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Structure of Rings Whose Potent Elements are Central

Tai Keun Kwak*, Yang Lee and Yeonsook Seo

Abstract. We study the structure of potent elements in matrix rings with same di-

agonals and polynomial rings, motivated by Jacobson’s theorem of commutativity. A

ring shall be said to be PC if every potent element is central. We investigate the

structure of PC rings in relation to the commutativity of rings. It is proved that if R

is a PC ring of prime characteristic then the polynomial ring over R is also a PC ring.

Every periodic PC ring is shown to be commutative.

1. Introduction

Jacobson [8, Theorem 10.1.1] investigated the commutativity of rings, proving that if R is

a ring in which for every a ∈ R there exists an integer n(a) > 1 such that an(a) = a, then

R is commutative. From this theorem, we can consider two ring theoretical conditions

that for an element a of a ring R,

(1.1) there exists an integer n(a) > 1 such that an(a) = a

and

(1.2) if a satisfies the condition (1.1) then a ∈ Z(R).

In the literature, an element a of a ring is called potent if it satisfies the condition (1.1);

and a ring is called potent if every element is potent. Hence potent rings are commutative,

which is a restatement of Jacobson’s theorem above. Therefore it may be interesting to

study the structure of noncommutative rings in which every element satisfies the condi-

tion (1.2), i.e., every potent element is central. Thus we will call a ring PC if it satisfies

the condition (1.2).

Throughout this article every ring is an associative ring with identity unless otherwise

stated. Let R be a ring. N(R), I(R) and Z(R) denote the set of all nilpotent elements,

the set of all idempotents and the set of all central elements in R, respectively. Denote
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the n by n full (resp., upper triangular) matrix ring over R by Matn(R) (resp., Tn(R)),

and write Dn(R) = {(aij) ∈ Tn(R) | a11 = · · · = ann}. Use In and Eij for the identity

matrix and the matrix with (i, j)-entry 1 and zeros elsewhere, respectively. R[x] (resp.,

R[[x]]) denotes the polynomial (resp., power series) ring with an indeterminate x over R.

In Section 2, we investigate the shapes of potent elements in Dn(R) (Theorem 2.1) and

R[x] (R[[x]]) (Theorem 2.2), when R is a PC ring. In Section 3, we prove that (i) if R is a

PC domain with ch(R) = 0 then Dn(R) is PC (Theorem 3.4); (ii) for a ring R with prime

characteristic, R is commutative if and only if D2(R) is PC, but Dn(R) is not PC for every

n ≥ 3 (Proposition 3.6); (iii) if R is a periodic PC ring, then the Wedderburn radical of

R coincides with N(R) and R is commutative. In this paper, some useful examples of PC

rings are also provided, including the Jordan extension and the Dorroh extension.

2. Jacobson’s point of view in noncommutative rings

In this section, we will extend the Jacobson’s point of view to noncommutative rings,

considering the shapes of potent elements in Dn(R) for n ≥ 2 when R is a PC ring. Write

mCk = m!
(m−k)!k! for m ≥ k ≥ 0, and n! = n(n − 1) · · · 2 · 1 for an integer n ≥ 2. For a

real number r, we denote by [r] the unique integer satisfying r − 1 < [r] ≤ r. Let R be a

ring and let a ∈ R be such that ak = a for some k ≥ 2. Then ak−1 ∈ I(R) by the simple

calculation that (ak−1)2 = akak−2 = aak−2 = ak−1. So we will use this fact freely.

Theorem 2.1. Let R be a PC ring, and 0 ̸= A = (aij) ∈ Dn(R) for n ≥ 2. Suppose

that Ak = A for some k ≥ 2. Then akii = aii ∈ Z(R), and u!(k − 1)as,s+u = 0 for every

1 ≤ s ≤ n− 1 and 1 ≤ u ≤ n− 1, where 2 ≤ s+ u ≤ n.

Proof. Let Ak = A for A = (aij) ∈ Dn(R) and k ≥ 2. Then Ak−1 ∈ I(Dn(R)) and

ak−1 ∈ I(R), where a = aii. Since R is PC, a ∈ Z(R), and furthermore, we have

Ak−1 = ak−1In by [5, Lemma 1]. It then follows that

(aij) = A = Ak = Ak−1A = (ak−1In)(aij)

from which we see that aij = ak−1aij for all i, j. Moreover, since Ah(k−1) = Ak−1 = ak−1In

and ah(k−1) = ak−1 for every h ≥ 1, we have aij = ah(k−1)aij for all i, j, and every non-

diagonal entry of Ah(k−1) is zero. We will use this result and a ∈ Z(R) freely.

Also, from A = Ak, we obtain a12 = kC1a
k−1a12 = kak−1a12 = ka12 and (k−1)a12 = 0

follows.

Note that ( a a12
0 a ) and

( a as,s+1

0 a

)
have the same structure for every s ≥ 2. This shows

(k − 1)as,s+1 = 0.
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From A2(k−1) = Ak−1 = ak−1In, we obtain

0 = 2(k−1)C1a
2(k−1)−1a13 + 2(k−1)C2a

2(k−1)−2a12a23

= 2(k − 1)a2(k−1)−1a13 +
2(k − 1)(2(k − 1)− 1)

2
a2(k−1)−2a12a23

= 2(k − 1)a2(k−1)−1a13 + (k − 1)(2(k − 1)− 1)a2k−4a12a23

= 2(k − 1)a2(k−1)−1a13 + (2(k − 1)− 1)a2k−4(k − 1)a12a23 = 2(k − 1)a2(k−1)−1a13

since (k − 1)a12 = 0. From this, we obtain 0 = a(2(k − 1)a2(k−1)−1a13) = 2(k −
1)a2(k−1)a13 = 2(k − 1)a13 since a2(k−1)a13 = a13 as above. Note that

( a a12 a13
0 a a23
0 0 a

)
and( a as,s+1 as,s+2

0 a as+1,s+2

0 0 a

)
have the same structure for every s ≥ 2. This shows 2(k− 1)as,s+2 = 0.

From A3·2(k−1) = Ak−1 = ak−1In, we obtain

0 = mC1a
m−1a14 + mC2a

m−2a12a24 + mC2a
m−2a13a34 + mC3a

m−3a12a23a34

= mam−1a14 + am−23(m− 1)(k − 1)a12a24

+ am−23(m− 1)a13(k − 1)a34 + am−3(m− 1)(m− 2)(k − 1)a12a23a34

= 3 · 2(k − 1)a3·2(k−1)−1a14

since (k− 1)ah,h+1 = 0 with h ≥ 1, mC2 = 3(m− 1)(k− 1), mC3 = (m− 1)(m− 2)(k− 1),

where m = 3 · 2(k − 1). From this, we obtain 0 = a(3 · 2(k − 1)a3·2(k−1)−1a14) = 3 ·
2(k − 1)a3·2(k−1)a14 = 3 · 2(k − 1)a14 since a3·2(k−1)a14 = a14 as above. Similarly we get

3 · 2(k − 1)as,s+3 = 0 for every s ≥ 2.

Now, suppose by induction that

(u− 1)!(k − 1)a1,1+(u−1) = 0 for 3 ≤ u < n.

Then, from the results obtained, we claim that the following formula holds for 2 ≤ v ≤ u

and 2 ≤ si < sj < 1 + u (i < j):

u!(k−1)Cva
m−va1,s1as1,s2 · · · asq ,1+u = 0,

where m = u!(k − 1) and q = v − 1.

For the proof of this claim, we use the well-known fact of number theory that the

product of t consecutive positive integers is divisible by t! (where t ≥ 2). When v = u− 1

we have

u!(k−1)Cu−1a
m−(u−1)a1,s1as1,s2 · · · asq ,1+u = 0

because the set {a1,s1 , as1,s2 , . . . , asq ,1+u} contains ap,p+1 for some p ≥ 1. So assume

u− v ≥ 2. Then (v− 1)u ≥ (v− 1)(v+ 2) = v2 + (v− 2) ≥ v2 since v ≥ 2, from which we

see that 0 ≤ vu−u−v2

v = (u− v)− u
v ; that is, u− v ≥ u

v .
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Now we have

mCva
m−va1,s1as1,s2 · · · asq ,1+u

=
u!(k − 1)(m− 1) · · · (m− (v − 1))

v(v − 1) · · · 2
am−va1,s1as1,s2 · · · asq ,1+u

= u(u− 1) · · · (v + 1)(k − 1)(m− 1) · · · (m− (v − 1))am−va1,s1as1,s2 · · · asq ,1+u

= (u− v)!b(k − 1)(m− 1) · · · (m− (v − 1))am−va1,s1as1,s2 · · · asq ,1+u

= (m− 1) · · · (m− (v − 1))am−v(b(u− v)!(k − 1))a1,s1as1,s2 · · · asq ,1+u = 0

by the induction hypothesis because u − v ≥ u
v and the set {a1,s1 , as1,s2 , . . . , asq ,1+u}

contains ap,p+p′ for some p, p′ ≥ 1 with p′ ≤
[
u
v

]
, where b ≥ 1.

By these preparations we have

0 = mC1a
m−1a1,1+u +

u∑
v=2

∑
v

mCva
m−v (a sum of products of aij ’s)

= mam−1a1,1+u = u!(k − 1)au!(k−1)−1a1,1+u,

noting Au!(k−1) = Ak−1 = ak−1In. This yields 0 = a(u!(k − 1)au!(k−1)−1a1,1+u) = u!(k −
1)au!(k−1)a1,1+u = u!(k− 1)a1,1+u since au!(k−1)a1,1+u = a1,1+u as above. Similarly we get

u!(k − 1)as,s+u = 0 for every s ≥ 2.

Next we observe the shapes of potent elements in polynomials (power series) over

PC rings. Note that for an Abelian ring R (i.e., I(R) ⊆ Z(R)), we have the following:

(i) I(R) = I(R[x]) = I(R[[x]]); (ii) both R[x] and R[[x]] are Abelian (see [11, Lemma 8]).

Theorem 2.2. Let R be a PC ring. Then the following assertions hold.

(1) Suppose that f(x)k = f(x) for some k ≥ 2 where 0 ̸= f(x) =
∑n

i=0 aix
i ∈ R[x].

Then ak0 = a0 ∈ Z(R), an ∈ N(R), and u!(k − 1)au = 0 for every 1 ≤ u ≤ n.

(2) Suppose that f(x)k = f(x) for some k ≥ 2 where 0 ̸= f(x) =
∑∞

i=0 aix
i ∈ R[[x]].

Then ak0 = a0 ∈ Z(R) and u!(k − 1)au = 0 for every 1 ≤ u.

Proof. (1) The proof is similar to one of Theorem 2.1, but different in several main parts.

So we write it in detail. Since f(x)k = f(x), ak0 = a0 (hence ak−1
0 ∈ I(R)) and f(x)k−1 ∈

I(R[x]). Thus f(x)k−1 = ak−1
0 by [11, Lemma 8] and, because R is PC, we get a0 ∈ Z(R),

from which we see that

f(x) = f(x)k = f(x)k−1f(x) = ak−1
0

n∑
i=0

aix
i =

n∑
i=0

ak−1
0 aix

i.

This yields ai = ak−1
0 ai for all i. From f(x)k−1 = ak−1

0 , we obtain ak−1
n = 0, whence

an ∈ N(R).
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Since f(x)k−1 = f(x)h(k−1) and ak−1
0 = a

h(k−1)
0 for every h ≥ 1, we have ai = a

h(k−1)
0 ai

for all i, and every non-constant term of f(x)h(k−1) is zero. We will use this result and

a0 ∈ Z(R) freely.

From f(x)k−1 = ak−1
0 , we have 0 = k−1C1a

(k−1)−1
0 a1 = (k−1)ak−2

0 a1, the coefficient of

f(x)k−1 of degree 1. This implies that 0 = a0((k−1)ak−2
0 a1) = (k−1)a1 since a

k−1
0 a1 = a1

as above. Next we calculate the coefficients of f(x)h(k−1) of degree ≥ 2 which are also

zero.

From f(x)2(k−1) = f(x)k−1 = ak−1
0 , we obtain

0 = 2(k−1)C1a
2(k−1)−1
0 a2 + 2(k−1)C2a

2(k−1)−2
0 a21

= 2(k − 1)a
2(k−1)−1
0 a2 +

2(k − 1)(2(k − 1)− 1)

2
a
2(k−1)−2
0 a21

= 2(k − 1)a
2(k−1)−1
0 a2 + (k − 1)(2(k − 1)− 1)a2k−4

0 a21

= 2(k − 1)a
2(k−1)−1
0 a2 + (2(k − 1)− 1)a2k−4

0 (k − 1)a21 = 2(k − 1)a
2(k−1)−1
0 a2

since (k−1)a1 = 0. From this, we obtain 0 = a0(2(k−1)a
2(k−1)−1
0 a2) = 2(k−1)a

2(k−1)
0 a2 =

2(k − 1)a2 since a
2(k−1)
0 a2 = a2 as above.

From f(x)3!(k−1) = f(x)k−1 = ak−1
0 , we obtain

0 = mC1a
m−1
0 a3 + mC2a

m−2
0 a1a2 + mC2a

m−2
0 a2a1 + mC3a

m−3
0 a31

= mam−1
0 a3 + am−2

0 3(m− 1)(k − 1)a1a2 + am−2
0 3(m− 1)a2(k − 1)a1

+ am−3
0 (m− 1)(m− 2)(k − 1)a31

= 3!(k − 1)a
3·2(k−1)−1
0 a3

since (k−1)a1 = 0, mC2 = 3(m−1)(k−1), mC3 = (m−1)(m−2)(k−1), wherem = 3!(k−1).

From this, we obtain 0 = a0(3!(k − 1)a
3!(k−1)−1
0 a3) = 3!(k − 1)a

3!(k−1)
0 a3 = 3!(k − 1)a3

since a
3!(k−1)
0 a3 = a3 as above.

Now, suppose by induction that

(u− 1)!(k − 1)au−1 = 0 for 3 ≤ u ≤ n.

Then, from the results obtained, we claim that the following formula holds for 2 ≤ v ≤ u

and 2 ≤ si < sj < 1 + u (i < j):

u!(k−1)Cva
m−v
0 as1as2 · · · asv = 0,

where m = u!(k − 1) and s1 + s2 + · · ·+ sv = u.

When v = u− 1 we have

u!(k−1)Cu−1a
m−(u−1)
0 as1as2 · · · asu−1 = 0
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because the set {as1 , as2 , . . . , asu−1} contains a1. So assume u−v ≥ 2. Then (v−1)u ≥ (v−
1)(v+2) = v2+(v−2) ≥ v2 since v ≥ 2, from which we see that 0 ≤ vu−u−v2

v = (u−v)− u
v ;

that is, u− v ≥ u
v .

Now we have

mCva
m−v
0 as1as2 · · · asv

=
u!(k − 1)(m− 1) · · · (m− (v − 1))

v(v − 1) · · · 2
am−v
0 as1as2 · · · asv

= u(u− 1) · · · (v + 1)(k − 1)(m− 1) · · · (m− (v − 1))am−v
0 as1as2 · · · asv

= (u− v)!b(k − 1)(m− 1) · · · (m− (v − 1))am−v
0 as1as2 · · · asv

= (m− 1) · · · (m− (v − 1))am−v
0 (b(u− v)!(k − 1))as1as2 · · · asv = 0

by the induction hypothesis because u− v ≥ u
v and the set {as1 , as2 , . . . , asv} contains ap

for some p ≥ 1 with p ≤
[
u
v

]
, where b ≥ 1.

By these preparations we have

0 = mC1a
m−1
0 au +

u∑
v=2

∑
v

mCva
m−v
0 (a sum of products of ai’s)

= mam−1
0 au = u!(k − 1)a

u!(k−1)−1
0 au,

noting f(x)u!(k−1) = f(x)k−1 = ak−1
0 . This yields 0 = a0(u!(k − 1)a

u!(k−1)−1
0 au) = u!(k −

1)a
u!(k−1)
0 au = u!(k − 1)au since a

u!(k−1)
0 au = au as above.

(2) This is shown by the proof of (1).

From now on, let Z (Zn) denote the ring of integers (modulo n), and R (resp., Q)

denote the field of real (resp., rational) numbers. The characteristic of R is written by

ch(R). Use pI(R) to denote the set of all potent elements; and R = R/I and r = r+ I for

r ∈ R, where I is an ideal of a ring R.

Notice that I(R) ⊆ pI(R) for any ring R. Hence if pI(R) ⊆ Z(R) then I(R) ⊆ Z(R).

This shows that PC rings are Abelian. In the following example, parts (1), (2) and (3)

provide examples of noncommutative PC rings; and part (4) shows that there exists an

Abelian ring but not PC.

Example 2.3. (1) Let K be any field and let R = W1(K) be the first Weyl algebra over

K, that is, R is the ring of polynomials in s, t, subject to the relation that st = ts + 1.

Then R is a right Noetherian domain by [14, Theorem 1.2.9(ii)], and so R has a right

quotient division ring by [14, Theorem 2.1.15], say Q. Evidently, k ∈ Z(R) for every

k ∈ K, and so K ⊆ Z(R). Let 0 ̸= f ∈ R such that fk = f for k ≥ 2. Then fk−1 is

a nonzero idempotent by Lemma 3.1(3) to follow. But R is a domain, forcing fk−1 = 1.
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From this, we obtain f ∈ K by the construction of R, and hence f ∈ Z(R). Thus R is a

PC ring that is noncommutative. It can be similarly shown that Q is also PC.

(2) Let p be a prime number and n ≥ 1. Let K be the splitting field of xp
n − x over

Zp, and let R = W1(K). Then, by (1), R is a noncommutative right Noetherian domain

that is PC. Note that ch(R) = p and kp
n
= k for every k ∈ K. Note that sp ∈ Z(R) and

K ⊊ Z(R).

(3) We consider such a ring of characteristic zero. Let K ′ be the splitting field of

x2
2 − x over Q, that is, K ′ = Q(ω) where ω2 + ω + 1 = 0. Then R = W1(K

′) is also

a noncommutative right Noetherian domain that is PC, by (1). Note that ω4 = ω and

ωk ̸= ω for every 1 ≤ k ≤ 3, from which we also obtain that (−(ω + 1))4 = −(ω + 1),

(−(ω + 1))k ̸= −(ω + 1), (ω + 1)7 = ω + 1, (ω + 1)h ̸= ω + 1 for any 1 ≤ k ≤ 3 and

1 ≤ h ≤ 6. Note that R is simple by [14, Theorem 1.3.5] and K = Z(R) follows. We can

note that −(ω + 1) is another zero of x2
2 − x.

(4) There exist division rings which are not PC. Let R = {a0+a1i+a2j+a3k | ai ∈ F}
where F is a field between Q and R. Then R is a division ring that is not PC. For, i5 = i

and i /∈ Z(R). Similarly, every noncommutative domain S = {a0+a1i+a2j+a3k | ai ∈ G}
is not PC either, where G is a domain between Z and R.

A ring R (possibly without identity) is usually called reduced if N(R) = 0. It is

easy to check that reduced rings are Abelian. But reduced rings need not be PC by

Example 2.3(4), and PC rings need not be reduced rings either by the existence of non-

reduced commutative rings (e.g., Zmn with m,n ≥ 2). So the concepts of PC and reduced

are independent of each other.

3. PC ring property of Dn(R) and R[x]

In this section we study the structure of potent elements in several ring extensions of PC

rings, and the PC ring property of such extensions.

Lemma 3.1. (1) Let R be a ring of prime characteristic. If R is PC then N(R) ⊆ Z(R).

(2) The class of PC rings is closed under subrings and direct products.

(3) Let R be a ring and J be a nil ideal of R. Suppose that for a ∈ R, there exist integers

m > n ≥ 1 such that am = an for a ∈ R = R/J . Then there exist e ∈ I(R) such

that an(m−n) = e.

(4) [2, Proposition 1.7] Let R be a ring and n ≥ 2. Z(Dn(R)) = {rIn + sE1n | r, s ∈
Z(R)}.
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(5) [5, Lemma 1] Let R be an Abelian ring and n ≥ 2. If (aij) ∈ I(Dn(R)) then

(aij) = eIn for some e ∈ I(R).

(6) Every free algebra over a commutative domain is PC.

Proof. (1) Let ch(R) = p, a prime number, and a ∈ N(R). Then ap
m
= 0 for some m ≥ 1,

and so (1+a)p
m
= 1+ap

m
= 1 by [7, Exercises 3.1.10(e)]. This yields (1+a)p

m+1 = 1+a,

i.e., 1 + a ∈ pI(R). If R is PC then 1 + a ∈ Z(R), entailing a ∈ Z(R).

(2) It is obvious.

(3) From am = an, we obtain an(m−n) ∈ I(R) by the proof of [6, Proposition 16].

Then, by [13, Proposition 3.6.1], there exists e ∈ I(R) such that an(m−n) = e.

(6) Let R = S⟨X⟩ be a free algebra generated by a set X over a commutative domain

S. If |X| = 1 then R ∼= S[x] and thus R is commutative. Assume |X| ≥ 2. Then R is a

noncommutative domain. Now let ak = a for 0 ̸= a ∈ R and k ≥ 2. Then ak−1 ∈ I(R)

by (3). But R is a domain and ak−1 ̸= 0, we have ak−1 = 1 and this forces a ∈ S. Thus

R is PC since S is clearly contained in Z(R).

Lemma 3.1(1) is not valid when the characteristic of a given PC ring is not prime. In

the following we provide two kinds of examples related to this argument.

Example 3.2. (1) We refer to the construction of Abelian rings given by Antoine [1,

Example 4.8]. Let K be a field with ch(K) = 0, n ≥ 2, and A = K⟨a, b⟩ be the free

algebra generated by noncommuting indeterminates a, b over K. Let I be the ideal of A

generated by b2 and set R = A/I. Each element of A is identified with its image in R for

simplicity. We will show that R is PC. Every r ∈ R is expressed by

r = k + k1b+ bfb+ g with k, k1 ∈ K, f ∈ R, and g ∈ aR+Ra.

Note that (k1b+bfb)2 = 0, g ̸= gm ̸= 0 for anym ≥ 2 when g ̸= 0, and k+k1b+bfb ∈ U(R),

the group of units in R, when k ̸= 0. Now let 0 ̸= r = k + k1b+ bfb+ g ∈ R be such that

rn = r for some n ≥ 2.

Assume k ̸= 0. Then k + k1b+ bfb ∈ U(R) and

(k + k1b+ bfb)n + c = rn = r = (k + k1b+ bfb) + g

where c ∈ RgR and a occurs in every term of c when c ̸= 0. Thus (k+k1b+bfb)n = k+k1b+

bfb and, by Lemma 3.1(3), (k+k1b+bfb)n−1 ∈ I(R). Note that clearly N(R) = Kb+bRb,

and I(R) = {0, 1} by [12, Example 2.10], and we have (k + k1b+ bfb)n−1 = 1. But since

ch(K) = 0,

1 = (k + k1b+ bfb)n−1 = kn−1 + (n− 1)kn−2(k1b+ bfb)
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implies that k1b+ bfb = 0, and so r = k + g. Consequently,

kn + h1g + · · ·+ hn−1g
n−1 + gn = rn = r = k + g with hi ∈ K

and this forces g = 0. Thus we get r = k ∈ Z(R).

Assume k = 0, i.e., r = k1b+ bfb+g. Then, since r = rn (n ≥ 2) and (k1b+ bfb)2 = 0,

we get k1b + bfb + g ∈ RgR and this forces k1b + bfb = 0, obtaining r = g. This yields

gn = rn = r = g and this forces g = 0, contrary to r ̸= 0.

From the results obtained, we now have r = k ∈ K ⊆ Z(R) and therefore R is PC.

But b2 = 0, ab ̸= ba, and ba, ab /∈ N(R). Thus N(R) is not an ideal of R.

(2) Consider the first Weyl algebra R = W1(K) over a field K with ch(K) = 0. Then R

is a noncommutative PC domain by Example 2.3(1). Then, by Theorem 3.4(2) to follow,

Dn(R) (n ≥ 2) is a noncommutative PC ring. Note that ch(Dn(R)) = 0 and N(Dn(R))

is not contained in Z(Dn(R)). Here N(Dn(R)) forms an ideal of Dn(R).

For a ring R, we use N∗(R), N∗(R) and W (R) to denote the lower nilradical (i.e.,

prime radical), the upper nilradical (i.e., the sum of all nil ideals) and the Wedderburn

radical (i.e., the sum of all nilpotent ideals) of R, respectively. It is well-known that

W (R) ⊆ N∗(R) ⊆ N∗(R) ⊆ N(R).

As a result of Lemma 3.1(1), we have the following: If R is a PC ring of prime

characteristic, then W (R) = N∗(R) = N∗(R) = N(R), and hence N(R)[x] = W (R)[x] =

W (R[x]) = N(R[x]).

Corollary 3.3. Let R be a ring and n ≥ 2. Suppose that Dn(R) is PC. Then R is a PC

ring that satisfies the following.

(1) Let n = 2 and A = (aij) ∈ D2(R). If Ak = A for some k ≥ 2, then akii = aii ∈ Z(R),

a12 ∈ Z(R) and (k − 1)a12 = 0.

(2) Let n ≥ 3 and A = (aij) ∈ Dn(R). If Ak = A for some k ≥ 2, then akii = aii ∈ Z(R),

a1n ∈ Z(R), (k − 1)a1n = 0, and aij = 0 for all i < j, except a1n.

Proof. Since Dn(R) is PC, R is PC by Lemma 3.1(2).

(1) Let Ak = A for some k ≥ 2. Then akii = aii ∈ Z(R) and (k − 1)a12 = 0 by

Theorem 2.1. Additionally, since D2(R) is PC, A ∈ Z(D2(R)) and so, by Lemma 3.1(4),

a12 ∈ Z(R).

(2) Let Ak = A for some k ≥ 2. Then akii = aii. Since Dn(R) is PC, A ∈ Z(Dn(R))

and hence aii, a1n ∈ Z(R) and aij = 0 for all i < j, except a1n, by Lemma 3.1(4). Hence

the structure of A is same as one of
( a11 a1n

0 ann

)
, obtaining the desired result by (1).

In the following, we see a condition for Dn(R) to be PC over a PC ring R.
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Theorem 3.4. Let R be a PC ring that is a domain with ch(R) = 0 and n ≥ 2. Then the

following assertions hold.

(1) Let 0 ̸= A = (aij) ∈ Dn(R) be such that Ak = A for some k ≥ 2. Then akii = aii ∈
Z(R), and aij = 0 for all i < j; that is, A = aiiIn with aii ∈ Z(R).

(2) Dn(R) is PC.

Proof. (1) Since Ak = A, aii must be nonzero (otherwise, A is nilpotent). Next we have,

by Theorem 2.1, that akii = aii ∈ Z(R), and (n − 1)!(k − 1)aij = 0 for all i < j where

1 ≤ i ≤ n − 1 and 2 ≤ j ≤ n. But (n − 1)!(k − 1) ̸= 0 because ch(R) = 0. So we obtain

aij = 0 from (n− 1)!(k − 1)aij = 0 since R is a domain.

(2) This is immediate from (1) and Lemma 3.1(4).

The condition “R is a domain” in Theorem 3.4 is not superfluous by the following

example.

Example 3.5. Let R =
∏∞

i=1 Z3i . Then R is a PC ring by Lemma 3.1(2), and ch(R) = 0.

But R is not a domain clearly. Consider Dn(R) for n ≥ 3 and let A = aIn+bE12 ∈ Dn(R)

with a = (1, 1, 0, 0, . . .), b = (0, 3, 0, 0, . . .) ∈ R. Then A4 = A since a2 = a and 4ab = 4b =

b. However, A /∈ Z(Dn(R)) by Lemma 3.1(4) and so Dn(R) is not PC. Moreover A is not

of the form aIn.

In addition, Theorem 3.4 is not valid when the characteristic of the base ring R is

nonzero, as follows.

Proposition 3.6. Let R be a ring of prime characteristic. Then we have the following.

(1) R is commutative if and only if D2(R) is PC.

(2) Dn(R) is not PC for every n ≥ 3.

Proof. (1) It suffices to show the sufficiency. Suppose that D2(R) is PC. Then
(
0 R
0 0

)
is contained in Z(D2(R)) by Lemma 3.1(1) since

(
0 R
0 0

)
⊆ N(D2(R)) and ch(D2(R)) is

prime, from which we see that
(
0 R
0 0

)
=

(
0 Z(R)
0 0

)
by Lemma 3.1(4). Hence R = Z(R).

(2) Since n ≥ 3, E12 ∈ N(Dn(R)). But E12 /∈ Z(Dn(R)), and so Dn(R) is not PC by

Lemma 3.1(1) since ch(Dn(R)) is prime.

Example 3.7. (1) If R is a noncommutative ring over which Dn(R) (n ≥ 3) is PC, then

ch(R) must not be prime by Proposition 3.6(2).

(2) Let R be the first Weyl algebra over any field K with ch(R) = 0. Then Dn(R)

(n ≥ 3) is a noncommutative PC ring by Theorem 3.4(2) and Example 2.3(1).
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The following shows a condition under which R[x] can be PC over a PC ring R.

Corollary 3.8. (1) If R is a PC ring that is a domain with ch(R) = 0, then pI(R[x]) ⊆
Z(R) and R[x] is PC.

(2) If R is a PC ring of prime characteristic, then (i) R[x] is PC; and (ii) every potent

polynomial is contained in pI(R) + xW (R)[x].

Proof. (1) Suppose that R is a PC ring that is a domain with ch(R) = 0. Let f(x)k =

f(x) for some k ≥ 2, where 0 ̸= f(x) =
∑n

i=0 aix
i ∈ R[x]. Then a0 must be nonzero

(otherwise, f(x) is nilpotent) because f(x)k−1 = ak−1
0 by [11, Lemma 8]. Next we have,

by Theorem 2.2, that ak0 = a0 ∈ Z(R), and (n − 1)!(k − 1)ai = 0 for all 1 ≤ i ≤ n. But

since ch(R) = 0, (n−1)!(k−1) ̸= 0 and, since R is a domain, (n−1)!(k−1)ai = 0 implies

ai = 0. Thus f(x) = a0 ∈ Z(R) ⊆ Z(R[x]), as desired.

(2-i) Suppose that R is a PC ring of prime characteristic. Let 0 ̸= f(x) =
∑n

i=0 aix
i ∈

R[x] and f(x)k = f(x) for some k ≥ 2. Then a0 ∈ Z(R) and an ∈ N(R) by Theo-

rem 2.2(1), from which we see an ∈ Z(R) by Lemma 3.1(1).

Consider the nilpotent ideal I1 = (RanR)[x] of R[x] and the factor ring R1 = R[x]/I1.

Then

f1(x)
k = f(x)k = f(x) = f1(x)

in R1, where f1(x) =
∑n−1

i=0 aix
i. Here, f1(x)

k = f1(x) implies (ak0 + · · ·+ akn−1x
(n−1)k) +

I1 = (a0 + · · · + an−1x
n−1) + I1 and, since k ≥ 2, we get akn−1 = 0 in R1, entailing

an−1 ∈ N(R). Then an−1 ∈ Z(R) by Lemma 3.1(1) again.

Next consider the nilpotent ideal I2 = (Ran−1R+RanR)[x] of R[x] and the factor ring

R2 = R[x]/I2. Then

f2(x)
k = f1(x)

k = f(x)k = f(x) = f1(x) = f2(x)

in R2, where f2(x) =
∑n−2

i=0 aix
i. Here, f2(x)

k = f2(x) implies (ak0 + · · ·+ akn−2x
(n−2)k) +

I2 = (a0 + · · · + an−2x
n−2) + I2 and, since k ≥ 2, we get akn−2 = 0 in R2, entailing

an−2 ∈ N(R). Then an−2 ∈ Z(R) by Lemma 3.1(1) again.

Proceeding inductively, we finally obtain that a1, a2, . . . , an ∈ N(R) ⊆ Z(R). Conse-

quently we have f(x) ∈ Z(R[x]) and therefore R[x] is PC.

(2-ii) It comes from the proof of (2-i).

Let R be a ring and J be an ideal of R. Then J is said to be idempotent-lifting (resp.,

potent-lifting) if idempotents (resp., potent elements) in R/J can be lifted to R. Nil ideals

are idempotent-lifting by [13, Proposition 3.6.1].

Remark 3.9. (1) We provide another proof of [13, Proposition 3.6.1] when a given ring

has prime characteristic. Let R be a ring of ch(R) = p, a prime number, and J be a
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nil ideal of R. Suppose a2 = a in R/J . Then a2 − a ∈ N(R) and we can take m ≥ 1

such that (a2 − a)p
m

= 0. The prime number p divides pmCk for 1 ≤ k ≤ pm − 1

by [7, Exercises 3.1.10(e)], hence pmCkr = 0 for all r ∈ R because ch(R) = p. So from

(a2 − a)p
m

= 0, we obtain a2p
m

= ap
m
, noting that ap

m
= −ap

m
when p = 2. It then

follows that ap
2m ∈ I(R) by the proof of [6, Proposition 16]. Moreover ap

2m
= a since

a2 = a.

(2) Let R be a ring and J be a nil ideal of R. Suppose a2 = a in R/J . Then

(a2 − a)k = 0 for some k ≥ 1. This equality yields ak = akf(a) with f(x) ∈ Z[x].

Khurana [10, Example 12] showed that nil ideals need not be potent-lifting. We will

give another such example in the following.

Example 3.10. Let R = Z[x]/I2 and let N = I/I2, where I = Z[x](1−x2). Then N is a

nilpotent ideal of R. We identify every element of Z[x] with its image of R for simplicity.

Note that x− x3 = x(1− x2) ∈ N , and so x3 ≡ x (mod N). Assume that there exists

y ∈ R such that y ≡ x (mod N) and ym = y for some m ≥ 2. From the facts that y ≡ x

(mod N) and x4 = 2x2 − 1, we have y = x+ r(x)(1− x2) = x+ (a+ bx)(1− x2) for some

a, b ∈ Z, where r(x) = a + bx + · · · + cxk. We calculate ym = (x + (a + bx)(1 − x2))m.

Then ym =
∑m

i=0 mCix
m−i(a+ bx)i(1− x2)i, and so we finally get

ym = xm +mxm−1(a+ bx)(1− x2).

We first note that x2n = nx2 − (n − 1) for any n ≥ 1. To prove this equality, we use

the induction on n. If n = 1, then it holds. Assume that x2k = kx2 − (k − 1). Then

x2(k+1) = x2kx2 = (kx2−(k−1))x2 = kx4−(k−1)x2 = k(2x2−1)−(k−1)x2 = (k+1)x2−k,

completing the claim. We use it freely.

Suppose that m = 2n. Then

y2n = x2n + 2nx2n−1(a+ bx)(1− x2)

= 2nax2n−1 + (1 + 2nb)x2n − 2nax2n+1 − 2nbx2(n+1)

= (1 + n(2b− 1)) + 2nax+ n(1− 2b)x2 − 2nax3.

Since y2n = y = a + (1 + b)x − ax2 − bx3, we have 1 + n(2b − 1) = a, 2na = 1 + b,

n(1− 2b) = −a, −2na = −b. Then we have 1 + a = a and 1 + b = b, which is impossible.

Suppose that m = 2n+ 1. Then

y2n+1 = x2n+1 + (2n+ 1)x2n(a+ bx)(1− x2)

= (2n+ 1)ax2n + (1 + (2n+ 1)b)x2n+1 − (2n+ 1)ax2n+2 − (2n+ 1)bx2n+3

= (2n+ 1)a+ ((1− n) + (2n+ 1)b)x− (2n+ 1)ax2 + (n− (2n+ 1)b)x3.

By the same argument as above, we have (2n+1)a = a and −n+(2n+1)b = b, leading

to that 2na = 0 and 2nb = n, which is also impossible.
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Following the literature, a ring R is called periodic if for every a ∈ R, there exist

integers m(a) > n(a) ≥ 1 such that am(a) = an(a).

Proposition 3.11. Let R be a periodic PC ring. Then the following assertions hold.

(1) W (R) = N(R) ⊆ Z(R).

(2) R is commutative.

(3) Let f(x)k = f(x) for f(x) =
∑n

i=0 aix
i ∈ R[x] and k ≥ 2. Then ai ∈ N(R) for every

1 ≤ i ≤ n.

Proof. (1) Let a ∈ N(R). Since R is periodic, (1 + a)m = (1 + a)n for some m > n ≥ 1

and so (1+ a)m−n+1 = 1+ a, because 1+ a is a unit. Since R is PC, 1+ a ∈ Z(R) and so

a ∈ Z(R). Thus N(R) ⊆ Z(R) and W (R) = N(R) follows.

(2) R is commutative by (1) and [4, Theorem].

(3) Note first that W (R) = N∗(R) = N(R) and R/N∗(R) is a reduced (hence Abelian)

ring by (1). By Theorem 2.2, we have an ∈ N(R) since f(x)k = f(x), from which we

see that f(x) = f1(x) in
R[x]

N∗(R)[x] (
∼= R

N∗(R) [x]), where f1(x) =
∑n−1

i=0 aix
i. It then follows

that f1(x)
2(k−1) = f(x)2(k−1) = f(x)k−1 = f

k−1
1 , that is, f

k−1
1 ∈ I(R[x]/N∗(R)[x]). Thus

an−1 ∈ N(R[x]/N∗(R)[x]) by [11, Lemma 8]. Since R[x]/N∗(R)[x] is reduced, we get

an−1 ∈ N∗(R) and, consequently, we have f(x) = f1(x) = f2(x) in R[x]/N∗(R)[x], where

f2(x) =
∑n−2

i=0 aix
i. Proceeding inductively, we obtain ai ∈ N∗(R) for all 1 ≤ i ≤ n.

Remark 3.12. (1) Matn(R) and Tn(R) over any ring R for n ≥ 2 cannot be PC, since they

are not Abelian, and so we see that the PC ring property is not Morita invariant.

(2) For a given ring R, recall that R is called local if R/J(R) is a division ring, where

J(R) is the Jacobson radical of R; R is called semilocal if R/J(R) is semisimple Artinian;

and R is called semiperfect if R is semilocal and idempotents can be lifted modulo J(R).

Local rings are clearly Abelian and semilocal. As a corollary of Lemma 3.1(2), we have

the following results for a ring R.

(i) R is semiperfect and PC if and only if R is a finite direct product of local PC rings;

and

(ii) For e2 = e ∈ Z(R), R is PC if and only if both eR and (1− e)R are PC.

Proof. (i) Suppose that R is semiperfect and PC. Since R is semiperfect, R has a finite or-

thogonal set {e1, e2, . . . , en} of local idempotents whose sum is 1 by [13, Proposition 3.7.2],

i.e., each eiRei is a local ring. Since R is PC, it is Abelian as noted earlier; whence

eiR = eiRei for each i and this implies R =
∑n

i=1 eiR. But each eiR is also a PC ring by

Lemma 3.1(2).
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Conversely assume that R is a finite direct product of local PC rings. Then R is

semiperfect since local rings are semiperfect by [13, Corollary 3.7.1], and moreover R is

PC by Lemma 3.1(2).

(ii) This is immediate from Lemma 3.1(2), since R = eR ⊕ (1 − e)R for every e ∈
I(R) ∩ Z(R).

We finally consider the PC ring property of both Jordan extension and Dorroh ex-

tension. For a ring R with a monomorphism σ, set A(R, σ) be the subset {x−irxi | r ∈
R and i ≥ 0} of the skew Laurent polynomial ring R[x, x−1;σ]. Note that for j ≥ 0,

xjr = σj(r)xj implies rx−j = x−jσj(r) for r ∈ R, from which we see that A(R, σ)

forms a subring of R[x, x−1;σ] with the following natural operations: x−irxi + x−jsxj =

x−(i+j)(σj(r) + σi(s))xi+j and (x−irxi)(x−jsxj) = x−(i+j)σj(r)σi(s)xi+j for r, s ∈ R and

i, j ≥ 0. Note that A(R, σ) is an over-ring of R, and the map σ : A(R, σ) → A(R, σ)

defined by σ(x−irxi) = x−iσ(r)xi is an automorphism of A(R, σ). Jordan showed, with

the use of left localization of the skew polynomial R[x;σ] with respect to the set of powers

of x, that for any pair (R, σ), such an extension A(R, σ) always exists in [9]. This ring

A(R, σ) is said to be the Jordan extension of R by σ.

Theorem 3.13. Let R be a ring with an automorphism σ. Then R is PC if and only if

the Jordan extension A = A(R, σ) of R by σ is PC.

Proof. It is enough to show the necessity by Lemma 3.1(2). Note that pI(A) = {x−irxi |
r ∈ pI(R) and i ≥ 0} clearly. Furthermore, σ(r) ∈ Z(R) when r ∈ Z(R), and so Z(A) =

{x−irxi | r ∈ Z(R) and i ≥ 0}. For,

(x−irxi)(x−jsxj) = x−(i+j)σj(r)σi(s)xi+j = x−(i+j)σi(s)σj(r)xi+j = (x−jsxj)(x−irxi)

for r ∈ Z(R) and s ∈ R and i, j ≥ 0.

Now let R be PC and suppose that ak = a for some k ≥ 2, where a = x−irxi ∈ A.

This yields x−irkxi = x−irxi and rk = r follows. Since R is PC, we have r ∈ Z(R). Thus

a ∈ Z(A) by the above argument, showing that A is PC.

Let A be an algebra over a commutative ring S. Due to Dorroh [3], the Dorroh exten-

sion of A by S is the Abelian group A× S with multiplication given by (r1, s1)(r2, s2) =

(r1r2 + s1r2 + s2r1, s1s2) for ri ∈ A and si ∈ S. We use A ×dor S to denote the Dorroh

extension of A by S. Note that if A is unitary then S ⊆ A.

Proposition 3.14. Let A be a unitary algebra over a commutative ring S.

(1) Suppose that A×dor S is PC. If (a, s) is potent in A×dor S then a ∈ Z(A).
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(2) Suppose that A satisfies the condition that if a ∈ A is a root of some nonzero poly-

nomial in S[x] then a ∈ Z(A). Then A×dor S is PC.

Proof. Let E = A×dor S.

(1) Let (a, s)k = (a, s) for some k ≥ 2. Then (a, s) ∈ Z(E) since E is PC, and it

implies that (a, 0) = (a, s)− (0, s) ∈ Z(E) since (0, s) ∈ Z(E). Thus a ∈ Z(A).

(2) Let there exists k ≥ 2 such that (a, s)k = (a, s) for (a, s) ∈ E. Then a ∈ A is a

root of the nonzero polynomial xk + kC1sx
k−1 + · · ·+ kCk−2s

k−2x2 + kCk−1s
k−1x, and so

a ∈ Z(A) by hypothesis. Hence (a, s) ∈ Z(E), showing that E is PC.
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