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Existence of Weak Solutions for a Class of (p, q)-biharmonic Equations with

Critical Exponent and Discontinuous Nonlinearity

Jung-Hyun Bae and Jae-Myoung Kim*

Abstract. We are concerned with a class of (p, q)-Laplace type biharmonic Kirchhoff

equationsM
(∫

Ω
A(|∆u|p) dx

)
∆(a(|∆u|p)|∆u|p−2∆u) = λf(u) + |u|q∗2−2u in Ω,

u = ∆u = 0 on ∂Ω,

where Ω is a bounded open set in RN with smooth boundary, λ is a positive real

parameter, 2 ≤ p < q < q∗2 , q
∗
2 = Nq

N−2q is the critical exponent, N > 2q and A(t) =∫ t

0
a(s) ds for t ∈ R+. Here, M : R+ → R+ is a Kirchhoff function, a : R+ → R+ is

a continuous function satisfying some properties and f : R → R is a function which

can have an uncountable set of discontinuity points. In this article, we study the

existence of a positive weak solution for the problem above involving critical growth

and a discontinuous nonlinearity via mountain pass theorem.

1. Introduction

The study of nonlinear differential equations involving double phase operators has been

paid to a great deal of attention in the recent decades; see [6, 10, 14–16, 23, 27, 28]. Such

operators can be corroborated as a model for many physical phenomena which arise in

the research of elasticity, strongly anisotropic materials and Lavrentiev’s phenomenon;

see [29–32] for more details. In particular, Zhikov investigated the behavior of strongly

anisotropic materials and found that their hardening properties varied sharply with the

point. This phenomenon is described the following functional

(1.1)

∫
Ω
(|∇u|p + υ(x)|∇u|q) dx,

where the function υ(·) was used as an aid to regulating the mixture between two differ-

ent materials. The functional (1.1) belongs to the class of the integral functionals with
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nonstandard growth conditions; see also [17, 20–22] for (p, q) elliptic problems involving

critical growth.

On the other hands, for the problems involving p-biharmonic operators, Kratochv́ıl

and Nečas [25] considered fourth-order differential equations which arise in the study of

beam deflection problems on the nonlinear elastic foundation; see also [1, 19, 24] and the

references therein. In particular, understanding the fourth-order differential equations is

significantly important in physics or other science and engineering fields.

In the present paper, motivated by Zhikov and Kratochv́ıl–Nečas’ works above, we

are concerned with a class of (p, q)-quasilinear equations involving p-biharmonic operators

when f has an uncountable set of discontinuity points:

(1.2)

M
(∫

ΩA(|∆u|p) dx
)
∆(a(|∆u|p)|∆u|p−2∆u) = λf(u) + |u|q∗2−2u in Ω,

u = ∆u = 0 on ∂Ω,

where λ > 0, 2 ≤ p < q < q∗2, N > 2q, f : R → R is a function that can have an

uncountable set of discontinuity points and a : R+ → R+ is a function of C1 class.

We are going to explore the above problem (1.2). For this, let us introduce the critical

exponent q∗2 defined by

q∗2 =


Nq

N−2q if N > 2q,

∞ if N ≤ 2q.

Assume that the Kirchhoff function M : R+ → R+ satisfies the following condition:

(M) M ∈ C(R+,R+) is increasing and satisfies inft∈R+ M(t) ≥ m0 > 0, where m0 is a

constant.

A typical example for M is given by M(t) = b0 + b1t
n with n > 0, b0 > 0 and b1 ≥ 0.

Next, we suppose that functions a and f satisfy the following conditions.

(A1) The function a ∈ C1(R+,R+) and there exist constants a0, a1 > 0 such that

a0
(
1 + t

q−p
p
)
≤ a(t) ≤ a1

(
1 + t

q−p
p
)

for all t > 0.

(A2) There exists a constant α ∈ (0, 1] such that

A(t) ≥ αa(t)t for all t ≥ 0,

where A(t) :=
∫ t
0 a(s) ds.

(f1) There exist a constant b > 0 and r with q < r < q∗2 such that

|f(z)| ≤ b(1 + |z|r−1) for all z ∈ R.
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(f2) There exists µ ∈
( p
α , q

∗
2

)
such that

0 ≤ µF (z) ≤ zf(z) for all z ∈ R,

where

f(z) := lim
δ→0+

ess inf
|ξ−z|<δ

f(ξ) and f(z) := lim
δ→0+

ess sup
|ξ−z|<δ

f(ξ)

which are N-measurable and F (z) :=
∫ z
0 f(s) ds.

(f3) There is β > 0 (to be specified later) such that

H(z − β) ≤ f(z) for all z ∈ R,

where H is the Heaviside function, i.e.,

H(s) =

0 if s ≤ 0,

1 if s > 0.

(f4) f(z) = 0 if z ≤ 0 and

lim sup
z→0+

f(z)

zq−1
= 0.

The problems involving discontinuous nonlinearities appear in various physical situ-

ations such as electrical phenomena, plasma physics, etc. For the readers interested in

these problems, we refer to [2–5] and the references therein.

As mentioned in [21], a typical example of a function satisfying the conditions (f1)–

(f4) is as follows. Note that the function f in this example has an uncountable set of

discontinuity points:

f(z) =



0 if z ∈ (−∞, β/2),

1 if z ∈ Q ∩ [β/2, β],

0 if z ∈ (R \Q) ∩ [0, β],∑ℓ
k=1

|z|qk−1

βqk−1 if z > β, ℓ ≥ 1 and qk ∈ (q, q∗2).

Definition 1.1. We say that u ∈ W 2,q
0 (Ω) with u ≥ 0 is a weak solution of the problem

(1.2) if

M

(∫
Ω
A(|∆u|p) dx

)∫
Ω
a(|∆u|p)|∆u|p−2∆u ·∆v dx = λ

∫
Ω
ρv dx+

∫
Ω
|u|q∗2−2uv dx

for any v ∈W 2,q
0 (Ω) and

ρ(x) ∈
[
f(u(x)), f(u(x))

]
a.e. in Ω.
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In this regard, our aim is to show that (1.2) admits at least one positive weak solution

to a class of (p, q)-biharmonic Kirchhoff equations with the critical exponent and a dis-

continuous nonlinearity. Our result extends Figueiredo and Nascimento’s result [21] for a

class of (p, q)-Laplace equations to a class of (p, q)-biharmonic equations. To overcome the

lack of compactness in the study of p-biharmonic equations with the critical exponent, we

adapt the concentration-compactness principle for the Sobolev space introduced by Chung

and Ho [12]. Moreover, using a truncation method, we deal with the Kirchhoff function

related to a class of p-biharmonic operator; see also [7,12]. As far as we know, this is the

first attempt for (p, q)-biharmonic operators. It is remarkable that we obtain the existence

result for a class of (p, q)-biharmonic equations involving a discontinuous superlinear term

provided that λ is suitable.

The main result of this paper is as follows:

Theorem 1.2. Assume that (M), (A1)–(A2) and (f1)–(f4) hold. Then the following holds:

(1) There exists Λ∗ > 0 such that the problem (1.2) admits a positive weak solution

uλ ∈W 2,q
0 (Ω) for all λ ≥ Λ∗.

(2) There exists β∗ > 0 such that {x ∈ Ω : uλ(x) > β∗} has positive measure for all

λ ≥ Λ∗.

2. Preliminaries

In this section, we briefly introduce some definitions and basic results on the critical point

theory for locally Lipschitz continuous functionals; see [11,13].

Let (X, ∥ ·∥X) be a real reflexive Banach space. We denote the dual space of X by X∗,

while ⟨ · , · ⟩ stands for the duality pairing between X∗ and X. A functional J : X → R is

called locally Lipschitz when, for every u ∈ X, there corresponds a neighborhood U of u

and a constant L ≥ 0 such that

|J(v1)− J(v2)| ≤ L∥v1 − v2∥X for all v1, v2 ∈ U.

If u, v ∈ X, the symbol J0(u; v) indicates the generalized directional derivative of J at a

point u along direction v, namely

J0(u; v) := lim sup
h→0, t→0+

J(u+ h+ tv)− J(u+ h)

t
.

The generalized gradient of J at u ∈ X denoted by ∂J(u), is defined as being the

subset of X∗ such that

∂J(u) =
{
u∗ ∈ X∗ : ⟨u∗, v⟩ ≤ J0(u; v) for all v ∈ X

}
.
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Since J0(u; 0) = 0, ∂J(u) is the subdifferential of J0(u; 0). The subset ∂J(u) ⊂ X∗ is

nonempty, convex and weak∗-compact. Moreover, ∂J(u) = {J ′(u)} if J ∈ C1(X,R).
A critical point of J is an element u0 ∈ X such that 0 ∈ ∂J(u0) and a critical value of

J is a real number c such that J(u0) = c for some critical point u0 ∈ X.

A sequence {un} ⊂ X is said to be a Palais–Smale sequence for J ((PS)c-sequence for

short), if for c ∈ R,

J(un) → c and ω∗(un) → 0 as n→ ∞,

where ω∗(u) = min{∥u∗∥X∗ : u∗ ∈ ∂J(u)}. A functional J satisfies the (PS)c-condition if

any Palais–Smale sequence at level c has a convergent subsequence.

Lemma 2.1. [21, Theorem 2.1] Let J be a locally Lipschitz functional with J(0) = 0

satisfying

(1) there exist two constants ζ, R > 0 such that J(u) ≥ ζ with ∥u∥X = R for u ∈ X;

(2) there exists e ∈ X \ {0} with ∥u∥X ≥ R such that J(e) < 0.

If

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t))

with

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0 and J(γ(1)) ≤ 0}

and J satisfies the (PS)c-condition, then c ≥ ζ is a critical point of J such that there is

u ∈ X verifying

J(u) = c and 0 ∈ ∂J(u).

Lemma 2.2 (Riesz representation theorem). [21, Proposition 2.2] [8] Let B be a bounded

linear functional on Lr(Ω) for 1 < r < ∞. Then, there is a unique function u ∈ Lr′(Ω),

r′ = r
r−1 such that

⟨B, v⟩ =
∫
Ω
uv dx for all v ∈ Lr(Ω).

Moreover,

∥u∥Lr′ (Ω) = ∥B∥(Lr(Ω))∗ .

The Sobolev space W 2,q(Ω) is defined by

W 2,q(Ω) :=
{
u ∈ Lq(Ω) : |Diu| ∈ Lq(Ω) for all i with |i| ≤ 2

}
endowed with the standard norm ∥ · ∥W 2,q(Ω). Let the space W 2,q

0 (Ω) be the completion of

C∞
0 (Ω). By the Poincaré inequality, we endow the space W 2,q

0 (Ω) with equivalent norm

given by

∥u∥ =

(∫
Ω
|∆u|q dx

)1/q

.
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Moreover, (W 2,q
0 (Ω), ∥ · ∥) is a reflexive Banach space; see [18, Theorem 8.1.13].

Lemma 2.3. [12, Proposition 3.4] Let k ∈ N be such that km < N . Let h satisfy

1 ≤ h ≤ m∗
k =

Nm

N − km
.

Then we have continuous embedding

W k,m(Ω) ↪→ Lh(Ω).

If, in addition, h < m∗
k, then the above embedding is compact.

Remark 2.4. If 2q < N and 1 ≤ h ≤ q∗2, the embedding

W 2,q
0 (Ω) ↪→ Lh(Ω)

is continuous, that is, there exists Sh = Sh(N, q,Ω) > 0 such that

∥u∥Lh(Ω) ≤ Sh∥u∥ for all u ∈W 2,q
0 (Ω).

Throughout this paper, we denote by X :=W 2,q
0 (Ω). Let X∗ :=W−2,q

0 (Ω) denote the

dual space of X and let ∥ · ∥X∗ be its norm. Subsequently, C denotes a universal positive

constant.

3. Existence of nontrivial weak solutions

Let us define the functional Φ: X → R by

Φ(u) =
1

p
M
(∫

Ω
A(|∆u|p) dx

)
− 1

q∗2

∫
Ω
|u|q∗2 dx.

It is obvious that the functional Φ is well defined on X, Φ ∈ C1(X,R) and its Fréchet

derivative is given by

⟨Φ′(u), v⟩ =M

(∫
Ω
A(|∆u|p) dx

)∫
Ω
a(|∆u|p)|∆u|p−2∆u ·∆v dx−

∫
Ω
|u|q∗2−2uv dx

for any u, v ∈ X.

Next we define the functional Ψ: X → R by

Ψ(u) =

∫
Ω
F (u) dx.

Then Ψ is locally Lipschitz continuous on X and ∂Ψ(u) ⊂ X∗. Moreover, if ρ ∈ ∂Ψ(u), it

satisfies

(3.1) ρ(x) ∈
[
f(u(x)), f(u(x))

]
a.e. in Ω.
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Also we define the functional Jλ : X → R related to the problem (1.2)

Jλ(u) = Φ(u)− λΨ(u).

Then Jλ is locally Lipschitz continuous and

∂Jλ(u) = {Φ′(u)} − λ∂Ψ(u) for any u ∈ X.

In order to prove Theorem 1.2, we apply a truncation technique used in [7,12], as follows:

Fix t0 > 0 to be specified later and a truncation of M(t) defined by

(3.2) M0(t) :=

M(t) for 0 ≤ t ≤ t0,

M(t0) for t > t0.

It is clear that M0 ∈ C(R+,R+),

(3.3) m0 ≤M0(t) ≤M(t0) for all t ∈ R+
0

and

(3.4) m0t ≤ M0(t) ≤M(t0)t for all t ∈ R+
0

due to (M), where M0(t) :=
∫ t
0 M0(s) ds for t ∈ R+

0 . Then we define Φ0 : X → R by

Φ0(u) =
1

p
M0

(∫
Ω
A(|∆u|p) dx

)
− 1

q∗2

∫
Ω
|u|q∗2 dx.

It is obvious that the functional Φ0 is well defined on X, Φ0 ∈ C1(X,R) and its Fréchet

derivative is given by

⟨Φ′
0(u), v⟩ =M0

(∫
Ω
A(|∆u|p) dx

)∫
Ω
a(|∆u|p)|∆u|p−2∆u ·∆v dx−

∫
Ω
|u|q∗2−2uv dx

for any u, v ∈ X. Then the functional J̃λ : X → R is given by

J̃λ(u) =
1

p
M0

(∫
Ω
A(|∆u|p) dx

)
− 1

q∗2

∫
Ω
|u|q∗2 dx− λ

∫
Ω
F (u) dx.

The modified functional J̃λ is also locally Lipschitz continuous and

∂J̃λ(u) = {Φ′
0(u)} − λ∂Ψ(u) for any u ∈ X.

The following result is to show that the modified energy functional J̃λ satisfies the (PS)c-

condition. With the aid of the Concentration-Compactness Principle; see [12], we prove

that the functional J̃λ satisfies the Palais–Smale condition. This plays a key role in

obtaining the existence of a nontrivial weak solution for the given problem.
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Now, we define the truncation M0(t) of M(t) given in (3.2) and the truncated energy

functional J̃λ by fixing t0 ∈ (0, 1) such that

(3.5) m0 < M(t0) <
m0αµ

p
,

where α is given in the assumption (A2) and µ is given in (f2).

Lemma 3.1. Assume that (M), (A1)–(A2), (f1)–(f2) and (f4) hold. Then the functional

J̃λ satisfies the (PS)c-condition for

(3.6) c <

(
1

µ
− 1

q∗2

)
(m0a0S)

N/q,

where S := infϕ∈X\{0}
∥ϕ∥

∥ϕ∥Lq(Ω)
> 0.

Proof. Given c ∈ R, let {un} ⊂ X be a (PS)c-sequence of the functional J̃λ, that is,

J̃λ(un) → c and ω∗(un) → 0 as n→ ∞,

which shows that

c = J̃λ(un) + on(1) and ω∗(un) = on(1),

where on(1) → 0 as n→ ∞. Then there exists a sequence {wn} ⊂ ∂J̃λ(un) such that

∥wn∥X∗ = ω∗(un) = on(1) and wn = Φ′(un)− λρn,

where ρn ∈ ∂Ψ(un).

First we claim that the sequence {un} in X is bounded. According to the assumptions

(M), (A2) and (f2), we have for all n large enough,

c+ 1 + ∥un∥

≥ J̃λ(un)−
1

µ
⟨wn, un⟩+ on(1)

=
1

p
M0

(∫
Ω
A(|∆un|p) dx

)
− λ

∫
Ω
F (un) dx− 1

q∗2

∫
Ω
|un|q

∗
2 dx

− 1

µ
M0

(∫
Ω
A(|∆un|p) dx

)∫
Ω
a(|∆un|p)|∆un|p dx+

λ

µ

∫
Ω
ρnun dx+

1

µ

∫
Ω
|un|q

∗
2 dx

≥ m0

p

∫
Ω
A(|∆un|p) dx− 1

µ
M(t0)

∫
Ω
a(|∆un|p)|∆un|p dx

+ λ

∫
Ω

(
1

µ
ρnun − F (un)

)
dx+

(
1

µ
− 1

q∗2

)∫
Ω
|un|q

∗
2 dx

≥
(
m0α

p
− M(t0)

µ

)∫
Ω
a(|∆un|p)|∆un|p dx+ λ

∫
Ω

(
1

µ
ρnun − F (un)

)
dx.

(3.7)
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The assumption (f2) implies that

(3.8)
1

µ
ρn(x)un(x) ≥

1

µ
f(un(x))un(x) ≥ F (un(x)) a.e. in Ω.

Combining this with (3.7) again, we have

c+ 1 + ∥un∥ ≥
(
m0α

p
− M(t0)

µ

)∫
Ω
a(|∆un|p)|∆un|p dx.

From (M), (A1) and (3.2), it follows that

c+ 1 + ∥un∥ ≥ a0

(
m0α

p
− M(t0)

µ

)∫
Ω
|∆un|q dx = a0

(
m0α

p
− M(t0)

µ

)
∥un∥q.

Note that if {un} is unbounded in X, then we derive a contradiction because M(t0) <

m0αµ/p due to (3.5). Therefore, we conclude that {un} is bounded in X. Then there

exists C > 0 such that

(3.9) sup

∫
Ω
|∆un|p dx ≤ C and sup

∫
Ω
|∆un|q dx ≤ C.

Also, there exists a subsequence of {un}, denoted again by {un}, such that un ⇀ u in X

as n→ ∞. By Lemma 2.3 and the compact embedding, we have

(3.10) un(x) → u(x) a.e. in Ω, un → u in Ls(Ω) and |un(x)| ≤ v(x)

for some 1 ≤ s < q∗2 and v ∈ Ls(Ω) as n→ ∞.

Moreover, using the Concentration-Compactness Principle due to Chung and Ho [12]

(see also Lions [26]), we obtain an at most countable index set Λ and sequences {µj}, {νj} ⊂
(0,∞) such that

|∆un|q → µ and |un|q
∗
2 → ν

in a weak∗-sense of measure as n→ ∞. Then the limit measures are of the form

(3.11) µ ≥ |∆u|q +
∑
j∈Λ

µjδxj , ν = |u|q∗2 +
∑
j∈Λ

νjδxj and Sν

q
q∗2
j ≤ µj

for all j ∈ Λ where δxj is the Dirac mass at xj ∈ Ω.

Next, we will claim that Λ = ∅. Arguing by contradiction that Λ ̸= ∅, we fix j ∈ Λ.

Without loss of generality, we may suppose B2(0) ⊂ Ω. Considering ψ ∈ C∞
0 (Ω) such that

ψ = 1 in B1(0), ψ ≡ 0 in Ω \ B2(0) and |∆ψ|∞ ≤ 2, we define ψϱ(x) := ψ((x − xj)/ϱ),

where ϱ > 0. Hence, {ψϱun} is bounded in X and

on(1) = ⟨wn, ψϱun⟩ =M0

(∫
Ω
A(|∆un|p) dx

)∫
Ω
a(|∆un|p)|∆un|p−2∆un∆(ψϱun) dx

−
∫
Ω
ρnψϱun dx−

∫
Ω
|un|q

∗
2ψϱ dx.
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Then we have for sufficiently large n that

M0

(∫
Ω
A(|∆un|p) dx

)∫
Ω
ψϱa(|∆un|p)|∆un|p−2∆un∆un dx

= −2M0

(∫
Ω
A(|∆un|p) dx

)∫
Ω
a(|∆un|p)|∆un|p−2∆un∇ψϱ · ∇un dx

−M0

(∫
Ω
A(|∆un|p) dx

)∫
Ω
una(|∆un|p)|∆un|p−2∆un∆ψϱ dx

+

∫
Ω
ρnψϱun dx+

∫
Ω
|un|q

∗
2ψϱ dx.

(3.12)

Now, we will estimate terms in the right-hand side of (3.12). Since supp(ψϱ) is compact

and it is contained in B2ϱ(xj), it follows from (A1) that∣∣∣∣M0

(∫
Ω
A(|∆un|p) dx

)∫
Ω
a(|∆un|p)|∆un|p−2∆un∇ψϱ · ∇un dx

∣∣∣∣
≤M0

(∫
Ω
A(|∆un|p) dx

)∫
B2ϱ(0)

|a(|∆un|p)||∆un|p−1|∇un||∇ψϱ| dx

≤M(t0)a1

∫
B2ϱ(0)

|∆un|p−1|∇un||∇ψϱ|+ |∆un|q−1|∇un||∇ψϱ| dx.

Then let δ > 0 be arbitrary and fixed. By Young’s inequality and (3.9), we observe that∫
B2ϱ(0)

|∆un|q−1|∇un||∇ψϱ| dx ≤ δ

∫
B2ϱ(0)

|∆un|q dx+ C(δ)

∫
B2ϱ(0)

|∇un|q|∇ψϱ|q dx

≤ Cδ + C(δ)

∫
B2ϱ(0)

|∇un|q|∇ψϱ|q dx

and ∫
B2ϱ(0)

|∆un|p−1|∇un||∇ψϱ| dx ≤ Cδ + C(δ)

∫
B2ϱ(0)

|∇un|p|∇ψϱ|p dx,

where C(δ) denotes a positive constant depending on δ but independent of n and ϱ.

Combining this with (3.10) gives

lim sup
n→∞

∫
B2ϱ(0)

|∆un|q−1|∇un||∇ψϱ| dx ≤ Cδ + C(δ)

∫
B2ϱ(0)

|∇u|q|∇ψϱ|q dx

and

lim sup
n→∞

∫
B2ϱ(0)

|∆un|p−1|∇un||∇ψϱ| dx ≤ Cδ + C(δ)

∫
B2ϱ(0)

|∇u|p|∇ψϱ|p dx.

Note that |∇u| ∈ Lq∗1 (Ω) because |∇u| ∈ W 1,q(Ω) and u ∈ Lq∗2 (Ω), where q∗1 is given in
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Lemma 2.3. By Hölder’s inequality, we observe that∫
B2ϱ(0)

|∇u∇ψϱ|q dx ≤ ∥|∇u|q∥
L

q∗1
q (B2ϱ(0))

∥|∇ψϱ|q∥
L

N
q (B2ϱ(0))

= ∥|∇u|q∥
L

q∗1
q (B2ϱ(0))

(∫
B2ϱ(0)

|∇ψϱ|N dx

)q/N

= ∥|∇u|q∥
L

q∗1
q (B2ϱ(0))

(∫
B2(0)

|∇ψ|N dx

)q/N

and ∫
B2ϱ(0)

|∇u∇ψϱ|p dx ≤ ∥|∇u|p∥
L

p∗1
p (B2ϱ(0))

(∫
B2(0)

|∇ψ|N dx

)p/N

.

It follows that ∫
B2ϱ(0)

|∇u∇ψϱ|q dx→ 0 as ϱ→ 0+

and ∫
B2ϱ(0)

|∇u∇ψϱ|p dx→ 0 as ϱ→ 0+.

Thus, we derive

lim sup
ϱ→0+

lim sup
n→∞

∣∣∣∣M0

(∫
Ω
A(|∆un|p) dx

)∫
Ω
a(|∆un|p)|∆un|p−2∆un∇ψϱ · ∇un dx

∣∣∣∣
≤ 2a1M(t0)Cδ.

Since δ > 0 was taken arbitrarily, we arrive at

lim sup
ϱ→0+

lim sup
n→∞

M0

(∫
Ω
A(|∆un|p) dx

)∫
Ω
a(|∆un|p)|∆un|p−2∆un∇ψϱ · ∇un| dx = 0.

By a similar argument, we have∣∣∣∣M0

(∫
Ω
A(|∆un|p) dx

)∫
Ω
una(|∆un|p)|∆un|p−2∆un∆ψϱ dx

∣∣∣∣
≤M0(t0)

∫
B2ϱ(0)

a(|∆un|p)|∆un|p−1|un∆ψϱ| dx

≤M0(t0)

∫
B2ϱ(0)

a1(|∆un|p−1|un∆ψϱ|+ |∆un|q−1|un∆ψϱ|) dx

≤ 2a1M(t0)

[
Cδ + C(δ)

(∫
B2ϱ(0)

|un∆ψϱ|p dx+

∫
B2ϱ(0)

|un∆ψϱ|q dx

)]
.
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Note that ∫
B2ϱ(0)

|un∆ψϱ|p dx ≤ ∥|un|p∥
L

p∗2
p (B2ϱ(0))

∥|∆ψϱ|p∥
L

N
2p (B2ϱ(0))

= ∥|un|p∥
L

p∗2
p (B2ϱ(0))

(∫
B2ϱ(0)

|∆ψϱ|
N
2 dx

)p/(2N)

= ∥|un|p∥
L

p∗2
p (B2ϱ(0))

(∫
B2(0)

|∆ψ|
N
2 dx

)2p/N

.

As above, it follows from (3.10) that

lim sup
ϱ→0+

[
lim sup
n→∞

∣∣∣∣M0

(∫
Ω
A(|∆un|p) dx

)∫
Ω
una(|∆un|p)|∆un|p−2∆un∆ψϱ dx

∣∣∣∣] = 0.

Owing to (3.1) and (f1),

0 ≤ ρn(x) ≤ b(1 + |un(x)|r−1) a.e. in Ω.

This implies ∫
B2ϱ(0)

ρnψϱun dx ≤ b

(∫
B2ϱ(0)

ψϱ|un| dx+

∫
B2ϱ(0)

ψϱ|un|r dx

)

and so we deduce

lim
ϱ→0+

(
lim
n→∞

∫
Ω
ρnψϱun dx

)
= 0.

Therefore,

M0

(∫
Ω
A(|∆un|p) dx

)∫
Ω
a(|∆un|p)|∆un|pψϱ dx =

∫
Ω
|un|q

∗
2ψϱ dx+ on(1).

Using (M) and (A1), we obtain

m0a0

∫
Ω
|∆un|qψϱ dx ≤ m0a0

∫
Ω
(|∆un|p + |∆un|q)ψϱ dx ≤

∫
Ω
|un|q

∗
2ψϱ dx+ on(1).

By taking the limit as n→ ∞, we have

m0a0

∫
Ω
ψϱ dµ ≤

∫
Ω
ψϱ dν.

Letting ϱ→ 0+, we assert m0a0µj ≤ νj . From (3.11), we conclude that

(3.13) νj ≥ (m0a0S)
N
2q for some j ∈ Λ.
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In view of (3.3), (3.8) and the assumption (A2), we have

c+ on(1) = J̃λ(un)−
1

µ
⟨wn, un⟩

≥ 1

p
M0

(∫
Ω
A(|∆un|p) dx

)
− 1

µ
M0

(∫
Ω
A(|∆un|p) dx

)∫
Ω
a(|∆un|p)|∆un|p dx

+ λ

∫
Ω

(
1

µ
ρnun − F (un)

)
dx+

(
1

µ
− 1

q∗2

)∫
Ω
|un|q

∗
2 dx

≥ 1

p
M0

(∫
Ω
A(|∆un|p) dx

)∫
Ω
A(|∆un|p) dx

− 1

µ
M0

(∫
Ω
A(|∆un|p) dx

)∫
Ω
a(|∆un|p)|∆un|p dx+

(
1

µ
− 1

q∗2

)∫
Ω
|un|q

∗
2 dx

≥ 1

p
m0α

∫
Ω
a(|∆un|p)|∆un|p dx− 1

µ
M(t0)

∫
Ω
a(|∆un|p)|∆un|p dx

+

(
1

µ
− 1

q∗2

)∫
Ω
|un|q

∗
2 dx

≥
(
m0α

p
− M(t0)

µ

)∫
Ω
a(|∆un|p)|∆un|p dx+

(
1

µ
− 1

q∗2

)∫
Ω
|un|q

∗
2 dx.

By the choice of t0 in (3.5), we obtain that

c+ on(1) ≥
(
1

µ
− 1

q∗2

)∫
Ω
|un|q

∗
2 dx ≥

(
1

µ
− 1

q∗2

)∫
B2ϱ(0)

|un|q
∗
2ψϱ dx.

Taking the limits as n→ ∞, we have

c ≥
(
1

µ
− 1

q∗2

)∫
B2ϱ(0)

ψϱ dν.

By taking the limits as ϱ→ 0+ and (3.13), we conclude

c ≥
(
1

µ
− 1

q∗2

)
νj ≥

(
1

µ
− 1

q∗2

)
(m0a0S)

N
2q ,

which contradicts to our assumption (3.6). Therefore, Λ is empty and it follows that

(3.14)

∫
Ω
|un|q

∗
2 dx→

∫
Ω
|u|q∗2 dx.

Now we will prove that

un → u in X as n→ ∞.

Taking (3.14) and Brezis and Lieb [9] into account

(3.15) lim
n→∞

∫
Ω
(|un|q

∗
2−2un)(un − u) dx = 0.
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Under the assumption (f1), we have

0 ≤ ρn ≤ b(1 + |un|r−1) a.e. in Ω,

which implies that ∫
Ω
|ρn|

r
r−1 dx ≤ C(|Ω|+ ∥un∥rLr(Ω)).

Thus {ρn} is bounded in L
r

r−1 (Ω). Using Hölder’s inequality, we have∫
Ω
ρn(un − u) dx ≤ ∥ρn∥

L
r

r−1 (Ω)
∥un − u∥Lr(Ω).

It follows from the boundedness of {ρn} and (3.14) that

(3.16) lim
n→∞

∫
Ω
ρn(un − u) dx = 0.

Note that a(t) ≥ a0t
q−p
p for every t ≥ 0 due to (A1). Then by a similar argument

in [20, Lemma 2.4(ii)], we have the well-known inequalities:

C|x− y|q ≤
〈
a(|x|p)|x|p−2x− a(|y|p)|y|p−2y, x− y

〉
for all x, y ∈ Ω,

where ⟨ · , · ⟩ denotes the scalar product in RN . Since {un − u} is bounded in X and

∥wn∥X∗ = on(1), we derive

(3.17) lim
n→∞

⟨wn, un − u⟩ = 0.

According to (3.15), (3.16) and (3.17), we get

0 = lim
n→∞

⟨wn, un − u⟩

≥ lim
n→∞

[
m0

∫
Ω
a(|∆un|p)|∆un|p−2∆un(∆un −∆u) dx

]
− lim

n→∞

[∫
Ω
|un|q

∗
2−2un(un − u) dx+

∫
Ω
ρn(un − u) dx

]
= lim

n→∞
m0

∫
Ω

[
a(|∆un|p)|∆un|p−2∆un − a(|∆u|p)|∆u|p−2∆u

]
(∆un −∆u) dx

≥ lim
n→∞

C∥un − u∥q.

Therefore we conclude that un → u in X as n→ ∞. This completes the proof.

Next, to apply Lemma 2.1 we prove that J̃λ satisfies mountain pass geometry; see

also [12, Lemma 5.6].

Lemma 3.2. Assume that (M), (A1)–(A2) and (f1)–(f4) hold. Then the functional J̃λ

satisfies the following properties:
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(i) There exist v ∈ X and T > 0 such that

max
t∈[0,T ]

J̃λ(tv) < c,

where c is defined in Lemma 2.1.

(ii) There exist constants ζ,R > 0 such that J̃λ(u) ≥ ζ for all ∥u∥ = R.

(iii) There exists e ∈ X \ {0} with ∥e∥ > R such that J̃λ(e) < 0.

Proof. Consider v ∈ C∞
0 (Ω) such that ∥v∥ = 1, Υ = {x ∈ Ω : Tv(x) > β} with |Υ| > 0, T

to be fixed later and the function j : R → R given by

j(t) =
a1t

p

p
M(t0)∥∆v∥pLp(Ω) +

a1t
q

q
M(t0)−

tq
∗
2

q∗2
∥v∥q

∗
2

Lq∗2 (Ω)
.

So, there is t∗ such that

j(t∗) = max
t≥0

j(t).

Note that j is increasing in (0, t∗) and decreasing in (t∗,∞). We can choose T > 0 such

that

T < t∗, j(T ) < j(t∗) and j(T ) < c.

First, we will prove that (i) is true. Taking into account the assumption (A1) and

(3.4), the continuous embedding and ∥v∥ = 1, we have

J̃λ(tv) =
1

p
M0

(∫
Ω
A(|∆tv|p) dx

)
− 1

q∗2

∫
Ω
|tv|q∗2 dx− λ

∫
Ω
F (tv) dx

≤ 1

p
M(t0)

(∫
Ω
a1

(
|∆tv|p + p

q
|∆tv|q

)
dx

)
− 1

q∗

∫
Ω
|tv|q∗2 dx

≤ a1|t|p

p
M(t0)

(∫
Ω
|∆v|p dx

)
+
a1t

q

q
M(t0)

(∫
Ω
|∆v|q dx

)
− tq

∗
2

q∗2

∫
Ω
|v|q∗2 dx

= j(t).

This implies

max
t∈[0,T ]

J̃λ(tv) ≤ max
t∈[0,T ]

j(t) ≤ j(T ) < c.

Next, we will claim (ii). In view of (f4), for all ε > 0 there exists δ = δ(ε) such that

|F (z)| < ε|z|q for |z| < δ.

By the assumption (f1), we have

|F (z)| ≤ b

(
|z|+ |z|r

r

)
≤ C(ε)|z|r for |z| > δ,
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where C(ε) := 2bmax{δ1−r, r−1} and hence we obtain

(3.18) |F (z)| < ε|z|q + C(ε)|z|r for all z ∈ R.

Let λ > 0 be arbitrary, but fixed. According to the assumptions (A1)–(A2), (3.18) and

the continuous embedding in Remark 2.4, it follows that

J̃λ(u) ≥
m0

p

∫
Ω
A(|∆u|p) dx− λ

∫
Ω
|F (u)| dx−

∫
Ω
|u|q∗2 dx

≥ αa0m0

p

∫
Ω
(|∆u|p + |∆u|q) dx− λ

∫
Ω
(ε|u|q + C(ε)|u|r) dx− ∥u∥q

∗
2

Lq∗2 (Ω)

≥ αa0m0

p
(∥u∥p + ∥u∥q)− λεSq∥u∥q − λC(ε)Sr∥u∥r − Sq∗2

∥u∥q∗2 .

For each λ > 0 we take ε < 2αa0m0/pλSq and choose 0 < R < 1 sufficient small with

Rr−q <
2αa0m0 − εpλSq

p(λC(ε)Sr + Sq∗2
)
.

Then for all u ∈ X with ∥u∥ = R, we get

J̃λ(u) ≥
2αa0m0

p
∥u∥q − ελSq∥u∥q − λC(ε)Sr∥u∥r − Sq∗2

∥u∥r

= Rq

(
2αa0m0

p
− ελSq − (λC(ε)Sr + Sq∗2

)Rr−q

)
.

Therefore, we obtain ζ > 0 such that

J̃λ(u) ≥ ζ with ∥u∥ = R for all u ∈ X.

Finally, to prove (iii) fix β = T
2 . Then by (f3), we give

J̃λ(Tv) =
1

p
M0

(∫
Ω
A(|∆Tv|p) dx

)
− 1

q∗2

∫
Ω
|Tv|q∗2 dx− λ

∫
Ω
F (Tv) dx

≤ j(T )− λ

∫
Ω

∫ Tv

0
H(z − β) dzdx

= j(T )− λ

∫
Υ
|Tv − β| dx.

This implies that for each λ > 0 there exists T̃ (λ) > R such that

(3.19) J̃λ(Tv) < 0 for sufficiently large T ≥ T̃ (λ).

Thus, we conclude that for each λ > 0 there exists eλ := T̃ (λ)v satisfying ∥eλ∥ > R and

J̃(eλ) < 0. This completes the proof.
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For each λ > 0, let eλ be as in the preceding lemma and define

(3.20) cλ = inf
γ∈Γ

max
t∈[0,1]

J̃λ(γ(t)),

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0 and γ(1) = eλ}.

As a consequence of Lemma 3.2 we have

Lemma 3.3. The number cλ is positive and there exists a sequence {un} in X such that

J̃λ(un) → cλ and ω∗(un) → 0 as n→ ∞.

Furthermore, we have the following property for cλ.

Lemma 3.4. It holds that

lim
λ→∞

cλ = 0,

where cλ is given in (3.20).

Proof. Let {λn} be an arbitrary sequence of real positive numbers such that λn → ∞ as

n→ ∞. By the proof of Lemma 3.2, for each n ∈ N, there exists Tλn > 0 such that

J̃λn(Tλnv) = max
0<T

J̃λn(Tv).

For this reason, Tλn
d
dT J̃λn(Tv)

∣∣
T=Tλn

= ⟨wn, Tλnv⟩ = 0, where wn = Φ′(Tλnv) − λnρλn

and ρλn ∈ ∂Ψ(Tλnv), namely,

M0

(∫
Ω
A(|∆Tλnv|p) dx

)∫
Ω
a(|∆Tλnv|p)|∆Tλnv|p dx

= λn

∫
Ω
ρλnTλnv dx+

∫
Ω
|Tλnv|q

∗
2 dx.

(3.21)

It follows from (f2) that

(3.22) M0

(∫
Ω
A(|∆Tλnv|p) dx

)∫
Ω
a(|∆Tλnv|p)|∆Tλnv|p dx ≥ T

q∗2
λn

∫
Ω
|v|q∗2 dx.

On the other hand, taking into account (3.4) and ∥v∥ = 1, we get

M0

(∫
Ω
A(|∆Tλnv|p) dx

)∫
Ω
a(|∆Tλnv|p)|∆Tλnv|p dx

≤M(t0)

∫
Ω
a1(|∆Tλnv|p + |∆Tλnv|q) dx

≤ a1M(t0)T
p
λn

(∫
Ω
|∆v|p dx

)
+ a1M(t0)T

q
λn

(∫
Ω
|∆v|q dx

)
≤ a1M(t0)T

p
λn
∥v∥q|Ω|

q−p
q + a1M(t0)T

q
λn
∥v∥q

≤ a1M(t0)
(
1 + |Ω|

q−p
q
)
max{T p

λn
, T q

λn
}.

(3.23)
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Using (3.22) and (3.23), we deduce that the sequence {Tλn} is bounded because p < q < q∗2.

Up to a subsequence, we may assume that Tλn → T0 as n→ ∞. Moreover, by (3.21) and

(3.23), we have

(3.24) λn

∫
Ω
ρλnTλnv dx+

∫
Ω
|Tλnv|q

∗
2 dx < C

for all n ∈ N. Note that T0 = 0. Indeed, if T0 > 0, then it follows from the assumption

(f2) that

λn

∫
Ω
ρλnTλnv dx+

∫
Ω
|Tλnv|q

∗
2 dx→ ∞ as n→ ∞

which contradicts (3.24). So, we get T0 = 0.

For each n ∈ N, we consider the path γ̃(t) = teλn with t ∈ [0, 1], where eλn is taken

from the proof of Lemma 3.2. Clearly, γ̃ ∈ Γ and note that, by applying (3.19) for λ = λn,

max
t≥0

J̃λn(tv) = max
t∈
[
0,T̃ (λ)

] J̃λn(tv) = max
t∈[0,1]

J̃λn(teλn) = max
t∈[0,1]

J̃λn(γ̃(t)).

Thus, by (3.4) and (3.23), we have the following estimate

0 < cλn = inf
γ∈Γ

max
t∈[0,1]

J̃λn(γ(t))

≤ max
t∈[0,1]

J̃λn(γ̃(t)) = max
t≥0

J̃λn(tv) = J̃λn(Tλnv)

≤M(t0)

∫
Ω
a1(|∆Tλnv|p + |∆Tλnv|q) dx

≤ a1M(t0)T
p
λn

(∫
Ω
|∆v|p dx

)
+ a1M(t0)T

q
λn

(∫
Ω
|∆v|q dx

)
≤ 2a1M(t0)max{T p

λn
, T q

λn
}.

Combining this and the fact Tλn → 0, we obtain cλn → 0 as n → ∞. This completes the

proof.

4. Proof of Theorem 1.2

Proof of Theorem 1.2. (1) By Lemma 3.4, there exists Λ∗ > 0 such that

(4.1) cλ <

(
1

µ
− 1

q∗2

)
(m0a0S)

N/q and cλ <
a0t0(m0αµ− pM(t0))

a1pµ
for λ ≥ Λ∗,

where cλ is given by (3.20) and S is in Lemma 3.1. By Lemma 3.3, we have a sequence

{un} in X such that

J̃λ(un) → cλ and ω∗(un) → 0 as n→ ∞.
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Then there exists a sequence {wn} ⊂ ∂J̃λ(un) such that

∥wn∥X∗ = ω∗(un) = on(1) and wn = Φ′(un)− λρn,

where ρn ∈ ∂Ψ(un) and on(1) → 0 as n → ∞. Since J̃λ satisfies the (PS)c-condition due

to Lemma 3.1, we have a convergent subsequence of {un}, denoted again by {un} in X

such that un → uλ in X as n → ∞. In view of Lemmas 3.1 and 3.2, it follows from

Theorem 2.1 that the modified energy functional J̃λ has a solution uλ ∈ X. Moreover, uλ

is nontrivial because J̃λ(uλ) = cλ > 0.

In order to finish the proof of Theorem 1.2, we prove that uλ is also a nontrivial

solution to the problem (1.2) for all λ ≥ Λ∗. According to (3.3), (A2) and (f2), we have

cλ + on(1) = J̃λ(un)−
1

µ
⟨wn, un⟩

≥ m0

p

∫
Ω
A(|∆un|p) dx− M(t0)

µ

∫
Ω
a(|∆un|p)|∆un|p dx

+ λ

∫
Ω

(
1

µ
ρnun − F (un)

)
dx+

(
1

µ
− 1

q∗2

)∫
Ω
|un|q

∗
2 dx

≥ m0

p

∫
Ω
A(|∆un|p) dx− M(t0)

αµ

∫
Ω
A(|∆un|p) dx

≥
(
m0

p
− M(t0)

αµ

)∫
Ω
A(|∆un|p) dx

≥ αa0

(
m0

p
− M(t0)

αµ

)∫
Ω
(|∆un|p + |∆un|q) dx.

Passing to the limit as n→ ∞ in the last inequality, it follows from the continuity of the

function a that

cλ ≥ αa0

(
m0

p
− M(t0)

αµ

)∫
Ω
(|∆uλ|p + |∆uλ|q) dx,

and so

(4.2) a1

∫
Ω
(|∆uλ|p + |∆uλ|q) dx ≤ a1

a0

(
pµ

m0αµ− pM(t0)

)
cλ.

Combining (4.2) and the second inequality in (4.1), we conclude that∫
Ω
A(|∆uλ|p) dx ≤ a1

∫
Ω
(|∆uλ|p + |∆uλ|q) dx ≤ t0 for all λ ≥ Λ∗,

which yields that J̃λ = Jλ for all λ ≥ Λ∗ in view of (3.2). Therefore, uλ is also a nontrivial

solution to the original problem (1.2) provided λ ≥ Λ∗. Moreover, (4.2) also implies that

lim
λ→∞

∥uλ∥ = 0.
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Choose u− as a test function. Then it is obviously that uλ = u+λ ≥ 0.

(2) Now, let uλ be a solution of (1.2) and λ ≥ Λ∗. Then, we prove that there exists

β∗ > 0 such that the set {x ∈ Ω : uλ(x) > β∗} has positive measure. Assume to the

contrary that uλ(x) ≤ β a.e. in Ω for all β > 0. Since uλ is a solution, we have

M

(∫
Ω
A(|∆uλ|p) dx

)∫
Ω
a(|∆uλ|p)|∆uλ|p dx = λ

∫
Ω
ρuλ dx+

∫
Ω
|uλ|q

∗
2 dx.

According to the assumption (A1) and (f1), we obtain that

m0a0∥uλ∥q ≤ m0a0

∫
Ω
(|∆uλ|p + |∆uλ|q) dx

≤M

(∫
Ω
A(|∆uλ|p) dx

)∫
Ω
a(|∆uλ|p)|∆uλ|p dx = λ

∫
Ω
ρuλ dx+

∫
Ω
|uλ|q

∗
2 dx

≤
∫
Ω
λb(uλ + |uλ|r) dx+

∫
Ω
|uλ|q

∗
2 dx ≤ λb(β + βr)|Ω|+ β|Ω|

≤ 3(λb+ 1)β|Ω|,

where β < 1. Since J̃λ(uλ) = cλ > 0, there exists σ > 0 such that ∥uλ∥ ≥ σ. Then,

a0m0σ
q ≤ 3(λb+ 1)β|Ω|.

But this inequality is impossible if we choose for each λ,

β = min

{
1

2
,
T

2
,

a0m0σ
q

3(λb+ 1)|Ω|

}
.

This completes the proof.
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