)ũ (since A(t+ T ) = A(t)).

Moreover, ũ(s) = U(s+T, s+T )x = x. Therefore, ũ(t) = U(t+T, s+T )x is also a solution

to (2.2) with the same initial value ũ(s) = x. The uniqueness of the solution implies that

u(t) = ũ(t) for all t ≥ s, and hence, U(t, s)x = U(t + T, s + T )x for all x ∈ X. Thus,

relation (2.4) follows.

Also, we assume the following condition of (X,Y, φ)-type on the evolution family.

Definition 2.4. Let X, Y be the Banach spaces as above, and φ : (0,∞) → (0,∞) be

a continuous function such that limt→∞ φ(t) = 0. The evolution family (U(t, s))t≥s≥0 is

said to be of (X,Y, φ)-type if for t > 0 we have

(2.5) ∥U(t, 0)x∥Y ≤ φ(t)∥x∥X for all x ∈ X.

For a Banach space Z with norm ∥ · ∥Z , we consider the following abstract function

space

Fτ (R+, Z) :=

{
h : R+ → Z

∣∣∣ h is continuous in topology τ of Z and sup
t≥0

∥h(t)∥Z < ∞
}

endowed with norm ∥h∥Fτ (R+,Z) := supt≥0 ∥h(t)∥Z . Moreover, we suppose that the topol-

ogy τ in Z is chosen such that Fτ (R+, Z) is a Banach space with the above norm. The

two typical examples of topology τ of Z that we will use later are the norm-topology (i.e.,

the topology generated by norm of Z) and the weak∗-topology on Z. In those cases, we

have

Fτ (R+, Z) = Cb(R+, Z) :=

{
v : R+ → Z

∣∣∣ v is continuous and sup
t∈R+

∥v(t)∥Z < ∞

}
in case τ is the norm-topology on Z, or

Fτ (R+, Z) = Cw∗,b(R+, Z)

:=

{
v : R+ → Z

∣∣∣ v is weak∗ continuous and sup
t∈R+

∥v(t)∥Z < ∞

}
in case τ is the weak∗-topology on Z.

Furthermore, we denote the norm on the space X ∩Y by ∥x∥X∩Y = max{∥x∥X , ∥y∥Y }
making X ∩ Y to be a Banach space. Our first result for linear equation is stated in the

following theorem.
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Theorem 2.5. Consider the evolution family (U(t, s))t≥s≥0 of (X,Y, φ)-type as in above

Definition. Let f ∈ Fτ (R+, Z) and suppose that there exists x0 ∈ X such that the mild

solution u(t) = U(t, 0)x0+
∫ t
0 U(t, s)Bf(s) ds, t ≥ 0, belongs to Fτ (R+, X∩Y ) and satisfies

∥u∥Fτ (R+,X∩Y ) ≤ M∥f∥Fτ (R+,Z). Finally, suppose that

sup
0≤t≤T

∥∥∥∥∫ t

0
U(t, s)Bf(s) ds

∥∥∥∥
Y

≤ N∥f∥Cb(R+,Z).

Then, if f is T -periodic in time, there exists a unique T -periodic mild solution û of (2.1)

with

(2.6) ∥û∥Fτ (R+,Y ) ≤ M̃∥f∥Fτ (R+,Z) for M̃ := M sup
0≤t≤T

∥U(t, 0)∥+N.

Proof. By the hypothesis of the theorem, we have that the mild solution u of (2.1) with

u(0) = x0 ∈ X (i.e., u(t) = U(t, 0)x0 +
∫ t
0 U(t, s)Bf(s) ds, t ≥ 0) belongs to Cb(R+, X).

We next prove that {u(nT )}n∈N is a Cauchy sequence in Y . Indeed, putting w(t) =

u(t+ (m− n)T ) for arbitrary fixed natural numbers m > n ∈ N, using the periodicity of

f we now prove that w can be rewritten as

(2.7) w(t) = U(t, 0)u((m− n)T ) +

∫ t

0
U(t, s)Bf(s) ds for all t ≥ 0.

Indeed,

w(t) = u(t+ (m− n)T )

= U(t+ (m− n)T, 0)u(0) +

∫ t+(m−n)T

0
U(t+ (m− n)T, s)Bf(s) ds

= U(t+ (m− n)T, (m− n)T )U((m− n)T, 0)u(0)

+

∫ (m−n)T

0
U(t+ (m− n)T, (m− n)T )U((m− n)T, s)Bf(s) ds

+

∫ t+(m−n)T

(m−n)T
U(t+ (m− n)T, s)Bf(s) ds

= U(t+ (m− n)T, (m− n)T )

×

(
U((m− n)T, 0)u(0) +

∫ (m−n)T

0
U((m− n)T, s)Bf(s) ds

)

+

∫ t+(m−n)T

(m−n)T
U(t+ (m− n)T, s)Bf(s) ds

= U(t, 0)u((m− n)T ) +

∫ t

0
U(t, s)Bf(s) ds.

Therefore, (2.7) follows. Now, the relation in (2.5) yields

∥u(t)− w(t)∥Y = ∥U(t, 0)(u(0)− w(0))∥Y ≤ φ(t)∥u(0)− w(0)∥X ≤ Cφ(t), t > 0
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for C := 2∥u∥Fτ (R+,X∩Y ) independent of m, n.

Taking t := nT on the above inequality we obtain

∥u(nT )− u(mT )∥Y ≤ Cφ(nT )

for all m > n ∈ N. From the fact limt→∞ φ(t) = 0, it follows that {u(nT )}n∈N is Cauchy

sequence in Y . Since Y is a Banach space, the sequence {u(nT )}n∈N is convergent in Y ,

and we put

u∗ := lim
n→∞

u(nT ) ∈ Y.

Taking now u∗ as initial value, we then prove that the mild solution û(t) = U(t, 0)u∗+∫ t
0 U(t, s)Bf(s) ds is T -periodic. To do this, we put v(t) := U(t+ nT, 0)x0 +

∫ t+nT
0 U(t+

nT, s)Bf(s) ds for every fixed n ∈ N and all t ≥ 0, i.e., v(t) = u(t+ nT ) for

(2.8) u(t) = U(t, 0)x0 +
∫ t

0
U(t, s)Bf(s) ds

as in previous step.

Again, by the periodicity of f we obtain that v satisfies

v(t) = U(t, 0)u(nT ) +
∫ t

0
U(t, s)Bf(s) ds

for u being defined as in (2.8).

We then have

∥û(T )− v(T )∥Y = ∥U(T, 0)(û(0)− v(0))∥Y ≤ ∥U(T, 0)∥∥û(0)− v(0)∥Y .

This means

∥û(T )− u((n+ 1)T )∥Y ≤ ∥U(T, 0)∥∥u∗ − u(nT )∥Y .

Letting now n → ∞ and using the fact that limn→∞ u(nT ) = u∗ = û(0) in Y (see above)

we obtain

û(T ) = û(0).

Therefore, û(t) is T−periodic. The inequality (2.6) follows from the facts that ∥u∗∥Y ≤
∥u∥Fτ (R+,X∩Y ) ≤ M∥f∥Fτ (R+,Z) and ∥û∥Fτ (R+,Y ) = sup0≤t≤T ∥û(t)∥Y thanks to the peri-

odicity of û. For the reader’s convenience, we present the estimates

∥û∥Fτ (R+,Y ) = sup
0≤t≤T

∥û(t)∥Y ≤ sup
0≤t≤T

∥U(t, 0)∥Y ∥u∗∥Y +N∥f∥Fτ (R+,Z)

≤

(
M sup

0≤t≤T
∥U(t, 0)∥Y +N

)
∥f∥Fτ (R+,Z).
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This yields the inequality (2.6).

The uniqueness of the T -periodic solution follows from (2.5). Namely, if u and v

are two T -periodic solutions of (2.3) with initial values u0 and v0, respectively, then

u(t)− v(t) = U(t, 0)(u0− v0), and from the fact that u(t)− v(t) is bounded it follows from

(2.5) that ∥u(t)− v(t)∥Y = ∥U(t, 0)(u0 − v0)∥Y ≤ φ(t)∥u0 − v0∥Y .
Therefore, limt→∞ ∥u(t)− v(t)∥Y = 0. This, together with periodicity and continuity

of u and v, follows that u(t) = v(t) for all t ∈ R+.

We now consider the following semi-linear evolution equation

(2.9) u′(t) = A(t)u(t) +Bg(u)(t), u(0) = u0 ∈ X,

where the operators A(t) satisfy the above hypotheses for linear equations, and the non-

linear operator g : Fτ (R+, Y ) → Fτ (R+, Z) satisfies

(1) ∥g(0)∥Fτ (R+,Z) ≤ γ where γ is a non-negative constant,

(2) g maps T -periodic functions to T -periodic functions,

(3) there exist positive constants ρ and L such that

∥g(v1)− g(v2)∥Fτ (R+,Z) ≤ L∥v1 − v2∥Fτ (R+,Y )

for all v1, v2 ∈ Fτ (R+, Y ) with ∥v1∥Fτ (R+,Y ), ∥v2∥Fτ (R+,Y ) ≤ ρ.

(2.10)

Furthermore, by the mild solution to (2.9) we mean the function u satisfying the following

equation

u(t) = U(t, 0)u0 +
∫ t

0
U(t, s)Bg(u)(s) ds for all t ≥ 0.

We then come to our next result on the existence and uniqueness of the periodic mild

solution to (2.9).

Theorem 2.6. Let the hypotheses of Theorem 2.5 be satisfied, and let g satisfy the con-

ditions in (2.10). Then, if L and γ are small enough, (2.9) has one and only one mild

T -periodic solution û on a small ball of Fτ (R+, Y ).

Proof. Consider the following ball BT
ρ defined by

BT
ρ :=

{
v ∈ Fτ (R+, Y ) : v is T -periodic and ∥v∥Fτ (R+,Y ) ≤ ρ

}
.

We then define the following transformation Φ given as follows: Consider the equation

(2.11) u′(t) = A(t)u(t) +Bg(v)(t).

Then, for v ∈ BT
ρ we set

Φ(v) = u where u ∈ Fτ (R+, Y ) is the unique T -periodic mild solution to (2.11).
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We now show that for sufficiently small L and γ, the transformation Φ is self-map on BT
ρ ,

and a contraction. To do this, taking any v ∈ BT
ρ , by the properties of g given in (2.10)

we have that

∥g(v)∥Fτ (R+,Z) ≤ ∥g(v)− g(0)∥Fτ (R+,Z) + ∥g(0)∥Fτ (R+,Z) ≤ Lρ+ γ.

Applying Theorem 2.5 for the right-hand side Bg(v)(t) instead of Bf(t) and using in-

equality (2.6) we obtain that for v ∈ BT
ρ there exists a unique T -periodic mild solution u

to (2.11) satisfying

∥u∥Fτ (R+,Y ) ≤ M̃∥g(v)∥Fτ (R+,Z) ≤ M̃(Lρ+ γ).

Therefore, if L and γ are sufficiently small, the map Φ is a self-map on BT
ρ . Then, by (2.3)

with g(v) instead of f , we have the following representation of Φ:

(2.12) Φ(v)(t) = U(t, 0)u(0) +
∫ t

0
U(t, τ)Bg(v)(τ) dτ for Φ(v) = u.

Furthermore, for v1, v2 ∈ BT
ρ by the representation (2.12) we obtain that the function

u := Φ(v1)− Φ(v2) is the unique T -periodic mild solution to the equation

u′(t) = A(t)u(t) +B(g(v1)− g(v2))(t).

Thus, again by Theorem 2.5 we arrive at

∥Φ(v1)− Φ(v2)∥Fτ (R+,Y ) ≤ M̃∥g(v1)− g(v2)∥Fτ (R+,Z) ≤ M̃L∥v1 − v2∥Fτ (R+,Y ).

We hence obtain that for sufficiently small L, and γ, the map Φ: BT
ρ → BT

ρ is a contraction,

thus, there exists a unique fixed point û of Φ, and by the definition of Φ, this function û

is the unique T -periodic mild solution to (2.9).

3. Applications

In this section we apply our abstract results obtained in the previous section to various

equations including Oseen–Navier–Stokes equations and the nonautonomous damped wave

equations.

3.1. Oseen–Navier–Stokes equations

We consider the flow of an imcompressible, viscous fluid in the exterior of a rotating ob-

stacle that is translating with a time-dependent velocity. Here the angular velocity of the

obstacle also depends on time and the axis of rotation may change. The equations de-

scribing this problem are the Oseen–Navier–Stokes equations in a time-dependent exterior
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domain with a prescribed velocity field at infinity. After rewriting the problem on a fixed

exterior domain Ω ⊂ R3, the system is reduced to

(3.1)



ut + (u · ∇)u−∆u+∇p = (η + ω × x) · ∇u− ω × u+ divF in Ω× (0,∞),

∇ · u = 0 in Ω× (0,∞),

u = η + ω × x on ∂Ω× (0,∞),

u|t=0 = u0 in Ω,

lim|x|→∞ u = 0

where u = (u1(x, t), u2(x, t), u3(x, t))
T is supposed to be the velocity of the fluid; p = p(x, t)

the pressure; and divF is the external force for a 2nd-order tensor F = F (x, t). Meanwhile,

η = (0, 0, a(t))T and ω = (0, 0, k(t))T stand for the translational and angular velocities

respectively of the obstacle. Here Ω = R3 \D(0) with D(0) being the position of D ⊂ R3

at t = 0. Galdi [6] proved the existence of the periodic solution of such equations in L2

space using Galerkin method. In the present paper, we will consider the periodic solution

on weak L3 space over Ω (see details in Theorem 3.5).

Here, we recall some preliminaries on function and interpolation spaces for latter use.

Given an exterior domain Ω of class C1,1 in R3, we denote by C∞
0 (Ω) the space of all

smooth functions with compact supports in Ω. Then, we consider the following spaces:

C∞
0 (Ω)3 := {(v1, v2, v3) : vj ∈ C∞

0 (Ω), j = 1, 2, 3},

C∞
0,σ(Ω)

3 := {v ∈ C∞
0 (Ω)3 : div v = 0 in Ω},

Lp
σ(Ω)

3 := C∞
0,σ(Ω)

∥·∥Lp
.

We note that, as in the works [10, 12], the regularity of boundary is needed for the well-

posedness and Lp −Lq-smoothing property of the linearized problem, and C1,1-regularity

was enough for such properties. The Lorentz space Lr,q(Ω)3 (1 < r < ∞, 1 ≤ q ≤ ∞)

was defined in [1, 19, 35], and here Lr,r(Ω)3 = Lr(Ω)3. Moreover, Lr,∞(Ω)3 is called the

weak-Lr space denoted by Lr
w(Ω)

3 := Lr,∞(Ω)3.

Denote by ∥ · ∥r,w the norm in Lr
w(Ω)

3. We take the following inequality from [3,

Lemma 2.1] which is known as weak Hölder inequality.

Lemma 3.1. Consider indices p, q, r satisfying 1 < p ≤ ∞, 1 < q < ∞, 1 < r < ∞, and
1
p + 1

q = 1
r . Then,

(3.2) ∥fg∥r,w ≤ C∥f∥p,w∥g∥q,w for f ∈ Lp
w(Ω)

3, g ∈ Lq
w(Ω)

3,

where C is a positive constant depending only on p and q. Note that L∞
w (Ω)3 = L∞(Ω)3.
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Denote P = Pr the Helmholtz projection on Lr(Ω) (1 < r < ∞), i.e., the projection

onto Lr
σ(Ω)

3 relative to the Leray–Helmholtz decomposition (see [3]):

Lr(Ω)3 = Lr
σ(Ω)

3 ⊕ {∇p ∈ Lr(Ω)3 : p ∈ Lr
loc(Ω)}.

Next, for each t ≥ 0 we define the operator L(t) as follows:

D(L(t)) :=
{
u ∈ Lr

σ(Ω)
3 ∩W 1,r

0 (Ω)3 ∩W 2,r(Ω)3 : (ω(t)× x) · ∇u ∈ Lr(Ω)3
}

L(t)u := −P
[
∆u+ (η(t) + ω(t)× x) · ∇u− ω(t)× u

]
for u ∈ D(L(t)).

(3.3)

It is known that the family of operators {L(t)}t≥0 generates a bounded evolution fam-

ily {U(t, s)}t≥s≥0 on Lr
σ(Ω)

3 for each 1 < r < ∞ under the conditions that η, ω ∈
Cθ
loc([0,∞);R3) for some θ ∈ (0, 1) (see [10]). Furthermore, the solenoidal Lorentz spaces

are identified (see [3]) by

Lr,q
σ (Ω)3 := (Lr1

σ (Ω)3, Lr2
σ (Ω)3)θ,q,

where 1 < r0 < r < r1 < ∞, 1 ≤ q ≤ ∞ and 1
r = 1−θ

r0
+ θ

r1
. Then {U(t, s)}t≥s≥0 are

extended to strongly continuous, bounded evolution operators on Lr,q
σ (Ω)3. Denote also

by Lr
σ,w(Ω)

3 := Lr,∞
σ (Ω)3.

Also, for 1 ≤ q < ∞, we have the dual space

(Lr,q
σ (Ω)3)′ = Lr′,q′

σ (Ω)3 where r′ =
r

r − 1
, q′ =

q

q − 1
and q′ = ∞ if q = 1.

Moreover, for 0 < θ < 1 we consider the space of Hölder continuous functions

Cθ([0,∞);R3) :=

{
f ∈ C([0,∞);R3) : sup

t>s≥0

|f(t)− f(s)|
(t− s)θ

< ∞
}
.

We analyze the case in which both η(t) and ω(t) are prescribed T -periodic functions such

that

(3.4) η, ω ∈ Cθ([0,∞);R3) ∩ C1([0,∞);R3) ∩ L∞([0,∞);R3) with some θ ∈ (0, 1).

Let us introduce the following notations:

|(η, ω)|0 := sup
T≥t≥0

(|η(t)|+ |ω(t)|),

|(η, ω)|1 := sup
T≥t≥0

(|η′(t)|+ |ω′(t)|),

|(η, ω)|θ := sup
T≥t>s≥0

|η(t)− η(s)|+ |ω(t)− ω(s)|
(t− s)θ

.

There is a constant m ∈ (0,∞) such that

(3.5) |(η, ω)|0 + |(η, ω)|1 + |(η, ω)|θ ≤ m.

We recall the following Lr,q − Lp,q estimates taken from [12, Theorems 2.1, 2.2].
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Proposition 3.2. Suppose that η and ω fulfill (3.4) and (3.5) for an m ∈ (0,∞). Denote

by ∥ · ∥r,q the norm in Lr,q (here 1 < r < ∞, 1 ≤ q ≤ ∞). Then,

(3.6) ∥U(t, s)x∥r,q ≤ M(t− s)
− 3

2

(
1
p
− 1

r

)
∥x∥p,q for all t > s ≥ 0 (here 1 < p ≤ r < ∞).

We take R0 > 0 satisfying

R3 \ Ω ⊂ BR0 := {x ∈ R3 : |x| < R0}.

Then, we fix a cut-off function ϕ ∈ C∞
0 (B3R0) such that ϕ = 1 on B2R0 and set

b(x, t) =
1

2
rot{ϕ(x)(η(t)× x− |x|2ω(t))}

which fulfills

div b = 0, b|∂Ω = η + ω × x, b(t) ∈ C∞
0 (B3R0).

Moreover, an elementary calculation shows that

ω × b = div


−(a(t))2|x|2ϕ(x)

2 0 a(t)k(t)x2ϕ(x)

0 −(a(t))2|x|2ϕ(x)
2 −a(t)k(t)x1ϕ(x)

0 0 0

 = div(−F1),

bt = div


0 −a′(t)|x|2ϕ(x)

2
−k′(t)x1ϕ(x)

2

a′(t)|x|2ϕ(x)
2 0 −k′(t)x2ϕ(x)

2

k′(t)x1ϕ(x) k′(t)x2ϕ(x) 0

 = div(−F2).

If we set z(x, t) = u(x, t) − b(x, t) then the fact that u fulfills (3.1) is equivalent to z

satisfies

(3.7)



zt −∆z − (η + ω × x) · ∇z + ω × z +∇p

= divG− (z · ∇)z − (b · ∇)z − (z · ∇)b− (b · ∇)b in Ω× (0,∞),

∇ · z = 0 in Ω× (0,∞),

z = 0 on ∂Ω× (0,∞),

z|t=0 = z0 in Ω,

lim|x|→∞ u = 0

where z0(x) := u0(x)− b(x, 0) and

G := F + F1 + F2 +∇b+ (η + ω × x)⊗∇b.

To eliminate the pressure term we apply Helmholtz operator P to (3.7). Then, we may

rewrite the equation as a non-autonomous abstract Cauchy problem

(3.8) zt + L(t)z = P div(G− z ⊗ z − b⊗ z − z ⊗ b− b⊗ b), z|t=0 = z0 ∈ L3
σ,w(Ω)

3,
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where L(t) is defined as in (3.3).

As proved in [10], the family of operators (L(t))t≥0 generates an evolution family

(U(t, s))t≥s≥0 in the sense, roughly speaking, that z(t) = U(t, 0)z0 is the solution to

homogeneous equation zt +L(t)z = 0; z(0) = z0. Therefore, we can define a mild solution

of (3.8) as the function z(t) fulfilling the following integral equation in which the integral

is understood in weak sense as in [37, Remark 1.2]:

z(t) = U(t, 0)z(0) +
∫ t

0
U(t, τ)P div(−z ⊗ z − b⊗ z − z ⊗ b− b⊗ b+G(τ)) dτ for t ≥ 0.

Denote by R+ := (0,∞) and write ∥ · ∥s,w for the norm in Ls
σ,w(Ω)

3. In this situation, we

choose the topology τ to be the weak∗-topology. Concretely, we choose

Fτ (R+, L
s
σ,w(Ω)

3)

= Cw∗,b(R+, L
s
σ,w(Ω)

3)

:=

{
v : R+ → Ls

σ,w(Ω)
3
∣∣∣ v is weak* continuous and sup

t∈R+

∥v(t)∥s,w < ∞

}

endowed with the norm

∥v∥∞,s,w := sup
t∈R+

∥v(t)∥s,w.

Remark 3.3. Let η and ω be T -periodic functions satisfying (3.4) and (3.5). Let the

external force F fulfill that F belongs to Cw∗,b(R+, L
3/2
σ,w(Ω)3×3) and is T -periodic. Then

G is T -periodic and belonging to Cw∗,b(R+, L
3/2
σ,w(Ω)3×3), moreover

(3.9) ∥G∥∞,3/2,w ≤ ∥F∥∞,3/2,w + C(m).

We know that L(t) is T -periodic, i.e., L(t+ T ) = L(t) for a fixed constant T > 0 and all

t ∈ R+. Therefore, the corresponding evolution family (U(t, s))t≥s≥0 becomes T -periodic

in the sense that

U(t+ T, s+ T ) = U(t, s) for all t ≥ s ≥ 0.

We rewrite (3.8) in the form

(3.10) zt + L(t)z = P div g(z)(t), z|t=0 = z0 ∈ L3
σ,w(Ω),

where g(z) = G− z ⊗ z − b⊗ z − z ⊗ b− b⊗ b.

The linearized equation of (3.10) is

(3.11) vt + L(t)v = P divG(t), v|t=0 = v0 ∈ L3
σ,w(Ω)

3.
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Using the evolution family (U(t, s))t≥S≥0 generated by (L(t))t≥0, we can defined mild

solution to (3.11) which is the function v(t) satisfying the following equation in which the

integral is understood in distribution sense as in [37, Remark 1.2]:

(3.12) v(t) = U(t, 0)v(0) +
∫ t

0
U(t, τ)P divG(τ) dτ.

In this situation, from [16, Theorem 2.2] we obtain the boundedness of the function v(t)

on R+ which is stated in the following lemma.

Lemma 3.4. Let Ω be an exterior domain Ω in R3 with a C1,1-boundary and z0 ∈
L3
σ,w(Ω)

3. Suppose that G ∈ Cw∗,b(R+, L
3/2
σ,w(Ω)3×3). Then, (3.11) has a unique mild

solution v ∈ Cw∗,b(R+, L
3
σ,w(Ω)

3) which is represented in (3.12) with v(0) = v0. Also,

∥v∥∞,3,w ≤ M∥v0∥3,w + M̃∥G∥∞,3/2,w

where M , M1 and M̃ are positive constants which are independent of v0, v, and F .

Proof. See [16, Theorem 2.2].

The following theorem contains our results on periodicity of solutions to nonautonomous

Oseen–Navier–Stokes flows.

Theorem 3.5. Consider an exterior domain Ω in R3 with a C1,1-boundary and z0 ∈
L3
σ,w(Ω)

3. Suppose that F ∈ Cw∗,b(R+, L
3/2
σ,w(Ω)3×3) is T -periodic. Let η and ω be T -

periodic functions fulfilling (3.4) and (3.5). If ∥F∥∞,3/2,w and m are sufficiently small,

Problem (3.8) possesses a unique T -periodic mild solution ẑ on a small ball of Cw∗,b(R+,

L3
σ,w(Ω)

3).

Proof. We first choose X := Lr
σ,w(Ω)

3, Y := L3
σ,w(Ω)

3, and Z := L
3/2
σ,w(Ω)3 with 3/2 ≤ r <

3. Next, we derive from (3.6) the estimate

∥U(t, 0)x∥3,w ≤ Mt−
(

3
2r

− 1
2

)
∥x∥r,w.

Then it is obvious that (U(t, s))t≥s≥0 is of (X,Y, φ)-type with the function φ(t) = Mt−
(

3
2r

− 1
2

)
for all t > 0. Concerning the estimates for g, we first have

∥g(0)∥
Cw∗,b(R+,L

3/2
σ,w(Ω)3×3)

= ∥G− b⊗ b∥∞,3/2,w ≤ ∥G∥∞,3/2,w + ∥b⊗ b∥∞,3/2,w.

It follows from the weak Hölder inequality (3.1) that

(3.13) ∥b⊗ b∥∞,3/2,w ≤ C∥b∥2∞,3,w ≤ Cm2.

Combining (3.13) and (3.9) we obtain

∥g(0)∥
Cw∗,b(R+,L

3/2
σ,w(Ω)3×3)

≤ ∥F∥∞,3/2,w + C(m) + Cm2 := γ.
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Thus, the sufficient smallness of m and ∥F∥∞,3/2,w implies that γ is small enough. Again,

for v1, v2 ∈ BT
ρ by the weak Hölder’s inequality (3.2), we have that

∥g(v1)− g(v2)∥Cw∗,b(R+,L
3/2
σ,w(Ω)3×3)

= ∥ − v1 ⊗ v1 + v2 ⊗ v2 − b⊗ v1 − v1 ⊗ b+ b⊗ v2 + v2 ⊗ b∥∞,3/2,w

≤ ∥ − (v1 − v2)⊗ v1 − v2 ⊗ (v1 − v2)− b⊗ (v1 − v2)− (v1 − v2)⊗ b∥∞,3/2,w

≤ (2Cρ+ 2Cm)∥v1 − v2∥∞,3,w.

Theorem 2.6 now yields assertion of the theorem for the choice Fτ (R+, Z) = Cw∗,b(R+,

L
3/2
σ,w(Ω)3×3).

Remark 3.6. Since P∇p = 0 for the Helmholtz projection P, we have already got rid of

the pressure term ∇p in (3.8). After obtaining the T -periodic solution ẑ we can recover

the pressure p (or its gradient ∇p) by

∇p = ẑt −∆ẑ − (η + ω × x) · ∇ẑ + ω × ẑ + div(G− ẑ ⊗ ẑ − b⊗ ẑ − ẑ ⊗ b− b⊗ b).

Furthermore, since ẑ, η and ω are all T -periodic, we obtain that ∇p and hence p are

T -periodic as well. Moreover, the pressure p can then be recovered from ∇p in a similar

ways as in Sorh [33, Chapter II, Lemma 2.2.1] (see also Bogovskii [2]).

3.2. Nonautonomous damped wave equations: Periodic solutions and stable manifolds

nearby

In this section, we apply our abstract results in Section 2 to the nonautonomous damped

wave equations. It is worth noting that the evolution family (U(t, s))t≥s≥0 related to

the nonautonomous damped wave equation has an exponential dichotomy. Precisely, in

that case we will prove that (U(t, s))t≥s≥0 is conditionally (X,Y, φ)-stable for certain

Banach spaces X, Y , and φ(t) = Me−νt, t ≥ 0, ν > 0, which is an exponential decaying

function. To that purpose, suppose A is a selfadjoint, positive definite operator with

compact resolvent in a Hilbert space H and r : D(A1/2) → H is of class C1 with r(0) = 0,

r′(0) = 0. We consider the following abstract damped wave equation

(3.14)

ü+ a(t)(αu̇+Au+ ωu) = a(t)r(u) + f(t), t > 0,

u(0) = u0, u̇(0) = u1, u0, u1 ∈ H,

where α > 0, ω ∈ R are constants; the function a(·) ∈ L1,loc(R+) is T -periodic and

satisfies the condition 0 < γ0 ≤ a(t) ≤ γ1 for fixed constants γ0, γ1 and for a.e. t ≥ 0.

Here, f ∈ Cb(R+, H) is the external force.
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To transform this equation to the first-order problem, we set v = u̇ and handle with

the variable U = ( uv ) which belongs to the space Y = D(A1/2)×H. Then, we obtain the

following equations

(3.15) ∂tU = A(t)U + g(U)(t), t > 0, U(0) =

(
u0
u1

)
:= U0 ∈ Y,

where the operator matrices A(t) are defined for t > 0 as A(t) =
(

0 I
−a(t)(A+ω) −αa(t)

)
with

the same domains D(A(t)) = D(A)×H for all t > 0, and g(U)(t) =
(

0
a(t)r(u)+f(t)

)
.

Equation (3.15) is a special case of (2.9) with B = Id which is the identity operator on

Y . Hence, in this case we can choose Z = Y . Correspondingly, a mild solution to (3.15)

is defined as the function u satisfying the following equation

(3.16) U(t) = U(t, 0)U0 +

∫ t

0
U(t, s)g(U)(s) ds for all t ≥ 0.

Furthermore, the linearized equation of (3.15) is represented as

(3.17) U ′ −A(t)U = f(t), U(0) = U0.

Respectively, a mild solution of (3.17) is understood as a function U : R+ → Y satisfying

(3.18) U(t) = U(t, 0)U0 +

∫ t

0
U(t, s)f(s) ds.

It was proved in [11, p. 4724] that the operator A :=
(

0 I
−A−ω −α

)
generates a hyperbolic

C0 semigroup (T (t))t≥0 if −ω /∈ σ(A). Then, we can decompose A(t) =
(

I 0
0 a(t)

)
A, and

similarly as in [27], we have that the family of operators (A(t)) generates an evolution

family (U(t, s))t≥s≥0 with U(t, s) = et−sT
( ∫ t

s a(τ) dτ
)
for all t ≥ s ≥ 0, which has an

exponential dichotomy, that means that the evolution family (U(t, s))t≥s≥0 satisfies that

there exist bounded linear projections P (t), t ≥ 0, on Y and positive constants N , ν such

that

(a) U(t, s)P (s) = P (t)U(t, s), t ≥ s ≥ 0,

(b) the restriction U(t, s)| : KerP (s) → KerP (t), t ≥ s ≥ 0, is an isomorphism and its

inverse is denoted by (U(t, s)|)−1 = U(s, t)| for t ≥ s ≥ 0,

(c) ∥U(t, s)x∥ ≤ Ne−ν(t−s)∥x∥ for x ∈ P (s)Y , t ≥ s ≥ 0,

(d) ∥U(s, t)|x∥ ≤ Ne−ν(t−s)∥x∥ for x ∈ KerP (t), t ≥ s ≥ 0.

The projections P (t) and constants N , ν are called the dichotomy projections, and di-

chotomy constants, respectively. We refer to [27] for detail discussions on exponentially di-

chotomic evolution family related to nonautonomous damped wave equations. The reader
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is also referred to [13] for characterizations of exponential dichotomies of evolution families

in general admissible spaces.

Moreover, the space P (0)Y can be characterized by P (0)Y = {x ∈ Y : supt≥0 ∥U(t, 0)x∥
< ∞} (see [13]).

To apply our results obtained in Section 2, we choose the topology τ to be the norm-

topology. Concretely, we choose

Fτ (R+, Y ) = Cb(R+, Y ) :=

{
v : R+ → Y

∣∣∣ v is continuous and sup
t∈R+

∥v(t)∥s,w < ∞

}
endowed with the norm

∥v∥∞,Y := sup
t∈R+

∥v(t)∥Y .

Also, the following remark is crucial for later use.

Remark 3.7. If the evolution family (U(t, s))t≥s≥0 on Banach space Y has an exponential

dichotomy then it is obvious that (U(t, s))t≥s≥0 is of (X,Y, φ)-type with X = P (0)Y and

φ(t) = Me−νt for all t ≥ 0, where (P (t))t≥0 is the dichotomy projection, and M , ν are

the dichotomy constants.

Moreover, since the operator r is of C1 and r(0) = r′(0) = 0, it follows that r is

locally Lipschitz with a small Lipschitz constant in a small neighborhood of 0. Therefore,

the operator g satisfies condition in (2.10) with Y = Z, g(0) = f and with the Lipschitz

constant being small if the radius ρ is small. Thus, applying Theorem 2.6 we obtain the

following results for the damped wave equation (3.15).

Theorem 3.8. Let A be a selfadjoint, positive definite operator with compact resolvent in a

Hilbert space H, α > 0, and ω ∈ R such that −ω /∈ σ(A). Let the function a(·) ∈ L1,loc(R+)

be T -periodic and satisfies the condition 0 < γ0 ≤ a(t) ≤ γ1 for fixed positive constants

γ0, γ1. Suppose r : D(A1/2) → H is of class C1 with r(0) = r′(0) = 0. Let f ∈ Cb(R+, H)

be T -periodic. Then, if ∥f∥Cb(R+,H) is small enough, the equation (3.14) has a unique

T -periodic mild solution û in a small neighborhood of 0.

Proof. We first choose X := P (0)Y , Z := Y . Then, from Remark 3.7, we obtain that

(U(t, s))t≥s≥0 is of (X,Y, φ)-type with φ(t) = Me−νt for all t ≥ 0.

For a given f ∈ Cb(R+, Y ), by [27, Lemma 3.3] we have that (3.18) has a bounded

solution

u(t) =

∫ ∞

0
G(t, τ)f(τ) dτ,

where

(3.19) G(t, τ) =

P (t)U(t, τ) for t > τ ≥ 0,

−U(t, τ)|(I − P (τ)) for 0 ≤ t < τ.
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Moreover, using the fact that ∥G(t, τ)∥ ≤ N(1 + H)e−ν|t−τ | for t ̸= τ and t, τ ≥ 0, this

solution can be estimated by

∥u∥Cb
≤ (1 +H)M∥f∥Cb

∫ ∞

0
e−ν|t−τ | dτ ≤ 2M(H + 1)

ν
∥f∥Cb

.

Then, applying Theorem 2.5 we obtain that for T -periodic function f ∈ Cb(R+, Y ) there

exists a unique T -periodic solution û of (3.18) (i.e., a T -periodic mild solution of (2.1))

satisfying

(3.20) ∥û∥Cb
≤ M̃∥f∥Cb

where M̃ :=
(2M(H+1)

ν +T
)
sup0≤t≤T ∥U(t, 0)∥. Altogether, the linear problem (3.18) has a

unique T -periodic solution û satisfying inequality (3.20) for each T -periodic input function

f . Therefore, the assertion of the theorem then follows from Theorem 2.6.

Lastly, we will prove the existence of a local stable manifold nearby the mild periodic

solution to the damped wave equation that is nearby the periodic solution (3.16). As

previously, we denote by Br(x) the ball in Y centered at x with radius r. We recall the

definition of a local stable manifold for (3.16) nearby its periodic solution (as in [14]).

Definition 3.9. Let û be a T -periodic solution to (3.16). A set S ⊂ R+ × Y is said to be

a local stable manifold for (3.16) nearby û if and only if for every t ∈ R+ the space Y is

decomposed through a direct sum Y = Y0(t)⊕ Y1(t) such that

inf
t∈R+

Sn(Y0(t), Y1(t)) := inf
t∈R+

inf
i=0,1

{
∥x0 + x1∥ : xi ∈ Yi(t), ∥xi∥ = 1

}
> 0

and there exist positive constants ρ, ρ0, ρ1 and a family of Lipschitz continuous maps

ht : Bρ0(û(t)) ∩ Y0(t) → Bρ1(û(t)) ∩ Y1(t), t ∈ R+

with the Lipschitz constants independent of t such that

(i) S = {(t, x + ht(x)) ∈ R+ × (Y0(t) ⊕ Y1(t)) | t ∈ R+, x ∈ Bρ0(û(t)) ∩ Y0(t)}, and we

denote by St := {x+ ht(x) | (t, x+ ht(x)) ∈ S}, t ≥ 0,

(ii) St is homeomorphic to

Bρ0(û(t)) ∩ Y0(t) :=
{
x ∈ Y0(t) : ∥x− û(t)∥ ≤ ρ0

}
for all t ≥ 0,

(iii) to each x0 ∈ St0 there exists a unique solution u(t) to (3.16) on [t0,∞) such that

u(t0) = x0 and ess supt≥t0 ∥u(t)∥ ≤ ρ.
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It is worth noting that, when identifying Y0(t)⊕Y1(t) with Y0(t)×Y1(t), we may write

St = graph(ht) for graph(ht) being the graph of the map ht.

We need the following lemma taken from [27], that gives the forms of bounded solutions

to (3.16).

Lemma 3.10. Let the evolution family (U(t, s))t≥s≥0 have an exponential dichotomy with

the corresponding dichotomy projections (P (t))t≥0 and dichotomy constants M,ν > 0.

Let G(t, τ) be the Green’s function defined as in (3.19). Let g : Cb(R+, Y ) → Cb(R+, Y )

satisfy conditions in (2.10). Then, if U ∈ Cb(R+, Y ) is the solution to (3.16) such that

supt≥0 ∥U(t)∥Y ≤ ρ for a fixed ρ > 0, then for t ≥ 0 this function U can be rewritten in

the form

(3.21) U(t) = U(t, 0)V0 +

∫ ∞

0
G(t, τ)g(U)(τ) dτ for some V0 ∈ P (0)Y .

Proof. See [27, Lemma 3.3].

We now state and prove our last result on the existence of an stable manifold for

solutions to (3.16) nearby its T -periodic solution.

Theorem 3.11. Let the assumptions of Theorem 3.8 be satisfied with given sufficiently

small f . Let û be the T -periodic solution of (3.16) obtained in Theorem 3.8. Then, there

exists a local stable manifold S near the solution û. Moreover, every solution u(t) on the

manifold S is exponentially attracted to û(t) in the sense that, there exist positive constants

µ and Cµ independent of t0 ≥ 0 such that

(3.22) ∥u(t)− û(t)∥ ≤ Cµe
−µ(t−t0)∥P (t0)u(t0)− P (t0)û(t0)∥

for all t ≥ t0.

Proof. We will apply our result obtained in [26, Theorem 3.8]. To this purpose, let u be

a solution to (3.16) and put w = u− û. Then, u satisfies (3.16) if and only if w satisfies

(3.23) w(t) = U(t, 0)w(0) +
∫ t

0
U(t, τ)

[
g(τ, w(τ) + û(τ))− g(τ, û(τ))

]
dτ for t ≥ 0.

Putting now F (t, w) = g(t, w+ û)−g(t, û) we obtain that F (t, 0) = 0, and since g satisfies

(2.10), F satisfies the hypotheses in [26, Theorem 3.8]. Therefore, by [26, Theorem 3.8]

we have that there exists a local stable manifold S (in neighborhood of 0) for (3.23).

Returning to the solution u of (3.16) by replacing w by u − û, we obtain that, this

manifold S is the local stable manifold for (3.16) nearby the solution û. Finally, we prove

the inequality (3.22). To this end, since both û and u are bounded on R+, we can use the

formula (3.21) (with 0 being replaced by t0) to write

u(t)− û(t) = U(t, t0)(P (t0)u(t0)− P (t0)û(t0)) +

∫ ∞

t0

G(t− τ)(g(u)(τ)− g(û)(τ)) dτ.
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Therefore,

∥u(t)− û(t)∥ ≤ Me−νt∥P (t0)u(t0)− P (t0)û(t0)∥

+ (1 +H)M

∫ ∞

t0

e−ν|t−τ |∥g(u)(τ)− g(û)(τ)∥ dτ

≤ Me−νt∥P (t0)u(t0)− P (t0)û(t0)∥

+ (1 +H)ML1

∫ ∞

t0

e−ν|t−τ |∥u(τ)− û(τ)∥ dτ.

Using now inequality of Gronwall-type [5, Corollary III.2.3] we obtain for β := (1 +

H)ML1 < ν/2 and t ≥ t0 that

∥u(t)− û(t)∥ ≤ Ce−µt∥P (t0)u(t0)− P (t0)û(t0)∥

for µ :=
√

ν2 − 2νβ and C := 2Mν

ν+
√

ν2−2νβ
. The proof is complete.
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