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On a Porous Medium Equation with Weighted Inner Source Terms and a

Nonlinear Nonlocal Boundary Condition

Wentao Huo, Chenyuan Jia and Zhong Bo Fang*

Abstract. This paper deals with the asymptotic behavior for a porous medium equa-

tion with weighted inner source terms and a nonlinear nonlocal boundary condition.

We find the influences of spacetime-varying weight functions and competitive relation-

ship between the multiple nonlinearities on whether determining blow-up of solutions

or not, and establish the blow-up rate estimate under some appropriate conditions.

Especially, our results include the situation of slow, linear and fast diffusion.

1. Introduction

We consider a quasilinear parabolic equation with weighted inner source terms

(1.1) (um)t = ∆u+ c(x, t)up, (x, t) ∈ Ω× (0, T ),

subject to Dirichlet-type weighted nonlinear nonlocal boundary and initial conditions

u(x, t) =

∫
Ω
k(x, y, t)ul(y, t) dy, (x, t) ∈ ∂Ω× (0, T ),(1.2)

u(x, 0) = u0(x), x ∈ Ω,(1.3)

where Ω ⊂ RN (N ≥ 1) is a bounded domain with C2 boundary ∂Ω, constants m, p, l >

0. The weight function c(x, t) is a nonnegative continuous function defined on (x, t) ∈
Ω × [0, T ) and k(x, y, t) is a nonnegative nontrivial continuous function defined on y ∈
Ω, (x, t) ∈ ∂Ω × [0, T ). Moreover, the initial data u0(x) ∈ C2+α(Ω) (0 < α < 1) is

a nonnegative nontrivial function, which satisfies the compatibility condition u0(x) =∫
Ω k(x, y, 0)ul0(y) dy for x ∈ ∂Ω.

In fact, if we set v(x, t) := um(x, t), then (1.1) can be rewritten as

vt = ∆v1/m + c(x, t)vp/m, (x, t) ∈ Ω× (0, T ).
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Therefore, the model (1.1) is of the porous medium type with weighted inner source terms,

it appears in the model of Newton flux through a porous medium, the model of evolution of

plasma temperature, and so on (cf. [21,33]). In the nonlinear diffusion theory, there exist

obvious differences among the situations of slow (m < 1), fast (m > 1) and linear (m = 1)

diffusion. For example, there is a finite speed propagation in the slow and linear diffusion

situations, whereas an infinite speed propagation exists in the fast diffusion situation.

Meanwhile, there are some important phenomena formulated as parabolic equations, which

are coupled with weighted nonlocal boundary conditions in mathematical models, such as

thermoelasticity theory. In this situation, the solution u(x, t) describes entropy per volume

of the material (see [5, 6]).

To state our research motivation, let us recall some qualitative properties of solutions

for the initial boundary value problems of parabolic equations with Dirichlet-type nonlocal

boundary conditions. Concerning the research on the semilinear parabolic equation, one

can refer to [7, 13–15, 18–20] and the references therein. For example, Friedman [13] first

studied the linear parabolic equation

ut −Au = 0, (x, t) ∈ Ω× (0, T )

subject to the Dirichlet-type weighted linear nonlocal boundary condition, i.e., (1.2) with

l = 1 and k = k(x, y), where A is an elliptic operator,

A =
n∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
+ c(x) and c(x) ≤ 0.

He showed that when
∫
Ω |k(x, y)|dy ≤ ρ < 1, the solution tends to 0 monotonously and

exponentially as t → ∞. Deng [7] considered a more general form of semilinear parabolic

equation

ut = ∆u+ g(x, u), (x, t) ∈ Ω× (0, T )

under the Dirichlet-type weighted linear nonlocal boundary condition, he established the

local solvability, comparison principle and derived the long-time asymptotic behavior of so-

lution. Afterwards, Gladkov and Kim [18,19] investigated a semilinear parabolic equation

with weighted inner source terms

ut = ∆u+ c(x, t)up, (x, t) ∈ Ω× (0, T )

with p > 0 subject to Dirichlet-type weighted nonlinear nonlocal boundary condition (1.2).

They proved the local well-posedness, global existence, blow-up phenomena of solutions

by the method of super- and sub-solutions. Furthermore, with regard to the advances

on local semilinear parabolic equation with weighted absorption source terms and local

semilinear parabolic system with weighted source terms, we refer to [14,15,20].
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For the studies on the porous medium equation with the local source term, Wang et

al. [32] investigated a porous medium equation with power-like source term

ut = ∆um + up, (x, t) ∈ Ω× (0, T ),

where m, p > 1. Under the condition (1.2) with k = k(x, y), they established the blow-up

criteria and give the blow-up rate estimate. In addition, with respect to the research of

local quasilinear coupled systems, nonlocal parabolic equation (system) under Dirichlet

type nonlocal boundary conditions, as well as parabolic equation (system) under Neumann

or Robin type nonlocal boundary conditions, we refer to [2,3,8,10,11,16,17,24–31,34,36].

As mentioned above, the research on the porous medium model with spacetime-varying

weighted inner source term under weighted nonlinear nonlocal Dirichlet boundary condi-

tion (1.1)–(1.3) has not been carried out yet. A difficulty lies in finding influences of

spacetime-varying weight functions and competitive relationship between the multiple

nonlinearities on the asymptotic behavior of solutions. Motivated by this observation,

based on the method of super- and sub-solutions, Kaplan’s argument, the method of

auxiliary problem and some ODE techniques, etc., we establish sufficient conditions to

guarantee the solution globally exists or blow-up, and also give the blow-up rate estimate.

Additionally, note that our results include the situation of slow, linear and fast diffusion.

The remainder of our paper is organized as follows. In Section 2, the definition of the

solution to problem (1.1)–(1.3), comparison principle and the property of positiveness of

the solution are introduced. In Section 3, under suitable assumptions on the exponents

m, p, l and weighted functions, we proved the global existence and blow-up of solutions.

The blow-up rate estimate is given in Section 4. Finally, we discuss in the last section the

conclusions obtained in this paper.

2. Preliminaries

We begin with definitions of super- and sub-solution. Throughout the paper, we denote

QT := Ω× (0, T ), QT := Ω× [0, T ), ST := ∂Ω× (0, T ), 0 < T ≤ ∞.

Definition 2.1. A nonnegative function u(x, t) ∈ C(QT ) ∩ C2,1(QT ) is called a super-

solution of problem (1.1)–(1.3) in QT if

(um)t ≥ ∆u+ c(x, t)up, (x, t) ∈ QT ,(2.1)

u(x, t) ≥
∫
Ω
k(x, y, t)ul(y, t) dy, (x, t) ∈ ST ,(2.2)

u(x, 0) ≥ u0(x), x ∈ Ω.(2.3)

Similarly, a nonnegative function u(x, t) ∈ C(QT ) ∩ C2,1(QT ) is a sub-solution of

problem (1.1)–(1.3) in QT if it satisfies (2.1)–(2.3) in the reverse order. We say that
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u(x, t) is a solution to problem (1.1)–(1.3) in QT if it is both a super-solution and a

sub-solution to problem (1.1)–(1.3) in QT .

By the similar arguments in the literature [19], one can deduce the property of posi-

tiveness of the solution. The proof is more or less standard, so it is omitted here.

Lemma 2.2. Let u0(x) is a nonnegative nontrivial function in Ω, and suppose that

k(x, · , t) ̸≡ 0, ∀ (x, t) ∈ ST .

If u(x, t) is a solution of problem (1.1)–(1.3) in QT , then u(x, t) > 0 in QT .

Next, the following modified comparison principle plays a crucial role in our proofs,

which can be obtained by selecting a suitable test function and employing Gronwall’s

inequality.

Proposition 2.3 (Comparison principle). Suppose that u(x, t) and u(x, t) are the non-

negative sub- and super-solution of problem (1.1)–(1.3), respectively. If u(x, 0) ≤ u(x, 0),

u(x, 0) ≥ 0 and u(x, 0) ≥ δ > 0 in Ω, where δ is a positive constant. Then u(x, t) ≤ u(x, t)

in QT .

Proof. We first introduce a transformation. Let v(x, t) = um(x, t). Then problem (1.1)–

(1.3) becomes that

vt = ∆vn + c(x, t)vnp, (x, t) ∈ QT ,(2.4)

vn(x, t) =

∫
Ω
k(x, y, t)vnl(y, t) dy, (x, t) ∈ ST ,(2.5)

v(x, 0) = v0(x) = um0 , x ∈ Ω,(2.6)

where n = 1/m > 0.

Let φ(x, t) ∈ C2,1(QT ) be a nonnegative function with φ(x, t) = 0 and ∂φ(x,t)
∂n < 0 on

ST . Multiplying both sides of (2.4) by φ(x, t) and integrating over Qt for 0 < t < T ,

making use of (2.5) and Green’s formula, one can see that∫
Ω
v(x, t)φ(x, t) dx

=

∫
Ω
v(x, 0)φ(x, 0) dx+

∫∫
Qt

vφτ dxdτ +

∫∫
Qt

(∆vn + c(x, τ)vnp)φdxdτ

=

∫
Ω
v(x, 0)φ(x, 0) dx+

∫∫
Qt

vφτ dx dv +

∫∫
Qt

vn∆φdxdτ

+

∫∫
Qt

c(x, τ)vnpφdxdτ −
∫∫

St

vn
∂φ

∂n
dSdτ

=

∫
Ω
v(x, 0)φ(x, 0) dx+

∫∫
Qt

vφτ dxdτ +

∫∫
Qt

vn∆φdxdτ
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+

∫∫
Qt

c(x, τ)vnpφdxdτ −
∫∫

St

(∫
Ω
k(x, y, τ)vnl(y, τ) dy

)
∂φ

∂n
dSdτ.

Then by the definitions of the sub- and super-solution, we obtain the following inequalities∫
Ω
v(x, t)φ(x, t) dx

≤
∫
Ω
v(x, 0)φ(x, 0) dx+

∫∫
Qt

vφτ dxdτ +

∫∫
Qt

vn∆φdxdτ

+

∫∫
Qt

c(x, τ)vnpφdxdτ −
∫∫

St

(∫
Ω
k(x, y, τ)vnl(y, τ) dy

)
∂φ

∂n
dSdτ,

(2.7)

and ∫
Ω
v(x, t)φ(x, t) dx

≥
∫
Ω
v(x, 0)φ(x, 0) dx+

∫∫
Qt

vφτ dxdτ +

∫∫
Qt

vn∆φdxdτ

+

∫∫
Qt

c(x, τ)vnpφdxdτ −
∫∫

St

(∫
Ω
k(x, y, τ)vnl(y, τ) dy

)
∂φ

∂n
dSdτ.

(2.8)

Setting ω(x, t) = v(x, t)− v(x, t), combining (2.7) and (2.8), we get∫
Ω
ω(x, t)φ(x, t) dx ≤

∫
Ω
ω(x, 0)φ(x, 0) dx

+

∫∫
Qt

(
φτ + ϕ1(x, τ)∆φ+ c(x, τ)ϕ2(x, τ)φ

)
ω dxdτ

−
∫∫

St

(∫
Ω
k(x, y, τ)ϕ3(y, τ)ω dy

)
∂φ

∂n
dSdτ,

where

ϕ1(x, τ) =

∫ 1

0
n
(
θv + (1− θ)v

)n−1
dθ,

ϕ2(x, τ) =

∫ 1

0
np

(
θv + (1− θ)v

)np−1
dθ,

ϕ3(x, τ) =

∫ 1

0
nl
(
θv + (1− θ)v

)nl−1
dθ.

Noticing that v(x, t), v(x, t) are bounded functions, it follows from n ≥ 1, nl ≥ 1 and

np ≥ 1 that ϕi (i = 1, 2, 3) are bounded nonnegative functions. If n < 1, nl < 1 and

np < 1, we have ϕ1 ≤ δn−1, ϕ2 ≤ δnp−1, ϕ3 ≤ δnl−1 by the condition that u(x, 0) ≥ 0

or u(x, 0) ≥ δ > 0. Thus, we may choose appropriate function φ with ∂φ
∂n ≤ 0 on ∂Ω as

in [1, pp. 118–123] to obtain∫
Ω
ω(x, t)+ dx ≤ C1

∫
Ω
ω(x, 0)+ dx+ C2

∫∫
Qt

ω(x, τ) dxdτ,
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where ω+ = max{ω, 0} and constants C1, C2 > 0. It follows from ω(x, 0)+ ≤ 0 that∫
Ω
ω(x, t)+ dx ≤ C2

∫∫
Qt

ω(y, τ) dydτ.

By Gronwall’s inequality, we know that ω(x, t)+ ≤ 0, that is, v(x, t) ≤ v(x, t) in QT .

On the other hand, for (x, t) ∈ ST , we have

v(x, t)− v(x, t) ≤
∫
Ω
k(x, y, t)

(
vl(y, t)− vl(y, t)

)
dy.

Since k(x, y, t) is continuous function, one can see∫
Ω
k(x, y, t)

(
vl(y, t)− vl(y, t)

)
+
dy =

∫
Ω
k(x, y, t)ϕ3(y, t)

(
vl(y, t)− vl(y, t)

)
dy

≤ C3

∫
Ω

[
v(y, t)− v(y, t)

]
+
dy,

where ϕ3(x, τ) =
∫ 1
0 nl

(
θv + (1− θ)v

)nl−1
dθ and constant C3 > 0.

In view of
∫
Ω

[
v(y, t)− v(y, t)

]
+
dy = 0, it can be easily seen that

v(x, t)− v(x, t) ≤
∫
Ω
k(x, y, t)

(
vl(y, t)− vl(y, t)

)
dy ≤ 0,

and so v(x, t) ≤ v(x, t) on ST . In conclusion, we obtain v(x, t) ≤ v(x, t) in QT . The proof

is completed.

Finally, we state the local solvability theorem without proof.

Theorem 2.4 (Local existence theorem). Let m > 0, p > 0, l > 0 and c(x, t) be a

nonnegative continuous function in QT and k(x, y, t) is nonnegative nontrivial continuous

function in ∂Ω×Ω×[0, T ). If the initial value u0(x) ∈ C2+α(Ω) with 0 < α < 1 is a nonneg-

ative nontrivial function satisfying the compatibility condition u0(x) =
∫
Ω k(x, y, 0)ul0(y) dy

for x ∈ ∂Ω, then there exists a constant T > 0 such that the problem (1.1)–(1.3) admits a

nonnegative solution u(x, t) ∈ C2,1(Ω×(0, S))∩C(Ω×[0, S]) for each S < T . Furthermore,

either T = ∞ or

lim
t→T−

sup ∥u( · , t)∥∞ = ∞.

Remark 2.5. Indeed, the proof of Theorem 2.4 can be obtained by using the Schauder’s

fixed point theorem (see [9, 34, 35]) or the regular theory to get the suitable estimate in

a standard limiting process (see [4, 23]). For the sake of readers’ understanding, a sketch

outline of the proof process using Schauder’s fixed point theorem is given below. Let

K =
{
v(x, t) : ∥v∥L∞(QT ) ≤ K0

}
,
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where K0 is an appropriate constant. For any given v ∈ K, we introduce the following

auxiliary problem

(um)t = ∆u+ c(x, t)up, (x, t) ∈ Ω× (0, T ),(2.9)

u(x, t) =

∫
Ω
k(x, y, t)vl(y, t) dy, (x, t) ∈ ∂Ω× (0, T ),(2.10)

u(x, 0) = u0(x), x ∈ Ω.(2.11)

According to the standard parabolic equation theory [12,22], problem (2.9)–(2.11) admits

a solution u ∈ C2,1(QT ) ∩ C(QT ). Now, we define a mapping Υ as follows:

Υ : v(x, t) ∈ K ⊂ L∞(QT ) → Υ [v] = u(x, t) ∈ C(QT ),

where u(x, t) is the solution of (2.9)–(2.11). Next, proving the mapping Υ is continuous

and precompact from K to K. Therefore, Schauder’s fixed-point theorem implies that the

mapping Υ has a fixed point u ∈ C(QT ), which is a solution to problem (1.1)–(1.3). Then,

it follows from the regularity theory for parabolic equations that u ∈ C2,1(QT ) ∩ C(QT ).

Remark 2.6. By the comparison principle above, we can get the uniqueness of the solutions

to the problem (1.1)–(1.3) in the case of p ≥ m.

3. Global existence and blow-up criteria

In this section, by virtue of the method of super- and sub-solutions, Kaplan’s argument,

the method of auxiliary problem and some ODE techniques, etc., we present the suitable

conditions of nonlinear exponents p, m, l and the weighted functions c(x, t) and k(x, y, t),

which ensure solution exists globally or blows up in finite time. For the remainder of this

paper, we denote

µ := sup
Ω

u0(x), c1(t) := inf
Ω

c(x, t), c2(t) := sup
Ω

c(x, t).

We first establish the results of global existence for solutions with arbitrary initial

value.

Theorem 3.1. Assume that m > 0, p ≤ m and c(x, t) is a nonnegative continuous

function. If one of the following conditions is satisfied:

(i) l < 1 and k(x, y, t) is nonnegative continuous function or l = 1 and the weighted

function k(x, y, t) satisfies
∫
Ω k(x, y, t) dy ≤ 1, ∀ (x, t) ∈ ST ;

(ii) m ̸= 1, l ≤ 1 and the weighted function k(x, y, t) satisfies
∫
Ω k(x, y, t) dy ≤ 1,

∀ (x, t) ∈ ST ,
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then problem (1.1)–(1.3) has global solutions for any nonnegative nontrivial initial data.

Remark 3.2. Take the unit disc Ω =
{
x = (x1, x2) ∈ R2 | |x|2 =

∑2
i=1 x

2
i < 1

}
, k(x, y, t) =

3
2π

y2

t+x2 for (x, t) ∈ ST , y ∈ Ω, which satisfies the condition
∫
Ω k(x, y, t) dy ≤ 1, ∀ (x, t) ∈

ST .

Proof of Theorem 3.1. (i) Let T be any positive number. Since c(x, t) and k(x, y, t) are

continuous functions, there exists positive constant M such that

(3.1) c(x, t) ≤ M, k(x, y, t) ≤ M in QT and ∂Ω×QT , respectively.

We construct a super-solution of problem (1.1)–(1.3) in the form

u(x, t) = α1/meβt/m,

where

(3.2) α ≥ max
{
1, µm, (M |Ω|)m/(1−l)

}
, β > M.

Since p ≤ m, (3.1) and (3.2), it is easy to check that

(um)t −∆u− c(x, t)up = αβeβt − c(x, t)αp/mepβt/m ≥ αeβt(β −M) ≥ 0.

Moreover, by (3.1)–(3.2), u satisfies the following boundary and initial conditions:

u(x, t) ≥ M |Ω|α(l−1)/mu(x, t) ≥
∫
Ω
k(x, y, t)αl/melβt/m dy =

∫
Ω
k(x, y, t)ul dy,

u(x, 0) = α1/m ≥ µ ≥ u0(x).

Therefore, by virtue of Proposition 2.3, we know that u(x, t) is a super-solution of

problem (1.1)–(1.3), which means that the solution of problem (1.1)–(1.3) exists globally.

In the case of l = 1, u(x, t) is a super-solution of (1.1)–(1.3) provided
∫
Ω k(x, y, t) dy

≤ 1, ∀ (x, t) ∈ ST .

(ii) We divide the proof of Theorem 3.1(ii) into two cases.

Case 1: 0 < m < 1. Let h(x) be the positive solution of the linear problem

(3.3) ∆h(x) = λ, x ∈ Ω; h(x) = 1, x ∈ ∂Ω,

with

(3.4) 0 < h1 ≤ h(x) ≤ h2 < 1

for x ∈ Ω and some positive constants h1 and h2.



On a Weighted Porous Medium Equation 775

We construct a super-solution of problem (1.1)–(1.3), taken of the form

u(x, t) = A0e
k0t log

[
h(x)ek0(m−1)t +B0

]
,

where h(x) is the solution of problem (3.3), constants A0 > 1, B0 > e, k0 > 0 and satisfy

B0 logB0 ≥ 2(1−m)h2,(3.5)

k0 ≥
2MB0

[
log(h2 +B0)

]p
+ 2A1−m

0 λ

B0m(logB0)m
,(3.6)

A0 log(h1 +B0) ≥ µ.(3.7)

By virtue of (3.5) and p ≤ m, after simple calculation, we have

(um)t = k0mAm
0 ek0mt

[
log

(
h(x)ek0(m−1)t +B0

)]m
+Am

0 ek0mtm
[
log

(
h(x)ek0(m−1)t +B0

)]m−1k(m− 1)h(x)ek0(m−1)t

h(x)ek0(m−1)t +B0

≥ 1

2
k0mAm

0 ek0mt(logB0)
m,

(3.8)

∆u =
A0e

k0mt∆h(x)

h(x)ek0(m−1)t +B0
−

A0

[
∇
(
h(x)ek0(m−1)t +B0

)]2(
h(x)ek0(m−1)t +B0

)2 ≤ A0λe
k0mt

B0
,(3.9)

up ≤ Am
0 ek0mt

[
log(h2 +B0)

]p
.(3.10)

It follows from (3.6) and (3.8)–(3.10) that

(um)t −∆u− c(x, t)up ≥ 0.

In addition, for (x, t) ∈ ST , one can see

u(x, t) = A0e
k0t log

(
ek0(m−1)t +B0

)
≥ A0e

k0t log
(
h2e

k0(m−1)t +B0

)
≥

∫
Ω
k(x, y, t)Al

0e
k0lt

[
log

(
h(y)ek0(m−1)t +B0

)]l
dy =

∫
Ω
k(x, y, t)ul dy,

and by (3.7), we have u(x, 0) ≥ A0 log(h1 + B0) ≥ u0(x). Consequently, u(x, t) is a

super-solution of problem (1.1)–(1.3) by Proposition 2.3.

Case 2: m > 1. We introduce the eigenvalue problem of the operator −∆ under the

homogeneous Dirichlet boundary condition

(3.11) −∆ϕ = λ1ϕ, x ∈ Ω, ϕ = 0, x ∈ ∂Ω,

where λ1 and ϕ(x) are the first eigenvalue and the corresponding eigenfunction, respec-

tively. Then λ1 > 0, ϕ(x) > 0 in Ω, ∂ϕ
∂n < 0 on ∂Ω and normalized supΩ ϕ(x) = 1.

Moreover, denote

c3 := max
x∈Ω

|∇ϕ(x)| > 0, c4 := min
x∈∂Ω

∣∣∣∣∂ϕ∂n
∣∣∣∣ > 0.
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We construct a super-solution of problem (1.1)–(1.3) in the form

u(x, t) = ek1t
[
M1 + (2M1)

β1L−1c−1
4 e−Lϕ(x)ek1(m−1)t/2]

,

where ϕ(x) is the eigenfunction of problem (3.11), constants k1, M1 and L are defined by

k1 ≥
M(2M1)

p + (λ− 1 + Lc23)c
−1
4 (2M1)

β1

m
,(3.12)

M1 := max{2∥u0∥∞, 2}, L := max

{
2β1Mβ1−1

1

c4
,
(m− 1)(2M1)

β1

2e(M1 − 1)c4

}
.(3.13)

By a straightforward calculation, one can see that

(um)t = k1mek1mt
[
M1 + (2M1)

β1L−1c−1
4 e−Lϕ(x)ek1(m−1)t/2]m−1

×
[
M1 + (2M1)

β1L−1c−1
4 e−Lϕ(x)ek1(m−1)t/2

(
1 +

1

2
(m− 1)(−Lϕ)ek1(m−1)t/2

)]
.

It follows from −Y e−Y ≥ −e−1 for any Y > 0 that

−Lϕek1(m−1)t/2e−Lϕ(x)ek1(m−1)t/2 ≥ −e−1,

and hence

(3.14) (um)t ≥ k1mek1mt.

Furthermore, according to p ≤ m and (3.13), we have

∆u = (2M1)
β1L−1c−1

4 ek1t∆e−Lϕ(x)ek1(m−1)t/2

= (2M1)
β1c−1

4 e−Lϕ(x)ek1(m−1)t/2[
∆(−ϕ)ek1(m+1)t/2 + L|∇ϕ|2ek1mt/2

]
≤ c−1

4 (2M1)
β1ek1mt

(
λ1 + Lc23

)
,

(3.15)

up = ek1pt
[
M1 + (2M1)

β1L−1c−1
4 e−Lϕ(x)ek1(m−1)t/2]p ≤ (2M1)

pek1mt.(3.16)

Combining (3.12) and (3.14)–(3.16), we obtain

(um)t −∆u− c(x, t)up ≥
[
k1m− (λ1 + Lc23)c

−1
4 (2M1)

β1 −M(2M1)
p
]
ek1mt ≥ 0.

On the other hand, for (x, t) ∈ ST , one can see

u(x, t) = ek1t
[
M1 + (2M1)

β1L−1c−1
4

]
≥

∫
Ω
k(x, y, t)ek1t

[
M1 + (2M1)

β1L−1c−1
4

]
dy

≥
∫
Ω
k(x, y, t)ek1lt

[
M1 + (2M1)

β1L−1c−1
4 e−Lϕ(y)ek1(m−1)t/2]l

dy =

∫
Ω
k(x, y, t)ul dy,

and by (3.13), we have u(x, 0) = M1 + (2M1)
β1L−1c−1

4 ≥ u0(x). Now applying Proposi-

tion 2.3, we obtain the desired result. The proof is completed.
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Remark 3.3. Theorem 3.1(i) involves the result in [18, Theorem 2.5]. And Theorem 3.1(ii)

is new conclusion, in which we adopts the technique of constructing the appropriate super-

solution to deal with the quasilinear case.

Corollary 3.4. If m > 1, p ≤ 1, l = 1, c(x, t) is a nonnegative continuous function

and
∫
Ω k(x, y, t) dy ≤ 1 is not valid for (x, t) ∈ ST , then problem (1.1)–(1.3) exists global

solution for any nonnegative nontrivial initial datum.

Proof. Let λ1 > 0 and ϕ(x) be the first eigenvalue and the corresponding eigenfunction of

problem (3.11), respectively, and ϕ be chosen to satisfy for 0 < ε1 < 1 that

(3.17) M

∫
Ω

1

ϕ(y) + ε1
dy ≤ 1,

where the constant M is given in (3.1). We construct a super-solution of problem (1.1)–

(1.3), taken of the form

u(x, t) =
Ceγ1t/m

ϕ(x) + ε1
,

where C ≥ supΩ(ϕ + ε1), γ1 > 0 are constants to be chosen later. A direct calculation

leads to

(um)t −∆u− c(x, t)up

=
Cmγ1e

γ1t

(ϕ(x) + ε1)m
−
(

λ1ϕ

ϕ+ ε1
+

2|∇ϕ|2

(ϕ+ ε1)2

)
u− c(x, t)up

=

[(
C

ϕ+ ε1

)m−1

γ1e

(
γ1− γ1

m

)
t −

(
λ1ϕ

ϕ+ ε1
+

2|∇ϕ|2

(ϕ+ ε1)2

)]
u− c(x, t)up.

(3.18)

Combining p ≤ 1 and C ≥ supΩ(ϕ+ ε1), we have the inequality

(3.19) up(x, t) ≤ u(x, t), (x, t) ∈ QT .

According to (3.1) and (3.18)–(3.19), we obtain

(um)t −∆u− c(x, t)up ≥

[(
C

ϕ+ ε1

)m−1

γ1e

(
γ1− γ1

m

)
t −

(
λ1ϕ

ϕ+ ε1
+

2|∇ϕ|2

(ϕ+ ε1)2

)
−M

]
u

≥
[
γ1 −

(
λ1ϕ

ϕ+ ε1
+

2|∇ϕ|2

(ϕ+ ε1)2

)
−M

]
u ≥ 0,

provided that γ1 ≥ λ1 + supΩ
2|∇ϕ|2
(ϕ+ε1)2

+M .

Furthermore, for (x, t) ∈ ST , it follows from (3.1) and (3.17) that

u(x, t) =
Ceγ1t/m

ε1
≥

∫
Ω

Ceγ1t/mM

ϕ(y) + ε1
dy ≥

∫
Ω
k(x, y, t)udy.

It is clear from Proposition 2.3 that u(x, t) is a super-solution of problem (1.1)–(1.3) if

C ≥ max
{
supΩ u0(x) supΩ(ϕ+ ε1), supΩ(ϕ+ ε1)

}
. This completes the proof.
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Now we shall show the existence of global solutions to problem (1.1)–(1.3) for small

initial data. We suppose in the following statement that

(3.20) M2 ≥
bλ+ bpc2(t)h

p
2 − bmc2(t)h

m
1

bmhm1
, t > 0,

where constants λ, h1, h2 are given in (3.3)–(3.4), b > 0 is determined later, and there

exist a positive constant A1 such that

(3.21)

∫
Ω
k(x, y, t) dye

l−1
m

( ∫ t
0 c2(s) ds+M2t

)
≤ A1, ∀ (x, t) ∈ ST .

Let Ω̃ be a bounded domain in RN satisfying the property that Ω ⋐ Ω̃ and we introduce

the eigenvalue problem of the operator −∆ given by

(3.22) −∆Φ = λ̃1Φ(x), x ∈ Ω̃, Φ(x) = 0, x ∈ ∂Ω̃,

where λ̃1 and Φ(x) are the first eigenvalue and the corresponding eigenfunction, respec-

tively. Then λ̃1 > 0 and Φ(x) > 0 in Ω̃. It is obvious that

(3.23)
sup

x∈Ω̃Φ(x)

infx∈ΩΦ(x)
< a

for some a > 1. For convenience, we denote ρ := sup
x∈Ω̃Φ(x). Meanwhile, suppose that

(3.24)

∫ ∞

0
c2(t)e

−γt dt < ∞ for some γ <
p−m

m
ρ1−mλ1,

and for some A2 > 0 and σ < l−1
m ρ1−mλ1,

(3.25)

∫
Ω
k(x, y, t) dy ≤ A2e

σt, ∀ (x, t) ∈ ST ,

where λ1 is the first eigenvalue of problem (3.11).

Theorem 3.5. Assume m > 1, l > 1. If one of the following conditions is satisfied:

(i) p < m, the weighted function c(x, t) satisfies
∫∞
0 c2(t) dt < ∞ and hypotheses (3.20)–

(3.21) hold;

(ii) p > m and hypotheses (3.24)–(3.25) hold,

then the solution of problem (1.1)–(1.3) exists globally for small initial data.

Remark 3.6. In fact, the weight functions c(x, t) and k(x, y, t) satisfying Theorem 3.5 can

be selected. Take the unit ball Ω =
{
x = (x1, x2, x3) ∈ R3 | |x|2 =

∑3
i=1 x

2
i < 1

}
,

c(x, t) = x2

1+t2
for (x, t) ∈ QT , M2 =

bλ+
(
bphp

2−bmhm
1

)
bmhm

1
, k(x, y, t) = x2

1+y2
e

1−l
m

(arctan t+M2t)

for (x, t) ∈ ST , y ∈ Ω, then c2(t) = 1
1+t2

, which satisfies
∫∞
0 c2(t) dt =

π
2 < ∞, and the

assumption (3.21) holds. Choose c(x, t) = e(γ−1)t

1+x2 for (x, t) ∈ QT , k(x, y, t) =
x2

1+y2
eσt for

(x, t) ∈ ST , y ∈ Ω, then c2(t) = e(γ−1)t, and the assumptions (3.24)–(3.25) are satisfied.
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Proof of Theorem 3.5. (i) We construct a super-solution of problem (1.1)–(1.3) in the form

u(x, t) = be
1
m
f(t)h(x), f(t) =

∫ t

0
c2(s) ds+M2t,

where b < 1 is a positive constant and M2 is defined in (3.20), and h(x) is the solution of

problem (3.3). By a straightforward calculation, we obtain

(um)t −∆u− c(x, t)up = bmhmef(t)f ′(t)− be
1
m
f(t)∆h− bpc(x, t)hpe

p
m
f(t)

≥ ef(t)
[
bmhm1 (c2(t) +M2)− bλ− bphp2c2(t)

]
≥ 0.

On the other hand, for (x, t) ∈ ST , one can see

u(x, t) = be
1
m
f(t) ≥ A1b

le
1
m
f(t) ≥

∫
Ω
k(x, y, t)ble

l
m
f(t)hl(y) dy =

∫
Ω
k(x, y, t)ul dy,

provided b ≤ A
1/(1−l)
1 .

Hence, by Proposition 2.3, we know that there exists global solution of problem (1.1)–

(1.3) provided u0(x) ≤ bh(x).

(ii) Let Φ(x) is the eigenfunction corresponding to the first eigenvalue λ̃1 of prob-

lem (3.22), and satisfy Φ(x) > 0 in Ω̃, λ̃1 < λ1. Now, choosing any ε which satisfies the

inequality

(3.26) 0 < ε ≤ (A2a
l)−1/(l−1),

where a > 1, A2 is given in (3.25), and taking

(3.27) sup
x∈Ω̃

Φ(x) = aε,

then by (3.23) we have the inequality

(3.28) inf
x∈Ω

Φ(x) > ε.

We construct a super-solution of problem (1.1)–(1.3) in such a form that

u(x, t) = Φ(x)F 1/m(t),

where

F (t) = e−λ̃1(aε)1−mt

[
B − p−m

m
(aε)p−m

∫ t

0
c2(s)e

−λ̃1
p−m
m

(aε)1−ms ds

]−m/(p−m)

,

B = 1 +
p−m

m
(aε)p−m

∫ ∞

0
c2(s)e

−λ̃1
p−m
m

(aε)1−ms ds.



780 Wentao Huo, Chenyuan Jia and Zhong Bo Fang

Noticing F (t) ≤ e−λ̃1(aε)1−mt ≤ 1 and F (t) is a solution of the equation

F ′(t) + λ̃1(aε)
1−mF (t)− c2(t)(aε)

p−mF p/m(t) = 0.

It can be shown by a simple calculation that

(um)t −∆u− c(x, t)up

= ΦmF ′(t)−∆ΦF 1/m − c(x, t)ΦpF p/m ≥ ΦmF ′(t) + λ̃1ΦF
1/m − c2(t)Φ

pF p/m

≥ Φm
[
F ′ + λ̃1Φ

1−mF − c2(t)Φ
p−mF p/m

]
≥ 0.

On the other hand, for (x, t) ∈ ST , it follows from (3.25)–(3.28) that

u(x, t) > εF 1/m(t) ≥ A2(aε)
lF 1/m(t) ≥

∫
Ω
k(x, y, t)Φl(y)F l/m(t) dy =

∫
Ω
k(x, y, t)ul dy.

As a result, by Proposition 2.3, there exists a global solution of problem (1.1)–(1.3) for

any nonnegative initial data such that u0(x) ≤ B−1/(p−m)Φ(x). The proof is completed.

Remark 3.7. Theorem 3.5 is concerned with the slow diffusion case and presents the new

global existence conditions, such as hypothesis (3.21).

In order to show the following results, we suppose that

(3.29) c2(t)ρ
p−1 − λ̃1 > 0,

∫ ∞

0

[
ρp−1c2(t)− λ̃1

]
dt < ∞,

where ρ := sup
x∈Ω̃Φ(x), λ̃1 and Φ(x) are given in (3.22).

Theorem 3.8. Assume m > 0, the weighted function k(x, y, t) satisfies

(3.30)

∫
Ω
k(x, y, t) dy ≤ 1, ∀ (x, t) ∈ ST .

If one of the following conditions is satisfied:

(i) p > m, l ≥ 1, the weighted function c(x, t) satisfies
∫∞
0 c2(t) < ∞, and initial data

is sufficiently small;

(ii) p = m, l ≤ 1, the weighted function c(x, t) satisfies
∫∞
0 c2(t) < ∞, and initial data

is arbitrary nonnegative function;

(iii) m < 1, min{p, l} > 1, hypothesis (3.29) holds, and initial data is sufficiently small,

then problem (1.1)–(1.3) admits global solutions.
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Remark 3.9. Take the unit disc Ω =
{
x = (x1, x2) ∈ R2 | |x|2 =

∑2
i=1 x

2
i < 1

}
,

c(x, t) = x2
(

λ̃1
ρp−1 + 1

1+t2

)
for (x, t) ∈ QT , then c2(t) = ρp−1 + 1

1+t2
, which satisfies the

condition (3.29).

Proof of Theorem 3.8. (i) Consider the following Cauchy problem

(3.31)

(gm)′(t) = c2(t)g
p(t), t > 0,

g(0) = B
1/(p−m)
1 ,

where B1 =
[
1 + p−m

m

∫∞
0 c2(t) dt

]
. Then we can write the explicit solution of prob-

lem (3.31) as

g(t) =

[
B1 −

p−m

m

∫ t

0
c2(s) ds

]1/(m−p)

,

and g(t) ≤ 1. It can be easily seen that g(t) is a super-solution of problem (1.1)–(1.3) for

initial data u0(x) ≤ B
−1/(p−m)
1 .

(ii) Since p = m and l ≤ 1, it is not difficult to verify that

g1(t) = g1(0)e
1
m

∫ t
0 c2(s) ds

with g1(0) ≥ max{1, µ} is a super-solution of problem (1.1)–(1.3).

(iii) As in the proof of Theorem 3.5(ii) we consider eigenfunction Φ(x), which satisfies

(3.27) and (3.28), where

(3.32) 0 < ε ≤ a−l/(l−1).

We construct a super-solution of problem (1.1)–(1.3) in the form of separated variables

u(x, t) = Φ(x)G1/m(t),

where G(t) is the solution for the following initial value problem of ordinary differential

equation G′(t) +
[
λ̃1 − (aε)p−1c2(t)

]
G1/m(t) = 0, t > 0,

G(0) = B
m/(m−1)
2 ,

where

B2 = 1 +
1−m

m

∫ ∞

0

(
c2(t)(aε)

p−m − λ̃1

)
dt.

Then G(t) can be written in an explicit form

G(t) =

[
B2 +

m− 1

m

∫ t

0

(
c2(t)(aε)

p−1 − λ̃1

)
ds

]m/(m−1)

.



782 Wentao Huo, Chenyuan Jia and Zhong Bo Fang

It can be easily seen that G(t) < 1. A direct calculation leads to

(um)t −∆u− c(x, t)up = ΦmG′(t)−∆ΦG1/m − c(x, t)ΦpGp/m

≥ ΦmG′(t) + λ̃1ΦG
1/m − c2(t)Φ

pGp/m

≥ Φ
[
G′ +

(
λ̃1 − (aε)p−1c2(t)

)
G1/m

]
≥ 0.

On the other hand, for (x, t) ∈ ST , by (3.27)–(3.28), (3.30) and (3.32), we have

u(x, t) > εG1/m(t) ≥ (aε)lG1/m(t) ≥
∫
Ω
k(x, y, t)Φl(y)Gl/m(t) dy =

∫
Ω
k(x, y, t)ul dy.

Therefore, by employing Proposition 2.3, we know that there exists global solution of

problem (1.1)–(1.3) for initial datum such that u0(x) ≤ B
m/(m−1)
2 Φ(x). The proof is

completed.

Remark 3.10. For p = m, l > 1, if
∫
Ω k(x, y, t) dy ≤ e

1−l
m

∫ t
0 c2(s) ds, then problem (1.1)–(1.3)

exists global solution.

We proceed to derive the blow-up phenomenon for large initial data.

Theorem 3.11. Assume p < m < 1, l > 1. If the weighted functions c(x, t) and k(x, y, t)

satisfy, respectively

(3.33) c(x, t) ≥ M3 for some M3 > 0,

and

(3.34)

∫
Ω
k(x, y, t) dy ≥ 21/(1−p) > 1, ∀ (x, t) ∈ ST ,

then the solution of problem (1.1)–(1.3) blows up in finite time provided that initial data

u0(x) ≥ 21/(1−p).

Remark 3.12. Take the unit ball Ω =
{
x = (x1, x2, x3) ∈ R3 | |x|2 =

∑3
i=1 x

2
i < 1

}
,

c(x, t) = 1+t
2−x2 ≥ 1 for (x, t) ∈ QT , k(x, y, t) = 21/(1−p) 1+t+y2

x2 for (x, t) ∈ ST , y ∈ Ω, then∫
Ω k(x, y, t) dy ≥ 4π

5 21/(1−p) > 1, ∀ (x, t) ∈ ST .

Proof of Theorem 3.11. We shall to construct a blow-up sub-solution in such form

u(x, t) =
[
âh(x) + (1− ct)−k2

]θ
,

where h(x) is the solution of problem (3.2) with 0 < h1 ≤ h(x) ≤ h2 < 1, and constants

â, k2, θ, c are defined as

â :=
1

h2
, k2 :=

1− p

p−m
, θ :=

k2 + 1

k2(1−m)
=

1

1− p
, c ≥ 21−mθâλ

k2m
.
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By a direct computation, one can see

(um)t = mθk2c
[
âh(x) + (1− ct)−k2

]mθ−1
(1− ct)−k2−1

≤ mθk2c2
mθ−1(1− ct)−k2mθ−1,

(3.35)

∆u = aθ
[
âh(x) + (1− ct)−k2

]θ−1
∆h(x)

+ â2θ(θ − 1)
[
âh(x) + (1− ct)−k2

]θ−2|∇h|2

≥ âλθ(1− ct)−k2θ+k2 ,

(3.36)

up ≥ (1− ct)−k2pθ.(3.37)

By virtue of (3.33) and (3.35)–(3.37), we obtain

(um)t −∆u− c(x, t)up ≤
[
mθk2c2

mθ−1 − âλθ − c(x, t)
]
(1− ct)−k2θ+k2 ≤ 0,

provided M3 = mθk2c2
mθ−1 − âλθ.

On the other hand, for (x, t) ∈ ST , according to (3.34), we get

u(x, t) =
[
â+ (1− ct)−k2

]θ ≤ 2θ(1− ct)−k3θ ≤
∫
Ω
k(x, y, t)

[
âh(y) + (1− ct)−k2

]θ
dy

≤
∫
Ω
k(x, y, t)

[
âh(y) + (1− ct)−k2

]lθ
dy =

∫
Ω
k(x, y, t)ul dy.

Consequently, u is a sub-solution of problem (1.1)–(1.3) by Proposition 2.3, which implies

u(x, t) blows up before 1/c. The proof is completed.

Remark 3.13. Theorem 3.8 presents the conditions for global existence of solution when∫
Ω k(x, y, t) dy ≤ 1; while Theorem 3.11 gives the blow-up phenomenon for large initial

data when
∫
Ω k(x, y, t) dy > 1. Meanwhile, we point out that the conclusions and technique

of constructing super- and sub-solution are new.

In addition, by virtue of Kaplan’s technique, we present the sufficient conditions to

ensure the solution of problem (1.1)–(1.3) blows up in finite time. For the sake of conve-

nience, we denote

ϕs := sup
Ω

ϕ, k1(t) :=
λ1

ϕs
inf

∂Ω×Ω
k(x, y, t),

where ϕ is the eigenfunction of problem (3.11) corresponding to the first eigenvalue λ1,

and normalized
∫
Ω ϕ(x) dx = 1.

Meanwhile, in the case of 0 < m ≤ 1, we assume that

(3.38) c1(t) > 2λ1,

∫ ∞

0
c1(t) dt = ∞ or k1(t) > 2λ1,

∫ ∞

0
k1(t) dt = ∞.

In the case of m > 1, we need another assumption that

(3.39)

∫ ∞

0
c1(t)e

λ1(1−np)t dt = ∞ or

∫ ∞

0
k1(t)e

λ1(1−nl)t dt = ∞.
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Moreover, in order to discuss the following results, let v(x, t) = um(x, t) is a solution of

problem (2.4)–(2.6), and we define the auxiliary functions

J(t) :=

∫
Ω
v(x, t)ϕ(x) dx =

∫
Ω
um(x, t)ϕ(x) dx,(3.40)

A(t) := eλ1t

∫
Ω
v(x, t)ϕ(x) dx = eλ1t

∫
Ω
um(x, t)ϕ(x) dx,

where ϕ(x) is the eigenfunction of (3.11).

Theorem 3.14. Assume m > 0.

(i) If 0 < m ≤ 1, max{p, l} > 1, hypothesis (3.38) holds, and initial data u0 satisfies∫
Ω u0ϕ dx > 1, then solution of problem (1.1)–(1.3) blow-up in the measure of J(t)

at finite time.

(ii) If max{p, l} > m > 1, hypothesis (3.39) holds, and initial data u0 satisfies
∫
Ω um0 ϕ dx

> 1, then solution of problem (1.1)–(1.3) blow-up in the measure of A(t) at finite

time.

Remark 3.15. Take the unit ball Ω =
{
x = (x1, x2, x3) ∈ R3 | |x|2 =

∑3
i=1 x

2
i < 1

}
,

c(x, t) = 2λ1
1+t
2−x2 for (x, t) ∈ QT , k(x, y, t) = 2ϕs +

x2(1+y2)
t3

for (x, t) ∈ ST , y ∈ Ω,

then c1(t) = 2λ1(1 + t), k1(t) = 2λ1 + λ1
ϕst3

, and the assumption (3.38) holds. Choose

c(x, t) = e−λ1(1−np)t

2−x2 for (x, t) ∈ QT , k(x, y, t) = e−λ1(1−nl)ty3

sin(πx2/2)
for (x, t) ∈ ST , y ∈ Ω, then

c1(t) = e−λ1(1−np)t, k1(t) = e−λ1(1−nl)t, and the assumption (3.39) is fulfilled.

Proof of Theorem 3.14. (i) Noticing that max{p, l} > 1, we suppose for the definiteness

that max{p, l} = p > 1, since the proof of other cases is similar. Differentiating the

function J(t) and using (2.4)–(2.5), Green’s formula and the equality
∫
∂Ω

∂ϕ
∂n dS = −λ1,

we obtain

J ′(t) =

∫
Ω
vtϕ(x) dx

=

∫
Ω

(
∆vn + c(x, t)vnp

)
ϕ(x) dx

=

∫
Ω
vn∆ϕ dx−

∫
∂Ω

∂ϕ

∂n
vn dS +

∫
Ω
c(x, t)vnpϕ dx

= −
∫
Ω
λ1v

nϕ dx−
∫
∂Ω

∂ϕ

∂n

(∫
Ω
k(x, y, t)vnl dy

)
dS +

∫
Ω
c(x, t)vnpϕ dx

≥ −λ1

∫
Ω
vnϕ dx+ k1(t)

∫
Ω
vnlϕ dx+ c1(t)

∫
Ω
vnpϕ dx.

(3.41)

According to np > n > 1 and
∫
Ω u0ϕ dx > 1 and applying Jensen’s inequality to the

second and third terms on the right side of (3.41), we arrive at

(3.42) J ′(t) ≥
(
1

2
c1(t)− λ1

)
Jn +

1

2
c1(t)J

np ≥ 1

2
c1(t)J

np.
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Integrating the inequality (3.42) from 0 to t, one can derive the inequality

(3.43) J(t) ≥
[
J1−np(0)− np− 1

2

∫ t

0
c1(s) ds

]−1/(np−1)

.

Therefore, it follows from np > 1 and (3.38) that u(x, t) blows up in measure of J(t) at

finite time T ≤ T1, where T1 satisfies the following identity

J1−np(0) =
np− 1

2

∫ T1

0
c1(s) ds.

(ii) Noticing that max{p, l} > m, we suppose for the definiteness that max{p, l} = p >

1, since the proof of other cases is similar. Differentiating the function A(t) and using

Green’s formula and the equality
∫
∂Ω

∂ϕ
∂n dS = −λ1, we obtain

A′(t) = λ1e
λ1t

∫
Ω
vϕ(x) dx+ eλ1t

∫
Ω
vtϕ(x) dx

= λ1A(t) + eλ1t

∫
Ω

(
∆vn + c(x, t)vnp

)
ϕ(x) dx

= λ1A(t) + eλ1t

[
−λ1

∫
Ω
vnϕ dx−

∫
∂Ω

∂ϕ

∂n

(∫
Ω
k(x, y, t)vnl dy

)
dS

]
+ eλ1t

∫
Ω
c(x, t)vnpϕ dx

≥ λ1A(t) + eλ1t

∫
Ω

(
− λ1v

n + k1(t)v
nl + c1(t)v

np
)
ϕ dx.

(3.44)

Applying Jensen’s inequality to the second term on the right side of (3.41), we get

A′(t) ≥ λ1A(t)− λ1e
λ1t

(∫
Ω
vϕdx

)n

+ eλ1tc1(t)

(∫
Ω
vϕdx

)np

≥ λ1A(t)− λ1e
λ1t

(∫
Ω
vϕdx

)
+ eλ1tc1(t)

(∫
Ω
vϕdx

)np

= eλ1(1−np)tc1(t)A
np(t).

(3.45)

Integrating the inequality (3.45) from 0 to t, one can derive the inequality

A(t) ≥
[
A1−np(0)− (np− 1)

∫ t

0
c1(s)e

λ1(1−np)s ds

]−1/(np−1)

.

Therefore, it follows from np > 1 and (3.39) that u(x, t) blows up in measure of A(t) at

finite time T ≤ T2, where T2 satisfies the following identity

A1−np(0) = (np− 1)

∫ T2

0
c1(s)e

λ1(1−np)s ds.

The proof is completed.
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We proceed to analyze the blow-up phenomena for any nonnegative nontrivial initial

data. For the simplicity of our notation, we denote P (v, t) := −λ1v
n+k1(t)v

nl+ c1(t)v
np,

where v(x, t) = um(x, t), n = 1/m. Let η(t) be any nonnegative function such that

(3.46)

∫ ∞

0
η(t) dt = ∞.

Theorem 3.16. Assume that max{p, l} > m > 0, P (v, t) ≥ η(t)vnmax{p,l} for any v ≥ 0

and t ≥ 0. Then any solution of problem (1.1)–(1.3) blows up in finite time for arbitrary

nonnegative nontrivial initial data.

Proof. We employ the same arguments in Theorem 3.14 and discuss the blow-up of solution

in two different measures. We suppose for the definiteness that max{p, l} = p > m, then

we know np > 1, other cases can be discussed in the same way.

We first prove solution blows up in the measure of J(t). By (3.41) and Jensen’s

inequality, we obtain

J ′(t) ≥
∫
Ω
P (v, t)ϕ(x) dx ≥

∫
Ω
η(t)vnpϕ dx ≥ η(t)Jnp.

By using the arguments similar to (3.43), we obtain the desired result.

Next, we prove solution blows up in the measure of A(t). Combining (3.44) and

Jensen’s inequality, we have

A′(t) ≥ λ1A(t) + eλ1t

∫
Ω
P (v, t)ϕ(x) dx

≥ λ1A(t) + η(t)eλ1t

∫
Ω
vnpϕ(x) dx

≥ λ1A(t) + eλ1(1−np)tη(t)Anp(t).

(3.47)

By virtue of Bernoulli’s technique to ordinary differential inequality (3.47), we deduce

A(t) ≥ e−λ1t

[
A1−np(0)− (np− 1)

∫ t

0
η(s)eλ1(np−1)s ds

]−1/(np−1)

.

In view of np > 1 and (3.46), it can be easily seen that u(x, t) blows up in the measure of

A(t). The proof is completed.

Remark 3.17. Suppose that c1(t) ≥ ĉ1 and k1(t) ≥ k̂1, where constant ĉ1, k̂1 > 0. We can

get the similar conclusions as in Theorem 3.16 for max{p, l} > m,

(3.48) −λ1v
n + k̂1v

nl + ĉ1v
np > 0 for v > 0.

In fact, it is not hard to verify from (3.48) that P (v, t) ≥ ε̂vnp if np > 1 and P (v, t) ≥ ε̂vnl

if nl > 1 for some ε̂ > 0 and for all v ≥ 0 and t ≥ 0.
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Remark 3.18. Theorems 3.14 and 3.16 include the results in [18, Theorems 3.1 and 3.3]. In

addition, we introduce new auxiliary functions J(t) and A(t) to overcome the difficulties

caused by slow and fast diffusion situations, respectively.

Finally, we obtain more information for global existence and blow-up in a finite time

of solutions for (1.1)–(1.3) when either p = 1 or l = 1. The following statement deals with

the case that p = 1, l > m or l > 1 and needs two new assumptions that

c(x, t) ≥ M4 and

∫ ∞

0
k1(t)e

(nl−1)(M4−λ1)t dt = ∞,(3.49)

c(x, t) ≤ M5 < γ0 and

∫
Ω
k(x, y, t) dy ≤ A3e

−(l−1)K(γ0−λ1)t,(3.50)

where constants M4, γ0, A3,K > 0, M5 > λ1 and λ1 is defined as (3.11).

Theorem 3.19. Let p = 1.

(i) Assume that m > 0, l > m, hypothesis (3.49) holds, and initial data u0 satisfies∫
Ω um0 ϕ dx > 1, then the solution of problem (1.1)–(1.3) blows up in finite time.

(ii) Assume that m > 1, l ≤ 1 and hypothesis (3.50) holds, then the solution of prob-

lem (1.1)–(1.3) exists globally for small initial data.

Remark 3.20. Take the unit ball Ω =
{
x = (x1, x2, x3) ∈ R3 | |x|2 =

∑3
i=1 x

2
i < 1

}
,

c(x, t) = 2π2 1+t
2−x2 for (x, t) ∈ QT , k(x, y, t) = 1+y2

π2(1+x2)
e−(nl−1)π2t for (x, t) ∈ ST , y ∈

Ω, then c(x, t) ≥ 2π2, k1(t) = e−(nl−1)π2t

ϕs
, and the assumption (3.49) holds. Choose

c(x, t) = π2 2+x2

1+t for (x, t) ∈ QT , k(x, y, t) = e−K(l−1)ty3

sin(πx2/2)
for (x, t) ∈ ST , y ∈ Ω, then

c(x, t) ≤ 3π2 < γ0 = 1 + 3π2, the assumption (3.50) is satisfied.

Proof of Theorem 3.19. (i) Note that from (3.41) and (3.49), one can see

(3.51) J ′(t) ≥
∫
Ω

[
(M4 − λ1)v

n + k1(t)v
nl
]
ϕ dx.

Let (m− 1)(M4 − λ1) < 0. Making use of Jensen’s inequality to (3.51), we arrive at

J ′(t) ≥ (M4 − λ1)J
n + k1(t)J

nl,

where J(t) is defined in (3.40). Now changing the function J(t) = w(t)e(M4−λ1)t, a simple

calculation yields

J ′(t) = w′(t)e(M4−λ1)t + w(t)(M4 − λ1)e
(M4−λ1)t

= w′(t)e(M4−λ1)t + (M4 − λ1)J(t)

≥ (M4 − λ1)J
n + k1(t)J

nl.

(3.52)
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Then from (3.52) we derive the following inequality

w′(t) ≥ k1(t)J
nle−(M4−λ1)t = k1(t)e

(nl−1)(M4−λ1)twnl.

Applying the same arguments of (3.45), the conclusion holds.

(ii) Now we prove the result of the global existence of solutions. Let

(3.53) λ1 − (γ −M5) < λ̃1 < λ1.

As in the proof of Theorem 3.5(ii) we consider eigenfunction Φ(x) which satisfies (3.27)

and (3.28), where

(3.54) 0 < ε ≤ (A3a
l)−1/(l−1).

We construct a super-solution of problem (1.1)–(1.3) in the form

u(x, t) = Φ(x)eK(M5−λ̃1)t,

where K is a positive constant satisfies mKεm−1 > 1. After a simple calculation, one

obtain

(um)t −∆u− c(x, , t)u

= Km(M5 − λ̃1)Φ
memK(M5−λ̃1)t −∆Φ(x)eK(M5−λ̃1)t − c(x, t)u

≥ mK(M5 − λ̃1)ε
m−1u+

(
λ̃1 − c(x, t)

)
u ≥ (mKεm−1 − 1)(M5 − λ̃1)u ≥ 0.

On the other hand, for (x, t) ∈ ST , by (3.27)–(3.28), (3.50) and (3.53)–(3.54), one can

see that

u(x, t) ≥ eK(M5−λ̃1)tε ≥ A3e
K(M5−λ̃1)t(aε)l ≥ A3e

−(l−1)K(γ−λ1)t+lK(M5−λ̃1)t(aε)l

≥
∫
Ω
k(x, y, t)Φl(y)elK(M5−λ̃1)t dy =

∫
Ω
k(x, y, t)ul(y, t) dy.

Therefore, u is the super-solution of problem (1.1)–(1.3) for initial data u0(x) ≤ Φ(x).

The proof is completed.

The following Theorem 3.21 is the case when l = 1 and p > m. We consider the

blow-up phenomena of solution to problem (1.1)–(1.3) for any initial datum.

Theorem 3.21. Assume that m > 0, p > m, l = 1 and the weighted function k(x, y, t)

satisfies ∫
Ω
k(x, y, t) dy ≥ 1, ∀ (x, t) ∈ ST .

If one of the following conditions is satisfied:
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(i) the weighted function c(x, t) satisfies
∫∞
0 c1(t) dt = ∞;

(ii) the weighted function c(x, t) ≥ 1,

then the solution of problem (1.1)–(1.3) blow-up in finite time for any nonnegative non-

trivial initial data.

Proof. (i) Let t0 > 0 and u(x, t) be a solution of problem (1.1)–(1.3). By Lemma 2.2,

there exists ϵ > 0 such that

u(x, t0) > ϵ for any x ∈ Ω.

It is easy to verify that

H(t) =

[
ϵ−(p−m) − p−m

m

∫ t

t0

c1(τ)dτ

]−1/(p−m)

is the sub-solution of problem (1.1)–(1.3) in QT ∩ {t > t0} for any t0 < T < T ∗, where T ∗

satisfies the equality ∫ T ∗

t0

c1(τ)dτ =
m

(p−m)ϵp−m
.

Since H(t) blows up in finite time, we draw the conclusion by Proposition 2.3.

(ii) Let

u =
1

(b0 − c0t)k
, t ∈ [0, b0/c0),

where k = 1/(p−m), b0 = σ−1/k, c0 = p−m
m min

{
1, σp

}
, σ := minx∈Ω u0(x). It is easy to

check that

(um)t −∆u− c(x, t)up =
kmc0

(b0 − c0t)km+1
− c(x, t)

1

(b0 − c0t)kp
≤ 0,

u =
1

(b0 − c0t)k
≤

∫
Ω
k(x, y, t)udy,

u(x, 0) =
1

bk0
= min

x∈Ω
u0(x) ≤ u0(x).

Thus, u(x, t) is a sub-solution of problem (1.1)–(1.3) by Proposition 2.3, which implies the

solution of problem (1.1)–(1.3) will blow up before b0/c0.

Remark 3.22. It is worth noting that the divergence of the integral
∫∞
0 c1(t) dt plays an

important role in the conclusion of Theorem 3.21.

Remark 3.23. The conclusion in [18, Theorem 4.6] is included by Theorem 3.21(i). More-

over, we derive the new blow-up phenomenon in the case of c(x, t) ≥ 1.

For the case of linear boundary flux, we show that when
∫
Ω k(x, y, t) dy ≤ 1, the

solution still can blow-up under appropriate conditions.
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Theorem 3.24. Let 0 < m < 1, p = 1, l = 1. If 0 <
∫
Ω k(x, y, t) dy ≤ 1 for (x, t) ∈ ST ,

and the weighted function c(x, t) satisfies

(3.55) c1(t) ≥ 2λ1,

∫ ∞

0
c1(t) dt = ∞,

where λ1 is given in (3.11), then there exists blow-up solution of problem (1.1)–(1.3) for

any nonnegative nontrivial initial data.

Proof. Let t0 > 0 and u(x, t) be a solution of problem (1.1)–(1.3). By Lemma 2.2, there

exists ϵ > 0 such that

(3.56) u(x, t0) > 2
( ϵ

2

)1/m
for x ∈ Ω.

Let α(t) be a smooth function, which satisfies the following relations:

α(0) =
1

ϕ s

, α(t) > 0, α′(t) ≤ 0,

where ϕs is defined in (3.39). Set

k(x, y, t) =
1

α(t) + |Ω|
,

then obviously, ∫
Ω
k(x, y, t) dy < 1, ∀ (x, t) ∈ ST .

Now, we construct a sub-solution in such form

u(x, t) = M1/m(t)[α(t)ϕ(x) + 1],

where f(t) is the solution to the following initial value problem of ordinary differential

equation M ′(t) = 1
2c1(t)M

1/m(t), t > t0,

M(t0) =
ϵ
2 > 0.

Then M(t) can be written in an explicit form

M(t) =

[(
2

ϵ

)(1−m)/m

− 1−m

2m

∫ t

t0

c1(s) ds

]−m/(1−m)

,

and from (3.55) we derive M(t) blows up in finite time T3 with(
2

ϵ

)(1−m)/m

− 1−m

2m

∫ T3

t0

c1(s) ds = 0.
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By a straightforward calculation, one can see that

(u)mt −∆u− c(x, t)up

≤ M ′(t)[α(t)ϕ(x) + 1]m + λ1ϕsα(t)M
1/m(t)− c1(t)M

1/m(t)[α(t)ϕ(x) + 1]

≤ 2m
[
M ′(t) + (λ1 − c1(t))M

1/m(t)
]

≤ 2m
[
M ′(t) +

1

2
c1(t)M

1/m(t)

]
= 0.

On the other hand, for x ∈ ST , we have

u(x, t) = M1/m(t) =

∫
Ω

M1/m(t)α(t)ϕ(y)

α(t) + |Ω|
+

M1/m(t)

α(t) + |Ω|
dy

=

∫
Ω

1

α(t) + |Ω|
M1/m(t)[α(t)ϕ(y) + 1] dy =

∫
Ω
k(x, y, t)udy.

Moreover, using (3.56), we find that u(x, t0) < u(x, t0). Therefore, by Proposition 2.3, the

conclusion follows. This completes the proof.

4. Blow-up rate estimate

In order to show blow-up rate estimate of the blow-up solution, we need the following

assumptions on the initial data u0(x):

(H1) ∆u0(x) + c(x, 0)up0 > 0, x ∈ Ω;

(H2) there exists δ′ > 0 such that

∆u0(x) + c(x, 0)up0(x)− δ′up0(x) ≥ 0, x ∈ Ω.

Theorem 4.1. Assume that p > m, l = 1. If the weighted functions c(x, t) and k(x, y, t)

satisfy, respectively

ct(x, t) ≥ 0, c(x, t) ≤ M, ∀ (x, t) ∈ ST ,

kt(x, y, t) ≥ 0,

∫
Ω
k(x, y, t) dy ≤ 1, ∀ (x, t) ∈ ST , y ∈ ∂Ω,

and initial data satisfies conditions (H1)–(H2), and u(x, t) is the blow-up solution of prob-

lem (1.1)–(1.3) in finite time T , then

ĉ(T − t)−1/(p−m) ≤ u(x, t) ≤ Ĉ(T − t)−1/(p−m),

where ĉ =
(M(p−m)

m

)−1/(p−m)
, Ĉ = (δ(p−m))−1/(p−m), δ is a positive constant.

Suppose that the solution u(x, t) of problem (1.1)–(1.3) blows up in finite time T , and

let U(t) = maxx∈Ω u(x, t), then we have the following lemma.
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Lemma 4.2. Assume u0(x) satisfies conditions (H1)–(H2), then there exists a positive

constant ĉ =
(M(p−m)

m

)1/(m−p)
such that U(t) ≥ ĉ(T − t)−1/(p−m).

Proof. It is obvious that U(t) is Lipschitz continuous and differentiable almost everywhere.

By (1.1) and ∆U(t) ≤ 0, it is easy to know that

(Um)t ≤ MUp,

Integrating the above inequality over (t, T ), we obtain the left conclusion.

We are ready to give a proof of the main Theorem 4.1.

Proof of Theorem 4.1. Let J = ut − δup+1−m for some δ > 0. Since (um)t = mum−1ut,

we know that

ut =
1

m
u1−m(um)t,

and

utt =
1−m

m
u−mut(u

m)t +
1

m
u1−m(∆u+ c(x, t)up)t

=
1−m

m
u−mut(u

m)t +
1

m
u1−m(∆ut + ct(x, t)u

p + pc(x, t)up−1)ut.

A straightforward computation yields

Jt −
1

m
u1−m∆J

= (1−m)u−1u2t +
ct(x, t)

m
up+1−m +

pc(x, t)

m
up−mut − δ(p+ 1−m)up−mut

+ δ(p+ 1−m)(p−m)up−m−1|∇u|2 + δ

m
(p+ 1− 2m)up−m∆u

≥ (1−m)u−1u2t +
pc(x, t)

m
up−mut − δ(p+ 1−m)up−mut +

δ

m
(p+ 1− 2m)up−m∆u

≥ (1−m)u−1u2t +
pc(x, t)

m
up−mut −

1

m
δ(p+ 1−m)u2p+1−2mc(x, t).

For sufficient small δ > 0, we have

(4.1) Jt −
1

m
u1−m∆J ≥

[
(1−m)u−1ut +

(
pc(x, t)

m
+

c(x, t)

m
δ(p+ 1−m)

)
up−m

]
J.

On the other hand, for (x, t) ∈ ST , we obtain

J = ut − δup+1−m

=

∫
Ω
kt(x, y, t)udy +

∫
Ω
k(x, y, t)ut dy − δ

(∫
Ω
k(x, y, t)udy

)p+1−m

≥
∫
Ω
k(x, y, t)uJ dy + δ

[∫
Ω
k(x, y, t)up+1−m dy −

(∫
Ω
k(x, y, t)udy

)p+1−m
]
.



On a Weighted Porous Medium Equation 793

Noticing that 0 < F (x, t) =
∫
Ω k(x, y, t) dy ≤ 1 for (x, t) ∈ ST , p+1−m > 1, and applying

Jensen’s inequality to the last part in the above inequality, we can get∫
Ω
k(x, y, t)up+1−m dy −

(∫
Ω
k(x, y, t)udy

)p+1−m

≥ F (x, t)

(∫
Ω
k(x, y, t)u

dy

F (x, t)

)p+1−m

−
(∫

Ω
k(x, y, t)udy

)p+1−m

≥ 0.

Hence, we have

(4.2) J ≥
∫
Ω
k(x, y, t)uJ dy

for all (x, t) ∈ ST . Moreover,

Since u0(x) satisfies the conditions (H1)–(H2), and

J(x, t) = ut(x, t)− δup+1−m(x, t)

=
1

m
u1−m(x, t)

[
∆u(x, t) + c(x, t)up(x, t)

]
− δup+1−m(x, t)

=
1

m
u1−m(x, t)

[
∆u(x, t) + (c(x, t)− δ′)up(x, t)

]
,

where δ′ = δ/m, we can obtain J(x, 0) ≥ 0. It follows from (4.1)–(4.2) that J(x, t) ≥ 0 in

QT , that is,

ut ≥ δup+1−m.

Integrating it over (t, T ), we get

(4.3) u(x, t) ≤ Ĉ(T − t)−1/(p−m),

where Ĉ = (δ(p −m))1/(m−p). Combining (4.3) with Lemma 4.2, we obtain the blow-up

rate estimate. The proof is completed.

5. Conclusion

The model (1.1)–(1.3) considered in this paper is the Dirichlet initial boundary value

problem of quasilinear parabolic equation with weighted source term under the nonlinear

nonlocal boundary condition. To our knowledge, [18] has studied the linear diffusion

case (m = 1), but the research of slow and fast diffusion case with weighted source term

c(x, t)up has not been carried yet. Indeed, the multiple nonlinearities and two weighted

functions that appear in our model (1.1)–(1.3) pose greater difficulties and challenges.

On the other hand, the methods used in [18] (linear diffusion case) can not be directly

applied in our quasilinear model (1.1)–(1.3), which makes it necessary to improvement and

innovation. In addition, it is worth mentioning that the obtained main results are more
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detailed and complex, which involve the partial results of existing literature [18], and many

results in our theorems are new, the specific instructions can refer to the aforementioned

Remarks 3.3, 3.7, 3.13, 3.18 and 3.23.

In this paper, our blow-up criteria can be roughly summarized as follows: (i) the larger

reaction source or boundary flow or weighted functions or initial data and smaller diffusion

term benefit the occurrence of blow-up of solutions; (ii) the global existence and blow-up

results depend on the behavior of the coefficients c(x, t) and k(x, y, t) as t tends to infinity;

(iii) the size relationship between
∫
Ω k(x, y, t) dy and 1 is also an important criterion that

divides the global existence and blow-up of solutions.

Finally, we point out that the methods and techniques used in this article by improving

can be applied to a large class of diffusion model with weighted nonlocal source terms,

such as space integral source term c(x, t)up
∫
Ω uq dx, memory source term c(x, t)up

∫ t
0 u

q ds

or moving localized source term c(x, t)up(x0(t), t) etc.
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