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Summability in Anisotropic Musielak–Orlicz Hardy Spaces

Jiashuai Ruan

Abstract. Let φ : Rn× [0,∞) → [0,∞) be an anisotropic growth function and A a gen-

eral expansive matrix on Rn. Let Hφ
A(Rn) be the anisotropic Musielak–Orlicz Hardy

space associated with A. In this paper, a general summability method, the so-called

θ-summability is considered for multi-dimensional Fourier transforms in Hφ
A(Rn). Pre-

cisely, the author establishes the boundedness of maximal operators, induced by the so-

called θ-means, from Hφ
A(Rn) to the Musielak–Orlicz space Lφ(Rn). As applications,

some norm and almost everywhere convergence results of the θ-means, which gener-

alize the well-known Lebesgue’s theorem, are presented. Finally, the corresponding

conclusions of two well-known specific summability methods, that is, Bochner–Riesz

and Weierstrass means, are also obtained.

1. Introduction

To give a unified framework of the real-variable theory of both the isotropic Hardy space

and the parabolic Hardy space of Calderón and Torchinsky [6], in 2003, Bownik [4] first

introduced and investigated the anisotropic Hardy space Hp
A(R

n) with p ∈ (0,∞), where

A is a general expansive matrix on Rn (see [4, p. 5, Definition 2.1]). In addition, Ky [11]

introduced the Musielak–Orlicz Hardy space Hφ(Rn) with

φ : Rn × [0,∞) → [0,∞)

being a growth function (see [11, Definition 2.1]), and also obtained the atomic characteri-

zation and the dual space ofHφ(Rn). Here we point out that some special Musielak–Orlicz

Hardy spaces appear naturally in the study of the products of functions in BMO(Rn) and

H1(Rn) (see, for instance, [1, 3, 10]), and the endpoint estimates for both the div-curl

lemma and the commutators of Calderón–Zygmund operators (see, for instance, [2, 9]).

For more progresses about the theory of Musielak–Orlicz-type spaces, we refer the reader

to [8, 25].

Based on the work of both Bownik [4] and Ky [11], Li et al. [14] introduced the

anisotropic Musielak–Orlicz Hardy space Hφ
A(R

n) via the non-tangential grand maximal
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function, where φ : Rn × [0,∞) → [0,∞) is an anisotropic growth function (see Defini-

tion 2.4 below), and then characterized Hφ
A(R

n), respectively, in terms of radial or non-

tangential maximal functions and atoms. Moreover, in [13], the authors obtained the char-

acterizations of Hφ
A(R

n) via various Littlewood–Paley functions including the Lusin area

function, the Littlewood–Paley g-function or g∗λ-function. Besides these, both the molec-

ular characterizations of Hφ
A(R

n) and the boundedness of integral anisotropic Calderón–

Zygmund operators from Hφ
A(R

n) to itself [or to the Musielak–Orlicz space Lφ(Rn)] were

obtained in [12,15].

On the other hand, it is well known that Stein, Taibleson and Weiss [22] proved for

the Bochner–Riesz summability that the maximal operator σθ
∗ of the θ-means is bounded

from the classical Hardy Hp(Rn) to the Lebesgue space Lp(Rn) with the index p greater

than some constant p0. This result has been extended to many other Hardy-type and

other summability methods, For more progress about this topic, we refer the reader

to [16–18, 20, 22–24] and references therein. In particular, Liu and Xia [18] obtained the

boundedness of maximal operators of the so-called θ-means from the isotropic Musielak–

Orlicz Hardy space Hφ(Rn) to the Musielak–Orlicz space Lφ(Rn). However, the corre-

sponding conclusion of summability in anisotropic Musielak–Orlicz Hardy spaces Hφ
A(R

n)

is still unknown.

In this paper, under some conditions on θ and p⃗, we show that the maximal operator σθ
∗

is bounded from Hφ
A(R

n) to Lφ(Rn). As applications, we present some norm and almost

everywhere convergence results for the θ-means. Moreover, sa special cases, we obtain the

corresponding results for Bochner–Riesz and Weierstrass summations.

This paper is organized as follows: Section 2 is devoted to recalling some definitions

of expansive matrices, Musielak–Orlicz spaces Lφ(Rn) and anisotropic Musielak–Orlicz

Hardy spaces Hφ
A(R

n). In Section 3, via borrowing some ideas from [23, Theorem 3] and

[18, Theorem 3.1], we show our main result by using the finite atomic decomposition for

a new dense subspace of Hφ
A(R

n). Section 4 is aimed to consider two special summability

methods, that is, the Bochner–Riesz and Weierstrass summations.

Finally, we make some conventions on notation. We always use C to denote a positive

constant which is independent of the main parameters, but its value may change from

line to line. In addition, the symbol f ≲ g means f ≤ Cg and, if f ≲ g ≲ f , we then

write f ∼ g. Let N := {1, 2, . . .}, Z+ := {0} ∪ N and 0 be the origin of Rn. For any

γ := (γ1, . . . , γn) ∈ (Z+)
n =: Zn

+, let |γ| := γ1 + · · · + γn and ∂γ :=
(

∂
∂x1

)γ1 · · · ( ∂
∂xn

)γn .
For each r ∈ [1,∞], we denote by r′ its conjugate index, that is, 1/r + 1/r′ = 1. For any

t ∈ R, the symbol ⌊t⌋ denotes the largest integer not greater than t. Moreover, for a given

set Ω ⊂ Rn, we denote its characteristic function by 1Ω, the set Rn \ Ω by Ω∁ and its

n-dimensional Lebesgue measure by |Ω|.
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2. Preliminaries

In this section, we recall the notions of expansive matrices, Musielak–Orlicz spaces and

anisotropic Musielak–Orlicz Hardy spaces.

We begin with the following notions of expansive matrices and homogeneous quasi-

norms introduced by Bownik in [4].

Definition 2.1. A real n× n matrix A is called an expansive matrix (shortly, a dilation)

if

min
λ∈σ(A)

|λ| > 1,

here and thereafter, σ(A) denotes the collection of all eigenvalues of A.

Definition 2.2. Let A be a dilation. A measurable mapping ρ : Rn → [0,∞) is called a

homogeneous quasi-norm, respect to A, if

(i) x ̸= 0 =⇒ ρ(x) ∈ (0,∞);

(ii) for every x ∈ Rn, ρ(Ax) = bρ(x), where b := | detA|;

(iii) there exists a positive constant C such that, for any x, y ∈ Rn,

ρ(x+ y) ≤ C[ρ(x) + ρ(y)].

For any given dilation A, let λ−, λ+ ∈ (1,∞) be two numbers such that

λ− ≤ min{|λ| : λ ∈ σ(A)} ≤ max{|λ| : λ ∈ σ(A)} ≤ λ+.

It follows from [4, p. 5, Lemma 2.2] that there exists an open set ∆ ⊂ Rn which has the

following property: |∆| = 1, and we can find a constant r ∈ (1,∞) such that ∆ ⊂ r∆ ⊂
A∆. For any k ∈ Z, define Bk := Ak∆. Then {Bk}k∈Z is a family of open sets around 0,

Bk ⊂ rBk ⊂ Bk+1 and |Bk| = bk. Moreover, let

(2.1) B :=
{
x+Bk : x ∈ Rn, k ∈ Z

}
and

ω := inf
{
i ∈ Z : ri ≥ 2

}
.

Recall also that the following classes of uniform anisotropic Muckenhoupt weights

respect to A were introduced in [14].
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Definition 2.3. Let q ∈ [1,∞). The class of uniform anisotropic Muckenhoupt weights

Aq(A) := Aq(Rn;A) is defined to be the set of all measurable functions φ : Rn × [0,∞) →
[0,∞) satisfying, if q ∈ (1,∞),

sup
t∈(0,∞)

sup
B∈B

{
1

|B|

∫
B
φ(y, t) dy

}{
1

|B|

∫
B
[φ(y, t)]

− 1
q−1 dy

}q−1

< ∞

and, if q = 1,

sup
t∈(0,∞)

sup
B∈B

{
1

|B|

∫
B
φ(y, t) dy

}{
ess sup
y∈B

[φ(y, t)]−1

}
< ∞,

where B is as in (2.1). Moreover, let A∞(A) :=
⋃

q∈[1,∞)Aq(A).

For any φ ∈ A∞(A), let

(2.2) q(φ) := inf{q ∈ [1,∞) : φ ∈ Aq(A)}.

A function Φ: [0,∞) → [0,∞) is called an Orlicz function if Φ is non-decreasing,

Φ(0) = 0, limt→∞Φ(t) = ∞ and, for any t ∈ (0,∞), Φ(t) ∈ (0,∞) (see, for instance, [11]).

For a given function φ : Rn × [0,∞) → [0,∞) satisfying, for any given x ∈ Rn, φ(x, · )
is an Orlicz function, φ is said to be of uniformly upper (resp., lower) type p for some

p ∈ (−∞,∞) if there exists a positive constant C such that, for almost every x ∈ Rn,

s ∈ [1,∞) (resp., s ∈ (0, 1)) and t ∈ [0,∞), φ(x, st) ≤ Cspφ(x, t). Let i(φ) denote the

critical uniformly lower type index of φ, that is,

(2.3) i(φ) := sup{p ∈ (−∞,∞) : φ is of uniformly lower type p}.

The next notion of anisotropic growth functions is just [14, Definition 3].

Definition 2.4. A function φ : Rn × [0,∞) → [0,∞) is called an anisotropic growth

function if it satisfies the following conditions:

(i) φ is a Musielak–Orlicz function, namely,

(i)1 for each given x ∈ Rn, φ(x, · ) : [0,∞) → [0,∞) is an Orlicz function;

(i)2 for each given t ∈ [0,∞), φ( · , t) is a Lebesgue measurable function on Rn.

(ii) φ ∈ A∞(A).

(iii) φ is of uniformly lower type p for some p ∈ (0, 1] and of uniformly upper type 1.
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For any φ as in Definition 2.4(i), the Musielak–Orlicz space Lφ(Rn) is defined to be

the set of all measurable functions f with their quasi-norms

∥f∥Lφ(Rn) := inf

{
λ ∈ (0,∞) :

∫
Rn

φ(x, |f(x)|/λ) dx ≤ 1

}
< ∞.

Due to [4, p. 5, Lemma 2.4], we may use the step homogeneous quasi-norm defined by

setting, for any x ∈ Rn,

ρ(x) :=

bk if x ∈ Bk+1 \Bk,

0 if x = 0

for convenience.

Hereinafter, the symbol S(Rn) denotes the space of all Schwartz functions, that is, the

set of all C∞(Rn) functions ϕ satisfying that, for any i ∈ Z+ and multi-index γ ∈ Zn
+,

∥ϕ∥γ,i := sup
x∈Rn

[ρ(x)]i|∂γϕ(x)| < ∞

with the topology determined by {∥ · ∥γ, i}γ∈Zn
+, i∈Z+ . Furthermore, denote by S ′(Rn) the

dual space of S(Rn), that is, the space of all tempered distributions on Rn equipped with

the weak-∗ topology. For any N ∈ Z+, denote by SN (Rn) the following set:{
ϕ ∈ S(Rn) : ∥ϕ∥SN (Rn) := sup

γ∈Zn
+, |γ|≤N

sup
x∈Rn

[
|∂γϕ(x)|max{1, [ρ(x)]N}

]
≤ 1

}
.

The following definition of anisotropic Musielak–Orlicz Hardy spaces was first intro-

duced by Li et al. [14].

Definition 2.5. (i) Let ϕ ∈ S(Rn) and f ∈ S ′(Rn). The non-tangential maximal

function Mϕ(f) with respect to ϕ is defined by setting, for any x ∈ Rn,

Mϕ(f)(x) := sup
y∈x+Bk, k∈Z

|f ∗ ϕk(y)|,

where ϕk(·) := bkϕ(Ak · ). Moreover, for any given N ∈ N, the non-tangential grand

maximal function MN (f) of f ∈ S ′(Rn) is defined by setting, for any x ∈ Rn,

MN (f)(x) := sup
ϕ∈SN (Rn)

Mϕ(f)(x).

(ii) Let N ∈ N and φ be an anisotropic growth function as in Definition 2.4. The

anisotropic Musielak–Orlicz Hardy space Hφ
N,A(R

n) is defined as

Hφ
N,A(R

n) :=
{
f ∈ S ′(Rn) : MN (f) ∈ Lφ(Rn)

}
and, for any f ∈ Hφ

N,A(R
n), let ∥f∥Hφ

N,A(Rn) := ∥MN (f)∥Lφ(Rn).
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Remark 2.6. (i) In [14, Theorem 33], it was proved that the space Hφ
N,A(R

n) is inde-

pendent of the choice of N as long as N ∈ N ∩ [m(φ),∞) with

(2.4) m(φ) :=

⌊[
q(φ)

i(φ)
− 1

]
ln b

lnλ−

⌋
,

where q(φ) and i(φ) are, respectively, as in (2.2) and (2.3). Therefore, we always

denote simply by Hφ
A(R

n) the anisotropic Musielak–Orlicz Hardy space.

(ii) When A := d In×n for some d ∈ R with |d| ∈ (1,∞), where In×n denotes the n × n

unit matrix, the space Hφ
A(R

n) becomes the Musielak–Orlicz Hardy space Hφ(Rn)

of Ky [11], which includes the classical Hardy space, the classical weighted Hardy

space and the classical Orlicz–Hardy space as special cases. In addition, if, for any

p ∈ (0, 1], x ∈ Rn and t ∈ (0,∞),

φ(x, t) := w(x)tp

with w being an anisotropic Muckenhoupt weight, then the space Hφ
A(R

n) coincides

with the weighted anisotropic Hardy space Hp
w(Rn;A) from [5], which includes the

anisotropic Hardy space Hp
A(R

n) of Bownik [4] as a special case.

3. Summability in Hφ
A(Rn)

In this section, we study the so-called θ-summability for multi-dimensional Fourier trans-

forms in the anisotropic Musielak–Orlicz Hardy space Hφ
A(R

n).

Recall that, for any p ∈ (0,∞] and any measurable set Ω ⊂ Rn, the Lebesgue space

Lp(Ω) is defined to be the set of all the measurable functions f on Ω such that, if p ∈ (0,∞),

∥f∥Lp(Ω) :=

[∫
Ω
|f(x)|p dx

]1/p
< ∞ and ∥f∥L∞(Ω) := ess sup

x∈Ω
|f(x)| < ∞.

The Fourier transform of f ∈ L1(Rn), denoted by f̂ , is defined by setting, for any

v ∈ Rn,

f̂(v) :=

∫
Rn

f(x)e−2πıx·v dx,

where ı :=
√
−1 and, for any x := (x1, . . . , xn), v := (v1, . . . , vn) ∈ Rn, x · v :=

∑n
k=1 xkvk.

Let f ∈ Lp(Rn) for some p ∈ [1, 2]. Then the Fourier inversion formula, that is, for any

x ∈ Rn,

f(x) =

∫
Rn

f̂(t)e2πıx·t dt

holds true if f̂ ∈ L1(Rn). This motivates the following definition of θ-summability of

Fourier transforms, which was considered in a great number of monographs and articles;
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see, for instance, [18,20–24] for the classical case and [16,17] for the anisotropic case. We

always assume that

(3.1) θ ∈ C0(R), θ(| · |) ∈ L1(Rn), θ(0) = 1 and θ is even,

where C0(R) denotes the set of all continuous functions f satisfying lim|x|→∞ |f(x)| = 0.

Let A∗ be the transposed matrix of A. The m-th anisotropic θ-mean of the function

f ∈ Lp(Rn), with p ∈ [1, 2], is defined by setting, for any m ∈ Z and x ∈ Rn,

σθ
mf(x) :=

∫
Rn

θ(|(A∗)−mu|)f̂(u)e2πıx·u du.

Let θ0(x) := θ(|x|) for any x ∈ Rn and assume that

(3.2) θ̂0 ∈ L1(Rn).

It was proved in [17] that, for any m ∈ Z, f ∈ L1(Rn) and x ∈ Rn, we can rewrite σθ
mf as

σθ
mf(x) = bm

∫
Rn

f(t)θ̂0(A
m(x− t)) dt.

Moreover, we can extend the definition of the anisotropic θ-means to any f ∈ Lφ(Rn) by

setting, for any x ∈ Rn,

σθ
mf(x) := bm

∫
Rn

f(x− t)θ̂0(A
mt) dt.

Then we define the maximal θ-operator σθ
∗ by setting, for any f ∈ Lφ(Rn),

σθ
∗f := sup

m∈Z
|σθ

mf |.

Now we state the main result of this paper as follows, which shows the boundedness

of maximal θ-operators from Hφ
A(R

n) to Lφ(Rn).

Theorem 3.1. Let θ and θ0 be, respectively, as in (3.1) and (3.2) satisfying that there

exists a positive constant β ∈ (1,∞) such that, for any α ∈ (Z+)
n and x ∈ Rn \ {0},∣∣∂αθ̂0(x)

∣∣ ≤ C(α,β)|x|−β,

where the positive constant C(α,β) is independent of x. Suppose further that φ is a growth

function such that

(3.3)
i(φ)

q(φ)
∈
(

ln b

β lnλ−
,∞
)

with β ∈
(

ln b

lnλ−
,∞
)
,

where i(φ) and q(φ) are, respectively, as in (2.3) and (2.2). Then there exists a positive

constant C(i(φ),q(φ)) such that, for any f ∈ Hφ
A(R

n),

∥σθ
∗f∥Lφ(Rn) ≤ C(i(φ),q(φ))∥f∥Hφ

A(Rn).
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To show Theorem 3.1, we need some technical lemmas. Recall that, for any locally in-

tegrable function f , the Hardy–Littlewood maximal function MHL(f) is defined by setting,

for any x ∈ Rn,

MHL(f)(x) := sup
k∈Z

sup
y∈x+Bk

1

|Bk|

∫
y+Bk

|f(z)| dz = sup
x∈B∈B

1

|B|

∫
B
|f(z)| dz,

where B is as in (2.1).

The succeeding boundedness of MHL on the space Lφ(Rn) comes from [13, Lemma 3.6].

Lemma 3.2. Let φ be a Musielak–Orlicz function with uniformly lower type p−φ and

uniformly upper type p+φ satisfying q(φ) < p−φ ≤ p+φ < ∞, where q(φ) is as in (2.2). Then

there exists a positive constants C such that, for any f ∈ Lφ(Rn),∫
Rn

φ(x,MHLf(x)) dx ≤ C

∫
Rn

φ(x, |f(x)|) dx.

The following items are just, respectively, [14, Lemma 10] and [11, Lemma 4.1(i) and

Lemma 4.3(i)].

Lemma 3.3. Let φ be a growth function as in Definition 2.4.

(i) Let q ∈ [1,∞) and φ ∈ Aq(A). Then there exists a positive constant C such that,

for any dilated ball B ⊂ B, subset E ⊂ B and t ∈ (0,∞),

φ(B, t)

φ(E, t)
≤ C

[
|B|
|E|

]q
.

(ii) There exists a positive constant C such that, for any {(x, rk)}k∈N ⊂ Rn × [0,∞),

φ

(
x,
∑
k∈N

rk

)
≤ C

∑
k∈N

φ(x, tk).

(iii) For any r ∈ (0,∞) and measurable function f on Rn,∫
Rn

φ

(
x,

|f(x)|
r

)
dx ≲ 1 implies ∥f∥Lφ(Rn) ≲ r,

where the positive equivalence constants are independent of r and f .

Recall also that, for any given growth function φ and any measurable subset E ⊂ Rn,

the space Lq
φ(E) is defined to be the set of all the measurable functions f on E such that

∥f∥Lq
φ(E) :=

supt∈(0,∞)

[
1

φ(E,t)

∫
E |f(x)|qφ(x, t) dx

]1/q
< ∞ when q ∈ [1,∞),

∥f∥L∞(E) < ∞ when q = ∞.

The next definitions of anisotropic Musielak–Orlicz atoms and finite atomic Hardy

spaces are from [14].
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Definition 3.4. Let φ be as in Definition 2.4 and q(φ) as in (2.2).

(i) An anisotropic triplet (φ, q, s) is said to be admissible if q ∈ (q(φ),∞] and s ∈
Z+ ∩ [m(φ),∞), where m(φ) is as in (2.4).

(ii) For any given anisotropic admissible triplet (φ, q, s), a measurable function a on Rn

is called an anisotropic Musielak–Orlicz (φ, q, s)-atom (shortly, a (φ, q, s)-atom) if

(ii)1 supp a ⊂ B, where B ∈ B and B is as in (2.1);

(ii)2 ∥a∥Lq
φ(Rn) ≤ ∥1B∥−1

Lφ(Rn);

(ii)3 for any multi-index γ ∈ Zn
+ with |γ| ≤ s,

∫
Rn a(x)x

γ dx = 0.

(iii) For any given anisotropic admissible triplet (φ, q, s), the anisotropic Musielak–Orlicz

finite atomic Hardy space Hφ,q,s
A,fin (R

n) is defined to be the set of all f ∈ S ′(Rn)

satisfying that there exist I ∈ N, {λk}k∈[1,I]∩N ⊂ C and a sequence of (φ, q, s)-

atoms, {ak}k∈[1,I]∩N, supported, respectively, in {B(k)}k∈[1,I]∩N ⊂ B such that f =∑I
k=1 λkak in S ′(Rn). Furthermore, for any f ∈ Hφ,q,s

A,fin (R
n), let

∥f∥Hφ,q,s
A,fin (Rn) := inf

{
Λ({λkak}k∈[1,I]∩N)

}
,

where the infimum is taken over all the finite decompositions of f as above and

Λ({λkak}k∈[1,I]∩N) := inf

λ ∈ (0,∞) :
∑

k∈[1,I]∩N

φ

(
B(k),

|λk|
λ∥1B(k)∥Lφ(Rn)

)
≤ 1

 .

The following conclusions are from [15]. The space L∞
c,s(Rn), with s ∈ N, is defined to

be the set of all the functions f ∈ L∞(Rn) with compact support satisfying that, for any

α ∈ Zn
+ with |α| ≤ s,

∫
Rn f(x)x

α dx = 0 holds true.

Lemma 3.5. Let φ be as in Definition 2.4, q ∈ (q(φ),∞) and s ∈ N ∩ [m(φ),∞), where

q(φ) and m(φ) are as in (2.4). Then,

(i) for any f ∈ L∞
c,s(Rn), there exist an I ∈ N, a sequence {λk}k∈[1,I]∩N ⊂ C and a

sequence of (φ, q, s)-atoms, {ak}k∈[1,I]∩N, such that f =
∑I

k=1 λkak holds true both

in S ′(Rn) and almost everywhere, and

Λ
(
{λkak}k∈[1,I]∩N

)
≲ ∥f∥Hφ

A(Rn).

(ii) L∞
c,s(Rn) is dense in Hφ

A(R
n).

We also need the succeeding Lemma 3.6, which can be deduce from [7, Lemma 3.2(ii)]

and an argument similar to [20, (5.19)]; the details are omitted.
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Lemma 3.6. Let θ and θ0 be, respectively, as in (3.1) and (3.2). Let q ∈ (1,∞] and

φ ∈ Aq(Rn). Then there exists a positive constant C such that, for any locally integrable

function f and t ∈ (0,∞),∫
Rn

[σθ
∗f(x)]

qφ(x, t) dx ≤ C

∫
Rn

|f(x)|qφ(x, t) dx.

We now show Theorem 3.1.

Proof of Theorem 3.1. Let all notation be as in Theorem 3.1 and (φ, q, s) an anisotropic

admissible triplet. We next prove the present theorem by three steps.

Step 1. This step is devoted to showing that, for any λ ∈ (0,∞) and (φ, q, s)-atom a

supported in B ⊂ B,

(3.4)

∫
Rn

φ(x, λσθ
∗(a)(x)) dx ≤ C(φ,q,s)φ

(
B, λ∥1B∥−1

Lφ(Rn)

)
holds true, where C(φ,q,s) is a positive constant depending on φ, q and s. For this purpose,

we rewrite∫
Rn

φ(x, λσθ
∗(a)(x)) dx =

∫
AωB

φ(x, λσθ
∗(a)(x)) dx+

∫
(AωB)∁

· · · =: L1 + L2.

When q ∈ (q(φ),∞), note that φ is non-decreasing and of uniformly upper type 1.

From Lemma 3.3(i), the Hölder inequality, Lemma 3.6 and Definition 3.4(ii), we deduce

that, for any λ ∈ (0,∞),

L1 ≲
∫
AωB

[
σθ
∗(a)(x)

∥1B∥−1
Lφ(Rn)

+ 1

]
φ
(
x, λ∥1B∥−1

Lφ(Rn)

)
dx

≲ φ
(
B, λ∥1B∥−1

Lφ(Rn)

)
+ ∥1B∥Lφ(Rn)

×
{∫

AωB
[σθ

∗(a)(x)]
qφ
(
x, λ∥1B∥−1

Lφ(Rn)

)
dx

}1/q [
φ
(
B, λ∥1B∥−1

Lφ(Rn)

)](q−1)/q

≲ φ
(
B, λ∥1B∥−1

Lφ(Rn)

)
+ ∥1B∥Lφ(Rn)∥a∥Lq

φ(Rn)(B)φ
(
B, λ∥1B∥−1

Lφ(Rn)

)
≲ φ

(
B, λ∥1B∥−1

Lφ(Rn)

)
.

(3.5)

For L2, similar to [17, (5.10)] and [15, (3.6)], we obtain that, for any x ∈ (AωB)∁,

(3.6) σθ
∗(a)(x) ≲ ∥1B∥−1

Lφ(Rn)[MHL(1B)(x)]
β lnλ−/ ln b.

In addition, by (3.3), we can find two numbers τ ∈ (q(φ),∞) and σ ∈ (0, i(φ)) satisfying

that φ ∈ Aτ (Rn), τ ln b/β lnλ− < σ and φ is of uniformly lower type σ. This implies that
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φ̃(x, t) := φ(x, tβ lnλ−/ ln b) is of uniformly lower type σβ lnλ−/ ln b. Therefore, by (3.6),

Lemma 3.2 and the inequality σβ lnλ−/ ln b > τ > q(φ), we conclude that

L2 ≲
∫
(AωB)∁

φ̃
(
x, λln b/β lnλ−∥1B∥− ln b/β lnλ−

Lφ(Rn) MHL(1B)(x)
)
dx

≲
∫
Rn

φ̃
(
x, λln b/β lnλ−∥1B∥− ln b/β lnλ−

Lφ(Rn) 1B(x)
)
dx

∼ φ
(
B, λ∥1B∥−1

Lφ(Rn)

)
.

(3.7)

This proves (3.4) for q ∈ (q(φ),∞).

When q = ∞, for L1, by an argument similar to that used in (3.5), we find that, for

any λ ∈ (0,∞),

L1 ≲
∫
AωB

[
σθ
∗(a)(x)

∥1B∥−1
Lφ(Rn)

+ 1

]
φ
(
x, λ∥1B∥−1

Lφ(Rn)

)
dx

≲ φ
(
B, λ∥1B∥−1

Lφ(Rn)

)
+ ∥1B∥Lφ(Rn)∥a∥L∞(Rn)φ

(
B, λ∥1B∥−1

Lφ(Rn)

)
≲ φ

(
B, λ∥1B∥−1

Lφ(Rn)

)
.

This, combined with the validity of (3.7) for q = ∞, finishes the proof of (3.4).

Step 2. Let q ∈ (q(φ),∞). In this step, we show that, for any f ∈ L∞
c,s(Rn),

(3.8) ∥σθ
∗f∥Lφ(Rn) ≤ C(i(φ),q(φ))∥f∥Hφ

A(Rn),

where C(i(φ),q(φ)) is a positive constant independent of f . To this end, for any f ∈ L∞
c,s(Rn),

it follows from Lemma 3.5(i) that there exist an I ∈ N, a sequence {λk}k∈[1,I]∩N ⊂ C and a

sequence of (φ, q, s)-atoms, {ak}k∈[1,I]∩N, supported respectively in {B(k)}k∈[1,I]∩N ⊂ Rn,

such that f =
∑I

k=1 λkak is valid almost everywhere and also in S ′(Rn), and

Λ
(
{λkak}k∈[1,I]∩N

)
≲ ∥f∥Hφ

A(Rn) and
∑

k∈[1,I]∩N

φ

(
B(k),

|λk|∥1B(k)∥−1
Lφ(Rn)

Λ({λkak}k∈[1,I]∩N)

)
= 1.

By this, Lemma 3.3(ii) and (3.4), we have∫
Rn

φ

(
x,

σθ
∗f(x)

Λ({λkak}k∈[1,I]∩N)

)
dx ≲

∑
k∈[1,I]∩N

∫
Rn

φ

(
x,

|λk|σθ
∗(ak)(x)

Λ({λkak}k∈[1,I]∩N)

)
dx

≲
∑

k∈[1,I]∩N

φ

(
B(k),

|λk|∥1B(k)∥−1
Lφ(Rn)

Λ({λkak}k∈[1,I]∩N)

)
≲ 1.

From this, Lemma 3.3(iii), we infer that

∥σθ
∗f∥Lφ(Rn) ≲ Λ({λkak}k∈[1,I]∩N) ≲ ∥f∥Hφ

A(Rn).
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This proves (3.8).

Step 3. This step is aimed to show that (3.8) is valid for f ∈ Hφ
A(R

n). For this

purpose, let f ∈ Hφ
A(R

n). Then Lemma 3.5(ii) implies that there exists a Cauchy sequence

{fi}i∈N ⊂ L∞
c,s(Rn) satisfying that

lim
i→∞

∥fi − f∥Hφ
A(Rn) = 0.

By this, the linearity of σθ
∗ and the validity of (3.8) on the space L∞

c,s(Rn), we conclude

that, as i, k → ∞,

∥σθ
∗(fi)− σθ

∗(fk)∥Hφ
A(Rn) = ∥σθ

∗(fi − fk)∥Hφ
A(Rn) ≲ ∥fi − fk∥Hφ

A(Rn) → 0.

Thus, {σθ
∗(fi)}i∈N is a Cauchy sequence in Hφ

A(R
n). From this and the fact that the space

Hφ
A(R

n) is complete(see [14, Proposition 7]), we infer that there exists some h ∈ Hφ
A(R

n)

such that h = limi→∞ σθ
∗(fi) in Hφ

A(R
n). Let σθ

∗(f) := h. Then (3.8) implies that σθ
∗(f) is

well defined and, furthermore, for any f ∈ Hφ
A(R

n),

∥σθ
∗(f)∥Hφ

A(Rn) ≲ lim sup
i→∞

[
∥σθ

∗(f)− σθ
∗(fi)∥Hφ

A(Rn) + ∥σθ
∗(fi)∥Hφ

A(Rn)

]
≲ lim sup

i→∞
∥σθ

∗(fi)∥Hφ
A(Rn) ≲ lim

i→∞
∥fi∥Hφ

A(Rn) ∼ ∥f∥Hφ
A(Rn).

Therefore, (3.8) is valid for any f ∈ Hφ
A(R

n) and the proof of Theorem 3.1 is completed.

Remark 3.7. (i) When A = d In×n for some d ∈ R with |d| ∈ (1,∞), the space Hφ
A(R

n)

becomes the Musielak–Orlicz Hardy space Hφ(Rn) of Ky [11]. In this case Theo-

rem 3.1 is just [18, Theorem 3.1]. Moreover, if p ∈ (0, 1] and

φ(x, t) := tp, ∀x ∈ Rn and t ∈ (0,∞),

then i(φ)
q(φ) = p, the space Hφ

A(R
n) goes back to the classical Hardy space Hp(Rn),

and Theorem 3.1 goes back to the classical result with β ∈ (n,∞) and p ∈ (n/β,∞)

(see Weisz [22]). The classical result was proved in a special case, namely, for the

Bochner–Riesz means, in Stein et al. [19]. For the same case, a counterexample was

also given in [19] to illustrate that the same conclusion is not true for p ∈ (0, n/β].

(ii) If, for any p ∈ (0, 1], x ∈ Rn and t ∈ (0,∞),

φ(x, t) := w(x)tp

with w being an anisotropic Muckenhoupt weight, then the space Hφ
A(R

n) coincides

with the weighted anisotropic Hardy space Hp
w(Rn;A) from [5]. We should point

out that Theorem 3.1 is new even for this case.
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As applications of Theorem 3.1, we give two convergence results, whose proofs are

omitted.

Corollary 3.8. With the same assumptions as in Theorem 3.1, if f ∈ Hφ
A(R

n), then σθ
mf

converges almost everywhere as well as in the Lφ(Rn) quasi-norm as m → ∞.

Corollary 3.9. With the same assumptions as in Theorem 3.1, if f ∈ Hφ
A(R

n) and there

exists a subset I ⊂ Rn such that the restriction f |I ∈ LΦ(I), where Φ is some growth

function with i(Φ)
q(Φ) ∈ [1,∞), then

lim
m→∞

σθ
mf(x) = f(x) for almost every x ∈ I as well as in the Lφ(I) quasi-norm.

4. Two specific summability methods

As special cases, we consider two specific summability methods.

4.1. Bochner–Riesz summation

For any γ ∈ (0,∞) and α ∈ N, the Bochner–Riesz summation is defined by setting, for

any u ∈ Rn,

(4.1) θ0(u) :=

(1− |u|α)γ if |u| ∈ [0, 1),

0 if |u| ∈ [1,∞).

The next result can be found in Weisz [22].

Lemma 4.1. Let θ0 be as in (4.1). Then the conditions (3.1) and (3.2) are satisfied if

γ ∈
(
n−1
2 ,∞

)
and, for any β ∈ Zn

+ and x ∈ Rn \ {0},∣∣∂β θ̂0(x)
∣∣ ≤ C(α,β)|x|−n/2−γ−1/2,

where C(γ,β) is a positive constant independent of x.

The following conclusion is easily deduced from Lemma 4.1 and Theorem 3.1; the

details are omitted.

Theorem 4.2. Let φ be an anisotropic growth function and θ0 as in (4.1). If

γ ∈
(
max

{
n− 1

2
,
ln b

lnλ−
− n+ 1

2

}
,∞
)

and
i(φ)

q(φ)
∈
(

ln b

lnλ−(n/2 + γ + 1/2)
,∞
)
,

then there exists a positive constant C(i(φ),q(φ)) such that, for any f ∈ Hφ
A(R

n),

∥σθ
∗f∥Lφ(Rn) ≤ C(i(φ),q(φ))∥f∥Hφ

A(Rn).

Remark 4.3. Let θ0 be as in (4.1). Then, in this special case, the corresponding conclusions

in Corollaries 3.8 and 3.9 are true as well.
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4.2. Weierstrass summation

The Weierstrass summation is defined as

(4.2) θ0(u) := e−|u|2/2, ∀u ∈ Rn.

Observe that, for any t ∈ Rn, θ̂0(t) = e−|t|2/2

The following Lemma 4.4 is just [17, Lemma 2.27].

Lemma 4.4. Let θ0 be as in (4.2). Then the conditions (3.1) and (3.2) are satisfied and,

for any β ∈ (1,∞), γ ∈ Zn
+ and x ∈ Rn \ {0},∣∣∂γ θ̂0(x)

∣∣ ≤ C(γ,β)|x|−β,

where C(γ,β) is a positive constant independent of x.

This lemma and Theorem 3.1 imply the following Theorem 4.5 immediately; the details

are omitted.

Theorem 4.5. Let θ0 be as in (4.2). If φ is an anisotropic growth function, then there

exists a positive constant C(i(φ),q(φ)) such that, for any f ∈ Hφ
A(R

n),

∥σθ
∗f∥Lφ(Rn) ≤ C(i(φ),q(φ))∥f∥Hφ

A(Rn).

Moreover, the corresponding conclusions in Corollaries 3.8 and 3.9 are true as well.
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