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Multiplicity of Normalized Solutions for Schrödinger Equation with Mixed

Nonlinearity
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Abstract. In this paper, we explore the multiplicity of normalized solutions for

Schrödinger equation with mixed nonlinearities−∆u+ V (ϵx)u = λu+ µ|u|q−2u+ |u|p−2u in RN ,∫
RN |u|2 dx = c,

where µ > 0, c > 0, 2 < q < 2 + 4/N < p < 2N/(N − 2), N ≥ 3, ϵ > 0 is a parameter

and λ ∈ R is an unknown parameter that appears as a Lagrange multiplier. The po-

tential V is a bounded and continuous nonnegative function, satisfying some suitable

global conditions. By employing the minimization techniques and the truncated argu-

ment, we obtain that the number of normalized solutions is not less than the number

of global minimum points of V when the parameter ϵ is sufficiently small.

1. Introduction and main results

This paper concentrates on investigating the multiplicity of standing waves for nonlinear

Schrödinger equation with combined power nonlinearities

iϕt +∆ϕ+ V (x)ϕ+ µ|ϕ|q−2ϕ+ |ϕ|p−2ϕ = 0 in RN ,

where N ≥ 3, ϕ : R × RN → C, µ > 0, and 2 < q < p < 2N/(N − 2), while V is

a potential function. Over the last decade, significant interest has grown around the

nonlinear Schrödinger equations with combined nonlinearities, primarily ignited by the

influential work of Tao et al. [36]. Their pioneering research has triggered extensive ex-

ploration and studied in this domain. To identify stationary states, we adopt the ansatz

ϕ(t, x) = eiλtu(x), where λ ∈ R, and u : RN → C is a time-independent function. Through

straightforward calculation, we determine that u satisfies the following equation

(1.1) −∆u+ V (x)u = λu+ µ|u|q−2u+ |u|p−2u in RN .
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Currently, there exist two significantly distinct viewpoints regarding the frequency λ in

equation (1.1). The first perspective treats λ as a constant, a scenario known as the fixed

frequency problem. In this context, the variational methods can be applied to identify the

critical points of the energy functional corresponding to equation (1.1) or other topological

techniques. The fixed frequency problem has been the subject of extensive research over

recent decades, see [14,16,17,32,37].

The alternative perspective is to treat λ as an unknown variable in equation (1.1). In

this view, it’s reasonable to set the mass value in a way that λ can be interpreted as a

Lagrange multiplier. Then, equation (1.1) with mass constraint is called fixed mass prob-

lem. Currently, physicists express great interest in solutions that adhere to the normalized

condition: ∫
R3

|u|2 dx = c

for a priori given c, since the mass admits a clear physical meaning. From a physical

perspective, the normalized condition may signify the count of particles in each compo-

nent of Bose–Einstein condensates or the power supply in the nonlinear optics domain.

Furthermore, such solutions can provide deeper insights into dynamic attributes such as

orbital stability or instability, and they can describe attractive Bose–Einstein conden-

sates [15,19,41,42]. These solutions are typically referred to as prescribed mass solutions

or normalized solutions in mathematics. A natural approach to obtaining normalized solu-

tions for equation (1.1) is to identify the critical points of the associated energy functional

under the mass constraint. For the Schrödinger equation, we categorize cases into three

types: mass subcritical for 2 < q < 2 + 4/N , mass critical for q = 2 + 4/N , and mass

supercritical for 2 + 4/N < q < 2N/(N − 2). Naturally, the techniques for handling these

cases differ, and the results on the existence of normalized solutions for these cases can be

found in references such as [23,31,33–35] and related references.

For the more general Laplacian operator, we introduce some (p, q)-Laplacian equations

here. Baldelli and Yang [8] investigated the existence of normalized solutions to a class of

(2, q)-Laplacian equations

−∆u−∆qu = λu+ |u|p−2u in RN ,

under the constraint
∫
RN |u|2 dx = c, where ∆qu = div(|∇u|q−2∇u) is the q-Laplacian of

u. The authors tackled novel challenges presented by the quasi-linear term and considered

the different behaviors of the equation for q < 2 and q > 2. Subsequently, Baldelli et

al. [7] utilized variational methods and explored the existence of solutions for a wide range

of quasi-linear problems, including those involving the Born–Infeld operator. For fixed

frequency problem of (p, q)-Laplacian equations, we refer the readers to [4–6,18].
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In [13], Ding and Zhong established the existence of a solution (u, λ) ∈ H1(RN ) × R,
posed by

(1.2)

−∆u+ V (x)u+ λu = g(u) in RN , N ≥ 3,

u ≥ 0,
∫
RN |u|2 dx = c,

where V (x) ≤ 0 satisfies some regularity conditions and g satisfying suitable conditions.

Ikoma and Miyamoto [21] investigated the existence and nonexistence of normalized so-

lutions for equation (1.2). They also investigated distinctions between the cases when

V (x) = 0 and V (x) ̸≡ 0 using a scheme introduced by Shibata in [31]. Bartsch et al. [9]

studied the existence of a solution for g(u) = |u|p−2u, 2 + 4/N < p < 2N/(N − 2) and

assumed that V (x) ≥ 0, V (x) → 0 as |x| → ∞. Very recently, in [2], Alves and Ji studied

the existence a solution for g(u) = |u|p−2u, p ∈ (2, 2 + 4/N), the potential V satisfies

different types of potentials. When V (x) = 0 and g with mass critical growth close to 0,

Bieganowski and Mederski [11] proved the existence of a normalized ground state solution

for equation (1.2) by using the minimization method of functional on the linear combina-

tion of Nehari and Pohozaev constraints. Subsequently, Liu and Zhao [30] obtained some

similar results by weakening the assumptions on g.

Numerous authors have extensively investigated the existence of infinitely many nor-

malized solutions for the nonlinear Schrödinger equations with combined power non-

linearities. They employed genus theory and deformation arguments in their studies

[3, 10, 12, 22, 25–27]. Recently, without using of the genus theory, Alves [1] explored the

existence of multiple solutions for a problem in the form of−∆u = λu+ h(ϵx)f(u) in RN ,

u ≥ 0,
∫
RN |u|2 dx = c,

where c > 0, ϵ > 0, and λ ∈ R as unknown parameters. Here, h : RN → [0,+∞) is a

continuous function, and f exhibits mass subcritical growth. Alves demonstrated that, for

sufficiently small ϵ, the number of normalized solutions is at least equal to the number of

global maximum points of h. Yang et al. [40] extended the findings from [1] to fractional

Schrödinger equations. They also introduced new insights into the existence of normalized

ground states for non-autonomous elliptic equations. Li et al. [28] investigated the multi-

plicity of normalized solutions for the Schrödinger equation with mixed nonlinearities, as

expressed by −∆u = λu+ h(ϵx)|u|q−2u+ η|u|p−2u x ∈ RN ,∫
RN |u|2 dx = c,

where η > 0, q < 2 + 4/N < p ≤ 2N/(N − 2), and λ ∈ R as unknown parameters.
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The study established that a similar result to [1]. Additionally, the research included an

analysis of the orbital stability of the obtained solutions.

Building upon the work of [1, 28], this paper studies the multiplicity of normalized

solutions for Schrödinger equation with mixed nonlinearities

(1.3)

−∆u+ V (ϵx)u = λu+ µ|u|q−2u+ |u|p−2u in RN ,∫
RN |u|2 dx = c,

where µ > 0, c > 0, 2 < q < 2+ 4/N < p < 2N/(N − 2), N ≥ 3, ϵ > 0 is a parameter and

λ ∈ R is an unknown parameter that appears as a Lagrange multiplier. The potential V

is a bounded and nonnegative continuous function satisfying the following conditions:

(V1) V ∈ L∞(RN ), V (x) ≥ 0 for all x ∈ RN .

(V2) V∞ = lim|x|→+∞ V (x) > V0 := minx∈RN V (x) = 0.

(V3) V −1({0}) = {a1, a2, . . . , al} with a1 = 0 and aj ̸= as if j ̸= s.

Theorem 1.1. Assume that (V1)–(V3) hold. Then there exist ϵ̃, V∗ and c > 0, such

that problem (1.3) admits at least l couples (uj , λj) ∈ H1(RN ) × R of weak solutions for

∥V ∥∞ < V∗, ϵ ∈ (0, ϵ̃) and c ∈ (0, c] with
∫
RN |uj |2 dx = c, λj < 0 for j = 1, 2, . . . , l.

A solution u to the problem (1.3) corresponds to a critical point of the functional

Iϵ(u) :=
1

2

∫
RN

|∇u|2 dx+
1

2

∫
RN

V (ϵx)|u|2 dx− µ

q

∫
RN

|u|q dx− 1

p

∫
RN

|u|p dx,

restricted to the sphere

Sc :=

{
u ∈ H1(RN ) :

∫
RN

|u|2 dx = c

}
.

In this paper, our primary focus lies on the mass supercritical case, which arises due to the

presence of the term |u|p−2u where 2+4/N < p ≤ 2N/(N − 2). Consequently, we observe

that the functional Iϵ becomes unbounded from below on Sc for any c > 0. This is contrast

to the mass subcritical case, where the constrained functional Iϵ remains bounded from

below and exhibits coercive behavior. Furthermore, it should be noted that an arbitrary

Palais Smale sequence does not necessarily exhibit boundedness in the space H1(RN ). To

address the first difficulty, we utilize the truncation technique as demonstrated in [3, 28],

in which they studied a modified functional that is both bounded from below and coercive

(see Lemma 3.1). The second major challenge lies in establishing the compactness of the

Palais Smale sequence. This is thoroughly examined in Lemmas 4.4 and 4.5, where the

crucial step is to prove that the Lagrange multiplier λ is negative, which heavily depends

on the properties outlined in conditions (V1)–(V3).
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The remaining sections of this paper are structured as follows. Section 2 provides some

technical results. Section 3 investigates the characteristics of the truncated functional.

Section 4 will show the proof of Theorem 1.1.

Notations. In this paper, unless otherwise specified, the following notations are em-

ployed: ∥ ·∥ represents the standard norm in H1(RN ). ∥ ·∥r signifies the standard norm in

Lr(RN ) for r ∈ [1,+∞]. H−1(RN ) refers to the dual space of H1(RN ). Br(u) defines an

open ball centered at u with radius r > 0. Constants, such as C,C1, C2, . . ., denote pos-

itive values whose value is not relevant. on(1) represents a real sequence with on(1) → 0

as n → +∞. Symbols like := and =: are used for definitions. The symbols ⇀ and →
indicate weak and strong convergence, respectively, in the relevant function spaces.

2. Preliminary results

In this paper, we shall usually use the following Gagliardo–Nirenberg type result. The

proof can be found in [34,38].

Lemma 2.1. For t ∈ (2, 2N/(N−2)), then there exists a constant Ct :=
(

t
2∥Wt∥t−2

2

)1/t
> 0

such that

∥u∥t ≤ Ct∥∇u∥γt2 ∥u∥(1−γt)
2 for any u ∈ H1(RN ),

where γt := N(t−2)
2t and Wt is the unique positive solution of −∆W +

(
1
γt

− 1
)
W =

2
tγt

|W |t−2W .

Set α1 := qγq − 2, α2 := pγp − 2, where γt and Ct are given by Lemma 2.1. For any

c > 0, we consider the function

f(c, r) :=
1

2
− µ

q
Cq
q c

q(1−γq)

2 rα1 − 1

p
Cp
pc

p(1−γp)

2 rα2 , r > 0.

Moreover, if c ∈ (0,∞) is fixed, we regard that fc(r) := f(c, r). Note that tγt < 2 for

2 < t < 2+4/N , tγt = 2 for t = 2+4/N and tγt > 2 for 2+4/N < t ≤ 2N/(N −2). Since

2 < q < 2 + 4/N < p < 2N/(N − 2), similar to that of [24, Lemma 2.1], we know that

fc(r) → −∞ as r → 0+ and fc(r) → −∞ as r → ∞. There exists c∗ > 0, the function

fc(r) has a unique global maximum and the maximum value satisfies

(2.1) max
r>0

fc(r)


> 0 if c < c∗,

= 0 if c = c∗,

< 0 if c > c∗.

Moreover, for any c > 0, with the similar setting, we define that

g(c, r) :=
1

2
r2 − µ

q
Cq
q c

q(1−γq)

2 rqγq − 1

p
Cp
pc

p(1−γp)

2 rpγp , r > 0.
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Now, we investigate the properties of gc(r) := g(c, r) = r2fc(r). For c < c∗, limr→0+ gc(r) =

0− and limr→+∞ gc(r) = −∞. By (2.1), gc(r) attains its positive global maximum if c < c∗.

In the following sections, we always assume c ≤ c, where c < c∗. Then, there exist

(2.2) 0 < R0 < R1 < +∞ dependent of c such that gc(R0) = gc(R1) = 0.

Moreover, gc(r) < 0 in the intervals (0, R0), (R1,+∞) and gc(r) > 0 in the interval

(R0, R1). Setting τ : R+ → [0, 1] as being a non-increasing and C∞ function that satisfies

τ(x) =

1 if 0 ≤ x ≤ R0,

0 if x ≥ R1.

By Lemma 2.1 and (V1), for any u ∈ Sc, we have

Iϵ(u) ≥
1

2
∥∇u∥22 −

µ

q
∥u∥qq −

1

p
∥u∥pp

≥ 1

2
∥∇u∥22 −

µ

q
Cq
q c

q(1−γq)

2 ∥∇u∥qγq2 − 1

p
Cp
pc

p(1−γp)

2 ∥∇u∥pγp2

= g(c, ∥∇u∥2).

Similarly, we consider the truncated functional

Iϵ,T (u) :=
1

2
∥∇u∥22 +

1

2

∫
RN

V (ϵx)|u|2 dx− µ

q
∥u∥qq −

τ(∥∇u∥2)
p

∥u∥pp.

By Lemma 2.1 and (V1), we get

Iϵ,T (u) ≥
1

2
∥∇u∥22 −

µ

q
Cq
q c

q(1−γq)

2 ∥∇u∥qγq2 − τ(∥∇u∥2)
p

Cp
pc

p(1−γp)

2 ∥∇u∥pγp2

:= gT (c, ∥∇u∥2),

where gT (c, r) :=
1
2r

2 − µ
qC

q
q c

q(1−γq)

2 rqγq − τ(r)
p Cp

pc
p(1−γp)

2 rpγp , r > 0. It is easy to see that

gT,c(r) := gT (c, r) has the following propertiesgT,c(r) ≡ gc(r) for all r ∈ (0, R0],

gT,c(r) is positive and strictly increasing in (R0,+∞).

Correspondingly, for any ω ∈ [0, ∥V ∥∞], we denote by Iω, Iω,T : H1(RN ) → R the

following functionals

Iω(u) :=
1

2
∥∇u∥22 +

ω

2
∥u∥22 −

µ

q
∥u∥qq −

1

p
∥u∥pp

and

Iω,T (u) :=
1

2
∥∇u∥22 +

ω

2
∥u∥22 −

µ

q
∥u∥qq −

τ(∥∇u∥2)
p

∥u∥pp.
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3. The autonomous problem with truncated

In this section, we study the properties of the functional Iω,T restricted on Sc.

Lemma 3.1. The functional Iω,T is bounded from below in Sc and coercive.

Proof. Following the properties of gT,c, for any u ∈ Sc,

Iω,T (u) ≥ gT,c(∥∇u∥2) ≥ inf
r>0

gT,c(r) > −∞.

Moreover, Iω,T (u) → ∞ as ∥∇u∥2 → ∞.

Have this in mind, we can define that

(3.1) Υω,T,c := inf
u∈Sc

Iω,T (u).

The following lemma presents an important property of Υω,T,c.

Lemma 3.2. For c ≤ c, there exists V∗ > 0 such that Υω,T,c < 0 if ω < V∗.

Proof. Fixed u ∈ Sc, we set

s ⋆ u := e
Ns
2 u(esx) for all s ∈ R.

A direct computation gives

∥s ⋆ u∥22 = c, and ∥s ⋆ u∥tt = etγts∥u∥tt for 2 < t < 2N/(N − 2),

which lead to

Iω,T (s ⋆ u) ≤
e2s

2
∥∇u∥22 +

ωc

2
− µeqγqs

q
∥u∥qq.

Since q < 2 + 4/N , there exists s < 0 such that

e2s

2
∥∇u∥22 −

µeqγqs

q
∥u∥qq := As < 0.

Therefore, setting ω < V∗ :=
−As
c , it follows that

Iω,T (s ⋆ u) < As −
As

2
=

As

2
< 0,

which implies that Υω,T,c < 0.

Now we always assume that ω < V∗ holds. The proof of the following lemma is standard

and a similar proof can been seen in [28, Lemma 3.3].

Lemma 3.3. (i) Iω,T ∈ C1(H1(RN ),R).
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(ii) If Iω,T ≤ 0 then ∥∇u∥2 < R0, and Iω,T (v) = Iω(v) for all v in a small neighborhood

of u in H1(RN ).

We recall

gT (c, r) =
1

2
r2 − µ

q
Cq
q c

q(1−γq)

2 rqγq − τ(r)

p
Cp
pc

p(1−γp)

2 rpγp , r > 0,

and define fT (c, r) :=
1
2 − µ

qC
q
q c

q(1−γq)

2 rα1 − τ(r)
p Cp

pc
p(1−γp)

2 rα2 . We consider fT,c(r), which

is defined on (0,∞) by r 7→ fT (c, r).

Lemma 3.4. Let (c2, r2) ∈ (0,∞)× (0,∞) satisfy f(c2, r2) ≥ 0. Then for any c1 ∈ (0, c2],

we have that

fT (c1, r1) ≥ 0 if r1 ∈
[√

c1
c2
r2, r2

]
.

Proof. Since c → fT ( · , r) is a non-increasing function, we clearly have that

fT (c1, r2) ≥ fT (c2, r2) ≥ f(c2, r2) ≥ 0.

Through direct calculations, we can get that

fT

(
c1,

√
c1
c2
r2

)
≥ f

(
c1,

√
c1
c2
r2

)
=

1

2
− µ

q
Cq
q

(
c1
c2

)α3

c
q(1−γq)

2
2 rα1

2 − 1

p
Cp
p

(
c1
c2

)α4

c
p(1−γp)

2
2 rα2

2

≥ 1

2
− µ

q
Cq
q c

q(1−γq)

2
2 rα1

2 − 1

p
Cp
pc

p(1−γp)

2
2 rα2

2 = f(c2, r2) ≥ 0,

where α3 :=
q(1−γq)+α1

2 , α4 :=
p(1−γp)+α2

2 > 0. Then, this means that

fT

(
c1,

√
c1
c2
r2

)
≥ 0 and fT (c1, r2) ≥ 0.

By the definition of τ , we know that fT (c1, r1) ≥ 0 for r1 ∈
[√

c1
c2
r2, r2

]
. The proof is

completed.

Lemma 3.5. For any u ∈ Sc, we have that

Iω,T (u) ≥ ∥∇u∥22fT (c, ∥∇u∥2).

Proof. Applying the Gagliardo–Nirenberg inequality, we obtain that, for any u ∈ Sc,

Iω,T (u) ≥
1

2
∥∇u∥22 −

µ

q
Cq
q c

q(1−γq)

2 ∥∇u∥qγq2 − τ(∥∇u∥2)
p

Cp
pc

p(1−γp)

2 ∥∇u∥pγp2

= ∥∇u∥22
[
1

2
− µ

q
Cq
q c

q(1−γq)

2 ∥∇u∥α1
2 − τ(∥∇u∥2)

p
Cp
pc

p(1−γp)

2 ∥∇u∥α2
2

]
= ∥∇u∥22fT (c, ∥∇u∥2).

The lemma is proved.
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The proof process of the following lemma is standard and for detailed information,

see [20, Lemma 2.3], we omit the proof. We recall the definition of Υω,T,c in (3.1).

Lemma 3.6. Υω,T,c is continuous with regard to c ∈ (0, c].

For any c < c∗, by setting of (2.2) and g(c, r) = r2f(c, r), it follows that f(c,R0) = 0.

Moreover, c → f( · , r) is a non-increasing function, it follows that f(c,R0) ≥ 0 for all

c ∈ (0, c].

Lemma 3.7. c1
c2
Υω,T,c2 < Υω,T,c1 < 0 where 0 < c1 < c2 ≤ c.

Proof. Set ξ =
√
c2/c1 then ξ > 1. Let {un} ⊂ Sc1 be a minimizing sequence with respect

to Υω,T,c1 , that is, Iω,T (un) → Υω,T,c1 < 0 as n → +∞ by Lemma 3.2. Consequently,

there exists n0 such that

(3.2) Iω,T (un) < 0 for n ≥ n0.

In view of Lemma 3.4 and f(c2, R0) ≥ 0, fT (c1, r) ≥ 0 for any r ∈
[√

c1
c2
R0, R0

]
. Hence,

we can deduce from Lemma 3.5 and (3.2) that

(3.3) ∥∇un∥2 <
√

c1
c2
R0 for n ≥ n0.

Setting vn = ξun, then vn ∈ Sc2 . By (3.3), one has ∥∇vn∥2 = ξ∥∇un∥2 < R0. Therefore,

τ(∥∇un∥2) = τ(∥∇vn∥2) = 1. Through direct calculations, we find that

Υω,T,c2 ≤ Iω,T (vn)

= ξ2Iω,T (un) +
(ξ2 − ξq)

q
µ∥un∥qq +

τ(∥∇un∥2)ξ2 − τ(∥∇vn∥2)ξp

p
∥un∥pp

= ξ2Iω,T (un) +
(ξ2 − ξq)

q
µ∥un∥qq +

(ξ2 − ξp)

p
∥un∥pp.

For any t ∈ (2, 2N/(N−2)), there exist positive constants C and n0 such that ∥un∥tt ≥
C for all n ≥ n0. If not, there exists t1 ∈ (2, 2N/(N − 2)) such that ∥un∥t1t1 → 0 as

n → +∞, then by the Vanishing Lemma [29, Lemma I.1], ∥un∥pp → 0 and ∥un∥qq → 0 as

n → +∞. Now, recalling that

0 > Υω,T,c1 = Iω,T (un) ≥ −µ

q
∥un∥qq −

τ(∥∇u∥2)
p

∥un∥pp → 0 as n → ∞,

which is a contradiction and the result holds. We obtain that for n ∈ N large

Υω,T,c2 ≤ ξ2Iω,T (un) +
(ξ2 − ξq)C

q
.

By Lemma 3.6 and let n → +∞, it follows that Υω,T,c2 < ξ2Υω,T,c1 , which implies that

c1
c2
Υω,T,c2 < Υω,T,c1 .

This completes the proof of this lemma.
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Lemma 3.8. Let {un} ⊂ Sc be a minimizing sequence with respect to Υω,T,c. Then, for

some subsequence, either

(i) {un} is strongly convergent, or

(ii) There exists {yn} ⊂ RN with |yn| → ∞ such that the sequence un(x) = un(x + yn)

is strongly convergent to a function u ∈ Sc with Iω,T (u) = Υω,T,c.

Proof. Observing that {un} is bounded in H1(RN ) by Lemmas 3.1 and 3.2. There exists

u ∈ H1(RN ) such that un ⇀ u in H1(RN ) for some subsequence. Now, let’s explore the

following three possibilities.

Case 1: If u ̸≡ 0 and ∥u∥22 = b < c. It follows from the Fatou Lemma and the

Brézis–Lieb Lemma [39, Lemma 3.5] that ∥∇u∥22 ≤ lim infn→+∞ ∥∇un∥22 and

∥un∥22 = ∥vn∥22 + ∥u∥22 + on(1), ∥∇un∥22 = ∥∇u∥22 + ∥∇vn∥22 + on(1).

If we set vn := un − u, dn = ∥vn∥22, one has that ∥vn∥22 → d, where c = d+ b. Noting that

dn ∈ (0, c) for n large enough, and by the fact that τ is continuous, non-increasing and

Lemma 3.7, we obtain that

Υω,T,c + on(1) = Iω,T (un)

=
1

2
∥∇vn∥22 +

1

2
ω∥vn∥22 −

µ

q
∥vn∥qq −

τ(∥∇un∥2)
p

∥vn∥pp

+
1

2
∥∇u∥22 +

1

2
ω∥u∥22 −

µ

q
∥u∥qq −

τ(∥∇un∥2)
p

∥u∥pp + on(1)

≥ Iω,T (vn) + Iω,T (u) + on(1)

≥ Υω,T,dn +Υω,T,b + on(1)

≥ dn
c
Υω,T,c +Υω,T,b + on(1).

By Lemma 3.7, letting n → +∞, we obtain that

Υω,T,c ≥
d

c
Υω,T,c +Υω,T,b >

d

c
Υω,T,c +

b

c
Υω,T,c = Υω,T,c,

which is a contradiction.

Case 2: If ∥u∥22 = c, then un → u in L2(RN ). Moreover, un → u in Lt(RN ) for all

t ∈ (2, 2N/(N − 2)). Then

Υω,T,c = lim
n→+∞

Iω,T (un)

= lim
n→+∞

(
1

2
∥∇un∥22 +

1

2
ω∥un∥22 −

µ

q
∥un∥qq −

1

p
τ(∥∇un∥2)∥un∥pp

)
≥ Iω,T (u).
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As u ∈ Sc, we conclude that Iω,T (u) = Υω,T,c, then un → u in H1(RN ), which implies

that (i) occurs.

Case 3: If u ≡ 0, then un ⇀ 0 in H1(RN ), we assert the existence of R′, k1 > 0, and

a sequence {yn} ⊂ RN such that for all n,

(3.4)

∫
BR′ (yn)

|un|2 dx ≥ k1.

Otherwise, it would imply that un → 0 in Lt(RN ) for all t ∈ (2, 2N/(N − 2)) by the

Vanishing Lemma. As a result, we have Iω,T (un) ≥ 1
2∥∇un∥22 + on(1). However, this

contradicts the fact that Iω,T (un) → Υω,T,c < 0. Hence, in all cases, (3.4) holds and

|yn| → +∞ obviously. Consequently, by defining un(x) = un(x + yn), it is evident that

{un} ⊂ Sc and it is also a minimizing sequence with respect to Υω,T,c. Furthermore, there

exists u ∈ H1(RN )\{0} such that un ⇀ u in H1(RN ). Following the approach used in the

first two proof progress, we conclude that un → u in H1(RN ), confirming the occurrence

of (ii) and thereby establishing the lemma.

Lemma 3.9. Υω,T,c is attained.

Proof. By Lemmas 3.1 and 3.8, there exists a bounded minimizing sequence {un} ⊂ Sc

and un → u in H1(RN ) with respect to Υω,T,c = Iω,T (u) < 0. Then {un} is also a

minimizing sequence for Iω(u) and Υω,T,c(u) = Iω(u) by Lemma 3.3.

A direct result of Lemma 3.9 is the subsequent corollary.

Corollary 3.10. If ω1 < ω2 < V∗. Then Υω1,T,c < Υω2,T,c.

Proof. Let u ∈ Sc satisfy Iω2,T (u) = Υω2,T,c. Then, Υω1,T,c ≤ Iω1,T (u) < Iω2,T (u) =

Υω2,T,c.

4. Proof of Theorem 1.1

In this section, some properties of the following functional Iϵ,T : H1(RN ) → R are given:

Iϵ,T (u) =
1

2
∥∇u∥22 +

1

2

∫
RN

V (ϵx)|u|2 dx− µ

q
∥u∥qq −

τ(∥∇u∥2)
p

∥u∥pp.

More precisely, we study the following the minimum value:

Υϵ,T,c := inf
u∈Sc

Iϵ,T (u),

where Υϵ,T,c is well defined by the properties of gT,c(r). We shall denote by I0,T , I∞,T :

H1(RN ) → R the following functionals:

I0,T (u) :=
1

2
∥∇u∥22 −

µ

q
∥u∥qq −

τ(∥∇u∥2)
p

∥u∥pp
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and

I∞,T (u) :=
1

2
∥∇u∥22 +

1

2

∫
RN

V∞|u|2 dx− µ

q
∥u∥qq −

τ(∥∇u∥2)
p

∥u∥pp.

By (V1)–(V3), V∞ < V∗, and Lemma 3.9 in Section 3, the minimum value Υ0,T,c and

Υ∞,T,c defined by

Υ0,T,c := inf
u∈Sc

I0,T (u), Υ∞,T,c := inf
u∈Sc

I∞,T (u),

respectively, are attained. There exist u0, u∞ ∈ Sc such that I0,T (u0) = Υ0,T,c and

I∞,T (u∞) = Υ∞,T,c. Furthermore, by Corollary 3.10 and V0 < V∞, we know Υ0,T,c <

Υ∞,T,c < 0.

Lemma 4.1. lim supϵ→0+ Υϵ,T,c ≤ Υ0,T,c.

Proof. By Lemma 3.9, let u0 ∈ Sc with I0,T (u0) = Υ0,T,c. Then

Υϵ,T,c ≤ Iϵ,T (u0) =
1

2
∥∇u0∥22 +

1

2

∫
RN

V (ϵx)|u0|2 dx− µ

q
∥u0∥qq −

τ(∥∇u0∥2)
p

∥u0∥pp.

Letting ϵ → 0+, we obtain, by the Lebesgue dominated convergence theorem,

lim sup
ϵ→0+

Υϵ,T,c ≤ lim sup
ϵ→0+

Iϵ,T (u0) = I0,T (u0) = Υ0,T,c,

which completes the proof of this lemma.

From Lemma 4.1 and Υ0,T,c < Υ∞,T,c, there exists ϵ0 > 0 such that

Υϵ,T,c < Υ∞,T,c for all ϵ ∈ (0, ϵ0).

Similar to the proof of Lemma 3.3, we have the following result, whose proof is omitted.

Lemma 4.2. (i) Iϵ,T ∈ C1(H1(RN ),R).

(ii) If Iϵ,T (u) ≤ 0 then ∥∇u∥2 < R0 and Iϵ,T (v) = Iϵ(v) for all v in a small neighborhood

of u in H1(RN ).

Let {un} ⊂ Sc be a minimizing sequence of Iϵ,T (un) with respect to any m < Υ∞,T,c <

0. Similar to the proofs of Lemmas 3.1 and 3.2, {∥∇un∥2} is bounded. Hence, there exists

u ∈ H1(RN ) and a subsequence of {un}, still denoted by itself, such that

un ⇀ uε in H1(RN ) and un(x) → uε(x) a.e. in RN .

Lemma 4.3. The weak limit uε of {un} is nontrivial.
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Proof. Assume by contradiction that uε = 0. Then

m+ on(1) = Iϵ,T (un) = I∞,T (un) +
1

2

∫
RN

(V (ϵx)− V∞)|un|2 dx.

By (V1)–(V3), for any given ζ > 0, there exists R > 0 such that

V (x) ≥ V∞ − ζ for all |x| ≥ R.

Hence,

m+ on(1) = Iϵ,T (un) ≥ I∞,T (un) +
1

2

∫
BR/ϵ(0)

(V (ϵx)− V∞)|un|2 dx− ζ

2

∫
Bc

R/ϵ
(0)

|un|2 dx.

Recalling that {un} is bounded in H1(RN ) and un → 0 in L2(BR/ϵ(0)), it follows that

(4.1) m+ on(1) ≥ I∞,T (un)− ζC ≥ Υ∞,T,c − ζC.

Since ζ > 0 is arbitrary, we infer that m ≥ Υ∞,T,c, which is a contradiction. Thus, the

weak limit u of {un} is nontrivial.

Lemma 4.4. Let {un} be a (PS)m sequence of Iϵ,T restricted to Sc with m < Υ∞,T,c

and uϵ is the weak limit of {un} in H1(RN ). If un ↛ uϵ in H1(RN ), there exists β > 0

independent of ϵ such that

lim inf
n→+∞

∥un − uϵ∥2 ≥ β.

Proof. By Lemma 4.2 and m < Υ∞,T,c < 0, this implies that ∥∇un∥2 < R0 for n suffi-

ciently large. Consequently, the sequence {un} also qualifies as a (PS)m sequence of Iϵ

constrained to Sc, that is,

Iϵ(un) → m and
∥∥Iϵ|′Sc

(un)
∥∥
H−1(RN )

→ 0 as n → +∞.

Introducing the functional Ψ: H1(RN ) → R defined as Ψ(u) = 1
2

∫
RN |un|2 dx, we observe

that Sc = Ψ−1(c/2). By referencing Willem [39, Proposition 5.12], we deduce the existence

of a sequence {λn} ⊂ R such that

(4.2)
∥∥I ′ϵ(un)− λnΨ

′(un)
∥∥
H−1(RN )

→ 0 as n → +∞.

Since {un} is bounded in H1(RN ), then un ⇀ uϵ and we let vn := un − uϵ. It follows

that {λn} is also bounded, for some subsequence, there exists λϵ such that λn → λϵ as

n → +∞. The combination of this with (4.2) results in

(4.3) I ′ϵ(uϵ)−λϵΨ
′(uϵ) = 0 in H−1(RN ),

∥∥I ′ϵ(vn)−λϵΨ
′(vn)

∥∥
H−1(RN )

→ 0 as n → +∞.
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Through straightforward calculations, we get that

0 > Υ∞,T,c > lim
n→+∞

Jϵ(un) = lim
n→+∞

(
Iϵ(un)−

1

2
I ′ϵ(un)un +

λn

2
∥un∥22 + on(1)

)
≥ 1

2
λϵc,

implying that

(4.4) λϵ ≤
2Υ∞,T,c

c
< 0 for all ϵ ∈ (0, ϵ0).

By (4.3), the above analysis yields that

∥∇vn∥22 +
∫
RN

V (ϵx)|vn|2 dx− λϵ∥vn∥22 = µ∥vn∥qq + ∥vn∥pp + on(1),

which combined with (4.4) give that

(4.5) ∥∇vn∥22 +
∫
RN

V (ϵx)|vn|2 dx−
2Υ∞,T,c

c
∥vn∥22 ≤ µ∥vn∥qq + ∥vn∥pp + on(1).

By (4.5) and the Sobolev inequality, we deduce that

C1∥vn∥2 ≤ µ∥vn∥qq + ∥vn∥pp + on(1) ≤ µC2∥vn∥q + C3∥vn∥p + on(1).

Since vn ↛ 0 in H1(RN ), there exists C4 independent of ϵ such that ∥vn∥ ≥ C4. Moreover,

there holds,

(4.6) lim inf
n→+∞

(µ∥vn∥q + ∥vn∥p) ≥ C5

for some C5 > 0. By (4.6) and the Gagliardo–Nirenberg inequality, there exists β > 0

independent of ϵ ∈ (0, ϵ0) such that

lim inf
n→+∞

∥vn∥2 ≥ β.

The proof is complete.

From now on, we fix 0 < ρ0 < min
{
Υ∞,T,c −Υ0,T,c,

β2

c (Υ∞,T,c −Υ0,T,c)
}
.

Lemma 4.5. Iϵ,T satisfies the (PS)m condition restricted to Sc if m < Υ0,T,c + ρ0.

Proof. Let {un} ⊂ Sc be a (PS)m sequence of Iϵ,T restricted to Sc. Noting that m <

Υ∞,T,c < 0, by Lemma 4.2, {un} is bounded in H1(RN ). Let un ⇀ uϵ in H1(RN )

and uϵ ̸≡ 0, see Lemma 4.3. A straightforward computation gives that vn := un − uϵ is a

(PS)m′ sequence of Iϵ,T restricted to Sc and m′ < m. If vn ↛ 0 in H1(RN ), by Lemma 4.4,

lim infn→+∞ ∥vn∥2 ≥ β.

Setting b = ∥uϵ∥22, dn = ∥vn∥22 and supposing that ∥vn∥22 → d, then we get d ≥ β2 > 0

and c = b+ d. By the fact that vn ⇀ 0 with a similar proof of (4.1), we can obtain that

Iϵ,T (vn) ≥ Υ∞,T,dn + o(1). From dn ∈ (0, c) for n large enough, we have

(4.7) m+ on(1) = Iϵ,T (un) ≥ Iϵ,T (vn) + Iϵ,T (uϵ) ≥ Υ∞,T,dn +Υ0,T,b + on(1).
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From the proof of Lemma 3.7 and (4.7), it follows that

Υ0,T,c + ρ0 ≥ m+ on(1) ≥
dn
c
Υ∞,T,c +

b

c
Υ0,T,c.

Letting n → +∞, we obtain that

ρ0 ≥
d

c
(Υ∞,T,c −Υ0,T,c) ≥

β2

c
(Υ∞,T,c −Υ0,T,c),

which contradicts ρ0 <
β2

c (Υ∞,T,c−Υ0,T,c). Thus, we must have un → uϵ in H1(RN ).

4.1. Multiplicity result

In this section, we manage to prove our multiplicity result and borrow some arguments

from [1]. In what follows, we fix ρ̃, r̃ > 0 satisfying

� Bρ̃(ai) ∩Bρ̃(aj) = ∅, for i, j and ai, aj are defined in (V3).

�

⋃l
i=1Bρ̃(ai) ⊂ Br̃(0).

� Kρ̃/2 =
⋃l

i=1Bρ̃/2(ai).

We set the function Qϵ : H
1(RN ) \ {0} → RN by

Qϵ(u) :=

∫
RN χ(ϵx)|u|2 dx∫

RN |u|2 dx
,

where χ : RN → RN is given by

χ(x) :=

x if |x| ≤ r̃,

r̃ x
|x| if |x| > r̃.

The following two lemmas will be instrumental in generating (PS) sequences for Iϵ,T

within the constraints of Sc.

Lemma 4.6. There exist ϵ1 ∈ (0, ϵ0] and ρ1 ∈ (0, ρ0] such that if ϵ ∈ (0, ϵ1), u ∈ Sc and

Iϵ,T (u) ≤ Υ0,T,c + ρ1, then

Qϵ(u) ∈ Kρ̃/2.

Proof. If not, there exist sequences ρn → 0, ϵn → 0 and {un} ⊂ Sc such that

(4.8) Iϵn,T (un) ≤ Υ0,T,c + ρn, Qϵn(un) /∈ Kρ̃/2.

Consequently, we have

Υ0,T,c ≤ I0,T (un) ≤ Iϵn,T (un) ≤ Υ0,T,c + ρn,

thus, {un} ⊂ Sc and I0,T (un) → Υ0,T,c. According to Lemma 3.8, we have two cases:
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(i) un → u in H1(RN ) for some u ∈ Sc, or

(ii) There exists {yn} ⊂ RN with |yn| → +∞ such that vn(x) = un(x+ yn) converges to

some v ∈ Sc in H1(RN ).

Analysis of (i): Applying the Lebesgue dominated convergence theorem, it follows that

Qϵn(un) =

∫
RN χ(ϵnx)|un|2 dx∫

RN |un|2 dx
→

∫
RN χ(0)|u|2 dx∫

RN |u|2 dx
= 0 ∈ Kρ̃/2,

which contradicts to Qϵn(un) /∈ Kρ̃/2.

Analysis of (ii): Now, we will examine two cases, (I) |ϵnyn| → +∞ and (II) ϵnyn → y

for some y ∈ RN .

If (I) holds, as the limit vn → v in H1(RN ), we obtain

Iϵn,T (un) =
1

2
∥∇vn∥22 +

1

2

∫
RN

V (ϵnx+ ϵnyn)|vn|2 dx− µ

q
∥vn∥qq −

τ(∥∇vn∥2)
p

∥vn∥pp

→ I∞,T (v).

(4.9)

Since Iϵn,T (un) ≤ Υ0,T,c + ρn, we conclude that Υ∞,T,c ≤ I∞,T (v) ≤ Υ0,T,c, which contra-

dicts Υ∞,T,c > Υ0,T,c.

If (II) holds, similar to (4.9), Iϵn,T (un) → Iy,T (v), which combined with Iϵn,T (un) ≤
Υ0,T,c + ρn imply that Υy,T,c ≤ Iy,T (v) ≤ Υ0,T,c. According to Corollary 3.10, it follows

that V (y) = V0 and y = ai for some i = 1, 2, . . . , l. Consequently,

Qϵn(un) =

∫
RN χ(ϵnx+ ϵnyn)|vn|2 dx∫

RN |vn|2 dx
→

∫
RN χ(y)|v|2 dx∫

RN |v|2 dx
= ai ∈ Kρ̃/2,

which implies that Qϵn(un) ∈ Kρ̃/2 for n large enough. This contradicts to (4.8) and

completes the proof.

From now on, we will use the following notations:

� θiϵ :=
{
u ∈ Sc : |Qϵ(u)− ai| < ρ̃

}
, ∂θiϵ :=

{
u ∈ Sc : |Qϵ(u)− ai| = ρ̃

}
.

� βi
ϵ := infu∈θiϵ Iϵ,T (u), β̃

i
ϵ := infu∈∂θiϵ Iϵ,T (u).

Lemma 4.7. There exists ϵ2 ∈ (0, ϵ1] such that

(4.10) βi
ϵ < Υ0,T,c +

ρ1
2

and βi
ϵ < β̃i

ϵ for any ϵ ∈ (0, ϵ2).

Proof. In what follows, let u ∈ Sc satisfy I0,T (u) = Υ0,T,c. For 1 ≤ i ≤ l, we define the

function ûiϵ : RN → R as

ûiϵ(·) := u
(
· − ai

ϵ

)
.
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Therefore, ûiϵ ∈ Sc for all ϵ > 0 and 1 ≤ i ≤ l. Through a straightforward change of

variable, it can be shown that

Iϵ,T (û
i
ϵ) =

1

2
∥∇u∥22 +

1

2

∫
RN

V (ϵx+ ai)|u|2 dx− µ

q
∥u∥qq −

τ(∥∇u∥2)
p

∥u∥pp,

and

(4.11) lim
ϵ→0+

Iϵ,T (û
i
ϵ) = Iai,T (u) = I0,T (u) = Υ0,T,c.

Note that, as ϵ → 0+, Qϵ(û
i
ϵ) → ai, this implies that ûiϵ ∈ θiϵ when ϵ is sufficiently small.

According to (4.11), there exists ϵ2 ∈ (0, ϵ1] such that

βi
ϵ < Υ0,T,c +

ρ1
2

for any ϵ ∈ (0, ϵ2),

indicating the first inequality in (4.10).

For any v ∈ ∂θiϵ, we can conclude that Qϵ(v) /∈ Kρ̃/2. Thus, by Lemma 4.6, one has

Iϵ,T (v) > Υ0,T,c + ρ1 for all v ∈ ∂θiϵ and ϵ ∈ (0, ϵ2).

This implies that β̃i
ϵ = infv∈∂θiϵ Iϵ,T (v) ≥ Υ0,T,c + ρ1 for all ϵ ∈ (0, ϵ2). Consequently,

βi
ϵ < β̃i

ϵ for all ϵ ∈ (0, ϵ2).

This completes the proof.

Proof of Theorem 1.1. Let ϵ ∈ (0, ϵ̃) where ϵ̃ := ϵ2 as determined in Lemma 4.7. For

each i ∈ {1, 2, . . . , l}, we can apply the Ekeland’s variational principle to find a sequence

{uin} ⊂ θiϵ satisfying

Iϵ,T (u
i
n) → βi

ϵ and
∥∥Iϵ,T |′Sc

(uin)
∥∥
H−1(RN )

→ 0 as n → +∞.

In other words, {uin} is a (PS)βi
ϵ
sequence for Iϵ,T when restricted on Sc. Because βi

ϵ <

Υ0,T,c+ρ0, Lemma 4.5 guarantees the existence of ui with uin → ui in H1(RN ). Therefore,

ui ∈ θiϵ, Iϵ,T (u
i) = βi

ϵ and Iϵ,T |′Sc
(ui) = 0.

For

Qϵ(u
i) ∈ Bρ̃(ai), Qϵ(u

j) ∈ Bρ̃(aj) and Bρ̃(ai) ∩Bρ̃(aj) = ∅ for i ̸= j,

then ui ̸≡ uj for i ̸= j, where 1 ≤ i, j ≤ l. This argument shows that Iϵ,T possesses at

least l nontrivial critical points for any ϵ ∈ (0, ϵ̃).

Using Lemma 4.2 and the fact that Iϵ,T (u
i) < 0 for any i = 1, 2, . . . , l, it becomes

evident that ui are in fact the critical points of Iϵ restricted on Sc with Iϵ(u
i) = βi

ϵ < 0

and I ′ϵ(u
i)ui = λic. Then, we deduce that

1

2
λic = Iϵ(u

i) +

(
1

q
− 1

2

)
µ∥ui∥qq +

(
1

p
− 1

2

)
∥ui∥pp.

This implies that λi < 0 for i = 1, 2, . . . , l. The proof of Theorem 1.1 is completed.
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