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Nonnegative Holomorphic Sectional Curvature on Compact Almost

Hermitian Manifolds

Masaya Kawamura

Abstract. We study nonnegative holomorphic sectional curvature on a compact almost

Hermitian manifold. In the positive case, we show some geometric conditions for

negative Kodaira dimension. In the zero case, we give some conditions of the Chern–

Yamabe problem for zero Chern scalar curvature.

1. Introduction

The holomorphic sectional curvature plays an important role not only in differential ge-

ometry but also in algebraic geometry. In the early 1990s, Yau [26] asked whether a

compact Kähler manifold with positive holomorphic sectional curvature has negative Ko-

daira dimension. Yang answered Yau’s question in a more general setting, stating that

if the holomorphic sectional curvature on a compact Hermitian manifold is positive, then

the manifold has negative Kodaira dimension (see [25]). In this paper, we generalize this

problem to almost Hermitian geometry.

Let (M2n, J) be an almost complex manifold of real dimension 2n with n ≥ 3 and let

g be an almost Hermitian metric onM . Let {er} be an arbitrary local (1, 0)-frame around

a fixed point p ∈ M and let {θr} be the associated coframe. Then the associated real

(1, 1)-form ω with respect to g takes the local expression ω =
√
−1grkθ

r ∧ θk. We will also

refer to ω as to an almost Hermitian metric in the present paper. We define a Gauduchon

metric and a k-th Gauduchon metric on an almost Hermitian manifold in the following.

Definition 1.1. [19, Definition 1.1] Let (M2n, J, ω) be a real 2n-dimensional almost

Hermitian manifold. An almost Hermitian metric ω is called Gauduchon if ω satisfies that

∂∂ωn−1 = 0.

For an integer k such that 1 ≤ k ≤ n − 1, an almost Hermitian metric ω is called k-th

Gauduchon if the metric ω satisfies that

∂∂ωk ∧ ωn−k−1 = 0.
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From the definition, we see that (n−1)-th Gauduchon metrics are the usual Gauduchon

metrics. Fino and Ugarte have shown that for each k = 1, . . . , [n/2]−1, a Hermitian metric

is k-th Gauduchon if and only if it is (n− k− 1)-th Gauduchon on a complex nilmanifold

(see [7, Lemma 4.7]). Latorre and Ugarte have investigated the k-th Gauduchon condition

on homogeneous compact complex manifolds (see [20]).

One has the following well-known result.

Proposition 1.2. [9] Let (M2n, J, ω) be a compact almost Hermitian manifold with n ≥ 2.

Then there exists a smooth function u, unique up to addition of a constant, such that the

conformal almost Hermitian metric euω is Gauduchon.

We have characterized the k-th Gauduchon condition on a compact almost Hermitian

manifold as follows:

Proposition 1.3. [19, Theorem 1.1] Let (M2n, J, ω) be compact almost Hermitian man-

ifold with n ≥ 3 and let k be an integer such that 1 ≤ k ≤ n − 1. Then the following are

equivalent.

(i) ω is k-th Gauduchon;

(ii) sω − ŝω = k−1
n−2 |∂

∗ω|2 + n−k−1
n−2 |∂ω|2 + T r

ijT
i
rj
,

where sω is the Chern scalar curvature and ŝω is the Riemannian type scalar curvature of

the metric ω with respect to the Chern connection (see (2.7)), ∂∗ = − ∗ ∂∗ is the adjoint

operator (see Lemma 2.3), |∂ω|2 = 1
2!g

ijgpqgkl(∂ω)ipl(∂ω)jqk, |∂∗ω|2 = gij(∂∗ω)j(∂
∗ω)i,

and T k
ij
’s are components of the torsion (see Section 2 for more detail). Note that T r

ijT
i
rj

means that we sum over repeated indices i, j and r with respect to the metric ω, that is,

T r
ijT

i
rj

= gjkgisgpqTijpTqks, where Tijp = T l
ijgpl, Tqks = T r

qk
grs.

Remark 1.4. From Proposition 1.13, we have that for a Gauduchon metric (i.e., (n−1)-th

Gauduchon) ω,

(1.1) sω − ŝω = |∂∗ω|2 + T r
ijT

i
rj

on a real 2n-dimensional compact almost Hermitian manifold (M2n, J, ω) with n ≥ 3.

Especially, if the manifold (M2n, J, ω) is quasi-Kähler and satisfies that T r
ijT

i
rj

= 0, then

we have that sω = ŝω from the formula (1.1). Here, recall that a quasi-Kähler structure is

an almost Hermitian structure whose real (1, 1)-form ω satisfies (dω)(1,2) = ∂ω = 0, which

is equivalent to the original definition of quasi-Kählerianity: DXJ(Y ) +DJXJ(JY ) = 0

for all vector fields X, Y , where D is the Levi-Civita connection (see [11]). The quasi

Kählerity is equivalent to that T k
ij = 0 for all i, j, k on an almost Hermitian manifold.
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The difference appears in the formula (ii) in Proposition 1.3 compared to the one in

the complex case [4, Proposition 1.7] is obviously the term T r
ijT

i
rj
. We investigate this

term in some special cases below.

We denote by Ω the curvature of the Chern connection ∇ on an almost Hermitian

manifold. We can regard Ω as a section of Λ2M⊗End(T 1,0M), Ω ∈ Γ(Λ2M⊗End(T 1,0M))

and Ω splits in

Ω = Ω(2,0) +Ω(1,1) +Ω(0,2) = H +R+H,

where R ∈ Γ(Λ1,1M ⊗ End(T 1,0M)), H ∈ Γ(Λ2,0M ⊗ End(T 1,0M)) and H ∈ Γ(Λ0,2M ⊗
End(T 1,0M)). Note that since the Chern connection has torsion, R and H do not

satisfy the first Bianchi identity and do not satisfy R(X,Y, Z,W ) = R(Z,W,X, Y ),

H(X,Y, Z,W ) = H(Z,W,X, Y ) in general. By choosing a local unitary (1, 0)-frame {ei}
with respect to g, we have that (see Lemma 2.2)

Rijkl = g(∇i∇jek −∇j∇iek −∇[ei,ej ]
ek, el),

Hijkl = g(∇i∇jek −∇j∇iek −∇[ei,ej ]ek, el),

Hijkl = g(∇i∇jek −∇j∇iek −∇[ei,ej ]
ek, el).

We define the curvature operator by

RL(X,Y )Z = DXDY Z −DYDXZ −D[X,Y ]Z,

where D is the Levi-Civita connection, and define the curvatuer tensor

RL(X,Y, Z,W ) := g(RL(X,Y )Z,W ),

which satisfies the following symmetries:

RL(X,Y, Z,W ) = −RL(Y,X,Z,W ), RL(X,Y, Z,W ) = −RL(X,Y,W,Z),

RL(X,Y, Z,W ) +RL(Y,Z,X,W ) +RL(Z,X, Y,W ) = 0,

RL(X,Y, Z,W ) = RL(Z,W,X, Y ).

We define the Kähler-likeness and the G-Kähler-likeness on almost Hermitian manifolds

as follows.

Definition 1.5. [2], [15, Definition 1.2] Given an almost Hermitian manifold (M2n, J, g),

almost Hermitian metric g will be called Kähler-like, if RXY ZW = RZY XW for any (1, 0)-

tangent vectors X, Y , Z and W . When the almost Hermitian metric g is Kähler-like,

the triple (M2n, J, g) will be called a Kähler-like almost Hermitian manifold. Similarly, if

RL
XY ZW

= RL
XY ZW

= 0 for any type (1, 0) tangent vectors X, Y , Z and W , we will say

that g is G-Kähler-like. When the almost Hermitian metric g is G-Kähler-like, the triple

(M2n, J, g) will be called a G-Kähler-like almost Hermitian manifold.
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The Kähler-likeness can be restated by using following notations: The curvature RL

of the Levi-Civita connection D satisfies the first Bianchi identity:

(1Bnc)
∑
σ∈G

RL(σX, σY )σZ = 0,

sum over circular permutation. The curvature Ω(1,1) = R of the Chern connection ∇
satisfies

(Cplx) R(X,Y, Z,W ) = R(X,Y, JZ, JW ) = R(JX, JY, Z,W ).

This condition (Cplx) for the curvature RL is referred to as the AH1-condition and an

almost Hermitian manifold satisfies (Cplx) for RL is called an AH1-manifold.

We define the Kähler-likeness in the way of [2, Definition 4] as follows.

Definition 1.6. Let (M,J, ω) be an almost Hermitian manifold. Let ∇̃ be a metric

connection on this manifold. We say that the curvature of the connection ∇̃ is Kähler-like

if it satisfies both (1Bnc) and (Cplx).

We see the following equivalences which are similar to the ones in [2, Remark 5].

Lemma 1.7. [2, Remark 5]

(i) An almost Hermitian manifold (M,J, ω) is Kähler-like in the sense of Definition 1.5

if and only if the curvature Ω(1,1) = R of the Chern connection is Kähler-like in the

sense of Definition 1.6.

(ii) An almost Hermitian manifold (M,J, ω) is G-Kähler-like in the sense of Defini-

tion 1.5 if and only if the curvature RL of the Levi-Civita connection is Kähler-like

in the sense of Definition 1.6.

Remark 1.8. Notice that since the curvature Ω(1,1) = R with respect to the Chern con-

nection automatically satisfies (Cplx), the condition the curvature has to satisfy is only

(1Bnc) to be Kähler-like in the sense of Definition 1.5. From Lemma 1.7(ii), a G-Kähler-

like almost Hermitian manifold coincides with an AH1-manifold.

Remark 1.9. On a compact Kähler-like k-th Gauduchon manifold (M2n, J, ω) with n ≥ 3

for some integer 1 ≤ k ≤ n − 1, we have that T r
ijT

i
rj

≤ 0 since we have sω = ŝω from the

Kähler-likeness.

Definition 1.10. [28] An almost Hermitian manifold (M2n, J, ω) is called almost Kähler

if dω = 0. When an almost Hermitian metric ω is almost Kähler, the triple (M2n, J, ω) is

called an almost Kähler manifold.
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Lemma 1.11. [28] The almost Kählerity is equivalent to

T k
ij = 0, T k

ij + T j
ki + T i

jk = 0 for all i, j, k = 1, . . . , n.

From Lemma 1.11, if assuming that a manifold is almost Kähler, we can compute that

T r
ijT

i
rj

= −T r
ijT

j

ir
− T r

ijT
r
ji
= −T r

jiT
j

ri
+ T r

ijT
r
ij
= −T r

ijT
i
rj
+ |T ′′|2g

⇐⇒ T r
ijT

i
rj

=
1

2
|T ′′|2g,

(1.2)

where g is the associated almost Hermitian metric with respect to the real (1, 1)-form ω

and |T ′′|2g := gjkgisgrlT
l
ijT

r
sk
. The computation (1.2) implies that assuming T r

ijT
i
rj

= 0 on

an almost Kähler manifold, we must have T ′′ ≡ 0 and the manifold must be Kähler.

Lemma 1.12. Let (M2n, J, ω) be an almost Kähler manifold. Then we have that

T r
ijT

i
rj

≥ 0.

The equality T r
ijT

i
rj

= 0 holds if and only if the almost Kähler manifold is Kähler.

From the formula (1.1), we have that T r
ijT

i
rj

≤ 0 on a compact Kähler-like manifold

(M2n, J, ω) with n ≥ 3 since we have sω = ŝω under the Kähler-likeness. On a real

2n-dimensional compact Kähler-like almost Kähler manifold with n ≥ 3, we obtain that

T r
ijT

i
rj

= 0, which implies that the manifold must be Kähler from Lemma 1.12.

Proposition 1.13. A real 2n-dimensional compact Kähler-like almost Kähler manifold

with n ≥ 3 is Kähler.

For the case of n = 2, on a real 4-dimensional compact Kähler-like almost Hermitian

manifold, since it is almost Kähler (see [14, Theorem 1.1]) and we have sω = ŝω under

the Kähler-likeness, by applying the formula (4.9), we have that T r
ijT

i
rj

= 0, which implies

that the manifold must be Kähler from Lemma 1.12. It is known that a real 4-dimensional

compact Kähler-like AH3-manifold is Kähler in [14, Corollary 1.1]. We obtain the following

improved result.

Proposition 1.14. A real 4-dimensional compact Kähler-like almost Hermitian manifold

is Kähler.

The condition T r
ijT

i
rj

≥ 0 appears for instance, on a Kähler-like and G-Kähler-like

almost Hermitian manifold (M2n, J, ω) with n ≥ 2, if T r
ijT

i
rj

≥ 0, then the metric ω is

semi-Kähler (see Definition 1.39) and the almost complex structure J is integrable (i.e.,

the metric ω is balanced) (see [15, Corollary 1.2]). Note that it is known that if an

AH1-manifold is almost Kähler, it must be Kähler (see [13, Theorem 5.1]).
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Lemma 1.15. [28, Corollary 3.4] Let (M2n, J, ω) be an almost Kähler manifold. Then

we have that

RL
ijkl

= Rijkl + T k
riT

l
rj
.

On an almost Kähler manifold, we have that by applying Lemmas 1.11, 1.15 and (2.6),

T r
kiT

l
rj

= Rijkl −Rkjil = RL
ijkl

−RL
kjil

− T k
riT

l
rj
+ T i

rkT
l
rj

= RL
ikjl

− T r
kiT

l
rj
,

which implies that

(1.3) RL
ikjl

= 2T r
kiT

l
rj
.

Proposition 1.16. A G-Kähler-like almost Kähler manifold is Kähler.

Proof. The G-Kähler-likeness implies that RL
ikjl

= 0 for all i, j, k, l. Hence, from (1.3),

we obtain that T r
kiT

l
rj

= 0 for all i, j, k, l, which gives us that T r
kiT

k
ri

= 0 and then the

manifold must be Kähler from Lemma 1.12.

The compactness in Proposition 1.13 can be actually omitted.

Proposition 1.17. A Kähler-like almost Kähler manifold is Kähler.

Proof. If a real 2n-dimensional almost Kähler manifold (M2n, J, ω) is Kähler-like, we ob-

tain that sω = ŝω, and then we have that T r
ijT

i
rj

= 0 from (4.9) for n ≥ 2 since we have

that ⟨∂∂∗ω, ω⟩ = 0 from the almost Kählerity.

Definition 1.18. [28] An almost Hermitian manifold (M2n, J, ω) is called nearly Kähler if

(DXJ)X = 0 for any tangent vector field X, where D denotes the Levi-Civita connection.

When an almost Hermitian metric ω is nearly Kähler, the triple (M2n, J, ω) is called a

nearly Kähler manifold.

Lemma 1.19. [28, Lemma 2.4] The nearly Kählerity is equivalent to

T k
ij = 0, T k

ij = T i
jk for all i, j, k = 1, . . . , n.

From Lemma 1.19, if assuming that a manifold is nearly Kähler, we compute that

(1.4) T r
ijT

i
rj

= T r
ijT

r
ji
= −T r

ijT
r
ij
= −|T ′′|2g,

which implies we have that assuming T r
ijT

i
rj

= 0 on a nearly Kähler manifold, we must

have T ′′ ≡ 0 and the manifold must be Kähler.

Lemma 1.20. Let (M2n, J, ω) be a nearly Kähler manifold. Then we have that

(1.5) T r
ijT

i
rj

≤ 0.

The equality T r
ijT

i
rj

= 0 holds if and only if the nearly Kähler manifold is Kähler.
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Combining (1.5) with (4.10), we have that T r
ijT

i
rj

= 0 on a real 4-dimensional nearly

Kähler manifold, which implies that T ′′ ≡ 0 from the computation (1.4) on a real 4-

dimensional nearly Kähler manifold and the manifold must be Kähler as it has been

already proven in [12].

Lemma 1.21. [28, Corollary 3.5] Let (M2n, J, ω) be a nearly Kähler manifold. Then we

have that

RL
ijkl

= Rijkl +
1

4
T r
ikT

r
jl
.

On a nearly Kähler manifold, we have that by applying Lemmas 1.19, 1.21 and (2.8),

computing as in (1.3),

T r
kiT

l
rj

= Rijkl −Rkjil = RL
ijkl

−RL
kjil

− 1

4
T r
ikT

r
jl
+

1

4
T r
kiT

r
jl
= RL

ikjl
+

1

2
T r
kiT

l
rj
,

which implies that

(1.6) RL
ikjl

=
1

2
T r
kiT

l
rj
.

Proposition 1.22. A G-Kähler-like nearly Kähler manifold is Kähler.

Proof. The G-Kähler-likeness implies that RL
ikjl

= 0 for all i, j, k, l. Hence, from (1.6),

we obtain that T r
kiT

l
rj

= 0 for all i, j, k, l, which gives us that T r
kiT

k
ri

= 0 and then the

manifold must be Kähler from Lemma 1.20.

We also have the following result which has been alresdy given in [18, Theorem 1.1].

Proposition 1.23. A Kähler-like nearly Kähler manifold is Kähler.

Proof. The Kähler-likeness implies that sω = ŝω, and then we have T r
ijT

i
rj

= 0 from (4.9)

for n ≥ 2 since the nearly Kählerity is included in the quasi-Kählerity and then we have

⟨∂∂∗ω, ω⟩ = 0.

Since we know that if a manifold is almost Kähler and nearly Kähler simultaneously,

then it is Kähler, i.e., the almost complex structure J is integrable, which is equivalent

to that T k
ij = 0 for all i, j, k = 1, . . . , n. This implies that especially T r

ijT
i
rj

= 0 as we see

from (1.2) and (1.4).

We recall and introduce the definition of Kodaira dimension on an almost complex

manifold by following [5]. Let (M,J) be a compact 2n-dimensional smooth manifold

equipped with an almost complex structure J . Let πp,q be the projection to the set of

smooth section of Λp,qM : Γ(M,Λp,qM), where Λp,qM is the bundle of (p, q)-forms on M .

The ∂ and ∂ operator can be defined by

∂ := πp,q+1 ◦ d : Γ(M,Λp,qM) → Γ(M,Λp,q+1M),

∂ := πp+1,q ◦ d : Γ(M,Λp,qM) → Γ(M,Λp+1,qM),
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where d is the exterior differential. Both ∂ and ∂ satisfy the Leibniz rule, but in general

∂
2
and ∂2 may not be zero. Applying ∂ to a smooth section of the canonical line bundle

KM := Λn(Λ1,0M) = Λn,0M (see (2.1)), we have

∂ : Γ(M,KM ) → Γ(M,Λn,1M) ∼= Γ(M, (T ∗M)0,1 ⊗KM ).

We can extend the ∂ to an operator ∂m : Γ(M,K⊗m
M ) → Γ(M, (T ∗M)0,1 ⊗K⊗m

M ), ∂1 := ∂,

inductively by the product rule for m ∈ Z≥2, s1 ∈ Γ(M,KM ) and s2 ∈ Γ(M,K⊗(m−1)
M ),

∂m(s1 ⊗ s2) = ∂s1 ⊗ s2 + s1 ⊗ ∂m−1s2.

Then, the operator ∂m satisfies the Leibniz rule

∂m(fs) = ∂f ⊗ s+ f∂ms

for any smooth function f ∈ C∞(M,R) and any smooth section s ∈ Γ(M,KM ) of K⊗m
M .

Hence, ∂m is a pseudoholomorphic structure on K⊗m
M . For m ∈ Z≥1, the space of pseudo-

holomorphic sections of K⊗m
M is defined to be (see [5, Definition 2.1])

H0(M,K⊗m
M ) =

{
s ∈ Γ(M,K⊗m

M ) : ∂ms = 0
}
.

The Kodaira dimension on an almost complex manifold (M,J) is defined as follows.

Definition 1.24. [5, Definition 1.2] We define the mth-plurigenus of (M,J) by

Pm(M,J) := dimCH
0(M,K⊗m

M ).

The Kodaira dimension of (M,J) is defined by

κ(M) :=

−∞ if Pm(M,J) = 0 for any m ≥ 1,

lim supm→∞
logPm(M,J)

logm otherwise.

By taking direct products of the Kodaira–Thurston surface X = S1 × (Γ \ Nil3) with
copies of 2-torus T 2, we have compact 2n-manifolds with non-integrable almost complex

structure and κ = −∞ or 0.

By taking direct products of the 4-manifold X = T 2 × S with copies of 2-torus T 2

or a compact Riemann surface S with genus g ≥ 2, we get compact 2n-manifolds with

non-integrable almost complex structures and κ = 1, 2, . . . , n− 1.

Proposition 1.25. [5, Theorem 6.10] There are examples of compact 2n-dimensional

non-integral almost complex manifolds (M2n, J) with Kodaira dimension κ(M) lying among

{−∞, 0, 1, . . . , n− 1} for n ≥ 2.
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We now introduce the following result.

Proposition 1.26. [6, Theorem 4.3] Let (M2n, J) be a real 2n-dimensional compact

almost complex manifold with n ≥ 2. If one of the following is satisfied:

(i) M admits an almost Hermitian metric with positive Chern scalar curvature every-

where,

(ii) M admits a Gauduchon metric with positive total scalar curvature,

then κJ(M) = −∞.

In 1990s, Yau proposed the following question (see [26, Problem 67]). Let HCF(ω)

denote the holomorphic sectional curvature of the metric ω (see (2.9) for its definition).

Question 1.27. If (M,ω) is a compact Kähler manifold with HSC(ω) > 0, does M have

negative Kodaira dimension, i.e., κ(M) = −∞?

Yang has given an answer for Yau’s question in a general setting.

Proposition 1.28. [25, Theorem 1.2] Let (M,ω) be a compact Hermitian manifold with

semipositive holomorphic sectional curvature. If the holomorphic sectional curvature is

not identically zero, then M has Kodaira dimension −∞. In particular, if (M,ω) has

HSC(ω) > 0, then κ(M) = −∞.

Question 1.29. What about the almost Hermitian case?

Applying the formula (4.9), we have the following proposition.

Proposition 1.30. Let (M2n, J, ω) be a compact almost Hermitian manifold with n ≥ 2,

T r
ijT

i
rj

≥ 0 and HCF(ω) > 0. Then, we have that κ(M) = −∞.

Combining Proposition 1.30 with Lemma 1.12 for the almost Kähler case, we have the

following result.

Theorem 1.31. Let (M2n, J, ω) be a compact almost Kähler manifold with n ≥ 2 and

HCF(ω) > 0. Then, κ(M) = −∞.

Combining Proposition 1.30 with Lemma 4.6 for the case of n = 2, we have the

following result.

Theorem 1.32. Let (M4, J, ω) be a real 4-dimensional compact almost Hermitian mani-

fold with HCF(ω) > 0. Then, κ(M) = −∞.
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Note that in [21, Theorem 1.1], it has shown that if a compact Hermitian manifold

has HSC(ω) > 0, then the Kodaira dimension is negative. Since one has T r
ij = 0 for all

i, j, r = 1, . . . , n in the complex case, the result of Theorem 1.31 can be considered as a

generalization of [21, Theorem 1.1].

From Lemmas 4.4 and 4.6, we have the following corollary.

Corollary 1.33. If ŝω > 0 on a real 4-dimensional compact quasi-Kähler manifold

(M4, J, ω), then κJ(M4) = −∞.

Note that the quasi-Kählerity implies αω = Jδω = 0, where δ := −∗ d∗, since we have

d∗ω = 1
(n−1)!dω

n−1 = 1
(n−1)!(∂+∂)ω

n−1 = 0, where we used Aωn−1 = Aωn−1 = 0. Hence,

we have the following lemma.

Lemma 1.34. [8, Corollary 4.5] Let (M4, J, ω) be a real 4-dimensional quasi-Kähler

(equivalently almost Kähler or semi-Kähler) manifold. Then,

(1.7) ŝω =
1

2
s+

1

32
|N |2 ≥ 1

2
s,

where s is the Riemannian scalar curvature with respect to the Levi-Civita connection, and

N is the Nijenhuis tensor of the almost complex structure J .

Combining Corollary 1.33 with (1.7), we obtain

Corollary 1.35. If s > 0 on a real 4-dimensional compact quasi-Kähler manifold (M4, J, ω),

then κJ(M4) = −∞.

Since we have cT k
ri
cT r

ki
≥ 0 on an almost Kähler manifold, we have the following result.

Corollary 1.36. If ŝω > 0 on a compact almost Kähler manifold (M2n, J, ω) with n ≥ 2,

then κJ(M) = −∞.

Since we have (dω)− = 0 and αω = 0 on an almost Kähler manifold, where (dω)− is

the sum of (3, 0) and (0, 3) components of dω, we have the following lemma.

Lemma 1.37. [8, Theorem 4.3] Let (M2n, J, ω) be an almost Kähler manifold of real

dimension 2n. Then, for t = 0,

(1.8) ŝω =
1

2
s+

1

32
|N0|2 ≥ 1

2
s,

where N0 := N − bN , bN is the skew-symmetric part of the Nijenhuis tensor N .

Combining Corollary 1.36 with (1.8), we have the following result.

Corollary 1.38. If s > 0 on a compact almost Kähler manifold (M2n, J, ω) with n ≥ 2,

then κJ(M) = −∞.
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We define a semi-Kähler metric on almost complex manifolds. Note that when a

manifold is complex, a semi-Kähler metric is called a balanced metric.

Definition 1.39. [11] Let (M2n, J) be an almost complex manifold. An almost Hermitian

metric ω is called semi-Kähler if the metric ω satisfies dωn−1 = 0. When an almost

Hermitian metric ω is semi-Kähler, the triple (M2n, J, ω) is called a semi-Kähler manifold.

We have shown the following characterization of the semi-Kählerity on compact Kähler-

like almost Hermitian manifolds.

Proposition 1.40. [16, Theorem 1.1] Let (M2n, J, ω) be a compact Kähler-like almost

Hermitian manifold with n ≥ 2. Then (M2n, J, ω) is semi-Kähler if and only if T q
ikT

i
ql
= 0

for all k, l = 1, . . . , n.

Note that from Proposition 1.30, we have that if a compact Kähler-like almost Her-

mitian manifold is semi-Kähler, then T r
ijT

i
rj

= 0. Since a real 4-dimensional compact

Kähler-like manifold is almost Kähler (i.e., semi-Kähler) (see [14, Theorem 1.1]), we have

T r
ijT

i
rj

= 0 on a real 4-dimensional compact Kähler-like manifold. In fact, we see that a

real 4-dimensional compact Kähler-like manifold is Kähler (see Proposition 1.14). Here

we note that T r
ijT

i
rj

= 0 is equivalent to that T q
ikT

i
ql

= 0 for all k, l = 1, 2 in the case of

n = 2.

Let (M,J, g) be a quasi-Kähler manifold. Choose and fix a local unitary (1, 0)-frame

{ei} around a point p0 ∈ M with respect to g such that gij(p0) = δij and ∇ei(p0) = 0.

Then we have that [ek, el](p0) = 0. On a quasi-Kähler manifold (M,J, g), we have that

from (2.12), [28, Theorem 3.2], since we have T k
ij = 0 for all i, j, k, computing at p0,

RL
ijkl

= RL
klij

= g(DekDel
ei −Del

Dekei, ej)

=
1

2
(∇lT

k
ji −∇lT

i
kj −∇lT

j
ik) +

1

2
∇kT

l
ij

+
1

4
(T l

jrT
r
ik − T l

irT
r
jk)−

1

4
T i
lr
(T r

jk + T j
kr − T k

rj) +
1

4
T j

lr
(T r

ik + T i
kr − T k

ri)

=
1

2
(H l

ijk −H l
jki −H l

kij)

and we also have that from Lemma 2.1,

H l
ijk +H l

jki +H l
kij = T r

ijT
l
rk + T r

jkT
l
ri + T r

kiT
l
rj +∇iT

l
jk +∇jT

l
ki +∇kT

l
ij

= 0.

Combining these, we have the following lemma.
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Lemma 1.41. [28, Corollary 3.7] Let (M2n, J, ω) be a quasi-Kähler manifold and fix a

local unitary (1, 0)-frame. Then we have that

RL
ijkl

= H l
ijk.

Note that if a quasi-Kähler manifold satisfies both Kähler-like and G-Kähler-like con-

ditions, then it must be Kähler (see [17, Theorem 1.1]). On an almost Kähler manifold

or on a nearly Kähler manifold, the Kähler-likeness is equivalent to that T r
kiT

l
rj

= 0 for

all i, j, k, l, which is also equivalent to that RL
ikjl

= 0 for all i, j, k, l from (1.3) in the

almost Kähler case and from (1.6) in the nearly Kähler case. On a quasi-Kähler mani-

fold, since we have T k
ij = 0 for all i, j, k, applying Lemma 1.34 and (2.7), we see that

RL
ikjl

= 0 for all i, j, k, l is equivalent to that H = Ω(2,0) ≡ 0, which is also equivalent to

that ∇jT
i
kl = 0 for all i, j, k, l. Since the almost Kählerity and the nearly Kählerity are

included in the quasi-Kählerity, these equivalences hold on an almost Kähler manifold, or

on a nearly Kähler manifold. Since we have ∇T ′′ = 0 on a nearly Kähler manifold, which

implies that we have H ≡ 0 and RL
ikjl

= 0 for all i, j, k, l on a nearly Kähler manifold.

We also note that the Kähler-likeness is included in the G-Kähler-likeness on an almost

Kähler manifold or a nearly Kähler manifold. Note that the Kähler-likeness is equivalent

to the G-Kähler-likeness on a nearly Kähler manifold (see [18, Proposition 1.1]). Since

it is shown that a Kähler-like nearly Kähler manifold is Kähler (see [18, Theorem 1.1]),

we find that a nearly Kähler manifold with T r
kiT

l
rj

= 0 for all i, j, k, l is Kähler. Notice

that T r
kiT

l
rj

= 0 for all i, j, k, l = 1, 2 implies T ′′ ≡ 0 on a real 4-dimensional nearly Kähler

manifold.

Gauduchon introduced one parameter family of canonical connection ∇t on a com-

pact almost Hermitian manifold (M2n, J, ω) with n ≥ 2 and with the associated almost

Hermitian metric g with respect to the real (1, 1)-form ω as follows (see [10]):

g(∇t
XY,Z) = g

(
DXY − 1

2
J(DXJ)Y, Z

)
+
t

4
g((DJY J)Z + J(DY J)Z,X)− t

4
g((DJZJ)Y + J(DZJ)Y,X),

where D is the Levi-Civita connection, X, Y , Z are smooth vector fields on M and t ∈ R.
Note that ∇1 is the Chern connection.

Let Kt be the curvature tensor and define the Gauduchon scalar curvature by

s(t) :=
∑
i,j

Kt(ei, ei, ej , ej),

where {ei} is a local unitary (1, 0)-frame.

We introduce the prescribed Gauduchon scalar curvature problem, which is known as

the Gauduchon–Yamabe problem:
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Question 1.42. For a given smooth function ŝ(t) on an almost Hermitian manifold

(M,J, h), does M admit a conformal almost Hermitian metric eug with Chern scalar

curvature ŝ(t)?

Define

c(t) :=
2

nt− t+ 1

∫
M
s(t)ωn.

In [22], Li, Zhou and Zhou have solved the Gauduchon–Yamabe problem for zero Gaudu-

chon scalar curvature.

Proposition 1.43. [22, Theorem 1.3] If c(t) = 0, then there are almost Hermitian metrics

conformal to g with zero Gauduchon scalar curvature.

Question 1.42 for t = 1 is especially called the Chern–Yamabe problem. We restate

the case of t = 1 as follows for the later use.

Proposition 1.44. [22, Theorem 1.3] Let (M2n, J, ω) be a real 2n-dimensional compact

almost Hermitian manifold with n ≥ 2. If
∫
M sωω

n = 0, then there are almost Hermitian

metrics conformal to ω with zero Chern scalar curvature.

In the case of HSC(ω) = 0, since we obtain sω − ŝω = 0 from the Kähler-likeness, we

have the following proposition (see Lemma 3.1).

Proposition 1.45. If (M2n, J, ω) is a compact Kähler-like almost Hermitian manifold

with n ≥ 2 and HSC(ω) = 0, then we have that
∫
M sωω

n = 0.

By combining Proposition 1.45 with Proposition 1.44, we have a condition of the

Chern–Yamabe problem for zero Chern scalar curvature (see [1, Theorem 3.1], [22, Theo-

rem 1.3]).

Theorem 1.46. Let (M2n, J, ω) be a compact Kähler-like almost Hermitian manifold with

n ≥ 2 and HSC(ω) = 0. Then, there are almost Hermitian metrics conformal to ω with

zero Chern scalar curvature.

For n = 2, the statement of Theorem 1.46 becomes the Kähler case from Proposi-

tion 1.14. Since we have sω = ŝω under the quasi-Kählerity with T r
ijT

i
rj

= 0 from the

formula (4.9), we also obtian the following condition for having zero Chern scalar curva-

ture.

Theorem 1.47. Let (M2n, J, ω) be a compact quasi-Kähler manifold with n ≥ 2, and

T r
ijT

i
rj

= 0, HSC(ω) = 0. Then, there are almost Hermitian metrics conformal to ω with

zero Chern scalar curvature.
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Note that for n = 2, the statement of Theorem 1.47 becomes the Kähler case since

the quasi-Kählerity implies the almost Kählerity for n = 2 and the almost Kählerity with

T r
ijT

i
rj

= 0 implies the Kählerity from Lemma 1.12.

We show Proposition 1.45 and the following proposition as a proof of Theorems 1.46

and 1.47.

Proposition 1.48. Let (M2n, J, ω) be a compact quasi Kähler manifold with n ≥ 2 and

T r
ijT

i
rj

= 0, HSC(ω) = 0. Then, we have that
∫
M sωω

n = 0.

Proofs of Propositions 1.45 and 1.48. Under the assumptions: the Kähler-likeness in Propo-

sition 1.48, or the quasi-Kählerity with T r
ijT

i
rj

= 0 in Proposition 1.51 with (4.9), we have

that sω = ŝω.

We compute that∫
M
sωω

n =
1

2

∫
M
(sω + ŝω)ω

n +
1

2

∫
M
(sω − ŝω)ω

n = 0,

where we have used that HSC(ω) = 0 implies sω + ŝω = 0 from Lemma 3.1.

Combining Theorem 1.47 with Lemma 4.6, we have the following corollary.

Corollary 1.49. Let (M4, J, ω) be a real 4-dimensional compact quasi-Kähler manifold

with T 1
12 = T 2

12, HSC(ω) = 0. Then, there are almost Hermitian metrics conformal to ω

with zero Chern scalar curvature.

Remark 1.50. We compute on a real 4-dimensional quasi-Kähler manifold,

2T r
ijT

i
rj

= 2(T 1
12T

1
12

+ T 2
12T

1
21

+ T 1
21T

2
12

+ T 2
21T

2
21
)

= RL
2121

+RL
2111

+RL
1222

+RL
1212

= 2RL
1212

,

where we have used that RL
2111

= RL
1222

= 0, RL
2121

= RL
1212

. Hence, T r
ijT

i
rj

= RL
1212

, and

T r
ijT

i
rj

= 0 is equivalent to that RL
1212

= 0 on a real 4 dimensional quasi-Kähler manifold.

On the other hand, on an almost Kähler manifold, the Kähler-likeness is equivalent to

that RL
ijkl

= 0 for all i, j, k, l. Since RL
ijkl

= 0 for all i, j, k, l = 1, 2 is equivalent to that

RL
1212

= 0 and the quasi-Kählerity is equivalent to the almost Kählerity in the case of

n = 2, and also since a real 4-dimensional compact Kähler-like manifold must be quasi-

Kähler and have T r
ijT

i
rj

= 0 from Proposition 1.30, we conclude that the quasi Kählerity

with T r
ijT

i
rj

= 0 is equivalent to the Kähler-likeness on a real 4-dimensional compact almost

Hermitian manifold. On the other hand, we see that a real 4-dimensional quasi-Kähler

(i.e., almost Kähler) manifold with T r
ijT

i
rj

= 0 is Kähler from Lemma 1.12. Combining

these results, we again conclude that a real 4-dimensional compact Kähler-like almost

Hermitian manifold is Kähler as we have seen in Proposition 1.14.
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Note that since we have T r
ijT

i
rj

≥ 0 from Lemma 4.6, a real 4-dimensional Kähler-

like and G-Kähler-like almost Hermitian manifold is Kähler (see [17, Corollary 1.2]). We

restate the equivalence obtained in Remark 1.50 as follows.

Proposition 1.51. On a real 4-dimensional compact almost Hermitian manifold, the

quasi Kählerity with T r
ijT

i
rj

= 0 (i.e., T 1
12 = T 2

12) is equivalent to the Kähler-likeness.

This paper is organized as follows: in Section 2, we recall some basic definitions and

computations in almost Hermitian geometry. In Section 3, we introduce some lemmas

whose proofs can be given as in the corresponding lemmas of [19]. In Section 4, we give

proofs of Proposition 1.30, Theorems 1.31 and 1.32. Notice that we assume the Einstein

convention omitting the symbol of sum over repeated indices in all this paper.

2. Preliminaries

2.1. The Chern connection

An almost complex structure on M is an endomorphism J of TM , J ∈ Γ(End(TM)),

satisfying J2 = − IdTM , where TM is the real tangent vector bundle of M . The pair

(M,J) is called an almost complex manifold. Let (M,J) be an almost complex manifold.

A Riemannian metric g on M is called J-invariant if J is compatible with g. In this

case, the pair (J, g) is called an almost Hermitian structure. The complexified tangent

vector bundle is given by TCM = TM ⊗R C for the real tangent vector bundle TM .

By extending J C-linearly and g C-bilinearly to TCM , they are also defined on TCM

and we observe that the complexified tangent vector bundle TCM can be decomposed as

TCM = T 1,0M ⊕ T 0,1M , where T 1,0M , T 0,1M are the eigenspaces of J corresponding to

eigenvalues
√
−1 and −

√
−1, respectively:

T 1,0M = {X −
√
−1JX | X ∈ TM}, T 0,1M = {X +

√
−1JX | X ∈ TM}.

Let Λ1M denote the dual of the real tangent vector bundle TM . We have that

Λ1M ⊗R C = Λ1,0M ⊕ Λ0,1M,

where

(2.1) Λ1,0M = {ι+
√
−1Jι | ∀ ι ∈ Λ1M}, Λ0,1M = {ι−

√
−1Jι | ∀ ι ∈ Λ1M}.

It can be seen that (T 1,0M)∗ = Λ1,0M , (T 0,1M)∗ = Λ0,1M . Now let us define

Λp,qM := Λp(Λ1,0M)⊗ Λq(Λ0,1M).

Then we have ΛrM ⊗R C =
⊕

p+q=r Λ
p,qM .
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Notice that on an almost complex manifold M , we can split the exterior differential

operator d : ΛpM ⊗R C → Λp+1M ⊗R C, into four components

d = A+ ∂ + ∂ +A

with
∂ : Λp,qM → Λp+1,qM, ∂ : Λp,qM → Λp,q+1M,

A : Λp,qM → Λp+2,q−1M, A : Λp,qM → Λp−1,q+2M.

In terms of these components, the condition d2 = 0 can be written as

A2 = 0, ∂A+A∂ = 0, ∂A+A∂ = 0, A
2
= 0,

A∂ + ∂2 + ∂A = 0, AA+ ∂∂ + ∂∂ +AA = 0, ∂A+ ∂
2
+A∂ = 0.

(2.2)

For any p-form ψ, there holds that

dψ(X1, . . . , Xp+1) =

p+1∑
i=1

(−1)i+1Xi(ψ(X1, . . . , X̂i, . . . , Xp+1))

+
∑
i<j

(−1)i+jψ([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1)

for any vector fields X1, . . . , Xp+1 on M (see [29]). We directly compute that

dθs = −1

2
Bs

klθ
k ∧ θl −Bs

kl
θk ∧ θl − 1

2
Bs

kl
θk ∧ θl.

Let (M, g, J) be an almost Hermitian manifold. There exists a unique affine connection

∇ preserving g and J on M whose torsion has vanishing (1, 1)-part (see [10]), which is

called the Chern connection. Now let ∇ be the Chern connection on M .

Let {er} be a local (1, 0)-frame with respect to an almost Hermitian metric g and let

{θr} be a local associated coframe with respect to {er}, i.e., θi(ej) = δij for i, j = 1, . . . , n.

We write gij := g(ei, ej). The fundamental (1, 1)-form ω associated to g is locally given

by ω =
√
−1gijθ

i ∧ θj . We denote the structure coefficients of Lie bracket by

[ei, ej ] =: Br
ijer +Br

ijer, [ei, ej ] =: Br
ij
er +Br

ij
er, [ei, ej ] =: Br

ij
er +Br

ij
er.

Notice that J is integrable if and only if the Br
ij ’s vanish.

For any u ∈ C∞(M,R), we have since we have A∂u = 0,

(2.3) d∂u = ∂∂u+ ∂
2
u+A∂u.

By taking the conjugate of (2.3), and by adding together, we get that

d(∂ + ∂)u = (∂∂ + ∂∂)u+ (∂2 +A∂)u+ (∂
2
+A∂)u.
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Since we have Au = Au = 0, from the relations in (1.1), (∂2 + A∂)u = −∂Au = 0,

(∂
2
+ A∂)u = −∂Au = 0. And since (∂ + ∂)u = du, we get that d(∂ + ∂)u = d2u = 0.

Therefore, we obtain that

∂∂u = −∂∂u,

which implies that
√
−1∂∂u is a smooth real (1, 1)-form. A direct computation yields for

any u ∈ C∞(M,R),

(dJdu)(ei, ej) = ei(Jdu(ej))− ej(Jdu(ei))− Jdu([ei, ej ])

= −ei(du(Jej)) + ej(du(Jei)) + du(J [ei, ej ])

=
√
−1eiej(u) +

√
−1ejei(u) + J [ei, ej ](u)

= 2
√
−1eiej(u)−

√
−1([ei, ej ] +

√
−1J [ei, ej ])u

= 2
√
−1(eiej − [ei, ej ]

(0,1))u,

(2.4)

which tells us that

√
−1∂∂u =

1

2
(dJdu)(1,1) =

√
−1(eiej − [ei, ej ]

(0,1))uθi ∧ θj ,

so we write locally

∂i∂ju = (eiej − [ei, ej ]
(0,1))u.

2.2. The curvature on almost complex manifolds

Since the Chern connection ∇ preserves J , we have

∇iej := ∇eiej = Γr
ijer, ∇iej = Γr

ij
er,

where Γr
ij = grsei(gjs) − grsgjlB

l
is. Note that the mixed derivatives ∇iej do not depend

on the metric g, which means that Γr
ij
= Br

ij
’s do not depend on g (see [23]). Let {γij} be

the connection form, which is defined by γij = Γi
sjθ

s + Γi
sjθ

s. The torsion T of the Chern

connection ∇ is given by T i = dθi − θp ∧ γip, T i = dθi − θp ∧ γip, which has no (1, 1)-part

and the only non-vanishing components are as follows:

T s
ij = T s(ei, ej) = −θs([ei, ej ])− (Γs

qpθ
p ∧ θq + Γs

qpθ
p ∧ θq)(ei, ej) = −Bs

ij − Γs
ji + Γs

ij ,

T s
ij
= T s(ei, ej) = dθs(ei, ej) = −θs([ei, ej ]) = −Bs

ij
= N s

ij
.

These tell us that T = (T i) splits into T = T ′ + T ′′, where T ′ ∈ Γ(Λ2,0M ⊗ T 1,0M),

T ′′ ∈ Γ(Λ0,2M ⊗ T 1,0M). Since the torsion T of the Chern connection ∇ has no (1, 1)-

part;

0 = T i
kl
= T i(ek, el) = −θi([ek, el])− (Γi

spθ
p ∧ θs + Γi

spθ
p ∧ θs)(ek, el) = −Bi

kl
+ Γi

kl
,
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we obtain that

Γr
ij
= Br

ij
.

By taking complex conjugate, we have that

Γk
ji
= Γk

ji
= Bk

ji
= Bk

ji
.

Since we have

∇i∇ju = ∇ei∇ej
u = eiej(u)− Γs

ij
es(u) = eiej(u)−Bs

ij
es(u)

and since [ei, ej ]
(0,1)u = Bs

ij
es(u), we obtain that

∂i∂ju = ∇i∇ju.

The curvature Ω of the Chern connection ∇ splits in Ω = H +R +H (see Section 1)

and the curvature form can be expressed by Ωi
j = dγij + γis ∧ γsj .

In terms of er’s, we have

Rr
ijk

= Ωr
k(ei, ej) = ei(Γ

r
jk
)− ej(Γ

r
ik) + Γr

isΓ
s
jk

− Γr
js
Γs
ik −Bs

ij
Γr
sk +Bs

ji
Γr
sk,(2.5)

Hr
ijk = Ωr

k(ei, ej) = ei(Γ
r
jk)− ej(Γ

r
ik) + Γr

isΓ
s
jk − Γr

jsΓ
s
ik −Bs

ijΓ
r
sk −Bs

ijΓ
r
sk,

Hr
ijk

= Ωr
k(ei, ej) = ei(Γ

r
jk
)− ej(Γ

r
ik
) + Γr

is
Γs
jk

− Γr
js
Γs
ik
−Bs

ij
Γr
sk −Bs

ij
Γr
sk.(2.6)

We define that

Rijkl := Rr
ijk
grl, Hijkl := Hr

ijkgrl, Hijkl := Hr
ijk
grl.

We define the Chern scalar curvature sω and the Riemannian type scalar curvature ŝω

of the metric ω with respect to the Chern connection:

(2.7) sω := gijgklRijkl = gijPij(ω) = gijSij(ω), ŝω := gilgkjRijkl,

where P , S denote the first and second Chern–Ricci curvature respectively locally given

by Pij := gklRijkl, Sij := gklRklij .

Lemma 2.1 (The first Bianchi identity for the Chern curvature). For any X,Y, Z ∈ TCM ,∑
Ω(X,Y )Z =

∑(
T (T (X,Y ), Z) +∇XT (Y, Z)

)
,

where the sum is taken over all cyclic permutations.

This identity induces the following formulae:

(2.8) Rl
ijk

−Rl
kji

= ∇jT
l
ki + T r

kiT
l
rj
,
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where used that Rijkl = Rijkl = 0.

For a point p ∈ M and a non-zero (1, 0)-vector ξ ∈ T 1,0
p M , the holomorphic sectional

curvature H of the metric ω (HSC(ω) for short) at the point p and the direction ξ is define

by

(2.9) Hp(ξ) :=
1

|ξ|4gp
R(ξ, ξ, ξ, ξ)|p =

1

|ξ|4gp
Rijkl|pξ

iξjξkξl,

where |ξ|2gp := gp(ξ, ξ). We write HSC(ω) > 0 (resp. = 0) when we have that Hp(ξ) > 0

(resp. = 0) for any point p ∈M and any non-zero (1, 0)-vector ξ ∈ T 1,0
p M .

Let {er} be a local unitary (1, 0)-frame with respect to g around a fixed point p ∈M .

Note that unitary frames always exist locally since we can take any frame and apply the

Gram-Schmidt process. Then with respect to a local g-unitary frame around a point p0,

we have gij(p0) = δij for any i, j, k = 1, . . . , n, and the Christoffel symbols satisfy at p0,

Γk
ij = −Γj

ik
, Γk

ij
= −Γj

ik
,

since we have at p0,

Γk
ij = g(∇iej , ek) = ei(gjk)− g(ej ,∇iek) = −Γj

ik
,

Γk
ij
= g(ek,∇iej) = ei(gkj)− g(∇iek, ej) = −Γj

ik
.

Then we have that

Hr
ijk = ei(Γ

r
jk)− ej(Γ

r
ik) + Γr

isΓ
s
jk − Γr

jsΓ
s
ik −Bs

ijΓ
r
sk −Bs

ijΓ
r
sk

= −ei(Γk
jr)− ej(Γ

k
ir) + Γs

irΓ
k
js − Γs

jrΓ
k
is +Bs

ijΓ
k
sr +Bs

ijΓ
k
sr

= −Hk
ijr.

(2.10)

From the first Bianch identity in Lemma 2.1, we obtain that

Hk
ijl

= Hk
ijl

+Hk
jli

+Hk
lij

= ∇iT
k
jl
+∇jT

k
li
+∇lT

k
ij + T r

ijT
k
rl
+ T r

jl
T k
ri + T r

li
T k
rj

= ∇lT
k
ij + T r

ijT
k
rl
,

(2.11)

where used that Hjlik = Hlijk = 0. Therefore, combining (2.10) with (2.11), we have

(2.12) H l
ijk = ∇lT

k
ji + T r

jiT
k
rl
.

Note that we have the following formula.

Lemma 2.2. Fix a local unitary (1, 0)-frame with respect to g. One has

Rijkl = g(∇i∇jek −∇j∇iek −∇[ei,ej ]
ek, el),

Hijkl = g(∇i∇jek −∇j∇iek −∇[ei,ej ]ek, el),

Hijkl = g(∇i∇jek −∇j∇iek −∇[ei,ej ]
ek, el).
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Proof. Using a local unitary (1, 0)-frame {ei} around a point p0 with respect to g, we have

that at p0,

g(∇i∇jek −∇j∇iek −∇[ei,ej ]
ek, el)

= ei(g(∇jek, el))− g(∇jek,∇iel)− ej(g(∇iek, el)) + g(∇iek,∇jel)

−Br
ij
g(∇rek, el)−Br

ij
g(∇rek, el)

= ei(Γ
s
jk
gsl)− Γs

jk
Γr
il
gsr − ej(Γ

s
ikgsl) + Γs

ikΓ
r
jl
gsr −Bs

ij
Γr
skgrl −Br

ij
Γs
rkgsl

= ei(Γ
l
jk
)− ej(Γ

l
ik) + Γl

isΓ
s
jk

− Γl
js
Γs
ik −Bs

ij
Γl
sk −Bs

ij
Γl
sk

= Rr
ijk
grl

= Rijkl.

Similarly, we compute that at p0,

g(∇i∇jek −∇j∇iek −∇[ei,ej ]ek, el)

= ei(Γ
l
jk)− ej(Γ

l
ik)− Γr

il
Γr
jk + Γr

jl
Γr
ik −Br

ijΓ
l
rk −Br

ijΓ
l
rk

= Hijkl,

g(∇i∇jek −∇j∇iek −∇[ei,ej ]
ek, el)

= ei(Γ
l
jk
)− ej(Γ

l
ik
)− Γr

il
Γr
jk

+ Γr
jl
Γr
ik
−Br

ij
Γl
rk −Br

ij
Γl
rk

= Hijkl,

where we have used that Γr
il
= −Γl

ir, Γ
r
il
= −Γl

ir
.

As in [27], we can choose a local g-unitary frame {ei} around an arbitrary chosen point

p0 ∈M such that

(2.13) gij(p0) = δij , ∇ei(p0) = 0.

Then we have

(2.14) Γk
ij(p0) = 0 for all i, j, k = 1, . . . , n

since ∇iej(p0) = Γk
ij(p0)ek = 0, also we obtain that

[ei, ej ](p0) = ∇iej(p0)−∇jei(p0)− T (ei, ej)(p0) = 0 for all i, j = 1, . . . , n.

Then we have that 0 = [ei, ej ](p0) = Bk
ij
(p0)ek +Bk

ij
(p0)ek, which gives that

(2.15) Bk
ij
(p0) = 0, Bk

ij
(p0) = 0 for all i, j, k = 1, . . . , n.
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Using such a local unitary frame {er} with respect to g around p0, we compute that at

the point p0, by applying (2.14) and (2.15) to (2.5),

Rijkl = Rr
ijk
grl

=
{
ei(Γ

r
jk
)− ej(Γ

r
ik) + Γr

isΓ
s
jk

− Γr
js
Γs
ik −Bs

ij
Γr
sk +Bs

ji
Γr
sk

}
grl

=
{
ei(Γ

r
jk
)− ej(Γ

r
ik)

}
grl.

(2.16)

2.3. The bundle of real k-forms and the interior product

LetM be a real 2n-dimensional smooth differentiable manifold and let h be a Riemannian

metric on M . In a local coordinate (x1, x2, . . . , x2n) on M , we write h = hij dx
idxj .

Denote (hij) the inverse matrix of (hij), 1 ≤ i, j ≤ 2n. Then the metric h induces an

inner product ⟨ · , · ⟩ on the cotangent bundle T ∗M by ⟨dxi, dxj⟩ = hij . Let ΛkT ∗M be

the bundle of real k-forms for 1 ≤ k ≤ 2n. The inner product induced by h on ΛkT ∗M is

given by

(2.17) ⟨α1 ∧ · · · ∧ αk, β1 ∧ · · · ∧ βk⟩ = det(⟨αi, βj⟩),

for αi, βj ∈ T ∗M . For φ = 1
k!φi1···ik dx

i1 ∧ · · · ∧ dxik , ψ = 1
k!ψj1···jk dx

j1 ∧ · · · ∧ dxjk , where
φi1···ik is skew symmetric in i1, . . . , ik and ψj1···jk is skew symmetric in j1, . . . , jk,

(2.18) ⟨φ,ψ⟩ = 1

k!
hi1j1 · · ·hikjkφi1···ikψj1···jk .

We define the interior product ιXφ ∈ Λk−1T ∗M for vector fields X,X1, . . . , Xk−1 on M

and φ ∈ ΛkT ∗M by

ιXφ(X1, . . . , Xk−1) := φ(X,X1, . . . , Xk−1).

Note that we have

(2.19) ιX(α1 ∧ · · · ∧ αk) =

k∑
i=1

(−1)i−1αi(X)α1 ∧ · · · ∧ αi−1 ∧ α̂i ∧ αi+1 ∧ · · · ∧ αk.

Define X̃ := h(X, · ) ∈ T ∗M , then we obtain that for φ ∈ Λk+1T ∗M and ψ ∈ ΛkT ∗M

(see [4, (2.3)]),

(2.20) ⟨ιXφ,ψ⟩ = ⟨φ, X̃ ∧ ψ⟩.

2.4. The Hodge ∗-operator and the adjoint operators

We extend the inner product ⟨ · , · ⟩ given in (2.17), (2.18) on the bundle of real k-forms

ΛkT ∗M for 1 ≤ k ≤ 2n to the space of (p, q)-forms Λp,qM defined in (2.1), 1 ≤ p, q ≤ n,
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for b, c ∈ C and φi, ψi ∈ ΛkT ∗M , i = 1, 2, by

⟨bφ1 + cφ2, ψ⟩ = b⟨φ1, ψ⟩+ c⟨φ2, ψ⟩,

⟨φ, bψ1 + cψ2⟩ = b⟨φ,ψ1⟩+ c⟨φ,ψ2⟩.

Locally, (p, q)-forms φ,ψ ∈ Λp,qM are given by

φ =
1

p!q!
φi1···ipl1···lqθ

i1 ∧ · · · ∧ θip ∧ θl1 ∧ · · · ∧ θlq ,

ψ =
1

p!q!
ψj1···jpk1···kqθ

j1 ∧ · · · ∧ θjp ∧ θk1 ∧ · · · ∧ θkq ,

where φi1···ipl1···lq is skew symmetric in i1, . . . , ip and skew symmetric in l1, . . . , lq, ψj1···jpl1···lq
is skew symmetric in j1, . . . , jp and skew symmetric in k1, . . . , kq. Then we have that

⟨φ,ψ⟩ = 1

p!q!
gi1j1 · · · gipjpgk1l1 · · · gkqlqφi1···ipl1···lqψj1···jpk1···kq .

We define the total inner product by

(φ,ψ) :=

∫
M
⟨φ,ψ⟩ dVg,

where dVg is the volume form defined by dVg := ωn

n! . The Hodge ∗ operator is the unique

operator determined by the metric g satisfying that for φ,ψ ∈ ΛkT ∗M ,

∗ : ΛkT ∗M → Λ2n−kT ∗M, φ ∧ ∗ψ = ⟨φ,ψ⟩ dVg,

which can be extended C-linearly satisfying that for φ,ψ ∈ Λp,qM ,

∗ : Λp,qM → Λn−q,n−pM, φ ∧ ∗ψ = ⟨φ,ψ⟩ dVg.

We have that ∗φ = ∗φ, ∗ ∗φ = (−1)p+qφ, ⟨∗φ, ∗ψ⟩ = ⟨φ,ψ⟩. The adjoint operators ∂∗, ∂∗

are given by

(2.21) (∂φ, ψ) = (φ, ∂∗ψ), (∂φ, ψ) = (φ, ∂
∗
ψ).

We define that

|φ|2 := ⟨φ,φ⟩.

Lemma 2.3. [19, Lemma 2.3] Let (M,J, ω) be a compact almost Hermitian manifold.

One has that

∂∗ = − ∗ ∂∗, ∂
∗
= − ∗ ∂ ∗ .
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We write ιiφ := ιZiφ, ιjφ := ιZj
φ. It follows from (2.20),

(2.22) ⟨φ, ζi ∧ ψ⟩ = ⟨gjiιjφ,ψ⟩, ⟨φ, ζi ∧ ψ⟩ = ⟨gijιjφ,ψ⟩.

We define the Lefschetz operator L : Λp,qM → Λp+1,q+1M and its adjoint operator Λ:

Λp+1,q+1M → Λp,qM by

Lφ = ω ∧ φ, ⟨Lφ,ψ⟩ = ⟨φ,Λψ⟩.

Locally, we obtain that from (2.22),

(2.23) Λ =
√
−1gijιiιj .

For a (p, q)-form φ ∈ Λp,qM with p+q = k ≤ n, we have that [L,Λ]φ = (k−n)φ. Applying
this repeatedly, we obtain that

[Lr,Λ]φ = [Lr−s,Λ]Lsφ+ s(k − n+ s− 1)Lr−1φ.

Especially, we have that for s = r,

(2.24) [Lr,Λ]φ = r(k − n+ r − 1)Lr−1φ.

Definition 2.4. We call a (p, q)-form φ primitive if Λφ = 0.

For a primitive (p, q)-form φ with p+ q = k ≤ n, we have that

Λ(ω ∧ φ) = (n− k)φ and ΛLrφ = r(n− k − r + 1)Lr−1φ.

3. Key lemmas

Let (M2n, J, ω) be a 2n-dimensional compact almost Hermitian manifold with n ≥ 2. Let

g be the almost Hermitian metric associated to the real (1, 1)-form ω. Let {er} be a local

(1, 0)-frame with respect to the metric g around a point p0 ∈ M and let {θr} be a local

associated coframe with respect to {er}.
We introduce the following lemma.

Lemma 3.1. [21, Lemma 4.1] Let (M2n, J, ω) be a compact almost Hermitian manifold

of real dimension 2n with n ≥ 2. Then, HSC(ω) > 0 (resp. HSC(ω) = 0) implies that

sω + ŝω > 0 (resp. sω + ŝω = 0).

Define the set of the conformal class of ω as follows:

{ω} := {euω | u ∈ C∞(M ;R)}.

From Proposition 1.2, we may take a Gauduchon metric ω0 in the conformal class of

ω such that ω0 = f
1

n−1

0 ω ∈ {ω}, where f0 is a positive smooth function. Let g0 be the

associated almost Hermitian metric with respect to the real (1, 1)-form ω0.
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Lemma 3.2. [3, (1.7)] Let (M2n, J, ω) be a real 2n-dimensional compact almost Hermitian

manifold with n ≥ 2. One has that∫
M
sω0ω

n
0 =

∫
M
f0sωω

n,

∫
M
ŝω0ω

n
0 =

∫
M
f0ŝωω

n.

Proof. Let Γ(g), Γ(g0) denote the Christoffel symbols of g, g0 respectively. Just writing

Γ or B means that they do not depend on any metrics. Note that choosing an arbitrarily

chosen local (1, 0)-frame {ei}, since we have Γ(g)kij = grsei(gjs) − grsgjlB
l
is, we compute

for the Gaudhuchon metric g0 = f
1

n−1 g,

Γ(g0)
k
ij = grs0 ei((g0)js)− grs0 (g0)jlB

l
is

= f−
1

n−1 grsei(f
1

n−1 gjs)− f−
1

n−1 grsf
1

n−1 gjlB
l
is

= grsei(gjs)− grsgjlB
l
is + f−

1
n−1 grsei(f

1
n−1 )gjs

= Γ(g)kij + ei
{
log(f

1
n−1 )

}
δrj .

(3.1)

Now, we choose a local unitary (1, 0)-frame {ei} with respect to g around an arbitrary

chosen point p0 ∈ M satisfying (2.13). Note that {ei} is a local (1, 0)-frame with respect

to the metric g0 from the construction. From (2.16) and (3.1), at p0,

R(ω)ijkl = R(ω)r
ijk
grl

=
{
ei(Γ

r
jk
)− ej(Γ(g)

r
ik)

}
grl

=
{
ei(Γ

r
jk
)− ej(Γ(g0)

r
ik) + Γ(g0)

r
isΓ

s
jk

− Γr
js
Γ(g0)

s
ik −Bs

ij
Γ(g0)

r
sk +Bs

ji
Γr
sk

+ ejei
{
log(f

1
n−1 )

}
δkr

}
grl

= R(ω0)
r
ijk

(g0)rlf
− 1

n−1

0 + eiej
{
log(f

1
n−1 )

}
gkl

= f
− 1

n−1

0

{
R(ω0)ijkl + ∂i∂j

{
log(f

1
n−1 )

}
(g0)kl

}
,

(3.2)

where we have used [ei, ej ](p0) = 0 and that Bs
ji
, Bs

ij
, Γr

jk
and Γk

ir do not depend on

metrics and Bs
ji
(p0) = Bs

ij
(p0) = Γr

jk
(p0) = Γk

ir(p0) = 0. From the relation between the

curvatures of ω and ω0 in (3.2), we obtain that at p0,

sω0 = gij0 g
kl
0 R(ω0)ijkl

= gij0 g
kl
0

(
f

1
n−1

0 R(ω)ijkl − ∂i∂j
{
log(f

1
n−1 )

}
(g0)kl

)
= f

− 1
n−1

0 gijf
− 1

n−1

0 gklf
1

n−1

0 R(ω)ijkl − ngij0 ∂i∂j
{
log(f

1
n−1 )

}
= f

− 1
n−1

0 sω − n∆0 log(f
1

n−1 ),

(3.3)

where ∆0 is the Laplacian with respect to the metric g0. Since the point p0 is chosen

arbitrary, we have that from (3.3),

sω0 = f
− 1

n−1

0 sω − n∆0 log(f
1

n−1 ) on whole M.
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Similarly, we compute at p0,

ŝω0 = gil0 g
kj
0 R(ω0)ijkl

= gil0 g
kj
0

(
f

1
n−1

0 R(ω)ijkl − ∂i∂j
{
log(f

1
n−1 )

}
(g0)kl

)
= f

− 1
n−1

0 gilf
− 1

n−1

0 gkjf
1

n−1

0 R(ω)ijkl − gil0 δjl∂i∂j
{
log(f

1
n−1 )

}
= f

− 1
n−1

0 ŝω −∆0 log(f
1

n−1 ).

(3.4)

Since the point p0 is arbitrary, we have that ŝω0 = f
− 1

n−1

0 ŝω −∆0 log(f
1

n−1 ) on whole M .

By applying the Stokes’ theorem, we obtain that

∫
M

∆0 log(f
1

n−1 )ωn
0 =

∫
M
n
∂∂ log(f

1
n−1 ) ∧ ωn−1

0

ωn
0

ωn
0

= n

∫
M
∂∂ log(f

1
n−1 ) ∧ ωn−1

0

= n

∫
M
d(∂ log(f

1
n−1 ) ∧ ωn−1

0 ) +

∫
M
∂ log(f

1
n−1 ) ∧ ∂ωn−1

0

=

∫
M
d(log(f

1
n−1 )∂ωn−1

0 )−
∫
M

log(f
1

n−1 )∂∂ωn−1
0

= 0,

(3.5)

where we used that (∂+A+A)(∂ log(f
1

n−1 )∧ωn−1
0 ) = 0, (∂+A+A)(log(f

1
n−1 )∂ωn−1

0 ) = 0,

and ∂∂ωn−1
0 = −(∂∂ + AA + AA)ωn−1

0 = −∂∂ωn−1
0 = 0 since ω0 is Gauduchon and

Aωn−1
0 = Aωn−1

0 = 0. Integrating (3.3), we have that from (3.5),∫
M
sω0ω

n
0 =

∫
M
f
− 1

n−1

0 sωf
n

n−1

0 ωn =

∫
M
f0sωω

n.

Similarly, by integrating (3.4) and from (3.5), we have that
∫
M ŝω0ω

n
0 =

∫
M f0ŝωω

n.

4. Proofs of Proposition 1.30, Theorems 1.31 and 1.32

We first investigate the case of n = 2. Let (M4, J, ω) be a real 4-dimensional compact

Kähler-like almost Hermitian manifold and let g be the associated almost Hermitian metric

of ω. Let {er} be an arbitrary chosen local (1, 0)-frame around a point p0 ∈ M4 with

respect to the metric g and let {θr} be a local associated coframe with respect to {er} in

this section.

We define the torsion (1, 0)-form (see [14]) by

wi := T k
ik = gklTikl, η := −wiθ

i.
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Note that for any real (1, 1)-form σ =
√
−1σijθ

i ∧ θj , we have

(4.1) ∂σ =

√
−1

2

(
ei(σjk)− ej(σik)−Bs

ijσsk −Bs
ik
σjs +Bs

jk
σis

)
θi ∧ θj ∧ θk,

Then we have from (2.19), (2.23) and (4.1),

(4.2) η = −Λ∂ω.

Lemma 4.1. [19, Lemma 3.1] Let (M4, J, ω) be a real 4-dimensional almost Hermitian

manifold. Then one has that

∂ω = −η ∧ ω.

Proof. From (2.24) for r = k = 1, we have that Λ(∂ω −L(Λ∂ω)) = 0. Since Λ is injective

(see [24, Lemma 6.24]), we obtain that

(4.3) ∂ω − L(Λ∂ω) = 0.

Combining (4.3) with (4.2), we have

∂ω = L(Λ∂ω) = −η ∧ ω.

We restate the following lemma combining Lemma 4.1 with the case of n ≥ 3 in [19,

Lemma 3.1].

Lemma 4.2. Let (M2n, J, ω) be an almost Hermitian manifold with n ≥ 2. Then one has

that

∂ωn−1 = −η ∧ ωn−1.

We also have the following lemma. We can give a proof in the same manner by taking

n = 2 and using ∗ω = ω in the case of n = 2 as well.

Lemma 4.3. [19, Lemma 3.2] Let (M2n, J, ω) be a real 2n-dimensional compact almost

Hermitian manifold with n ≥ 2. Then, one has that

(4.4) η = −Λ∂ω =
√
−1∂

∗
ω.

For any (1, 0)-form α, we have that ∂α = ∂jαiθ
j ∧ θi, and by using (2.2) and (2.4),

(4.5) ∇jαi = ej(αi)− Γk
ji
αk = ej(αi)−Bk

ji
αk = ∂jαi.

We compute by applying (4.4) and (4.5),

(4.6) ∂∂
∗
ω = −

√
−1∂η =

√
−1∂(wiθ

i) =
√
−1∂jwiθ

j ∧ θi = −
√
−1∇jwiθ

i ∧ θj ,

where ∇ is the Chern connection.
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We have from (2.8),

(4.7) Pij − gklRkjil = −∇jwi + T r
siT

s
rj
,

where Pij = gklRijkl is the first Chern–Ricci curvature, and we used that T s
si = −T s

is = −wi

and Br
is = −Br

si = −T r
si. By combining (4.6) with (4.7), and by summing over indices i,

j with respect to the metric ω, we obtain that

(4.8) sω − ŝω = ⟨∂∂∗ω, ω⟩+ T r
siT

s
ri
.

Since the formula (4.8) holds for n ≥ 3 as well (see [19, (3.7)]), we restate the following

statement for n ≥ 2.

Lemma 4.4. Let (M2n, J, ω) be a real 2n-dimensional compact almost Hermitian manifold

with n ≥ 2. Then we have

(4.9) sω − ŝω = ⟨∂∂∗ω, ω⟩+ T r
siT

s
ri
,

where ⟨∂∂∗ω, ω⟩ = gijgpq(∂∂
∗
ω)iqωjp = gijgpq(−

√
−1∇qwi)

√
−1gjp = −gij∇jwi.

We consider the general dimension n ≥ 2 in the following computations. We have the

following proposition, which implies that Theorem 1.31 holds from Lemma 1.12.

Proposition 4.5. Let (M2n, J, ω) be a compact almost Hermitian manifold with n ≥ 2

and HSC(ω) > 0. Assume that T r
ijT

i
rj

≥ 0, then
∫
M sω0ω

n
0 > 0.

Proof. We may take a Gauduchon metric ω0 in the conformal class of ω such that ω0 =

f
1

n−1

0 ω ∈ {ω}, where f0 is a positive smooth function. Let g0 be the associated almost

Hermitian metric with respect to ω0. Define dVg0 :=
ωn
0
n! . By integrating the formula (4.9)

for ω0, assuming T r
ijT

i
rj

≥ 0, we obtain that from (2.21),∫
M
(sω0 − ŝω0) dVg0 =

∫
M
⟨∂∂∗ω0, ω0⟩ dVg0 +

∫
M
T r
ijT

i
rj
dVg0

= (∂∂
∗
ω0, ω0) +

∫
M
T r
ijT

i
rj
dVg0

= (∂
∗
ω0, ∂

∗
ω0) +

∫
M
T r
ijT

i
rj
dVg0

=

∫
M

|∂∗ω0|2 dVg0 +
∫
M
T r
ijT

i
rj
dVg0

≥ 0

and ∫
M
(sω0 − ŝω0)ω

n ≥ 0.
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Since we have assumed HSC(ω) > 0, we have that sω + ŝω > 0 from Lemma 3.1, we get

that by using (4.10),∫
M
sω0ω

n
0 =

1

2

∫
M
(sω0 + ŝω0)ω

n
0 +

1

2

∫
M
(sω0 − ŝω0)ω

n
0 ≥ 1

2

∫
M
f0(sω + ŝω)ω

n > 0,

where we have used the positivity of the smooth function f0.

From Proposition 1.26(ii), we conclude that we have κ(M) = −∞, which means that

Proposition 1.30 holds. By applying Lemma 1.12, we conclude that Theorem 1.31 holds.

Since the following lemma tells us that we have T r
ijT

i
rj

≥ 0 on a real 4-dimensional almost

Hermitian manifold, we conclude that Theorem 1.32 holds.

Lemma 4.6. On a real 4-dimensional almost Hermitian manifold, we have that

(4.10) T r
ijT

i
rj

≥ 0.

The equality T r
ijT

i
rj

= 0 holds if and only if T 1
12 = T 2

12.

Proof. We compute that

T r
ijT

i
rj

= gjkgisgpqgprglsT
r
ijT

l
qk

= gjkδqrδilT
r
ijT

l
qk

= gjk(T 1
1jT

1
1k

+ T 2
1jT

1
2k

+ T 1
2jT

2
1k

+ T 2
2jT

2
2k
)

= T 1
12T

1
12

+ T 2
12T

1
21

+ T 1
21T

2
12

+ T 2
21T

2
21

= T 1
12T

1
12

− T 2
12T

1
12

− T 1
12T

2
12

+ T 2
12T

2
12

= (T 1
12 − T 2

12)(T
1
12

− T 2
12
) = (T 1

12 − T 2
12)(T

1
12 − T 2

12) = |T 1
12 − T 2

12|2 ≥ 0.

Remark 4.7. On a real 4-dimensional compact almost Hermitian manifold (M4, J, ω), let

us assume that there exists an almost Hermitian metric ω̃ on M4 such that∫
M
sω̃ω

2 ≤
∫
M
ŝω̃ω

2.

Let g̃ be the associated almost Hermitian metric with respect to ω̃ and let us define

dVg̃ := ω̃2

2! . Then we obtain that

0 ≥
∫
M
(sω̃ − ŝω̃) dVg̃ =

∫
M
⟨∂∂∗ω̃, ω̃⟩ dVg̃ +

∫
M
T r
ijT

i
rj
dVg̃

=

∫
M

|∂∗ω̃|2 dVg̃ +
∫
M
T r
ijT

i
rj
dVg̃

⇐⇒ 0 ≥ −
∫
M

|∂∗ω̃|2 dVg̃ =

∫
M
T r
ijT

i
rj
dVg̃.

(4.11)

Combining T r
ijT

i
rj

≥ 0 on M4 from Lemma 4.6 with (4.11), we obtain that∫
M
T r
ijT

i
rj
ω2 =

∫
M

|T 1
12 − T 2

12|2ω2
0 = 0,
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which tells that T r
ijT

i
rj

= 0 (i.e., T 1
12 = T 2

12). Then we get from (4.11),
∫
M |∂∗ω̃0|2ω2 = 0,

which gives us that ∂
∗
ω̃0 = 0 on M4. Hence, the metric ω̃0 is almost Kähler on M4, then

we must have T ′′ ≡ 0 and the manifold must be Kähler from Lemma 1.12.

Proposition 4.8. Let (M4, J, ω) be a real 4-dimensional compact almost Hermitian man-

ifold. Assume that there exists an almost Hermitian metric ω̃ on M4 such that
∫
M sω̃ω

2 ≤∫
M ŝω̃ω

2. Then the manifold is Kähler.

Similarly, as in Proposition 4.5, assuming that there exists an almost Hermitian

metric ω̃ such that
∫
M sω̃ω̃

n ≤
∫
M ŝω̃ω̃

n, by integrating the equation (4.9) for ω̃, then∫
M T r

ijT
i
rj
ω̃n ≤ 0. Hence, the following statement holds.

Proposition 4.9. Let (M2n, J, ω) be a real 2n-dimensional compact almost Kähler man-

ifold with n ≥ 3. Assume that there exists an almost Hermitian metric ω̃ such that∫
M sω̃ω̃

n ≤
∫
M ŝω̃ω̃

n on M . Then the manifold is Kähler.
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