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Existence and Asymptotic Behaviors to a Nonlinear Fourth-order Parabolic

Equation with a General Source

Bo Liang, Qingchun Li, Yongbo Zhu and Yongzheng Zhu*

Abstract. The existence and asymptotic behavior of solutions a fourth-order partial

differential equation with a p-Laplacian diffusion and a nonlinear source are studied by

using potential well theory. When the initial functionals satisfy F(w0) < d, D(w0) >

0 or F(w0) = d, D(w0) ≥ 0, the existence and exponential decay result of weak

solutions are given. For F(w0) < d, D(w0) < 0 or F(w0) = d, D(w0) < 0, we

obtain the blow-up behavior at a finite time for weak solutions. For F(w0) > d, we

show the global existence for small initial datum and blow-up for big initial datum.

Moreover, the uniqueness holds for bounded solutions. In addition, we show that the

p-Laplacian term has an essential effect to the source function so that we add some

growth conditions to g(w).

1. Introduction

In 1968, Sattinger introduces the potential well approach for the first time in [13]. A

potential well is defined as the area in physics that has the lowest potential energy within

a given range of space. The potential well can be considered as an adequate energy

functional in applicable Sobolev spaces in mathematics. For the research works, Sattinger

(see [13]) investigated the existence of global solutions to a hyperbolic equation. Payne and

Sattinger utilized the similar method to determine the existence and blow-up behaviors of

a second-order diffusion equation with a general source function g(w) (see [11]). Lin [10]

improved the related results for the same equation and achieved the finite blow-up behavior

for 0 < F(w0) < d, D(w0) < 0, and the global existence for critical case D(w0) ≥ 0,

E(0) = d or F(w0) = d. Recently the semi-linear parabolic equations and pseudo-parabolic

equations with singular potential term have been considered by some authors (may refer

to [2, 7, 17]). The initial boundary value problem of a class of coupled parabolic systems

with nonlinear coupled source terms has been investigated in [20]. For different initial

data, the global existence, finite time blowup behavior, and long time decay of solutions are

obtained. Furthermore, in [16], a time-fractional pseudo-parabolic problem is addressed.
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Recently, there have been some research results about the applications of potential

well theory in fourth-order parabolic equations. Various study results on the applications

of potential well theory in fourth-order parabolic equations have been published. Xu,

Chen and Liu [19] considered a fourth-order semi-linear parabolic problem with a general

source. By employing an improved potential well theory, they demonstrated that the global

existence and the blow-up behavior are affected by the initial energy. They also obtained a

global attractor for global solutions by employing an iterative technique. Qu and Zhou [12]

addressed the nonlocal source problem for a 4th-order PDE in one-dimensional space, and

the related global existence and nonexistence were derived for weak solutions. They also

studied the asymptotic behavior and extinction features of global weak solutions. Li, Gao,

and Han [6] used the modified potential well method to establish the existence, uniqueness,

and asymptotic behavior of solutions for an analogous issue. Han [5] also applied the

same method to give the blow-up behaviors and global existence for the fourth-order

parabolic equation with a p-Laplacian diffusion and the source |w|q−1w. Zhou extended

Han’s findings by providing specific values for each asymptotic parameter. We can quote

[1, 3, 4, 8, 9, 18,21,23] for more related references.

The paper considers the initial-boundary value problem for the fourth-order parabolic

equation with a general source:

(1.1)


wt +∆2w − div(|∇w|p−2∇w) = g(w), (x, t) ∈ U × (0, T ),

w = ∂w
∂ν = 0, (x, t) ∈ ∂U × (0, T ),

w(x, 0) = w0(x), x ∈ U.

Let N be the spatial dimension and ν be the boundary’s outward normal vector. we

assume that U is a bounded domain in RN and ∂U is sufficiently smooth. This model

can reflect the epitaxial manufacturing process for nano-scale films (see [14, 22]). The

potential well theory will be utilized to assess the existence and asymptotic behavior of

weak solutions.

The following is how the paper is organized. We introduce certain fundamental con-

cepts, notations, conditions, and lemmas in Section 2. Section 3 is devoted to a summary

of the main findings. In Sections 4 and 5, we exhibit the technique to evaluate the existence

and uniqueness of solutions, as well as the blow-up behavior of solutions for F(w0) < d

and F(w0) = d. Finally, Section 6 establishes the global existence and blow-up in finite

time for the case F(w0) > d.

2. Preliminaries

We define the norm of winLp(U) as
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∥w∥Lp =

(∫
U
|w|p dx

)1/p

for p ≥ 1. The inner product for w, v ∈ L2(U) is given by

(w, v) =

∫
U
wv dx.

For H2
0 (U) =

{
w ∈ H2(U) | w = ∂w

∂ν = 0 on ∂U
}
, Poincaré’s inequality allows us to define

the equivalent norm of H2
0 (U) as

∥w∥H2
0 (U) = ∥∆w∥L2(U).

The following are the conditions for the source function g(·) as well as the variables p

and q:

(H1) 1 < p < 2N
N−2 when N > 2; 1 < p < ∞ when N ≤ 2;

(H2) q > 1 if p ≤ 2 and q > p− 1 if p > 2;

(H3) g ∈ C1, g(0) = g′(0) = 0, g′(s) > 0 for s ̸= 0;

(H4) g(s) is an increasing function. It is convex if s > 0 and concave if s < 0;

(H5) When p > 2, sg(θs) ≥ θp−1sg(s) for s ̸= 0 and θ > 1;

(H6) Define G(s) =
∫ s
0 g(σ) dσ and assume that (q + 1)G(s) ≤ sg(s) and sg(s) ≤ γG(s),

where the constant γ satisfies

(a) max
{
q + 1, p2(q + 1)

}
≤ γ < ∞ if N ≤ 4;

(b) max
{
q + 1, p2(q + 1)

}
≤ γ < 2N

N−4 if N > 4.

A typical example of the above requirements is g(w) = |w|q−1w and more general

forms for g can be given. In addition, getting (H4) from (H5) is impossible. However, we

could infer from (H4) that sg(θs) > θsg(s) for s ̸= 0. Our assumptions (H2) and (H5)

differ from the references [11] and [10] due to the p-Laplacian term plays an important

impact on the source g.

Lemma 2.1. [11]

(i) For w ∈ R, there is some positive constant A that fulfills G(w) ≤ A|w|γ.

(ii) There is some positive constant B satisfying G(w) ≥ B|w|q+1 for |w| ≥ 1.

(iii) For w ∈ R, w(wg′(w) − g(w)) ≥ 0. In addition, w(wg′(w) − g(w)) = 0 if and only

if w = 0.
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Corollary 2.2. [10]

(i) |wg(w)| ≤ Aγ|w|γ, |g(w)| ≤ γA|w|γ−1 for w ∈ R.

(ii) wg(w) ≥ B(p+ 1)|w|p+1 for |w| ≥ 1.

Now we need to introduce several associated functionals in order to effectively utilize

the potential well method. For w ∈ H2
0 (U), define

F(w) =
1

2
∥∆w∥2L2 +

1

p
∥∇w∥pLp −

∫
U
G(w) dx,

D(w) = ∥∆w∥2L2 + ∥∇w∥pLp −
∫
U
wg(w) dx.

The Nahari manifold is given by

K =
{
w ∈ H2

0 (U) | D(w) = 0, ∥∆w∥L2 ̸= 0
}
.

The related sets are expressed by

W =
{
w ∈ H2

0 (U) | F(w) < d,D(w) > 0
}
∪ {0},

W =
{
w ∈ H2

0 (U) | F(w) ≤ d,D(w) ≥ 0
}
∪ {0},

V =
{
w ∈ H2

0 (U) | F(w) < d,D(w) < 0
}
.

The depth of potential well is defined by

d = inf
w∈K

F(w).

The improved functional is given as

Dϑ(w) = ϑ
(
∥∆w∥2L2 + ∥∇w∥pLp

)
−
∫
U
wg(w) dx

with ϑ > 0. The corresponding Nehari manifold is

Kϑ =
{
w ∈ H2

0 (U) | Dϑ(w) = 0, ∥∆w∥L2 ̸= 0
}
,

Wϑ =
{
w ∈ H2

0 (U) | Dϑ(w) > 0,F(w) < d(ϑ)
}
∪ {0},

Vϑ =
{
w ∈ H2

0 (U) | Dϑ(w) < 0,F(w) < d(ϑ)
}
.

The corresponding depth of the potential well is

d(ϑ) = inf
w∈Kϑ

F(w).

For s > d, define

K+ =
{
w ∈ H2

0 (U) | D(w) > 0
}
, K− =

{
w ∈ H2

0 (U) | D(w) < 0
}
,

Fs =
{
w ∈ H2

0 (U) | F(w) < s
}
, Ks = K ∩ Fs,

θs = inf
{
∥w∥L2 | w ∈ Ks

}
, Θs = sup

{
∥w∥L2 | w ∈ Ks

}
.
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The following are some basic lemmas. The proofs of Lemmas 2.8, 2.9 and 2.11 follows

a similar procedure to that of [5,6,10,21] and we leave out the details. Each proof will be

given for the remaining lemmas.

Lemma 2.3. d > 0.

Proof. Let M denote the optimal embedding constant such that ∥w∥Lγ ≤ M∥∆w∥L2 . For

each w ∈ K, use Lemma 2.1 to have

1

M2
∥w∥2Lγ ≤ ∥∆w∥2L2 + ∥∇w∥pLp =

∫
U
wg(w) dx ≤ γA∥w∥γLγ

which gives ∥w∥γ−2
Lγ ≥ 1

γAM2 and ∥∆w∥2L2 ≥ 1
M2 ∥w∥2Lγ ≥ 1

M2

(
1

γAK2

) 2
γ−2 . Employ (H5) to

obtain

F(w) =
1

2
∥∆w∥2L2 +

1

p
∥∇w∥pLp −

∫
U
G(w) dx

≥ 1

2
∥∆w∥2L2 +

1

p
∥∇w∥pLp −

1

q + 1

∫
U
wg(w) dx

=
1

2
∥∆w∥2L2 +

1

p
∥∇w∥pLp −

1

q + 1

(
∥∆w∥2L2 + ∥∇w∥pLp

)
=

(
1

2
− 1

q + 1

)
∥∆w∥2L2 +

(
1

p
− 1

q + 1

)
∥∇w∥pLp

≥ q − 1

2(q + 1)

1

M2

(
1

γAM2

) 2
γ−2

> 0.

Lemma 2.4. If w ∈ H2
0 (U) with ∥∆w∥L2 ̸= 0, then

(i) limθ→0+ F(θw) = 0, limθ→+∞F(θw) = −∞;

(ii) F(θw) has a unique critical point θ∗ = θ∗(w) > 0 (i.e., d
dθF(θw)

∣∣
θ=θ∗

= 0), is

decreasing on (θ∗,+∞), is increasing on (0, θ∗) and has the maximum at θ = θ∗;

(iii) D(θw) > 0 on (0, θ∗), D(θw) < 0 on (θ∗,+∞) and D(θ∗w) = 0.

Proof. (i) It follows from Lemma 2.1 that

|F(θw)| ≤ θ2

2
∥∆w∥2L2 +

θp

p
∥∇w∥pLp +

∣∣∣∣∫
U
G(θw) dx

∣∣∣∣
≤ θ2

2
∥∆w∥2L2 +

θp

p
∥∇w∥pLp +Aθγ

∫
U
|w|γ dx.



6 Bo Liang, Qingchun Li, Yongbo Zhu and Yongzheng Zhu

By (H3) and (H4), we pass to θ → 0+ to obtain limθ→0+ F(θw) = 0. Furthermore, for

|θw| ≥ 1, one has

F(θw) =
θ2

2
∥∆w∥2L2 +

θp

p
∥∇w∥pLp −

∫
U
G(θw) dx

≤ θ2

2
∥∆w∥2L2 +

θp

p
∥∇w∥pLp −B|θ|q+1

∫
U
|w|q+1 dx,

which implies F(θw) → −∞ as θ → +∞.

(ii) A direct calculation gives

j(θ) ≡ d

dθ
F(θw) = θ∥∆w∥2L2 + θp−1∥∇w∥pLp −

∫
U
wg(θw) dx.

Similar to the argument of (i), j(θ) is positive for small θ > 0 and is negative for large

θ. Thus, it can ensure the existence of θ∗. It remains to show the uniqueness of θ∗. Now

suppose that there are two constants θ∗1 and θ∗2 (θ∗1 < θ∗2) such that j(θ∗1) = j(θ∗2) = 0.

This says that

θ∗1∥∆w∥2L2 + θ∗p−1
1 ∥∇w∥pLp −

∫
U
wg(θ∗1w) dx = 0,(2.1)

θ∗2∥∆w∥2L2 + θ∗p−1
2 ∥∇w∥pLp −

∫
U
wg(θ∗2w) dx = 0.(2.2)

By eliminating the term ∥∆w∥2L2 and putting w = θ∗1w, we have

θ∗1θ
∗
2(θ

∗p−2
1 − θ∗p−2

2 )∥∇w∥pLp = θ∗2

∫
U
wg(θ∗1w) dx− θ∗1

∫
U
wg(θ∗2w) dx

= θ

∫
U
wg(w) dx−

∫
U
wg(θw) dx

for θ =
θ∗2
θ∗1

> 1.

For the case p ≤ 2, the left-hand side is nonnegative and so

θ

∫
U
wg(w) dx ≥

∫
U
wg(θw) dx.

Since (H4) implies
∫
U wg(θw) dx > θ

∫
U wg(w) dx for w ̸= 0 and θ > 1, it yields a contra-

diction and so θ∗1 = θ∗2.

For the case p > 2, we eliminate the term ∥∇w∥pLp from (2.1) and (2.2) to obtain

θ∗1θ
∗
2(θ

∗p−2
2 − θ∗p−2

1 )∥∆w∥2L2 = θ∗p−1
2

∫
U
wg(θ∗1w) dx− θ∗p−1

1

∫
U
wg(θ∗2w) dx

= θ∗p−1
2

∫
U
wg(w) dx− θ∗p−1

1

∫
U
wg(θw) dx.
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Since the left-hand side is positive, we can use (H5) to have

θp−1

∫
U
wg(w) dx >

∫
U
wg(θw) dx ≥ θp−1

∫
U
wg(w) dx

which yields a contradiction and so θ∗1 = θ∗2.

(iii) The proof is from

D(θw) = θ2∥∆w∥2L2 + θp∥∇w∥pLp − θ

∫
U
wg(θw) dx = θ

d

dθ
F(θw).

Lemma 2.5. Let w ∈ H2
0 (U) and r(ϑ) =

(
ϑ

aMγ

) 1
γ−2 with a = sups∈R

sg(s)
|s|γ . Then

(i) Dϑ(w) > 0 if 0 < ∥∆w∥L2 ≤ r(ϑ);

(ii) ∥∆w∥L2 > r(ϑ) if Dϑ(w) < 0;

(iii) ∥∆w∥L2 = 0 or ∥∆w∥L2 ≥ r(ϑ) if Dϑ(w) = 0.

Proof. (i) From ∫
U
wg(w) dx ≤ a

∫
U
|w|γ dx = a∥w∥γLγ ≤ aMγ∥∆w∥γ

L2

= aMγ∥∆w∥γ−2
L2 ∥∆w∥2L2 ≤ ϑ∥∆w∥2L2 ,

we have Dϑ(w) > 0.

(ii) If Dϑ(w) < 0, then

ϑ∥∆w∥2L2 <

∫
U
wg(w) dx ≤ a∥w∥γLγ ≤ aMγ∥∆w∥γ−2

L2 ∥∆w∥2L2 ,

and so ∥∆w∥L2 > r(ϑ).

(iii) If ∥∆w∥L2 = 0, then Dϑ(w) = 0. Otherwise, from Dϑ(w) = 0 with ∥∆w∥L2 ̸= 0,

we obtain

ϑ∥∆w∥2L2 =

∫
U
wg(w) dx− ϑ∥∇w∥pLp ≤ a∥w∥γLγ ≤ aMγ∥∆w∥γ−2

L2 ∥∆w∥2L2

and then ∥∆w∥L2 ≥ r(ϑ).

Lemma 2.6. For w ∈ H2
0 (U) with ∥∆w∥L2 ̸= 0 and ϑ > 0, the equation

(2.3) ϑ
(
∥∆(θw)∥2L2 + ∥∇(θw)∥pLp

)
=

∫
U
θwg(θw) dx

can determine a unique solution θ = θ(ϑ) > 0. Moreover, θ(ϑ) is strictly increasing.
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Proof. The proof for the existence of θ(ϑ) is similar to Lemma 2.4(ii) and we do not show

the process again. Next we prove the monotonicity. Now define θ1 = θ(ϑ′) and θ2 = θ(ϑ′′)

for 0 < ϑ′ < ϑ′′ and we want to show θ1 < θ2. If it is false, then θ1 = θ2 or θ1 > θ2. By

(2.3), θ1 and θ2 satisfy the equations

ϑ′θ1∥∆w∥2L2 + ϑ′θp−1
1 ∥∇w∥pLp =

∫
U
wg(θ1w) dx,(2.4)

ϑ′′θ2∥∆w∥2L2 + ϑ′′θp−1
2 ∥∇w∥pLp =

∫
U
wg(θ2w) dx.(2.5)

For the case p ≤ 2, by eliminating the term ∥∆w∥2L2 , we have

ϑ′ϑ′′∥∇w∥pLp(θ2θ
p−1
1 − θ1θ

p−1
2 ) = ϑ′′θ2

∫
U
wg(θ1w) dx− ϑ′θ1

∫
U
wg(θ2w) dx.

If θ1 = θ2, then the left-hand side is equal to zero and the right-hand side is positive. So

here is a contradiction. If θ1 > θ2, then we use the change w = θ2w with θ = θ1
θ2

> 1 to

have

ϑ′ϑ′′∥∇w∥pLpθ1θ2(θ
p−2
1 − θp−2

2 ) = ϑ′′
∫
U
wg(θw) dx− ϑ′θ

∫
U
wg(w) dx

> (ϑ′′ − ϑ′)θ

∫
U
wg(w) dx

> 0

which implies θ2 > θ1 for p < 2 and it contradicts to θ1 > θ2. If p = 2, it still has a

contradiction again and we do not show the details.

For p > 2, we can eliminative ∥∇w∥pLp from (2.4) and (2.5) to have

ϑ′ϑ′′∥∆w∥2L2θ1θ2(θ
p−2
2 − θp−2

1 ) = ϑ′′θp−1
2

∫
U
wg(θ1w) dx− ϑ′θp−1

1

∫
U
wg(θ2w) dx

= ϑ′′θp−1
2

∫
U
wg(θ1w) dx− ϑ′θp−1

1

∫
U
wg(θ2w) dx

=
θp−1
1

θ2

∫
U
wg(w) dx(ϑ′′ − ϑ′)

> 0.

This contradicts to θ1 > θ2.

Lemma 2.7. (i) d(ϑ) > a(ϑ)r2(ϑ) for ϑ ∈
(
0, q+1

2

)
with a(ϑ) = 1

2 − ϑ
q+1 .

(ii) limϑ→0+ d(ϑ) = 0, limϑ→+∞ d(ϑ) = −∞.

(iii) d(ϑ) is decreasing strictly on ϑ ∈ [1,+∞), is increasing strictly on ϑ ∈ [0, 1], and

has the maximum at ϑ = 1.
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(iv) There is a unique point b ∈
( q+1

2 ,max
{γ
2 ,

γ
p

})
such that d(b) = 0 and d(ϑ) > 0 if

ϑ ∈ (0, b).

Proof. (i) If Dϑ(w) = 0 and ∥∆w∥L2 ̸= 0, then Lemma 2.5 means ∥∆w∥L2 ≥ r(ϑ). (H6)

gives

F(w) =
1

2
∥∆w∥2L2 +

1

p
∥∇w∥pLp −

∫
U
G(w) dx

≥ 1

2
∥∆w∥2L2 +

1

p
∥∇w∥pLp −

1

q + 1

∫
U
wg(w) dx

≥
(
1

2
− ϑ

q + 1

)
∥∆w∥2L2

≥ a(ϑ)r2(ϑ)

for 0 < ϑ < q+1
2 .

(ii) By Corollary 2.2, we have

ϑ∥∆w∥2L2 ≤ 1

θ

∫
U
wg(θw) dx ≤ γAθγ−2

∫
U
|w|γ dx,

which implies limϑ→+∞ θ(ϑ) = +∞.

Next we want to prove limϑ→0 θ(ϑ) = 0 and it is easy to obtain this result when p = 2.

For p < 2, (2.3) and (H4) give

ϑθ2−p∥∆w∥2L2 + ϑ∥∇w∥pLp = θ1−p

∫
U
wg(θw) dx > θ2−p

∫
U
wg(w) dx.

We rewrite it as the form

ϑ∥∇w∥pLp > θ2−p

(∫
U
wg(w) dx− ϑ∥∆w∥2L2

)
.

It can give limϑ→0 θ(ϑ) = 0. For the final case p > 2, by using (H5), a similar process can

give

ϑ∥∆w∥2L2 + ϑθp−2∥∇w∥pLp =
1

θ

∫
U
wg(θw) dx > θp−2

∫
U
wg(w) dx,

and then

ϑ∥∆w∥2L2 > θp−2

(∫
U
wg(w) dx− ϑ∥∇w∥pLp

)
.

That gives limϑ→0 θ(ϑ) = 0. Therefore, we can employ Lemma 2.4 to obtain

lim
ϑ→0

F(θw) = lim
θ→0

F(θw) = 0, lim
ϑ→0

d(ϑ) = 0,

lim
ϑ→+∞

F(θw) = lim
θ→+∞

F(θw) = −∞, lim
ϑ→+∞

d(ϑ) = −∞.

(iii) For 0 < ϑ′ < ϑ′′ < 1 (or the case 1 < ϑ′′ < ϑ′), we want to prove d(ϑ′) < d(ϑ′′).

For this purpose, it is enough for us to show that for any w ∈ H2
0 (U) with Dϑ′′(w) = 0
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and ∥∆w∥L2 ̸= 0, there exists a function v ∈ H2
0 (U) with Dϑ′(v) = 0 and ∥∆v∥L2 ̸= 0

such that F(v) < F(w)− ε(ϑ′, ϑ′′) for ε(ϑ′, ϑ′′) > 0.

For w, (2.3) can determine a real number θ(ϑ) so that Dϑ(θ(ϑ)w) = 0. We deduce

from Dϑ′′(w) = 0 that θ(ϑ′′) = 1. Moreover, by defining v = θ(ϑ′)w, we have Dϑ′(v) = 0

and ∥∆v∥L2 ̸= 0.

By letting h(θ) = F(θw), one has

d

dθ
h(θ) =

1

θ

(
(1− ϑ)∥∆θw∥2L2 + (1− ϑ)∥∇θw∥pLp +Dϑ(θw)

)
= (1− ϑ)θ∥∆w∥2L2 + (1− ϑ)θp−1∥∇w∥pLp .

If ϑ′, ϑ′′ ∈ (0, 1) (ϑ′ < ϑ′′), then

F(w)−F(v) = h(1)− h(θ(ϑ′)) > (1− ϑ′′)r2(ϑ′′)θ(ϑ′)(1− θ(ϑ′))
.
= ε(ϑ′, ϑ′′).

If ϑ′, ϑ′′ ∈ (1,+∞) (ϑ′′ < ϑ′), then

F(w)−F(v) = h(1)− h(θ(ϑ′)) > (ϑ′′ − 1)r2(ϑ′′)θ(ϑ′′)(θ(ϑ′)− 1)
.
= ε(ϑ′, ϑ′′).

Thus we have (iii).

(iv) From (i)–(iii), there exists a positive constant b ≥ q+1
2 such that d(b) = 0 and

d(ϑ) > 0 for ϑ ∈ (0, b). Moreover, by (H6), we have

F(w) =
1

2
∥∆w∥2L2 +

1

p
∥∇w∥pLp −

∫
U
G(w) dx

≤ 1

2
∥∆w∥2L2 +

1

p
∥∇w∥pLp −

1

γ

∫
U
wg(w) dx

=

(
1

2
− ϑ

γ

)
∥∆w∥2L2 +

(
1

p
− ϑ

γ

)
∥∇w∥pLp +

1

γ
Dϑ(w)

< 0,

for Dϑ(w) = 0 with ∥∆w∥L2 ̸= 0 if ϑ > max
{γ
2 ,

γ
p

}
. Hence b ≤ max

{γ
2 ,

γ
p

}
.

Lemma 2.8. [6, 10]

(i) infw∈K ∥∆w∥L2 ≥ c1 > 0, infw∈K− ∥∆w∥L2 ≥ c2 > 0;

(ii) Fs ∩K+ is bounded in H2
0 (U)-norm for any s > 0.

Lemma 2.9. [6,10] Assume w ∈ H2
0 (U) and 0 < F(w) < d. Let ϑ1 and ϑ2 (ϑ1 < 1 < ϑ2)

be two solutions to the equation d(ϑ) = F(w). Then Dϑ(w) does not change the sign for

ϑ ∈ (ϑ1, ϑ2).

We define the weak solutions as follows.
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Definition 2.10. If a function w with w ∈ L∞(0, T ;H2
0 (U)) and wt ∈ L2(0, T ;L2(U))

satisfies

(wt, ϕ) + (∆w,∆ϕ) + (|∇w|p−2∇w,∇ϕ) = (g(w), ϕ),(2.6) ∫ t

0
∥wτ∥2L2 dτ + F(w) = F(w0),(2.7)

and w(x, 0) = w0 for t ∈ (0, T ) and ϕ ∈ H2
0 (U), then it is said to be a weak solution of

(1.1). w(x, t) is said to be a global weak solution if it is a weak solution for each T > 0.

Lemma 2.11. [6,10] Assume that 0 < F(w0) < d and w is a weak solution of (1.1). Let

ϑ1 and ϑ2 (ϑ1 < 1 < ϑ2) be two solutions of d(ϑ) = F(w0).

(i) w ∈ Wϑ for ϑ ∈ (ϑ1, ϑ2) if D(w0) > 0;

(ii) w ∈ Vϑ for ϑ ∈ (ϑ1, ϑ2) if D(w0) < 0.

Lemma 2.12. For fixed constant s > d,

0 < θs ≤ Θs < +∞.

Proof. For w ∈ H2
0 (U), the Gagliardo–Nirenberg inequality gives

∥w∥Lγ ≤ C∥∆w∥αL2∥w∥(1−α)
L2

with α = N(γ−2)
4γ (The condition (H6) can ensure α ∈ (0, 1)).

Now for s > d and w ∈ Ks, Corollary 2.2 means

∥∆w∥2L2 <

∫
U
wg(w) dx ≤ γA∥w∥γLγ ≤ C∥∆w∥αγ

L2∥w∥
(1−α)γ
L2 ,

and then

∥∆w∥2−αγ
L2 ≤ C∥w∥(1−α)γ

L2 .

Lemma 2.8(i) implies θs > 0 and the Sobolev embedding theorem ∥w∥L2 ≤ M∗∥∆w∥L2

gives Θs < ∞.

3. Main results

We list the main results in this section.

Theorem 3.1. For w0 ∈ H2
0 (U), F(w0) < d and D(w0) > 0, the problem (1.1) owns

a global solution w satisfying Definition 2.10 and w(t) ∈ W for each t. It is unique for

bounded weak solutions. Moreover, ∥w∥2L2 ≤ ∥w0∥2L2e
−µt for some constant µ > 0.



12 Bo Liang, Qingchun Li, Yongbo Zhu and Yongzheng Zhu

Theorem 3.2. If w0 ∈ H2
0 (U), F(w0) < d and D(w0) < 0, then limt→T−

∫ t
0 ∥w∥

2
L2 dτ =

+∞ for any weak solution w and some constant T > 0, i.e., w blows up at t = T .

Theorem 3.3. If w0 ∈ H2
0 (U), F(w0) = d and D(w0) ≥ 0, then (1.1) owns a weak

solution satisfying Definition 2.10 and w(t) ∈ W for each t. Besides, it is unique for

bounded weak solutions.

Moreover, ∥w∥2L2 ≤ C1e
−C2t for constants C1 and C2 if D(w(x, t)) > 0 for t > 0.

Otherwise, w will vanish in a finite time.

Theorem 3.4. If w0 ∈ H2
0 (U), F(w0) = d and D(w0) < 0, then limt→T−

∫ t
0 ∥w∥

2
L2 dτ =

+∞ for any weak solution w and some constant T > 0, i.e., w blows up at t = T .

Theorem 3.5. Assume that w is a weak solution, w0 ∈ H2
0 (U) and F(w0) > d.

(i) If w0 ∈ K+ and ∥w0∥L2 ≤ θF(w0), then w(t) → 0 in H2
0 (U) as t → ∞.

(ii) If w0 ∈ K− and ∥w0∥L2 ≥ ΘF(w0), then w blows up at some point t = T .

4. The case F(w0) < d

In this section, we are going to show the proof for the global existence, uniqueness and

time decay rate if F(w0) < d and D(w0) > 0, as well as the blow-up behavior in finite

time if F(w0) < d and D(w0) < 0.

Proof of Theorem 3.1. Let {ϕj(x)} (j = 1, 2, . . .) be a basis of H2
0 (U) and we introduce

the approximate solutions of (1.1) as

wm =
m∑
j=1

amj (t)ϕj(x), m = 1, 2, . . .

which solve

(wm
t , ϕj) + (∆wm,∆ϕj) +

(
|∇wm|p−2∇wm,∇ϕj

)
= (g(wm), ϕj),(4.1)

wm(x, 0) =
m∑
j=1

bmj ϕj(x)(4.2)

with wm(x, 0) → w0(x) in H2
0 (U) as m → ∞. Peano’s theorem ensures the local existence

of (4.1)–(4.2) and it can become global from the following uniform estimates (4.6)–(4.9).

For this purpose, we take d
dta

m
j (t) as a multiplier of (4.1) to have

(4.3)

∫ t

0
∥wm

τ ∥2L2 dτ + F(wm) = F(wm(0))
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for t ∈ (0,∞). Moreover, it is easy to check that

F(wm(0)) → F(w0) < d, D(wm(0)) → D(w0) > 0

as m → ∞, which implies wm(x, 0) ∈ W and for big m. Furthermore, one has

(4.4)

∫ t

0
∥wm

τ ∥2L2 dτ + F(wm) = F(wm(0)) < d, D(wm(0)) > 0.

Next we prove wm ∈ W for big m and each t. If it is false, then we can seek a

constant t0 > 0 such that D(wm(t0)) = 0 with ∥∆wm(t0)∥L2 ̸= 0 or F(wm(t0)) = d by

applying the continuity of D(wm) and F(wm) with respect to t. By (4.4), we deduce

that F(wm(t0)) = d does not hold. Thus, D(wm(t0)) = 0 with ∥∆wm(t0)∥L2 ̸= 0 which

implies F(wm(t0)) ≥ d by the definition of d. It contradicts to (4.4). Therefore, we obtain

wm(x, t) ∈ W.

By (H6), one has

F(wm) =
1

2
∥∆wm∥2L2 +

1

p
∥∇wm∥pLp −

∫
U
G(wm) dx

≥ 1

2
∥∆wm∥2L2 +

1

p
∥∇wm∥pLp −

1

q + 1

∫
U
wmg(wm) dx

=

(
1

2
− 1

q + 1

)
∥∆wm∥2L2 +

(
1

p
− 1

q + 1

)
∥∇wm∥pLp +

1

q + 1
D(wm).

For large m, (4.4) implies

(4.5)

(
1

2
− 1

q + 1

)
∥∆wm∥2L2 +

(
1

p
− 1

q + 1

)
∥∇wm∥pLp < d

with 0 ≤ t < ∞. Now combining (4.4) with (4.5) gives

∥wm∥2H2
0 (U) ≤

2(q + 1)d

q − 1
,(4.6)

∥∇wm∥pLp ≤ p(q + 1)d

q + 1− p
,(4.7) ∫ t

0
∥wm

τ ∥2L2 dτ < d.(4.8)

Besides, applying Corollary 2.2 and H2
0 (U) ↪→ Lγ(U) to have

∥g(wm)∥
γ

γ−1
γ

γ−1
≤

∫
U
(γA|wm|γ−1)

γ
γ−1 dx = (γA)

γ
γ−1 ∥wm∥γLγ

≤ (γA)
γ

γ−1Mγ∥wm∥γ
H2

0 (U)
≤ (γA)

γ
γ−1Mγ

(
2(q + 1)d

q − 1

) γ
2

.

(4.9)
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The estimates (4.6)–(4.9) and Aubin’s lemma (see [15]) allow us to find a function w and a

subsequence of {wm} (still denoted by itself here and hereafter) such that for each T > 0,

wm
t ⇀ wt in L2(0, T ;L2(U)),(4.10)

wm ∗
⇀ w in L∞(0, T ;H2

0 (U)),(4.11)

wm → w strongly in W 1,p
0 (U) and Lγ(U) for each t ∈ (0, T ),(4.12)

wm → w a.e. in U × (0, T ),

g(wm) ⇀ g(w) in L
γ

γ−1 (U × (0, T )),

g(wm) → g(w) a.e. in U × (0, T )

as m → ∞, where we the notation ⇀ denotes the weak convergence and
∗
⇀ denotes the

weak-star convergence respectively.

For any v ∈ L2(0, T ;H2
0 (U)) (may need an approximate process), we employ (4.1)–

(4.2) to have∫ T

0

(
(wm

t , v) + (∆wm,∆v) + (|∇wm|p−2∇wm,∇v)
)
dt =

∫ T

0
(g(wm), v) dt.

Take the limit m → ∞ to give∫ T

0

(
(wt, v) + (∆w,∆v) + (|∇w|p−2∇w,∇v)

)
dt =

∫ T

0
(g(w), v) dt.

The arbitrariness of T ensures

(4.13) (wt, ϕ) + (∆w,∆ϕ) + (|∇w|p−2∇w,∇ϕ) = (g(w), ϕ)

for each ϕ ∈ H2
0 (U) and t > 0.

Now we want to prove (2.7). By mean value theorem, one has∣∣∣∣∫
U
(G(wm)−G(w)) dx

∣∣∣∣ ≤ ∫
U
|g(ξm)(wm − w)| dx ≤ ∥g(ξm)∥

L
γ

γ−1
∥wm − w∥Lγ

where ξm = (1− δm)wm + δmw for some 0 < δm < 1. It follows that

lim
m→∞

∫
U
G(wm) dx =

∫
U
G(w) dx.

By (4.10)–(4.12), the weak lower semi-continuity of L2 space allows us to pass to the limit

m → ∞ in (4.3). Hence, we can deduce (2.7).

Following that, we establish the uniqueness of bounded weak solutions. Assume for this

reason that w and v are two bounded weak solutions that fulfill (4.13). In the difference
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of the corresponding equalities for w and v, we choose φ = w − v as the test function to

obtain ∫ t

0

∫
U

(
φtφ+ |∆φ|2 + (|∇w|p−2∇w − |∇v|p−2∇v,∇w −∇v)

)
dxdt

=

∫ t

0

∫
U
(g(w)− g(v))(w − v) dxdt.

From φ(x, 0) = 0, we employ the monotonicity of |s|p−2s for s ∈ R or RN and the

boundedness of two solutions to have∫
U
φ2 dx ≤ C

∫ t

0

∫
U
φ2 dxdt.

Gronwall’s inequality gives ∫
U
φ2(x, t) dx = 0,

and then φ = 0 in U × (0,∞).

In order to show the decay behavior, taking φ = w in (4.1) to have

(4.14)
1

2

d

dt
∥w∥2L2 = (wt, w) = −∥∆w∥2L2 − ∥∇w∥pLp +

∫
U
wg(w) dx = −D(w).

According to Lemma 2.11, we conclude that w(x, t) ∈ Wϑ for t ∈ (0,∞) and ϑ1 < ϑ < ϑ2

if F(w0) < d and D(w0) > 0. This implies Dϑ1(w) ≥ 0 for 0 < t < ∞. Therefore, one has

1

2

d

dt
∥w∥2L2 = −D(w) = (ϑ1 − 1)∥∆w∥2L2 + (ϑ1 − 1)∥∇w∥pLp −Dϑ1(w)

≤ M−2
∗ (ϑ1 − 1)∥w∥2L2 ,

where M∗ is the best constant for the embedding H2
0 (U) ↪→ L2(U). Consequently,

∥w∥2L2 ≤ ∥w0∥2L2e
−2M−2

∗ (1−ϑ1)t

with C = 2M−2
∗ (1− ϑ1) > 0.

Proof of Theorem 3.2. Suppose that w is a global weak solution to (1.1) with F(w0) <

d,D(w0) < 0. Define a function with respect to t:

L(t) =
∫ t

0
∥w∥2L2 dτ, t ≥ 0.

One has

(4.15) L′(t) = ∥w∥2L2 ,
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and

(4.16) L′′(t) = 2(wt, w) = −2

(
∥∆w∥2L2 + ∥∇w∥pLp −

∫
U
wg(w) dx

)
= −2D(w).

It is easy to check

F(w) =
1

2
∥∆w∥2L2 +

1

p
∥∇w∥pLp −

∫
U
G(w) dx

≥ 1

2
∥∆w∥2L2 +

1

p
∥∇w∥pLp −

1

q + 1

∫
U
wg(w) dx

=
q − 1

2(q + 1)
∥∆w∥2L2 +

q + 1− p

p(q + 1)
∥∇w∥pLp +

1

q + 1
D(w).

(4.17)

We can employ (2.7), (4.2), (4.16) and (4.17) to obtain

L′′(t) ≥ (q − 1)∥∆w∥2L2 +
2(q + 1− p)

p
∥∇w∥pLp − 2(q + 1)F(w)

≥ (q − 1)∥∆w∥2L2 + 2(q + 1)

∫ t

0
∥wτ∥2L2 dτ − 2(q + 1)F(w0)

≥ q − 1

M2
∗
L′(t) + 2(q + 1)

∫ t

0
∥wτ∥2L2 dτ − 2(q + 1)F(w0).

In view of

(L′(t))2 = 4

(∫ t

0

∫
U
wτw dxdτ

)2

+ 2∥w0∥2L2L′(t)− ∥w0∥4L2 ,

one has

L′′(t)L(t)− q + 1

2
L′(t)2 ≥ 2(q + 1)

∫ t

0
∥wτ∥2L2 dτ

∫ t

0
∥w∥2L2 dτ − 2(q + 1)F(w0)L(t)

+
q − 1

M2
∗
L′(t)L(t)− 2(q + 1)

(∫ t

0

∫
U
wτw dxdτ

)2

− (q + 1)∥w0∥2L2L′(t) +
q + 1

2
∥w0∥4L2 .

By Hölder inequality, we deduce that

L′′(t)L(t)− q + 1

2
L′(t)2

≥ q − 1

M2
∗
L′(t)L(t)− (q + 1)∥w0∥2L2L′(t) +

q + 1

2
∥w0∥4L2 − 2(q + 1)F(w0)L(t)

≥ q − 1

M2
∗
L′(t)L(t)− (q + 1)∥w0∥2L2L′(t)− 2(q + 1)F(w0)L(t).

(4.18)

Next we consider two cases F(w0) ≤ 0 and 0 < F(w0) < d respectively. If F(w0) ≤ 0,

then (4.18) implies

L′′(t)L(t)− q + 1

2
L′(t)2 ≥ q − 1

M2
∗
L′(t)L(t)− (q + 1)∥w0∥2L2L′(t).
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Here we need to show D(w) < 0 for t > 0 firstly. If it does not hold, then there exists

a constant t0 such that D(w) < 0 for 0 ≥ t < t0 and D(w(t0)) = 0. For 0 ≤ t < t0,

Lemma 2.5 implies ∥∆w∥L2 > r(1) and ∥∆w(t0)∥L2 ≥ r(1). Hence, w(t0) ∈ K and

F(w(t0)) ≥ d. That contradicts to (2.7) and so we have D(w) < 0 (t > 0).

Now apply (4.16) to get L′′(t) > 0 for t ≥ 0, and so L′(t) is increasing with respect to

t. Besides, (4.15) means L′(0) ≥ 0 and there is a constant t1 ≥ 0 such that L′(t1) > 0 and

L(t) ≥ L′(t1)(t− t1)

for t > t1. For big enough t,

q − 1

M2
∗
L(t) > (q + 1)∥w0∥2L2 ,

and

(4.19) L′′(t)L(t)− q + 1

2
L′(t)2 > 0.

For the case 0 < F(w0) < d, we still want to obtain (4.19). We apply Lemma 2.11

to give w(t) ∈ Vϑ with ϑ1 < ϑ < ϑ2, here ϑ1 and ϑ2 (ϑ1 < 1 < ϑ2) are two roots to

d(ϑ) = F(w0). As a result, one has Dϑ2(w) ≤ 0 and ∥∆w∥L2 ≥ r(ϑ2). (4.16) yields

L′′(t) = −2D(w)

= 2(ϑ2 − 1)∥∆w∥2L2 + 2(ϑ2 − 1)∥w∥pLp − 2Dϑ2(w)

≥ 2(ϑ2 − 1)r2(ϑ2).

Then

L′(t) ≥ 2r2(ϑ2)(ϑ2 − 1)t and L(t) ≥ r2(ϑ2)(ϑ2 − 1)t2.

From it, we deduce that

q − 1

2M2
∗
L(t) > (q + 1)∥w0∥2L2 ,

q − 1

2M2
∗
L′(t) > 2(q + 1)F(w0)

for sufficiently large t. Hence (4.18) is positive and (4.19) holds again.

According to (4.19), we can seek a constant t̃ such that
( L′(t)

L
1+q
2

)′
> 0 for t > t̃ and

L′(t)

L
1+q
2 (t)

>
L′(t̃)

L
1+q
2 (t̃)

.

By solving this equation, there exists two constants C3, C4 > 0 such that

L
q−1
2 (t) >

C3

C4 − t
,

which gives Theorem 3.2.
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5. The case F(w0) = d

The critical case F(w0) = d is considered in this section and the proofs of Theorems 3.3

and 3.4 will be shown.

Proof of Theorem 3.3. Let θs = 1− 1
s (s = 1, 2, . . .) and ws

0 = θsw0(x). We introduce the

following approximation problem

(5.1)


ws
t +∆2ws − div(|∇ws|p−2∇ws) = g(ws), (x, t) ∈ U × (0, T ),

ws = ∂ws

∂ν = 0, (x, t) ∈ ∂U × (0, T ),

ws(x, 0) = θsw
s
0(x), x ∈ U.

According to D(w0) ≥ 0 and Lemma 2.4, there exists a unique constant θ∗ = θ∗(w0) ≥ 1

such that D(θ∗w0) = 0. The condition θs < 1 ≤ θ∗ implies D(ws
0) = D(θsw0) > 0 and

F(ws
0) = F(θsw0) < F(w0) = d. Theorem 3.1 allow us to deduce that (5.1) has a solution

ws ∈ L∞(0,∞;H0(U)), ws
t ∈ L2(0,∞;L2(U)), ws ∈ W with∫ t

0
∥ws

τ∥2L2 dτ + F(ws) = F(ws
0) < d.

Thus we only take a similar process of Theorem 3.1 to seek a subsequence of {ws} and a

function w such that w is a solution of (1.1) with D(w) ≥ 0 and F(w) ≤ d. The uniqueness

is also similar to Theorem 3.1 and we do not give the details here.

Now we prove the large time behavior under the condition D(w) > 0 for 0 < t < ∞.

This means that w can not vanish in a finite time. We treat φ = w as a test function in

(2.6) to have
1

2

d

dt
∥w∥2L2 =

∫
U
wtw dx = −D(w) < 0.

This implies wt ̸≡ 0. From (2.7),

0 < F(w(t0)) = d−
∫ t0

0
∥wτ∥2L2 dτ = d1 < d

for a small t0 > 0. It allows us to treat t0 as the initial time. In view of Lemma 2.11, one

has w ∈ Wϑ for t > t0 and ϑ1 < ϑ < ϑ2. Here ϑ1 and ϑ2 (ϑ1 < 1 < ϑ2) are two roots to

d(ϑ) = d1. Thus Dϑ1(w) ≥ 0 (t > t0) and

1

2

d

dt
∥w∥2L2 = −D(w) ≤ (ϑ1 − 1)∥∆w∥2L2 −Dϑ1(w) ≤ M−2

∗ (ϑ1 − 1)∥w∥2L2 .

Gronwall’s inequality gives

∥w∥2L2 ≤ ∥w(t0)∥2L2C1e
−C2t
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with C1 = ∥w(t0)∥2L2e
2M−2

∗ (1−ϑ1)t0 and C2 = 2M−2
∗ (1− ϑ1).

On the other hand, if there is a point t0 > 0 such that D(w) > 0 for 0 < t < t0 with

D(w(x, t0)) = 0, then apply (2.7) again and wt ̸≡ 0 to obtain

F(w(t0)) = d−
∫ t0

0
∥wτ∥2L2 dτ < d.

The definition of d can ensure ∥∆w(t0)∥2L2 = 0 and w(t0) = 0. Since ∥w∥2L2 is decreasing

with respect to t, we have w(x, t) ≡ 0 for t ≥ t0, which can complete the proof.

Proof of Theorem 3.4. From F(w0) = d and D(w0) < 0, the continuity of F(·) and D(·)
ensures that there is a constant t0 > 0 such that F(w) > 0 and D(w) < 0 for 0 < t ≤ t0.

(wt, w) = −D(w) implies wt ̸≡ 0 (0 < t ≤ t0) and so

F(w(t0)) = d−
∫ t0

0
∥wτ∥2L2 dτ = d1 < d.

The constant t0 can be treated as the initial time. Lemma 2.11 implies w ∈ Vϑ with

ϑ1 < ϑ < ϑ2 and t > t0 here ϑ1 and ϑ2 (ϑ1 < 1 < ϑ2) are two roots to d(ϑ) = d1. Thus,

one has Dϑ(w) < 0 and ∥∆w∥2L2 > r(ϑ) (ϑ1 < ϑ < ϑ2, t > t0), and then Dϑ2(w) ≤ 0 and

∥∆w∥L2 ≥ r(ϑ2) (t > t0). The remaining proof is similar to that of Theorem 3.2 and we

do not show the details again.

6. The case F(w0) > d

We investigate the existence and nonexistence of solutions for the case F(w0) > d in this

section.

Proof of Theorem 3.5. For w0 ∈ H2
0 (U), use the notation T (w0) to represent the maximal

time of existence and we define the ω-limit set of w0 as

ω(w0) =
⋂
t≥0

{w(s) : s ≥ t}.

(i) Suppose that w0 ∈ K+ with ∥w0∥L2 ≤ θF(w0). At first we need to show w(t) ∈ K+

for t > 0. If it is not true, then there exists a constant t0 > 0 such that w(t) ∈ K+ for

t ∈ [0, t0) and w(t0) ∈ K. From D(w(t)) = −(wt, w), we have wt ̸≡ 0 for t ∈ (0, t0). By

(2.7), we can give F(w(t0)) < F(w0). Hence w(t0) ∈ FF(w0), w(t0) ∈ KF(w0) and

(6.1) ∥w(t0)∥L2 ≥ θF(w0).

However, by w(t) ∈ K+ and (4.14), one has

∥w(t0)∥L2 < ∥w0∥L2 ≤ θF(w0)
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which contradicts to (6.1). Therefore, we obtain w(t) ∈ K+ with w(t) ∈ FF(w0) for t ≥ 0.

Lemma 2.8(ii) implies that w(t) is bounded in H2
0 -norm for t ≥ 0. For ω ∈ ω(w0), we have

ω(w0) ∩K = ∅, and then ω(w0) = {0} (see [5] and [21] for details).

(ii) Let w0 ∈ K− and ∥w0∥L2 ≥ ΘF(w0). For each t ∈ [0, T (w0)), we need to show

w ∈ K−. If it is false, then we can seek a constant t0 ∈ (0, T (w0)) such that w(t) ∈ K−

for t ∈ [0, t0) and w(t0) ∈ K. By a similar proof as part (i), one has F(w(t0)) < F(w0)

and w(t0) ∈ FF(w0). Thus w(t0) ∈ KF(w0) and

(6.2) ∥w(t0)∥L2 ≤ ΘF(w0).

According to w(t) ∈ K− and (4.14), one has ∥w(t0)∥L2 > ∥w0∥L2 ≥ ΘF(w0). It contradicts

to (6.2).

Now if we suppose T (w0) = ∞, then for ω ∈ ω(w0) we have ω(w0) ∩ K = ∅ and

so ω(w0) = {0}. It yields a contradiction to Lemma 2.8(i). Therefore, we finally have

T (w0) < ∞ (see [5] and [21] for details).
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