
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 28, No. 2, pp. 359–376, April 2024

DOI: 10.11650/tjm/240102

Conditions for Eliminating Cusps in One-phase Free-boundary Problems

with Degeneracy

Sean McCurdy

Abstract. In this paper, we study the geometry of the free-boundary arising from

local minimizers of a degenerate version of the Alt–Caffarelli functional. Specifically,

we consider local minimizers of the functional JQ(u,Ω) :=
∫
Ω
|∇u|2 +Q(x)2χ{u>0} dx

where Q(x) = dist(x,Γ)γ for γ > 0 and Γ a submanifold of dimension 0 ≤ k ≤ n− 1.

Previously, it was shown that on Γ, the free boundary ∂{u > 0} may be decomposed

into a rectifiable set S, which satisfies effective estimates, and a cusp set Σ [11]. In

this note, we prove that under mild assumptions, in the case n = 2 and Γ a line, the

cusp set Σ does not exist. Building upon the work of Arama and Leoni [3], our results

apply to the physical case of a variational formulation of the Stokes’ wave.

1. Introduction

In this paper, we provide very general sufficient conditions for eliminating cusps from

the free boundary ∂{u > 0} of local minimizers u for a class of degenerate Alt–Caffarelli

functionals

(1.1) JQ(u,Ω) :=

∫
Ω
|∇u|2 +Q2(x)χ{u>0} dx,

so-called because we allow Q = 0. These assumptions are satisfied by variational models of

the Stokes wave studied in [3,9,10]. While [3,9,10] eliminate cusps by strong assumptions

of symmetry, this paper proves sufficient conditions for the non-existence of cusps without

any assumption of symmetry.

A function u is a minimizer of (1.1) in the class

Ku0,Ω :=
{
u ∈ W 1,2(Ω) : u− u0 ∈ W 1,2

0 (Ω)
}

for a u0 ∈ W 1,2(Ω) satisfying u0 ≥ 0 if for every function v ∈ Ku0,Ω, JQ(u,Ω) ≤ JQ(v,Ω).

For 0 < ϵ0, a function u is called an ϵ0-local minimizer of JQ( · ,Ω) if JQ(u,Br(x)) ≤
JQ(v,Br(x)) for every v ∈ Ku,Ω satisfying

∥∇(u− v)∥2L2(Ω) + ∥χ{u>0} − χ{v>0}∥L1(Ω) < ϵ0.
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When we do not need to quantify things, we shall say that u is a local minimizer if it is

an ϵ0-local minimizer for some 0 < ϵ0.

Since Alt and Caffarelli’s watershed paper [1], assumptions on the function Q play a

crucial role in the study of the geometry of the free boundary ∂{u > 0} ∩ Ω for a local

minimizers u of (1.1). For example, assuming that Q is continuous and 0 < Qmin ≤
Q(x) ≤ Qmax < ∞, near a free boundary point x0 in n = 2 dimensions, we can write

u(x) = Q(x0)(x− x0, η⃗)+ +O(|x− x0|)

for some unit vector η⃗. Thus, if 0 < Q(x0) the blow-up of u at x0 is a piece-wise linear

function. On the other hand, if x ∈ ∂{u > 0} and Q(x) = 0, x cannot have piece-wise

linear blow-ups and therefore ∂{u > 0} must be singular at x.

The results of [1] have inspired myriad generalizations and much interest (e.g., [2, 4–

8, 13]). However, virtually all subsequent work on the geometry of the free boundary

∂{u > 0} has proceeded under the assumptions of the non-degenerate case, 0 < Qmin ≤
Q ≤ Qmax < ∞. Indeed, until recently the degenerate case 0 = Qmin ≤ Q ≤ Qmax < ∞
has received little attention. One of the chief concerns in the degenerate case is the

potential existence of cusps. Since the classical estimates in [1] which are essential to

regularity become vacuous in regions whereQ vanishes, establishing weak geometric results

such as interior ball conditions becomes impossible using the standard techniques.

Previous work on the geometry of the free boundary in the degenerate case began by

reformulating the theory of the Stokes wave, in which one searches for a solution to

(1.2)

∆u = 0 in {u > 0} ⊂ R2,

u = 0 on ∂{u > 0},∣∣∣∣ ∂∂ηu(x, y)
∣∣∣∣2 = −y on ∂{u > 0},

where η is the outward normal to ∂{u > 0} in a variational setting. Work on the Stokes

wave traditionally considers weak solutions to (1.2), see [14, Definition 3.2] for details.

While local minimizers of (1.1) are weak solutions of (1.2), weak solutions of (1.2) are

critical points of (1.1) with some extra assumed regularity and may not be local minimizers

of (1.1).

Arama and Leoni [3] and subsequently Gravina and Leoni [9, 10] studied the Stokes

wave in the variational setting by considering local minimizers of (1.1) in n = 2, Ω =

{(x, y) : 0 < x < 1, 0 < y}, and Q(x, y) =
√

(h− y)+. They eliminate the possibility of

cusps by assuming that the boundary data u0
∣∣
∂Ω

is symmetric. Following their work, the

author studied the degenerate case of local minimizers of (1.1) in broader generality [11].

However, little was able to be said about cusps.
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Lemma 1.1. (see [11, Lemma 1.6 and Corollary 6.2]) Let n ≥ 2, and 0 ≤ k ≤ n− 1. For

any 0 < γ and k-dimensional C1,α-submanifold Γ if Q(x) = dist(x,Γ)γ and u is a local

minimizer of JQ( · , B2(0)), then we can decompose ∂{u > 0} ∩ Γ into

∂{u > 0} ∩ Γ = Σ ∪ S.

The set Σ is the set of cusp points x for which the density

lim
r→0+

Hn(Br(x) ∩ {u > 0})
ωnrn

= 0.

The set S contains all the non-degenerate singularities for which the density is strictly

positive. Furthermore, Hn−1(Σ) = 0.

In this paper, we restrict our attention to the physical case n = 2 and k = 1 with Γ

flat, i.e., a line. The main result of this paper is the following theorem.

Theorem 1.2 (Main theorem). Let n = 2, k = 1, Γ = {(x, 0) : x ∈ R}, and 0 < γ. Let

Q(x, y) = |y|γ. Let u be a local minimizer of JQ( · , B2(0)). Suppose that {u > 0} ∩ Γ = ∅.
Then, Σ = ∅.

This theorem has a physical application to the Stokes wave. We note that [14], in which

the authors investigate weak solutions of (1.2) without any assumptions of symmetry,

contains the following sufficient conditions for eliminating cusps.

Lemma 1.3. (see [14, Lemma 4.4]) Let n = 2, k = 1, Γ is a linear subspace, and

Q(x) = dist(x,Γ)1/2. If u is a weak solution of (1.2) and |∇u(x, y)| ≤ Q(x, y), Σ = ∅.

This lemma hold for local minimizers of (1.1). Working in the context of local mini-

mizers, we are able to prove a much stronger condition.

Corollary 1.4. (Application to the variational formulation of the Stokes wave) Let n = 2,

0 < h < A, Γ = {(x, h) : x ∈ R}, and Ω = [0, 1]× [0, A]. Let u0 ∈ W 1,2(Ω) satisfy u0 = 0

on ∂([0, 1]× [h,A]) in the sense of traces. Let Q(x, y) =
√

|h− y|.
Then, if u is a local minimizer of JQ( · ,Ω) in the class Ku0,Ω and supp(u) ⊂ [0, 1] ×

[0, h], then Σ = ∅.
In particular, the results of [11] completely describe sing(∂{u > 0}). That is, for all

compact sets K ⊂ Γ, ∂{u > 0}∩Γ is locally finite and for all x ∈ ∂{u > 0}∩Γ the unique

blow-up (up to scaling and rotation) of u at x is given by

ux,0+ = r3/2 sin

(
θ
3

2

)
,

defined on the sector D for D = {(r, θ) : 0 ≤ θ ≤ 2π/3; 0 ≤ r}.
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The proof of Corollary 1.4 is an immediate application of Theorem 1.2. The proof of

Theorem 1.2 makes essential use of minimality. We argue by contradiction, assuming that a

cusp point x ∈ Σ exists and building a competitor v such that JQ(v,B2(0)) < JQ(u,B2(0)).

Furthermore, we make essential use of the interior ball property in Lemma 2.6, which only

holds for local minimizers.

The intuition for the proof is that since Q(x, y) → 0 as y → 0, the submanifold Γ

should “attract” the positivity set {u > 0}. Consider a function u for which we can find

a window [0, N ]× [0, 3] in which {u > 0} is a strip

{u > 0} ∩ ([0, N ]× [0, 3]) = [0, N ]× [1, 2].

Then we would expect u to not be a local minimizer, since {u > 0} should “sag” under

the attraction of Γ for large N .

The strategy of the proof is to make this intuition rigorous. That is, rather than

analyze the behavior at a point x ∈ Σ, we consider a neighborhood away from x ∈ Σ in

which we can perturb u to be closer to Γ and obtain the desired contradiction. The main

estimates rely upon Lemmas 4.2 and 4.3. The perturbation competitor itself is defined in

Section 5.

We note that the assumption {u > 0}∩Γ = ∅ is used twice in the proof: in Lemmas 3.3

and 4.3. In Lemma 3.3, the assumption allows us to find a neighborhood of a component

of {u > 0} so that we can perturb that component without pushing it into another com-

ponent. This is essential to define a competitor function. In Lemma 4.3, the assumption

ensures that we can estimate the decrease in (1.1) from the resulting perturbation.

It is suspected that the non-existence of cusps holds in higher dimensions and co-

dimensions without the assumption {u > 0} ∩ Γ = ∅ under greater generality. However,

the methods of this paper seem restricted to n = 2. See the forthcoming paper [12] in

which it is proved that cusps do not exist arbitrary dimension and co-dimension under the

assumption that Γ is flat. We note that [12] uses a novel argument based upon comparing

the growth of harmonic functions and the free boundary conditions in (1.2).

2. Preliminaries

Throughout this note, we fix n = 2, Γ = {(x, 0) : x ∈ R} and fix 0 < γ. We set

Q(x, y) := |y|γ .

For any set E ⊂ R2 and 0 < ϵ < ∞, we use the notation Bϵ(E) =
{
x ∈ R2 : infy∈E |x−y| <

ϵ
}
.

We begin with a brief overview of some of the relevant results from [1] and [11].
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Definition 2.1 (Rescalings). Let u be a ϵ0-local minimizer of (1.1) in the B2(0), and let

x ∈ Γ ∩ ∂{u > 0}. We define the rescalings

ux,r(y) :=
u(ry + x)

rγ+1
.

Similarly, for set A ⊂ R2, we define the rescalings

Ax,r :=
1

r
(A− x).

Remark 2.2. (see [1, Remark 3.1]) Let 0 < γ. Suppose that u is an ϵ0-local minimizer of

(1.1) in B2(0). Then, if x ∈ Γ ∩ ∂{u > 0}, for any 0 < r < 1, the function ux,r is an

ϵ′-local minimizer of (1.1) in the class Kux,r,B1/r(0), where

ϵ′ = ϵ0max
{
r−n, r−(n−2γ)

}
.

Remark 2.3. The techniques used in [1] to establish the non-degeneracy of a local minimizer

u rely upon comparing u with two other functions:

(1) The harmonic extension of u in a ball Br(0).

(2) The function w = min{u, v} in Br(0) for

v(x) =

(
sup

y∈Br
√
s(0)

{u(y)}

)
max

{
1− |x|2−n − r2−n

(sr)2−n − r2−n
, 0

}
.

Since ∥∇v∥2L2 ≤ C(s, n) supy∈Br
√
s(0)

{u2(y)}rn−2 and harmonic functions are energy min-

imizers, for every ϵ0-local minimizer u, there is a uniform scale

r0 := r0

(
n, sup

∂Ω
u0, ∥∇u∥L2 , ϵ0

)
at which we can apply these arguments. We shall refer to this scale r0 as the standard

scale.

Remark 2.4. Let u be an ϵ0-local minimizer of (1.1). Suppose that (0, 0) ∈ Γ ∩ ∂{u > 0}.
There is a rescaling of u at (0, 0) as u(0,0),r, where 0 < r

(
n, sup∂B2(0) u0, ∥∇u∥L2(B2(0)), ϵ0

)
is such that u(0,0),r is a 1-local minimizer in Ku(0,0),r,B2(0) and the standard scale r0 for

u(0,0),r is r0 = 1.

Lemma 2.5. (Local Lipschitz, [11, Corollary 3.14]) Let u be a 1-local minimizer of

JQ( · , B2(0)) with standard scale r0 = 1. Assume that (x, y) ∈ ∂{u > 0}. Then, for

all (x′, y′) ∈ {u > 0} ∩B1((x, y)),

|∇u(x′, y′)| ≤ C(n)max
{
dist((x′, y′), ∂{u > 0}), |y′|

}γ
.
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Lemma 2.6. (Interior balls, [11, Lemma 3.17]) Let u be a 1-local minimizer of JQ( · , B2(0))

with standard scale r0 = 1. For any BR(y), we denote Qmin,BR(y) = min{Q(z) : z ∈
BR(y)}.

Let x ∈ ∂{u > 0} satisfy Br(x) ⊂ B1(0) \ Γ, then there exists a point y ∈ {u >

0} ∩ ∂Br/2(x) and a constant 0 < c(n,Qmin,Br(x)) < 1/2 such that for all z ∈ Bcr/2(y),

u(z) ≥ C(n)rQmin,Br/2(x).

Theorem 2.7. (see [11, Theorem 4.3, Corollary 4.6]) For u a local minimizer of JQ( · ,
B2(0)). Assume that x0 ∈ Γ ∩ ∂{u > 0}. We define the Weiss (1 + γ)-density

Wγ+1(x0, r, u,Γ) :=
1

rn−2+2(γ+1)

∫
Br(x0)

(
|∇u|2 +Q2(x)χ{u>0}

)
dx

− γ + 1

rn−1+2(γ+1)

∫
∂Br(x0)

u2 dσ.

For almost every 0 < r ≤ 1,

d

dr
Wγ+1((0, 0), r, u,Γ) ≤

2

rn+2γ

∫
∂Br((0,0))

(
∇u · η − γ + 1

r
u

)2

dσ,

Wγ+1((0, 0), r, u,Γ) ≤ Wγ+1((0, 0), R, u,Γ).

Furthermore, limr→0+ Wγ+1((0, 0), r, u,Γ) = Wγ+1((0, 0), 0
+, u,Γ) exists and Wγ+1((0, 0),

0+, u,Γ) ∈ [−c(n, γ, α), c(n, γ, α)].

Theorem 2.8. (Compactness, [11, Theorem 5.3]) Let ui be a sequence of 1-local mini-

mizers of JQ( · , B2(0)) with standard scale r0 = 1. Assume that xi ∈ Γ ∩ ∂{u > 0}. For

any sequence of ri → r ∈ [0, 1], let B = B1/r(0) if r > 0 and B = Rn if r = 0.

Then, there is a subsequence rj → r and a function u ∈ C0
loc(B) ∩W 1,2

loc (B) such that

(1) ujxj ,rj → u in C0
loc(B) ∩W 1,2

loc (B).

(2) For every 0 < R < diam(B) and any ϵ > 0, there is an N ∈ N such that for all

j ≥ N ,

∂{u > 0} ∩Br(0) ⊂ Bϵ(∂{ujxj ,rj > 0}).

(3) For any 0 < R < diam(B) and any ϵ > 0, there is an N ∈ N such that for all j ≥ N ,

∂{ujxj ,rj > 0} ∩BR(0) ∩ {u > 0} ⊂ Bϵ(∂{u > 0}).

Similarly, for any 0 < R < diam(B) and any ϵ > 0, there is an N ∈ N such that for

all j ≥ N ,

∂{ujxj ,rj > 0} ∩BR(0) ∩ {u = 0} ⊂ Bϵ(∂{u > 0} ∪ Γ).
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(4) χ{uj
xj ,rj

>0} → χ{u>0} in L1
loc(B).

(5) The function u is harmonic in {u > 0}.

(6) For any 0 < r ≤ 1 and any sequence of points yj → y ∈ Γ ∩B1(0),

Wγ+1(yj , r, uxj ,rj ,Γ) → Wγ+1(y, r, u,Γ).

Lemma 2.9. (see [11, Lemma 6.1]) Let u be a minimizer of JQ( · ,Ω) in the class Kg,Ω.

Let x0 ∈ Γ ∩ ∂{u > 0}. Then

Wγ+1(x0, 0
+, u,Γ) = lim

r→0+

1

rn+2γ

∫
Br(x0)

Q2(x)χ{u>0} dx.

Therefore, Wγ+1(x0, 0
+, u,Γ) ∈ [0, cn], where cn =

∫
B1(0)

|y|2γ d(x, y).
In particular, if x0 ∈ Σ, then Wγ+1(x0, 0

+, u,Γ) = 0 and every blow-up ux0,0 ≡ 0.

Furthermore, the function x 7→ Wγ+1(x, 0, u,Γ) is upper semicontinuous when restricted

to Γ ∩ ∂{u > 0} ∩B1(0).

3. Local behavior

In this section, we study the local geometry of {u > 0} near (0, 0) ∈ Σ. The main result

of this section is Lemma 3.4, in which we obtain the neighborhoods in which we will work.

We note that the only lemma in this section which is motivated by the assumption that

{u > 0} ∩Γ ̸= ∅ is Lemma 3.3, in which we obtain a modicum of separation locally of the

components of {u > 0}. This will be crucial later so that we may define a perturbation.

Remark 3.1. (Attenuation radius) Let n, k ∈ Z such that n ≥ 2 and 0 ≤ k ≤ n − 1. For

(x, y) ∈ Rk × Rn−k, we define Q(x, y) = |y|k. Suppose that u is an 1-local minimizer of

(1.1) in B2(0) ⊂ Rn for Q, as above, with standard radius r0 = 1. Let (0, 0) ∈ Σ. By

Lemma 2.9 and Lemma 2.6 for any 0 < η we can find a radius 0 < r(η) such that

{u(0,0),r > 0} ⊂ B1(0) ⊂
{
(x, y) ∈ Rk × Rn−k : |y| ≤ η|x|

}
.

Lemma 3.2. Let n = 2, 0 < γ, and let u be a 1-local minimizer of (1.1) in B2(0) in

Ku,B2(0) for Q(x, y) = |y|γ with standard radius r0 = 1. Then, Σ is locally isolated.

Proof. We argue this by contradiction. Without loss of generality, by translation and

rescaling, we may assume that (0, 0) ∈ Σ, that (0, 0) is also a limit point of Σ, and that

B1(0) ⊂ Ω. Furthermore, we may assume that the standard radius r0 = 1 and that u is a

1-local minimizer.

Let O be a component of {u > 0} such that (0, 0) ∈ O. Because (0, 0) is a limit point

of Σ, either {(x, 0) : x > 0} contains infinitely many points of Σ or {(x, 0) : x < 0} does.
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Without loss of generality, we assume that the former case holds. Similarly, (0, 0) is either

a limit point of {u > 0} ∩ {(x, y) : y > 0} or {u > 0} ∩ {(x, y) : y < 0}. Without loss of

generality, we assume that the former case holds.

By Remark 3.1, for any 0 < η we may find a radius 0 < r(η) such that for all

0 < r < r(η),

{u > 0} ∩Br(0, 0) ⊂ {(x, y) ∈ R2 : |y| ≤ η|x|}.

Let 0 < η ≤ 1/4 be fixed and let 0 < r < r(η).

Claim 1. We claim that for any 0 < r < r(η), we can always find a point (x, 0) ∈
Σ ∩Br((0, 0)) such that 0 < x < r and

{(x, y) : |y| ≤ η|x|} ∩ {u = 0} ≠ ∅.

To prove the claim, we observe that for each 0 < x1 ≤ r such that (x1, 0) ∈ Σ∩Br((0, 0)),

then (x1, 0) is the limit point of a component of {u > 0}∩Br((0, 0)) which must intersect

∂Br((0, 0)) at either

∂Br((0, 0)) ∩ {(x, y) : 0 < x, |y| ≤ ηx}

or

∂Br((0, 0)) ∩ {(x, y) : x < 0, |y| ≤ ηx}.

Since we are assuming, without loss of generality, that there is a sequence of 0 < xi

such that (xi, 0) ∈ Σ and xi → 0, let 0 < x1 < x2 < x3 ≤ r be three such points.

If the component of {u > 0} ∩ Br((0, 0)) which touches (x2, 0) intersects ∂Br((0, 0)) in

∂Br((0, 0))∩{(x, y) : 0 < x, |y| ≤ ηx}, then (x3, 0) satisfies the claim. If the component of

{u > 0} ∩ Br((0, 0)) which touches (x2, 0) intersects ∂Br((0, 0)) in ∂Br((0, 0)) ∩ {(x, y) :
x < 0, |y| ≤ η|x|}, then (x1, 0) satisfies the claim.

Now, let (x, 0) ∈ Σ ∩Br((0, 0)). Let rx1 := sup{y ∈ [0, ηx] : (x, y) ∈ {u > 0}}.
Claim 2. We claim that there is a constant, ϵ2 > 0, such thatWγ+1((x1, 0), 2rx1 , u,Γ) >

ϵ2. Note that by Lemma 2.6, there is a ball of radius c2rx1 completely contained in

{u > 0} ∩ B2rx1
(x1, 0). We verify the claim by a limit-compactness argument. Suppose

that there were a sequence of functions ui which have points (xi, 0) ∈ Σ and radii ri >

0 such that there is a ball of radius cri contained in {u > 0} ∩ Bri(xi), for a fixed

0 < c. And, assume that Wγ+1((xi, 0), ri, ui,Γ) ≤ 2−i. By applying Theorem 2.8 to

uixi,ri , we may pass to a subsequence which converges strongly to a function u∞ for which

Wγ+1((0, 0), 1, u∞,Γ) = 0.

Since Wγ+1((0, 0), 1, u∞,Γ) is monotonic non-decreasing,

Wγ+1((0, 0), 0, u∞,Γ) = Θ2((0, 0), {u∞ > 0}) = 0.
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By Theorem 2.7 u∞ is homogeneous, which implies u∞ ≡ 0. However, by Lemma 2.6

the compactness of the unit ball, and strong convergence, there exists a ball of radius c/2

contained in B1(0) ∩ {u∞ > 0}. This contradiction proves the claim.

By the monotonicity of the Weiss density we see that Wγ+1((x1, 0), r, u,Γ) ≥ ϵ2

for all r ≥ 2rx. Since 2rx ≤ 2ηx, for any fixed 0 < r0, we may repeat this cal-

culation for any sequence {xi} ⊂ Σ such that limi→∞ xi = x0. For xi sufficiently

close to x0, Wγ+1((xi, 0), r, u,Γ) ≥ ϵ2. Applying Theorem 2.8 to uxi,r implies that

Wγ+1((0, 0), r, u,Γ) ≥ ϵ2. Since 0 < r0 was arbitrary, this contradicts that assumption

that Wγ+1((0, 0), 0, u,Γ) = 0. Therefore, Σ is isolated.

Lemma 3.3. Let n = 2, 0 < γ, and let u be an 1-local minimizer of (1.1) in B2(0) in

Ku,B2(0) for Q(x, y) = |y|γ with standard radius r0 = 1. Let R := [a, b]×[c, d] be a rectangle

disjoint from Γ. Suppose that

{u > 0} ∩ ∂R ⊂ ({a} × [c, d]) ∪ ({b} × [c, d]).

Then, for each component Oi ⊂ {u > 0} ∩ R and 0 < η there exists a 0 < ϵ(η,Oi) such

that Bϵ(Oi) ∩Rη ∩ Oj = ∅ for all j ̸= i, where we define Rη := [a+ η, b− η]× [c, d].

Proof. We argue by contradiction. Suppose that there is a rectangle R in which {u > 0}
∩R consists of infinitely many components {Oi}i. Now, by choosing a point in xi ∈ ∂Oi,

we may extract a convergent subsequence xj → x∞ ∈ R. Since ∂{u > 0} is closed,

x∞ ∈ ∂{u > 0} ∩R.

Now, we claim that all subsequential limits x∞ ∈ ∂R. Suppose that Bϵ(x∞) ⊂ R.

Then by [1, Theorem 4.5(3)],

H1(Bϵ(x∞) ∩ ∂{u > 0}) < Cr1.

Since by assumption xj → x∞ and each xj is assumed to belong to a different component,

each xj ∈ Bϵ/2(x∞) contributes at least ϵ length of ∂{u > 0}. This is a contradiction.

Thus, for a connected component Oi ⊂ {u > 0} ∩ R, and every point x ∈ ∂Oi \ ∂R,

there is a radius 0 < rx ≤ dist(x, ∂R) such that rx is the maximal radius which satisfies

Brx(x) ∩ {u > 0} ⊂ Oi.

Furthermore, by the triangle inequality this radius rx is a continuous function of x ∈
∂Oi \ ∂R. Therefore, for any 0 < η, ∂Oi ∩ Rη is compact and there exists an ϵ > 0 such

that 0 < ϵ < rx for all x ∈ ∂Oi ∩Rη.

Now that we have an idea of the local geometry around points in Σ, we show that

we can find very specific windows, in which we will work. This lemma works in higher-

dimensions.
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Lemma 3.4. Let n, k ∈ Z, n ≥ 2, and 0 ≤ k ≤ n− 1. Let (x, y) ∈ Rk × Rn−k. Let 0 < γ

and Q(x, y) = |y|γ. Let u be an 1-local minimizer of (1.1) for Q in B2(0) with standard

radius r0 = 1. Suppose that (0, 0) ∈ Σ.

For any 1 < N < ∞, we may find a radius 0 < ρ(N) such that the rescaling u(0,0),ρ

satisfies the following conditions:

(i) There exists a large radius 1 ≪ N0 < ∞ satisfying 4N < N0 such that

(3.1) max
{
|y| : (x, y) ∈

(
∂Bk

N0
(0)× [−2, 2]n−k

)
∩ ∂{u(0,0),r > 0}

}
= 1.

(ii) For the radius N0 −N ,

max
{
|y| : (x, y) ∈

(
∂Bk

N0−N (0)× [−2, 2]n−k
)
∩ ∂{u(0,0),ρ > 0}

}
≥ 1

2
,

that is, we may find two points w, v ∈ ∂{u(0,0),ρ > 0} such that w = (xw, yw) satisfies

(a) |xw| = N0,

(b) |yw| = 1 = max
{
y : (x, y) ∈

(
∂Bk

N0
(0)× [−2, 2]n−k

)
∩ ∂{u(0,0),ρ > 0}

}
,

and v = (xv, yv) satisfies

(a) |xv| = N0 −N ,

(b) |yv| = max
{
y : (x, y) ∈

(
∂Bk

N0−N (0)× Rn−k
)
∩ ∂{u(0,0),ρ > 0}

}
≥ 1/2,

and, dist(w, v) ≥ N .

Proof. Let 1 ≪ N < ∞ be given. Let 0 < r = r
(

1
4N

)
be the attenuation radius guaranteed

by Remark 3.1. We consider ux,r in the truncated cone

B1(0) ∩
{
(x, y) ∈ Rk × Rn−k : |y| ≤ 1

4N
|x|
}
.

Let z0 = (x0, y0) ∈ ∂B1(0)
k × [−1, 1]n−k ∩ ∂{ux,r > 0} be a point which realizes

|y0| := max
{
|y| : (x, y) ∈ ∂B1(0)

k × [−1, 1]n−k ∩ ∂{u(0,0),r > 0}
}
.

Note that by assumption, |y0| ≤ 1
4N .

We now consider the radius r1 = 1 − 1
22

−1 and investigate the set ∂{u(0,0),r > 0} ∩
∂Br1(0)

k × [−1, 1]n−k. If

|y1| := max
{
|y| ∈ Rn−k : (x, y) ∈ ∂{u(0,0),r > 0} ∩ ∂Br1(0)

k × [−1, 1]n−k
}
≥ 1

2

(
1

4N

)
,
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then the rescaling u(0,0),r/y0 proves the lemma. Suppose, for the purposes of contradiction,

that

|y1| = max
{
|y| ∈ Rn−k : (x, y) ∈ ∂{ux,r > 0} ∩Br1(0)

k × [−1, 1]n−k
}
<

1

21

(
1

4N

)
.

We consider the radius r2 = r1 − 1
22

−2 and

|y2| = max
{
|y| ∈ Rn−k : (x, y) ∈ ∂{ux,r > 0} ∩Br2(0)

k × [−1, 1]n−k
}
.

If |y2| ≥ 1
22

(
1
4N

)
, then the rescaling ux,r/y1 satisfies the claim. If |y2| < 1

22

(
1
4N

)
, then we

proceed inductively. If ri has been defined and |yi| < 1
2i

(
1
4N

)
, then we consider ri+1 =

ri − 1
22

−i and test

|yi+1| = max
{
|y| ∈ Rn−k : (x, y) ∈ ∂{ux,r > 0} ∩Bri+1(0)

k × [−1, 1]n−k
}
,

to see whether or not |yi+1| ≥ 1
2i+1

(
1
4N

)
. If for any i ∈ N, yi+1 ≥ 1

2i+1

(
1
4N

)
then ux,r/ri

satisfies the lemma.

If, on the other hand, |yi| < 1
2i

(
1
4N

)
for all i ∈ N, then we observe that

lim
i→∞

ri = lim
i→∞

1− 1

2

i∑
k=1

1

2i
=

1

2
.

We claim that this produces a contradiction. Since u(0,0),r = 0 on ∂{u(0,0),r > 0} and

∆u(0,0),r = 0 in {u(0,0),r > 0}, we claim that if

max
{
|y| : (x, y) ∈ ∂{u(0,0),r > 0} ∩

(
∂B1/2(0)

k × [−1, 1]n−k
)}

= 0,

then u(0,0),r = 0 in B1/2(0)
k × [−1, 1]n−k by the Maximum Principle. Since this is a

contradiction, there must be an i ∈ N such that i is the first integer such that |yi+1| ≥
1

2i+1

(
1
4N

)
. Thus, u(0,0),r/ri satisfies the lemma.

Remark 3.5. We may repeat this argument, restricting our attention to any connected

component O of {u > 0} which touches (0, 0) ∈ Σ to obtain the same result.

In the next lemma, we find height control on components O for which (0, 0) ∈ O.

Lemma 3.6 (Height bound). Let u is an 1-local minimizer of (1.1) with standard radius

r0 = 1. Suppose that (0, 0) ∈ Σ. Let O be any component of {u > 0} such that (0, 0) ∈ O.

Let N ∈ N be fixed. Let 0 < r(N) as in Lemma 3.4, applied to O as in Remark 3.5. There

exist constants 0 < C1(γ) < C2(γ) < ∞ independent of N such that the following holds.

If we define S := [N0 −N,N0]× R, then

C1(γ) < inf
x∈[N0−N+1/4,N0]

sup
{
|y| : (x, y) ∈ O(0,0),r ∩ S

}
≤ sup

x∈[N0−N,N0]
sup

{
|y| : (x, y) ∈ O(0,0),r ∩ S

}
< C2(γ).
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Proof. We begin by observing that for any 0 < x0 ≤ N0,

max
{
u(0,0),r(x, y) : (x, y) ∈ O(0,0),r and 0 < x < x0

}
must occur on {x0} × R ∩ O by the Maximum Principle. Thus

max
{
u(0,0),r(x, y) : (x, y) ∈ O(0,0),r and 0 < x < N0

}
must occur on {N0} × R ∩ O. By the Lipschitz bound in Lemma 2.5 and (3.1), then

max
{
u(0,0),r(x, y) : (x, y) ∈ O(0,0),r and 0 < x < N0

}
≤ C(γ).

We claim that this implies that there exists a 0 < C2(γ) < ∞ such that

sup
0<x<N0

sup
{
|y| : (x, y) ∈ O(0,0),r ∩ S

}
≤ C2(γ).

Suppose that (x, y) ∈ ∂O ∩ S. Then, by Lemma 2.6, we can find a point z ∈ By/2((x, y))

∩ O such that

u(z) ≥ Cmin

(
|y|
2

)1+γ

.

However, by our construction of u(0,0),r and Lemma 2.5,

sup
0<x<N0

sup
{
u(0,0),r(x, y) : (x, y) ∈ O(0,0),r ∩ S

}
≤ sup

{
u(0,0),r(N0, y) : (N0, y) ∈ O(0,0),r

}
≤ C(γ).

Therefore, |y| ≤ 2
(C(γ)
Cmin

)1/(1+γ)
= C2(γ).

The other estimate follows from applying the same argument on the side {N0−N}×R.
Let y0 be such that |y0| ≥ |y| for all y such that (N0 − N, y) ∈ ∂O. We observe that

|y0| ∈ [1/2, C2(γ)]. Therefore, by Lemma 2.6,

sup
(x,y)∈O

{u(x, y) : N0 −N + 1/4 ≤ x ≤ N0} ≥ sup
(x,y)∈B1/4(N0−N,y0)

u(x, y)

≥ Cmin

(
C2(γ)/2

)1+γ
.

Thus, by Lemma 2.5 there must be a constant 0 < C1(γ) such that

inf
N0−N+1/4<x<N0

sup{|y| : (x, y) ∈ O ∩ S} ≥ C1(γ).

Definition 3.7. For 0 < γ fixed, let O be any component of {u > 0} such that (0, 0) ∈ O.

We make the following definitions. If 0 < γ < 1/2, then we define u(0,0),C2(γ)2γr as the

standard rescaling at (0, 0) for scale C2(γ)
−12γN . Correspondingly, we shall call the strip

S :=
[
C2(γ)

−12γ(N0 −N), C2(γ)
−12γN0

]
× R
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the standard window at (0, 0) for scale C2(γ)
−12γN .

If 1/2 ≤ γ, then we define u(0,0),C2(γ)−1r as the standard rescaling at (0, 0) for scale

C2(γ)
−1N . Correspondingly, we shall call the strip

S :=
[
C2(γ)

−1(N0 −N), C2(γ)
−1N0

]
× R

the standard window at (0, 0) for scale C2(γ)
−1N .

We note that while these rescalings and windows depend upon O, they enjoy the

following property. If we denote

O′ :=

O(0,0),C2(γ)−12γr if 0 < γ < 1/2,

O(0,0),C2(γ)−1r if 1/2 ≤ γ

as the standard component, then

O′ ∩ S ⊂

[C2(γ)
−12γ(N0 −N), C2(γ)

−12γN0]× [−2γ, 2γ] if 0 < γ < 1/2,

[C2(γ)
−1(N0 −N), C2(γ)

−1N0]× [−1, 1] if 1/2 ≤ γ.

Corollary 3.8. Let n = 2, 0 < γ, and let u be an 1-local minimizer of (1.1) in B2(0) in

Ku,B2(0) for Q(x, y) = |y|γ with standard radius r0 = 1. Let (0, 0) ∈ Σ, and 1 ≪ N ∈ N.
Let v be the standard rescaling of u at (0, 0) for scale N , S the corresponding standard

window, and O′ the component with respect to which they are standard.

There exists a c(γ) such that for every x such that [x− 1/2, x+ 1/2]×R ⊂ S,

H2
(
O ∩ ([x− 1/2, x+ 1/2]× [0, 2])

)
≥ ω2

(
c(2, γ)C1(γ)

)2
,

where c(2, γ) = c
(
2, C1(γ)γ

2γ ,
(
C2(γ) +

C1(γ)
2

)γ)
from Lemma 2.6.

Proof. By Lemma 3.6, there is a point (x, y) ∈ ∂O ∩ ([x− 1/2, x+ 1/2]× [0, 2]) such that

|y| ≥ C(γ). Lemma 2.6 applied to the ball By/2(x, y) proves the corollary.

4. Domain perturbations

In this section, we consider the basic properties of a simple domain perturbation.

Definition 4.1. We define a family of functions, Ft : R2 → R2, as follows. For x =

(x1, x2) ∈ R1 × R1,

Ft(x1, x2) := (x1, x2 + tx1).

For u a Lipschitz function, we define ut as

ut := u ◦ Ft = u(x1, x2 + tx1).
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Lemma 4.2 (Increase estimate). Let u : R2 → R2 be a Lipschitz function and a, b, c, d ∈ R
satisfy a < b and 0 ≤ c < d. Consider the rectangle R = [0, b]× [c, d]. Suppose that there

exists an 0 < ϵ such that

supp(u) ∩R ⊂ [a, b]× [c+ ϵ, d− ϵ].

Then, for 0 < t sufficiently small,

∥∇ut∥2L2(R) ≤ ∥∇u∥2L2(R)(1 + t+ t2).

Proof. By assumption, for sufficiently small 0 < t, Ft(supp(u) ∩ R) ⊂ R. Thus, the

following estimate gives the desired estimate:

|∇ut|2 = (∂1u+ t∂2u)
2 + (∂2u)

2

= (∂1u)
2 + 2t∂1u∂2u+ t2(∂2u)

2 + (∂2u)
2

≤ |∇u|2 + t|∇u|2 + t2|∇u|2

≤ |∇u|2(1 + t+ t2).

Lemma 4.3 (Decrease estimate). Let 0 < γ and let Q(x, y) = |y|γ. Let 0 < a, b, c, d, with

a < b and 0 < c < d, and let Ω ⊂ [a, b]× [c, d] ⊂ R2 be an open set. Suppose the following

conditions hold:

(i) If γ ≥ 1/2, then d ≤ 1.

(ii) If 0 < γ < 1/2, then d ≤ 2γ.

Then
d

dt

∣∣∣
t=0

∫
F−t(Ω)

Q2(x) dx ≤ −a

∫
Ω
Q2(x) dx.

Proof. For each x ∈ [a, b], we write Ωx = Ω∩ ({x}×R). Note that Ωx is a relatively open

set, and is therefore a countable union of open intervals. We note that

d

dt

∫
F−t(Ω)

Q2(x) dx =

∫ b

a

d

dt

∫
F−t(Ωx)

y2γ dydx.

Investigating a single interval (y1, y2), we obtain

d

dt

∫ y2−tx

y1−tx
y2γ dy =

d

dt

1

2γ + 1

(
(y2 − tx)2γ+1 − (y1 − tx)2γ+1

)
= (−x)

(
(y2 − tx)2γ − (y1 − tx)2γ

)
≤ −a

(
(y2 − tx)2γ − (y1 − tx)2γ

)
.

Evaluating at t = 0, we obtain d
dt

∫ y2−tx
y1−tx y2γ dy

∣∣
t=0

≤ −a(y2γ2 − y2γ1 ).
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By assumption (i), if γ ≥ 1/2, then y1, y2 ∈ [0, 1]. We note that 2γy2γ−1 ≥ y2γ for

y ∈ [0, 1] and γ ≥ 1/2. Thus

(y2γ2 − y2γ1 ) =

∫ y2

y1

2γy2γ−1 dy ≥
∫ y2

y1

y2γ dy =
1

2γ + 1

(
y2γ+1
2 − y2γ+1

1

)
.

If 0 < γ < 1/2, then by assumption (ii), y1, y2 ∈ [0, 2γ]. We note that for y ∈ [0, 2γ],

2γy2γ−1 ≥ y2γ . Thus, for y1, y2 ∈ [0, 2γ], the previous estimate holds.

Therefore, we may sum over all the intervals (y2i−1, y2i) ∈ Ωx and obtain∑
i

−a(y2γ2i − y2γ2i−1) ≤ −a

∫
Ωx

y2γ dy.

Integrating with respect to x ∈ [a, b], we obtain

d

dt

∣∣∣
t=0

∫
F−t(Ω)

Q2(x) dx ≤
∫ b

a
−a

∫
Ωx

y2γ dy ≤ −a

∫
Ω
Q2(x) dx.

Remark 4.4. Lemma 4.3 is the only place, so far, where the assumption that {u > 0}∩Γ =

∅ comes into play. Indeed, under this assumption, then if v is the standard rescaling of

u at (0, 0) ∈ Σ at scale N , then {v > 0} satisfies the hypotheses of Lemma 4.3 in the

standard window.

5. Construction of the competitor

Let u be an 1-local minimizer of the functional (1.1) with standard radius r0 = 1. Suppose

that (0, 0) ∈ Σ and {u > 0} ∩ Γ = ∅. Without loss of generality, we assume that (0, 0) ∈
{u > 0} ∩ {(x, y) : y > 0}. In this section, we define a competitor v for u in a small

neighborhood of x.

For any 1 ≪ N < ∞, we let v be the standard scaling at (0, 0) at scale 2N + 1,

S = [a, b] × [0, c] the standard window, and O′ the standard component. We decompose

S into two special sub-regions

SL := [a+ 1/2, (b− a)/2]× [0, c] and SR := [(b− a)/2, b− 1/2]× [0, c].

Let τx0 : R2 → R2 be translation in the x-variable

τx0(x, y) = (x− x0, y).

By Lemma 3.3, we may find an 0 < ϵ such that Bϵ(O′ ∩ ([a + 1/2, b − 1/2] × [0, c]))

does not intersect any other components of {v > 0} ∩ S. Similarly, there is an 0 < η such

that dist(∂O′ ∩ S,Γ) ≥ η. Let η′ := min{η, ϵ}.
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For 0 < t ≤ ϵ′/(2N), we define a family of functions vt : S → R2 piece-wise as follows:

vt(x, y) =


v ◦ τ−a−1/2 ◦ Ft ◦ τa+1/2(x, y) if (x, y) ∈ Bϵ/2(O′) ∩ SL,

v ◦ τ−b+1/2 ◦ F−t ◦ τb−1/2(x, y) if (x, y) ∈ Bϵ/2(O′) ∩ SR,

v(x, y) if (x, y) ∈ S \ (Bϵ/2(O′) ∩ (SL ∪ SR)).

Note that vt ∈ Kv,S for 0 < t ≤ ϵ′/(2N).

6. Proof of the main theorem

Since vt ∈ Kv,S , by Remark 2.2 JQ(v, S1) ≤ JQ(vt, S) for all sufficiently small 0 < t. We

shall define

I1(t) :=

∫
Bϵ/2(O′)∩S

|∇vt|2 dx,

I2(t) :=

∫
Bϵ/2(O′)∩S

Q2(x)χ{vt>0}(x) dx,

I(t) := I1(t) + I2(t).

Note that by the construction of vt, since vt = v in S \ (Bϵ′/2(O′)∩ (SL∪SR)). Therefore,

by the assumption of local minimality, for all 0 < t < ϵ/(2N) we have I(0) ≤ I(t). We

shall prove the main theorem by showing that for all sufficiently small 0 < t, I(0) > I(t).

By Lemmas 4.2 and 2.5, we have that

I1(t) ≤ (1 + t+ t2)I1(0) ≤ I1(0) + 2(t+ t2)NC2(2, γ).

To obtain the necessary decrease estimate, we decompose S into N − 1 regular subin-

tervals of width 1. Then, Lemma 4.3, Corollary 3.8, and Lemma 2.6 applied to each

subinterval imply

d

dt

∣∣∣
t=0

I2(t) ≤ −2

N−1∑
i=1

(i− 1)C(c, γ)

(
C1(γ)

C2(γ)

)2γ

≤ −c4(2, γ)
N−1∑
i=1

(i− 1)

≤ −c4(2, γ)
(N − 2)(N − 3)

2

≤ −c5(2, γ)(N
2 − 5N + 6).

Note that for N sufficiently large c5(2, γ)(N
2 − 5N + 6) ≥ 5NC2(2, γ). Thus, for N

sufficiently large and 0 < t sufficiently small,

I(t)− I(0) ≤ −t
1

2
c5(2, γ)(N

2 − 3N + 3) + (t+ t2)2NC2(2, γ)
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≤ −t
1

2
c5(2, γ)(N

2 − 3N + 3) + t4NC2(2, γ)

≤ −t
1

2
NC2(2, γ) < 0.

This contradicts the minimality of v. Hence, Σ = ∅.
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