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A Fractional-order Quasi-reversibility Method to a Backward Problem for

the Multi-term Time-fractional Diffusion Equation

Liangliang Sun*, Yuxin Wang and Maoli Chang

Abstract. In the present paper, we devote our efforts to a backward problem for an

anomalous diffusion model with multi-term time fractional derivatives. Such a problem

is ill-posed. For this purpose, we introduce a fractional-order quasi-reversibility regu-

larization method that is a new perturbation related to the time fractional derivative

into the original equation. Based on some properties of the multinomial Mittag-Leffler

function as well as the Fourier method, we theoretically give some regularity results

of the regularized solution, and prove the corresponding convergence rate under the

a-priori regularization parameter choice rule in the general dimensional case. Finally,

several numerical examples are given to demonstrate the effectiveness of the proposed

method. The numerical results are well in line with our expectations.

1. Introduction

Fractional diffusion equations have a wide range of applications and great influence in

mathematical physics and other fields. Fractional diffusion equations can more accurately

describe some anomalous diffusion phenomena, such as underground sewage survey and

oil pollution survey [1,4,6,25], so the study of fractional diffusion equations have attracted

the attention of many scholars.

The multi-term time fractional diffusion equation (MTFDE in short) is a special frac-

tional diffusion equation, which can improve the efficiency of studying anomalous diffusion

problems. Because this kind of model could describe the diffusion phenomenon of a solute

in a multi-scale medium. Such processes are believed to provide useful models for a crowd

of non-homogeneousand non-stationary processes, for example, it is shown to be efficient

models for describing some anomalous diffusion processes in the highly heterogeneous

media by [6] in which the authors indicated that diffusion equation with time-fractional

derivative was well performed in describing the long-tailed profile of a particle diffuses in a

highly heterogeneous medium. Therefore, the study of this multi-term fractional diffusion

equation is of great significance in physics and engineering.
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Let T be a fixed positive constant and Ω be a bounded domain in Rd with sufficient

smooth (at least Lipschitz) boundary ∂Ω. In this paper, we focus on the following initial

boundary value problem (IBVP) for a multi-term time-fractional diffusion model

(1.1)


∑s

j=1 qj∂
αj

t ω(x, t) = Lω, (x, t) ∈ Ω× (0, T ],

ω(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

ω(x, 0) = ω0(x), x ∈ Ω,

where ∂αt represents the Caputo fractional time derivative defined by

∂αt ω :=
1

Γ(1− α)

∫ t

0

∂ω(x, s)

∂s

ds

(t− s)α
, 0 < α < 1, 0 < t < T,

where Γ(·) denotes the Gamma function. For a fixed positive integer s, the orders α =

(α1, . . . , αs) and the coefficients q = (q1, . . . , qs) are restricted in the admissible sets

A :=
{
(α1, . . . , αs) ∈ Rs | α ≥ α1 > α2 > · · · > αs ≥ α

}
,

Q :=
{
(q1, . . . , qs) ∈ Rs | q1 = 1, qj ∈ [q, q], j = 2, . . . , s

}
with fixed 0 < α < α < 1 and 0 < q < q.

The differential operator L is defined by

(1.2) Lω(x, t) =
d∑

i,j=1

∂

∂xi

(
aij(x)

∂ω

∂xj
(x, t)

)
+ b(x)ω(x, t),

where aij ∈ C1(Ω) and aij = aji, 1 ≤ i, j ≤ d, and b ∈ C(Ω), b(x) ≤ 0, x ∈ Ω. Moreover,

we assume that the operator L is uniformly elliptic on Ω, i.e., there exists a constant µ > 0

such that
d∑

i,j=1

aij(x)ξiξj ≥ µ|ξ|2, x ∈ Ω, ξ = (ξ1, . . . , ξd) ∈ Rd.

The initial state ω0(x) satisfies the following compatibility condition:

ω0(x) = 0, x ∈ ∂Ω.

To study various properties and results of fractional calculus, we can refer to [11,

26, 28]. However, the multi-term time fractional diffusion equations whose mean-squared

displacement behaving like ⟨∆x2⟩ ∼ Ctmin{αj} as t → ∞ (see, e.g., [23]) grows in time

slower than linear case, which are very different from the traditional diffusion equations,

for example, the decay in time is slow, and the smoothness of the solution is limited. Up

to now, there are extensive profound literatures concerning theory and computation of the

forward problems for the multi-term time-fractional diffusion equations (see [9, 13, 15, 20,

21,40] for an incomplete list).
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In practice, some parameters in the model, such as the fractional orders, some coeffi-

cients, source term, initial data or partial boundary data may not be measured directly,

which needs to be recovered by additional measured data by indirect means. Thus some

inverse problems in fractional diffusion equations arise. The published works were con-

sidered from different aspect on the inverse problems for multi-term counterpart, e.g.,

see [7,8,12,14,16,18,22,30–33] etc, and review literatures on inverse problems in anoma-

lous models [10,17].

Here the initial function ω0(x) is unknown, so the inverse problem considered in this

paper is to identify initial state based on problem (1.1) and an additional terminal data

(1.3) g(x) = ω(x, T ), x ∈ Ω.

This kind of backward problems in fractional diffusion equations have significant ap-

plication background and have increased extensive attention. In 2010, Liu and Yamamoto

firstly proposed a quasi-reversibility regularization method to solve the backward prob-

lem in time for a time-fractional diffusion equation in one-dimensional case [19]. In 2011,

Sakamoto et al. also gave the uniqueness for the backward problem based on the theoretical

results of the forward problem [27]. Subsequently, some effective regularization methods

continue to emerge, such as the Tikhonov regularization method [3,34,36], modified quasi-

boundary value method [37], iterative regularization method [35], variational method [38],

new adjoint technique [39], fractional Landweber method [5], fractional Tikhonov reg-

ularization method [2] and so on. Recently, Shi et al. [29] proposed a fractional-order

quasi-reversibility method to a backward problem for the time fractional diffusion equa-

tion. Some of the ideas in the present paper come from the above literature.

Compared with the inverse problem of classical heat equations, it is more challenging to

study the inverse problem of fractional equation, especially multi-term time-fractional dif-

fusion equation. For example, a fundamental fact is that under the time reverse t′ = T − t,
there holds ∂t = −∂t′ while ∂αt ̸= −∂αt′ for α ∈ (0, 1), which makes some standard tech-

niques devoted to the backward problem for classical heat equation invalid in establishing

the convergence property of the regularized solutions of the backward problem for (1.1).

On the other hand, the appearance of the multinomial Mittag-Leffler function makes the

study of the forward and inverse problems for fractional equation more complicated in the

aspects of theoretical analysis and numerical calculation.

In this paper, we focus on the well-posedness as well as convergence analysis of the regu-

larized solution for backward problem (3.2) based on the fractional-order quasi-reversibility

method. Our main contribution lies that a new regularization method based on time frac-

tional derivative as well as some crucial properties for the multinomial Mittag-Leffler

function are proposed. And the method we proposed is very different from [19]. Under
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a low regularity of the initial state, we establish the convergence property of the regular-

izing solutions of the backward problem and a uniform Hölder type error estimate with

an optimal convergence order is obtained for a priori parameter choice rules with the aid

of the new quasi-reversibility method. Also, we put forward a numerical algorithm for

the forward problem and the backward problem with a regularization term. By this nu-

merical scheme, the original equation can be reduced to the form of matrix iteration, and

we reconstruct the initial value by numerical solution instead of exact solution. Finally,

Numerical examples demonstrate the effectiveness of the algorithm and also indicate that

our new regularization technique has better reconstruction effect on non-smooth functions.

The remainder of this paper is organized as follows. In Section 2, some preliminaries are

presented. In Section 3, we illustrate the ill-posedness of inverse problem and also consider

the existence and uniqueness of the regularized solution. In Section 4, some properties

of multinomial Mittag-Leffler function are used to study the convergence analysis of the

regularized solution. In Section 5, the convergence speed of the corresponding regularized

solution can be accurately expressed under an a-priori parameter choice rule. In Section 6,

we present the numerical algorithm. In Section 7, three numerical examples demonstrate

the effectiveness of the algorithm. Finally, we make a concluding remark in Section 8.

2. Preliminaries

In this section, we give some definitions and some necessary preparations. Denote ∥ · ∥ =

∥ · ∥L2(Ω), ( · , · ) as the inner product of L2(Ω). Henceforth C (or Cj) denote positive

constants that may have different values in each place.

Let D(−L) := H2(Ω)∩H1
0 (Ω) denote the domain of the operator −L defined by (1.2).

Noting that −L is a self adjoint and positive operator. Let {µn, φn}∞n=1 be an eigensystem

of −L, i.e., −Lφn = µnφn. We know that 0 < µ1 < µ2 < · · · , limn→∞ µn = ∞, and

{φn}∞n=1 forms the standard orthogonal basis of L2(Ω). Now we can define the Hilbert

scale space for later use.

Definition 2.1. For any γ > 0, define

D((−L)γ) =

ψ ∈ L2(Ω)
∣∣∣ ∞∑
p=1

µ2γp |(ψ,φp)|2 <∞

 ,

where ( · , · ) is the inner product in L2(Ω), and define its norm

∥ψ∥D((−L)γ) =


∞∑
p=1

µ2γp |(ψ,φp)|2


1/2

.
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Definition 2.2. The multinomial Mittag-Leffler function is defined by

E(θ1,...,θs),θ0(z1, . . . , zs) :=

∞∑
k=0

∑
k1+···+ks=k

(k; k1, . . . , ks)
∏s

j=1 z
kj
j

Γ(θ0 +
∑s

j=1 θjkj)
,

where θ0, θj ∈ R, and zj ∈ C (j = 1, . . . , s), and (k; k1, . . . , ks) denotes the multinomial

coefficient

(k; k1, . . . , ks) :=
k!

k1! · · · ks!
with k =

s∑
j=1

kj ,

where kj (j = 1, . . . , s) are non-negative integers.

For the convenience of the later, for α ∈ A and q ∈ Q, we adopt the abbreviation

(2.1) E
(µn)
α′,β (t) := E(α1,α1−α2,...,α1−αs),β

(
− µnt

α1 ,−q2tα1−α2 , . . . ,−qstα1−αs
)
, t > 0,

where α′ = (α1, α1 − α2, . . . , α1 − αs) and µn denotes the n-th eigenvalues of elliptic

operator −L with the homogeneous Dirichlet boundary condition.

Lemma 2.3. [15] Let 0 < θ < 2 and 0 < αs < αs−1 < · · · < α1 < 1 be given. Assume that
α1π
2 < µ < α1π, µ ≤ | arg(z1)| ≤ π, and zj ∈ R for j = 2, . . . , s, and there exists K > 0

such that −K ≤ zj < 0 (j = 2, . . . , s). Then there exists a constant C > 0 depending only

on µ, K, αj (j = 1, . . . , s) and θ such that∣∣E(α1,α1−α2,...,α1−αs),θ(z1, . . . , zs)
∣∣ ≤ C

1 + |z1|
.

Lemma 2.4. (see also [31, Proposition 2.6]) For µn > 0, we have 0 < 1−µntα1E
(µn)
α′,1+α1

(t)

< 1 for t > 0. Moreover, 1− µnt
α1E

(µn)
α′,1+α1

(t) is a strictly decreasing function on t > 0.

Lemma 2.5. [30] Let 0 < αs < αs−1 < · · · < α1 < 1. Then

∣∣1− µnt
α1E

(µn)
α′,α1+1(t)

∣∣ ≤ s∑
j=2

M(1 + qjt
α1−αj )

1 + µntα1
, t > 0, n = 1, 2, . . . ,

where M is a positive constant.

Proposition 2.6. For any ξ ∈ R and ξ > 0, we have∣∣∣∣ ddξE(ξ)
α′,1+α1

(t)

∣∣∣∣ ≤ 1

α1ξ

∣∣E(ξ)
α′,α1

(t)
∣∣, t > 0.

Proof. From (2.1), we know that

E
(ξ)
α′,1+α1

(t) = E(α1,α1−α2,...,α1−αs),1+α1
(−ξtα1 ,−q2tα1−α2 , . . . ,−qstα1−αs)

=
∞∑
k=0

∑
k1+···+ks=k

(k; k1, . . . , ks)(−ξtα1)k1(−q2tα1−α2)k2 · · · (−qstα1−αs)ks

Γ
(
α1 + 1 + α1k1 +

∑s
j=2(α1 − αj)kj

) ,
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then we have∣∣∣∣ ddξE(ξ)
α′,1+α1

(t)

∣∣∣∣
=

∣∣∣∣∣
∞∑
k=0

∑
k1+···+ks=k

(k; k1, . . . , ks)
(
(−1)k1k1ξ

k1−1tα1k1
)
(−q2tα1−α2)k2 · · · (−qstα1−αs)ks

Γ
(
α1 + 1 + α1k1 +

∑s
j=2(α1 − αj)kj

) ∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=0

∑
k1+···+ks=k

(k; k1, . . . , ks)
(
k1

ξ (−1)k1ξk1tα1k1
)
(−q2tα1−α2)k2 · · · (−qstα1−αs)ks

Γ
(
α1 + 1 + α1k1 +

∑s
j=2(α1 − αj)kj

) ∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=0

∑
k1+···+ks=k

k1
ξ

(k; k1, . . . , ks)
(
(−ξ)k1tα1k1

)
(−q2tα1−α2)k2 · · · (−qstα1−αs)ks

Γ
(
α1 + 1 + α1k1 +

∑s
j=2(α1 − αj)kj

) ∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=0

∑
k1+···+ks=k

k1
ξ

(k; k1, . . . , ks)(−ξtα1)k1(−q2tα1−α2)k2 · · · (−qstα1−αs)ks{
α1 + α1k1 +

∑s
j=2(α1 − αj)kj

}
Γ
(
α1 + α1k1 +

∑s
j=2(α1 − αj)kj

) ∣∣∣∣∣
≤ 1

α1ξ
|E(ξ)

α′,α1
(t)|.

3. Ill-posedness of inverse problem and fractional-order quasi-reversibility method

In this section, we will first discuss the ill-posedness of the backward problem and then

propose a fractional-order quasi-reversibility method by introducing a new perturbation

related to the time fractional derivative into the original equation.

By a standard Fourier method, we know that (1.1) admits a unique solution given

by [15]:

ω(x, t) =
∞∑
n=1

(ω0, φn)
(
1− µnt

α1E
(µn)
α′,1+α1

(t)
)
φn(x).

From (1.3), then we have

∞∑
n=1

(g, φn)φn(x) = ω(x, T ) =

∞∑
n=1

(ω0, φn)
(
1− µnT

α1E
(µn)
α′,1+α1

(T )
)
φn(x).

So we arrive at

(3.1) (ω0, φn) =
(g, φn)

1− µnTα1E
(µn)
α′,1+α1

(T )
.

From Lemma 2.4, we know the denominator of (3.1) tends to zero when n is suffi-

ciently large. Therefore, the above inverse problem is ill-posed and we need to add

some regularization strategies. By Lemma 2.5, we also find that the backward prob-

lem for multi-fractional diffusion equation is mildly ill-posed because the multiplier 1/(1−
µnT

α
1 E

(µn)
α′,1+α1

(T )) just grows linearly to µn, i.e., 1/(1−µnTα
1 E

(µn)
α′,1+α1

(T )) ∼ µn as n→ ∞,

which is very mild compared to the exponential growth eµnT for the case α = 1.
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Motivated by the quasi-reversibility method in [29], we consider the following problem

as our regularizing scheme

(3.2)


∑s

j=1 qj∂
αj

t u(x, t) = Lu+ β
∑s

j=1 qj∂
αj

t (Lu), (x, t) ∈ Ω× (0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

u(x, T ) = g(x), x ∈ Ω,

where β = β(δ) acts as regularizing parameter depending on the known noisy level δ.

After adding the regularization term, we can see that the ill-posedness of the backward

problem can be effectively avoided from the following theorem. Now we need consider the

existence and uniqueness of the solution to (3.2).

Remark 3.1. In the regularized problem (3.2), we have added a perturbation term of

fractional derivative to overcome the ill-posedness of inverse problem. The main idea is

to change the eigenvalue of the original elliptic operator. As we know from (3.1) that

1/(1 − µnT
α
1 E

(µn)
α′,1+α1

(T )) is an amplification factor when n is sufficiently large because

µn → +∞ as n→ ∞. On the other hand, from (3.5) we have λn → 1/β is bounded when

n is sufficiently large. So the backward problem becomes well-posed from (3.6) by taking

t = 0.

Theorem 3.2. Let g ∈ D(−L) and β ∈ (0,+∞). Then problem (3.2) has a unique

solution uβ[g] ∈ C([0, T ];L2(Ω)) ∩ C((0, T ];H2(Ω) ∩H1
0 (Ω)).

Proof. Our proof process can be seen as two steps.

Step 1: The existence and regularity of the solution. We need to solve the above

problem by the separation variable method. Let u(x, t) = X(x)T (t) and substituting it

into (3.2) gives ∑s
j=1 qj∂

αj

t T (t)

T (t)
=

LX(x)

X − βLX(x)
= −λ,

where −λ is called the separation constant and not yet known. Therefore, we deduce an

eigenvalue problem

(3.3)

LX(x)− βλLX(x) = −λX(x), x ∈ Ω,

X(x) = 0, x ∈ ∂Ω,

and an ODE with fractional derivative

(3.4)
s∑

j=1

qj∂
αj

t T (t) + λT (t) = 0, t > 0.

We know that the eigensystem {µn, φn} satisfies Lµn = −µnφn and φn|∂Ω = 0. So

eigenvalue problem (3.3) yields

(3.5) λn =
µn

βµn + 1
, Xn(x) = φn(x), n = 1, 2, . . . .
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Especially, we can easily verify the one-dimensional case. we know that µn = n2, λn =

n2/(βn2 + 1) and φn = sinnx for L = ∆ and Ω = (0, π). For fixed λ = λn, we can solve

(3.4) (e.g., [26]) by using the Laplace transform to obtain

Tn(t) = 1− λnt
α1E

(λn)
α′,1+α1

(t).

Noting u(x, T ) = g(x) from (1.3), and combining the above results, we have

(3.6) uβ[g](x, t) =
∞∑
n=1

1− λnt
α1E

(λn)
α′,1+α1

(t)

1− λnTα1E
(λn)
α′,1+α1

(T )
gnφn(x),

where gn = (g, φn). Now we verify the regularity of uβ(x, t). From Lemmas 2.4 and 2.5,

we obtain

∞∑
n=1

∣∣∣∣∣∣µngn 1− λnt
α1E

(λn)
α′,1+α1

(t)

1− λnTα1E
(λn)
α′,1+α1

(T )

∣∣∣∣∣∣
2

=

∞∑
n=1

µ2n|gn|2
∣∣∣∣∣∣ 1− λnt

α1E
(λn)
α′,1+α1

(t)

1− λnTα1E
(λn)
α′,1+α1

(T )

∣∣∣∣∣∣
2

≤ C2
∞∑
n=1

µ2n|gn|2 for any t > 0,

(3.7)

and

∞∑
n=1

∣∣∣∣∣∣gn 1− λnt
α1E

(λn)
α′,1+α1

(t)

1− λnTα1E
(λn)
α′,1+α1

(T )

∣∣∣∣∣∣
2

≤
∞∑
n=1

|gn|2
∣∣∣∣∣∣ 1

1− λnTα1E
(λn)
α′,1+α1

(T )

∣∣∣∣∣∣
2

≤ C2
∞∑
n=1

µ2n|gn|2 for any t ≥ 0,

(3.8)

where C is a constant. Since g ∈ D(−L), the series
∑∞

n=1 µ
2
n|gn|2 is convergent, (3.7)

and (3.8) are also uniform convergent. So we have from the Lebesgue theorem that

uβ ∈ C([0, T ];L2(Ω)) ∩ C((0, T ];H2(Ω) ∩H1
0 (Ω)).

Step 2: The uniqueness of the solution. Let u be the solution to (3.2) for g = 0. Then

u(x, t) =
∞∑
n=1

un(t)φn(x), n = 1, 2, . . . ,

where un(t) = (u( · , t), φn), and

s∑
j=1

qj∂
α
t un(t) = −λnun(t).

The condition u(x, T ) = 0 yields un(T ) = 0. With the help of the existence and uniqueness

of the ordinary fractional differential equation, we have un(t) ≡ 0, n = 1, 2, . . . in t ∈ [0, T ].

Because φn(x) is a complete orthogonal system in L2(Ω), we have u ≡ 0. The proof is

complete.
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4. Convergence analysis and error estimate

In this section, our goal is to give the main theoretical result: convergence analysis of the

regularized solution.

Theorem 4.1. Let ω(x, T ) = g(x) be the final value of (1.1) and ω0 ∈ L2(Ω) be the initial

value. Then

uβ[g] → ω

in C((0, T ];L2(Ω)) as β → 0. Moreover,

∥uβ[g]( · , 0)− ω( · , 0)∥ → 0

as β → 0.

Proof. After calculation we have

uβ[g](x, t)− ω(x, t)

=

∞∑
n=1

1− λnt
α1E

(λn)
α′,1+α1

(t)

1− λnTα1E
(λn)
α′,1+α1

(T )
gnφn(x)−

∞∑
n=1

1− µnt
α1E

(µn)
α′,1+α1

(t)

1− µnTα1E
(µn)
α′,1+α1

(T )
gnφn(x)

=:
∞∑
n=1

hn,α,T (t)gnφn(x),

where gn = (g, φn), and

hn,α,T (t)

=
1− λnt

α1E
(λn)
α′,1+α1

(t)

1− λnTα1E
(λn)
α′,1+α1

(T )
−

1− µnt
α1E

(µn)
α′,1+α1

(t)

1− µnTα1E
(µn)
α′,1+α1

(T )

=
1− µnt

α1E
(µn)
α′,1+α1

(t)

1− µnTα1E
(µn)
α′,1+α1

(T )

1− µnT
α1E

(µn)
α′,1+α1

(T )

1− µntα1E
(µn)
α′,1+α1

(t)
·
1− λnt

α1E
(λn)
α′,1+α1

(t)

1− λnTα1E
(λn)
α′,1+α1

(T )
− 1

 .

By Lemmas 2.4 and 2.5, we have

∞∑
n=1

h2n,α,T (t)g
2
n

(4.1)

≤

(
N∑

n=1

+

∞∑
n=N+1

)(
gn

1− µnTα1E
(µn)
α′,1+α1

(T )

)2

×

(
1− µnT

α1E
(µn)
α′,1+α1

(T )

1− µntα1E
(µn)
α′,1+α1

(t)
·
1− λnt

α1E
(λn)
α′,1+α1

(t)

1− λnTα1E
(λn)
α′,1+α1

(T )
− 1

)2
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≤
N∑

n=1

(
gn

1− µnTα1E
(µn)
α′,1+α1

(T )

)2(
1− µnT

α1E
(µn)
α′,1+α1

(T )

1− µntα1E
(µn)
α′,1+α1

(t)
·
1− λnt

α1E
(λn)
α′,1+α1

(t)

1− λnTα1E
(λn)
α′,1+α1

(T )
− 1

)2

+ 2

∞∑
n=N+1

(
gn

1− µnTα1E
(µn)
α′,1+α1

(T )

)2

×

(1− µnT
α1E

(µn)
α′,1+α1

(T )

1− µntα1E
(µn)
α′,1+α1

(t)
·
1− λnt

α1E
(λn)
α′,1+α1

(t)

1− λnTα1E
(λn)
α′,1+α1

(T )

)2

+ 1

2

≤
N∑

n=1

(
gn

1− µnTα1E
(µn)
α′,1+α1

(T )

)2(
1− µnT

α1E
(µn)
α′,1+α1

(T )

1− µntα1E
(µn)
α′,1+α1

(t)
·
1− λnt

α1E
(λn)
α′,1+α1

(t)

1− λnTα1E
(λn)
α′,1+α1

(T )
− 1

)2

+ 2C
∞∑

n=N+1

(
gn

1− µnTα1E
(µn)
α′,1+α1

(T )

)2((
1 +

(
T

t

)α1
)2

+ 1

)2

for all t > 0.

Since ω( · , 0) ∈ L2(Ω), we have from (3.1) that

(4.2)
∞∑
n=1

1

1− µnTα1E
(µn)
α′,1+α1

(T )
gnφn ∈ L2(Ω),

which shows that
∑∞

n=1

( gn

1−µnTα1E
(µn)

α′,1+α1
(T )

)2
converges. Hence, for arbitrary ε > 0, we

can find N = N(ε) such that

(4.3)
∞∑

n=N(ε)+1

 gn

1− µnTα1E
(µn)
α′,1+α1

(T )

2

<
ε

2
.

By means of the continuity of λn in β and 1 − ξtα1E
(ξ)
α′,1+α1

(t) in ξ, we can choose an

appropriate β = β(ε) such that

(4.4)

1− µnT
α1E

(µn)
α′,1+α1

(T )

1− µntα1E
(µn)
α′,1+α1

(t)
·
1− λnt

α1E
(λn)
α′,1+α1

(t)

1− λnTα1E
(λn)
α′,1+α1

(T )
− 1

2

<
ε

2

for all n = 1, 2, . . . , N(ε). Combining (4.1)–(4.4) we have

(4.5)
∞∑
n=1

h2n,α,T (t)g
2
n ≤ ε

2

N∑
n=1

 gn

1− µnTα1E
(µn)
α′,1+α1

(T )

2

+ C(t)ε ≤ C(t)(1 + ∥ω0∥2)ε.

Since ε has been arbitrary chosen, it follows that
∑∞

n=1 h
2
n,α,T (t)g

2
n → 0 as ε→ 0. We can

get the following result

∥uβ[g]( · , t)− ω( · , t)∥ → 0, β → 0

holds for all 0 < t ≤ T .
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We find that constant in (4.5) depends on the variable t > 0, and hence, the conver-

gence at t = 0 also need us to consider. For the particular case t = 0, there holds

hn,α,T (0) =
1

1− µnTα1E
(µn)
α′,1+α1

(T )

1− µnT
α1E

(µn)
α′,1+α1

(T )

1− λnTα1E
(λn)
α′,1+α1

(T )
− 1

 .

We can easily get the results below

uβ[g](x, 0)− ω(x, 0) =
∞∑
n=1

hn,α,T (0)gnφn(x).

On the other hand, we have from Lemma 2.5 that

∞∑
n=1

h2n,α,T (0)g
2
n

=

(
N∑

n=1

+
∞∑

n=N+1

) gn

1− µnTα1E
(µn)
α′,1+α1

(T )

21− µnT
α1E

(µn)
α′,1+α1

(T )

1− λnTα1E
(λn)
α′,1+α1

(T )
− 1

2

≤
N∑

n=1

 gn

1− µnTα1E
(µn)
α′,1+α1

(T )

21− µnT
α1E

(µn)
α′,1+α1

(T )

1− λnTα1E
(λn)
α′,1+α1

(T )
− 1

2

+ 4
∞∑

n=N+1

 gn

1− µnTα1E
(µn)
α′,1+α1

(T )

2

.

Similar to the case at t > 0, we obtain

∥uβ[g]( · , 0)− ω( · , 0)∥ → 0

as β → 0. The proof is complete.

However, problems encountered in real life, we only know additional noisy data. Here

we consider gδ(x), the noisy input data of g(x) with a weak regularity, as our input data

which satisfies

(4.6) ∥gδ − g∥ ≤ δ.

Theorem 4.2. Let α ∈ A, q ∈ Q and gδ(x) denote the noisy data which satisfies (4.6).

Then

∥uβ(δ)[gδ]( · , t)− ω( · , t)∥ → 0

as δ → 0, where β = β(δ) denotes the regularization parameter satisfying

(4.7) β(δ) → 0,
δ

β(δ)
→ 0

as δ → 0.
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Proof. Note that for t ∈ (0, T ),

∥uβ[gδ]( · , t)− ω( · , t)∥ ≤ ∥uβ[gδ]( · , t)− uβ[g]( · , t)∥+ ∥uβ[g]( · , t)− ω( · , T )∥.

By virtue of Theorem 4.1, the second item of the above equation tends to zero as δ → 0

because of (4.7), and hence, we only estimate the first item. Our estimation process is as

follows:

∥uβ[gδ]( · , t)− uβ[g]( · , t)∥2

=
∞∑
n=1

 1− λnt
α1E

(λn)
α′,1+α1

(t)

1− λnTα1E
(λn)
α′,1+α1

(T )

2

(gδn − gn)
2

≤
∞∑
n=1

(
1

1− λnTα1 · C6
1+λnTα1

)2

(gδn − gn)
2

≤
∞∑
n=1

C

(
1 + λnT

α1

1 + λnTα1 − λnTα1

)2

(gδn − gn)
2

≤ C
∞∑
n=1

(1 + λnT
α1)2(gδn − gn)

2 ≤ 2C ·

(
1 +

(
Tα1

β

)2
)

· δ2.

Here t ∈ (0, T ). From the above discussion, we get the corresponding results.

5. The convergence rate of the corresponding solution

In addition, if some additional conditions can be given to the initial data, the convergence

rate of the corresponding solution can be accurately expressed, and we can prove the

following conclusion.

Theorem 5.1. Assume the assumption ω0 ∈ H1
0 (Ω) (i.e., ∥ω0∥H1

0 (Ω) ≤M2) holds, then

∥uβ[g]( · , t)− ω( · , t)∥ ≤ C8Mβ1/2,

where C8 is a constant depending on α, α and T . Moreover, if ∥gδ − g∥ < δ and β(δ) =

Cδ2/3, we have

∥uβ(δ)[gδ]( · , t)− ω( · , t)∥ ≤ C9Mδ1/3,

where C9 is a constant depending on α, α and T .

Proof. Taking advantage of the previous discussion, we have

∥uβ[g]( · , t)− ω( · , t)∥2 =
∞∑
n=1

g2nh
2
n,α,T (t)
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and

hn,α,T (t) =
1− λnt

α1E
(λn)
α′,1+α1

(t)

1− λnTα1E
(λn)
α′,1+α1

(T )
−

1− µnt
α1E

(µn)
α′,1+α1

(t)

1− µnTα1E
(µn)
α′,1+α1

(T )

= Q′(ξ)(λn − µn) = Q′(ξ) · −βµ2n
βµn + 1

,

where Q(ξ) =
1−ξtα1E

(ξ)

α′,1+α1
(t)

1−ξTα1E
(ξ)

α′,1+α1
(T )

and ξ ∈ (λn, µn). For ξ ̸= 0, it follows from Lemmas 2.3,

2.4 and Proposition 2.6 that

|Q′(ξ)|

=

∣∣(tα1E
(ξ)
α′,1+α1

(t) + ξtα1 d
dξE

(ξ)
α,1+α1

(t)
)(
1− ξTα1E

(ξ)
α′,1+α1

(T )
)∣∣1− ξTα1E

(ξ)
α′,1+α1

(T )
∣∣2

−
(
1− ξtα1E

(ξ)
α′,1+α1

(t)
)(
Tα1E

(ξ)
α′,1+α1

(T ) + ξTα1 d
dξE

(ξ)′

α,1+α1
(T )
)∣∣∣∣1− ξTα1E

(ξ)
α′,1+α1

(T )
∣∣2

≤

∣∣tα1E
(ξ)
α′,1+α1

(t)
∣∣+ ∣∣ξtα1 d

dξE
(ξ)
α′,1+α1

(t)
∣∣∣∣1− ξTα1E

(ξ)
α′,1+α1

(T )
∣∣ +

∣∣Tα1E
(ξ)
α′,1+α1

(T )
∣∣+ ∣∣ξTα1 d

dξE
(ξ)
α,1+α1

(T )
∣∣∣∣1− ξTα1E

(ξ)
α′,1+α1

(T )
∣∣2

≤
C
∣∣1 + 1

α1

∣∣ · ∣∣ tα1

1+|ξtα1 |
∣∣∣∣1− ξTα1E

(ξ)
α′,1+α1

(T )
∣∣ + C

∣∣1 + 1
α1

∣∣ · ∣∣ Tα1

1+|ξTα1 |
∣∣∣∣1− ξTα1E

(ξ)
α′,1+α1

(T )
∣∣2

≤ C

∣∣∣∣1 + 1

α1

∣∣∣∣Tα1

∣∣∣∣ 1

C−ξTα1
+

1

C−

∣∣∣∣+ C
∣∣1 + 1

α1

∣∣Tα1
∣∣1 + |ξTα1 |

∣∣(
1 + |ξTα1 | − C−ξTα1

)2
→ C

(
1 +

1

α1

)
Tα1 , ξ → +∞,

where C− is a constant greater than 0 and less than 1. We can obtain there must exist a

constant C̃ = C̃(α) such that

|Q′(ξ)| < C̃ ·
(
1 +

1

α1

)
· Tα1 .

For ξ = 0, we obtain

|Q′(0)| = lim
ξ→0

∣∣ 1−ξtα1E
(ξ)

α′,1+α1
(t)

1−ξTα1E
(ξ)

α′,1+α1
(T )

− 1
∣∣

|ξ|
= lim

ξ→0

∣∣ξTα1E
(ξ)
α′,1+α1

(T )− ξtα1E
(ξ)
α′,1+α1

(t)
∣∣∣∣ξ(1− ξTα1E

(ξ)
α′,1+α1

(T )
)∣∣

= lim
ξ→0

∣∣Tα1E
(ξ)
α′,1+α1

(T )− tα1E
(ξ)
α′,1+α1

(t)
∣∣∣∣1− ξTα1E

(ξ)
α′,1+α1

(T )
∣∣ ≤

∣∣∣∣ tα1 + Tα1

Γ(α1 + 1)

∣∣∣∣ .
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From the above two inequalities and trigonometric inequalities, we draw a conclusion

|Q′(t)| ≤ C ′(α1)max

{(
1 +

1

α1

)
· Tα1 , 1, 2Tα1

}
, t ∈ [0, T ],

where C ′(α1) = max
{
C̃, 1

Γ(1+α1)

}
.

It suffices to estimate the term
∑∞

n=1 µ
3
ng

2
n, which can be achieved by the fact ω0 ∈

H1
0 (Ω) and Lemma 2.5:

M2 = ∥ω0∥2H1
0 (Ω) =

∞∑
n=1

µng
2
n(

1− µnTα1E
(µn)
α′,1+α1

(T )
)2

≥
∞∑
n=1

µng
2
n(C7

∑s
j=2 T

α1−αj

1+µnTα1

)2 ≥ C9

∞∑
n=1

µng
2
n · (1 + µnT

α1)2(∑s
j=2 T

α1−αj
)2

= C9T
2α1

∞∑
n=1

(
µn + 1

Tα1

)2(∑s
j=2 T

α1−αj
)2µng2n ≥ C9T

2α1

∞∑
n=1

µ3ng
2
n(∑s

j=2 T
α1−αj

)2 ,
that is,

∞∑
n=1

µ3ng
2
n ≤

C7M
2 ·
(∑s

j=2 T
α1−αj

)2
T 2α1

.

From the above discussion, we come to a conclusion

∥uβ[g]( · , t)− ω( · , t)∥2

=

∞∑
n=1

|Q′(ξ)|2
(

−βµ2n
βµn + 1

)2

g2n ≤
∞∑
n=1

β

4
|Q′(ξ)|2µ3ng2n

≤ β · C ′(α1)max

{(
1 +

1

α1

)
· Tα1 , 1, 2Tα1

}
·
C9M

2 ·
(∑s

j=2 T
α1−αj

)2
T 2α

= β ·M2 · C2
10,

where C10 = C ′(α1)max
{(

1 + 1
α1

)
· Tα1 , 1, 2Tα1

}C9M2·
(∑s

j=2 T
α1−αj

)2
T 2α1

. Combining the

result in Theorem 4.2, we have

∥uβ(δ)[gδ]( · , t)− ω( · , t)∥ ≤ 2C7δ + 2C7T
α1 · δ

β
+ C10Mβ1/2.

Assume the assumption ω0 ∈ H1
0 (Ω) holds, further we choose β(δ) =

[(
C7

C9C′(αj)

)1/2 1
M

min
{(

1 + 1
α1

)
T 2α1 , 1

}]2/3
δ2/3, then we can get the convergence rate of the regularized
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solution uβ(δ) with noise data gδ(x), as shown below

∥uβ(δ)[gδ]( · , t)− ω( · , t)∥

= 2C7δ + 2C7T
α1δ

([(
C7

C9C ′(αj)

)1/2 1

M
min

{(
1 +

1

α1

)
Tα1 , 1

}]2/3
δ2/3

)−1

+MC10

[(
C7

C9C ′(αj)

)1/2 1

M
min

{(
1 +

1

α1

)
Tα1 , 1

}]1/3
δ1/3

≤ 2

(
C7 +

(
C7M

(
C ′(α1)C9

)1/2
min

{(
1 +

1

α1

)
Tα1 , 1

}−1)2/3

+

(
MC ′(α1)C9max

{(
1 +

1

α1

)
T 2α1 , 1

})2/3)
δ1/3

for all t ∈ [0, T ) and arbitrarily fixed α1 ∈ (α, α), where gδ satisfying ∥gδ − g∥ ≤ δ for all

δ ∈ [0, 1).

6. Numerical algorithm

This section considers a finite difference method for solving a class of multi-term time-

fractional diffusion equation. For simplicity, we mainly consider the following IBVP in

one-dimensional case:
m∑
j=1

qj∂
αj

t ω(x, t) = ωxx, (x, t) ∈ (0, π)× (0, T ),(6.1)

ω(0, t) = ω(π, t) = 0, t ∈ (0, T ],

ω(x, 0) = φ(x), x ∈ [0, π],

where 0 < αj < 1, φ is a well-known function, and φ(0) = φ(π) = 0.

Taking the positive integers M and T , let ∆x = π
M , ∆t = 1

T . We remember xi = i∆x

(0 ≤ i ≤ M), tn = n∆t (0 ≤ n ≤ N), Ωx = {xi | 0 ≤ i ≤ M}, Ωt = {tn | 0 ≤ n ≤ N}.
Define the following grid function uni ≈ u(xi, tn).

Using Murio’s scheme [24] for time-fractional derivative and the central difference

scheme for ∆, The following result can be obtained from (6.1):

s∑
j=1

qj(∆t)
−αj

Γ(2− αj)

n∑
k=0

(un+1−k
i − un−k

i )
(
(k + 1)1−αj − k1−αj

)
=

1

(∆x)2
(un+1

i+1 − 2un+1
i + un+1

i−1 ).

Denote Un+1 = (un+1
1 , un+1

2 , . . . , un+1
M−1)

T , after processing, we can get the following itera-

tive format

BU1 = U0, BUn+1 = c1U
n + c2U

n−1 + · · ·+ dn
d0
U0,
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where

dn =

m∑
j=1

qj(∆t)
−αj

Γ(2− αj)

(
(n+ 1)1−αj − n1−αj

)
, n = 0, 1, . . . , N − 1,

cn =
dn−1 − dn

d0
, n = 1, . . . , N − 1,

and B is a tridiagonal matrix, which is given by Bii = 1 + 2
d0(∆x)2

for i = 1, 2, . . . ,M − 1

and Bi,i−1 = − 1
d0(∆x)2

for i = 2, 3, . . . ,M−1 and Bi,i+1 = − 1
d0(∆x)2

for i = 1, 2, . . . ,M−2.

For the regularization problem (3.2) corresponding to the quasi-reversibility method,

we can get the following format

BU i+1
i − βDUn+1 = Un

i −
n∑

k=1

(un+1−k
i − un−k

i )
dk
d0

− βDUn + β

n∑
k=1

(DUn+1−k −DUn−k)
dk
d0
.

After a simple calculation, the above formula can be reduced to the following formula

(B − βD)Un+1 = AUn −
n∑

k=1

(un+1−k
i − un−k

i )
dk
d0

+ β

n∑
k=1

(DUn+1−k −DUn−k)
dk
d0

= AUn −
n∑

k=1

(un+1−k
i − un−k

i )
dk
d0

+ βD

n∑
k=1

(Un+1−k − Un−k)
dk
d0
.

Further we can get the following iterative form

(B − βD)U1 = AU0, (B − βD)Un+1 = c1AU
n + c2AU

n−1 + · · ·+ dn
d0
AU0,

where D is a tridiagonal matrix, which is given by Dii = − 2
(∆x)2

for i = 1, 2, . . . ,M−1 and

Di,i−1 =
1

(∆x)2
for i = 2, 3, . . . ,M−1 and Di,i+1 =

1
(∆x)2

for i = 1, 2, . . . ,M−2. Moreover,

A is a tridiagonal matrix, which is given by Aii = 1 + 2β
(∆x)2

for i = 1, 2, . . . ,M − 1 and

Ai,i−1 = − β
(∆x)2

for i = 2, 3, . . . ,M − 1 and Ai,i+1 = − β
(∆x)2

for i = 1, 2, . . . ,M − 2. With

the above algorithm we can effectively perform numerical examples.

7. Numerical experiments

In this section, we provide the numerical results for three examples in one-dimensional

case to verify the validity of the algorithm.

The noisy data is generated by adding a random-perturbation, i.e.,

uδ(x, T ) = u(x, T ) + ϵu(x, T ) · (2 · rand(size(u(x, T )))− 1), x ∈ [0, π],
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and δ is noise level which can be calculated by

δ = ∥uδ(x, T )− u(x, T )∥L2(0,π).

We compute the approximate L2 error to show the accuracy of numerical solution, and

error denoted by

e(u, ϵ) =
∥u(x, 0)− uβ,δ(x, 0)∥

∥u(x, 0)∥
,

where uβ,δ(x, 0) is the regularization solution corresponding to the fractional-order quasi-

reversibility method.

In the following examples, we reconstruct the initial data from the information of the

solution at T = 1. Here we set fractional order terms s = 3, Ω = (0, π) and qj = 1 for

j = 1, 2, 3. The grid points on [0, π] and [0, T ] are 101 and 201, respectively.

Example 7.1. 
∂αt u+ ∂α1

t u+ ∂α2
t u = ∂2u

∂x2 , (x, t) ∈ (0, π)× (0, T ),

u(0, t) = u(π, t) = 0, t ∈ (0, T ],

u(x, 0) = f(x), x ∈ [0, π].

Let the fractional orders α = 0.9, α1 = 0.7 and α2 = 0.5. Assume that f(x) = sin(x),

the additional data u(x, T ) is obtained by solving the forward problem using the finite

difference method.

Table 7.1: Relative error of the regularization methods of Example 7.1 for α =

(0.9, 0.7, 0.5) with ϵ = 1%, 0.1%, 0.01% and β = (0.01 ∗ δ)2/3.

β\ϵ ϵ = 1% ϵ = 1% ϵ = 0.01%

β = (0.01 ∗ δ)2/3 0.0396 0.0130 0.0049

The results for Example 7.1 are shown in Figure 7.1. The input data u(x, T ) is shown

in Figure 7.1(a). In order to illustrate the ill-posedness of inverse problem, we present

numerical result without regularization method shown in Figure 7.1(b). We can see that

the inverse problem of the non-regularization method is not fixed, and the effect of recon-

structing the initial value is not ideal.

Choosing a reasonable regularization parameter β = (0.01 ∗ δ)2/3, moreover, in order

to verify the effectiveness of the fractional-order quasi-reversibility regularization method,

the reconstruction result are presented in Figures 7.1(c), (d) and (e) with different noisy

levels ϵ = 0.01, 0.001, 0.0001. We can see that the numerical results of the initial state for
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Example 7.1 match the exact ones quite well even up to 1% noise added in the “exact”

Terminal data u(x, T ), and the relative error also decreases as the noise data decreases,

and the fitting in the image is more optimal.
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(b) No regularization method
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(c) ϵ = 0.01 and β = (0.01 ∗ δ)2/3
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(d) ϵ = 0.001 and β = (0.01 ∗ δ)2/3
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(e) ϵ = 0.0001 and β = (0.01 ∗ δ)2/3

Figure 7.1: The numerical results for Example 7.1.

From Figure 7.1 we can find that the numerical results of the inverse problem based on

FDM with regularization method are obviously better than those without regularization

method. As our inverse problem is mildly ill-posed, so the reconstruction result doesn’t

work very well without regularization terms.
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Example 7.2. We also consider a numerical result for the same backward problem in case

of a non-smooth unknown initial state. Assume the fractional orders α = 0.8, α1 = 0.6

and α2 = 0.4. Let the exact initial function be

f(x) =

2x if 0 ≤ x ≤ π/2,

−2x+ 2π if π/2 ≤ x < π.

The additional data u(x, T ) is obtained by solving the forward problem using the finite

difference method, and the result is shown in Figure 7.2(a).
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(b) No regularization method
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(c) δ = 0.01 and β = (0.01 ∗ δ)2/3
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(d) δ = 0.001 and β = (0.01 ∗ δ)2/3

0 0.5 1 1.5 2 2.5 3 3.5

x

0

0.5

1

1.5

2

2.5

3

3.5

u
(x

,0
) 

a
n

d
 i
ts

 a
p

p
ro

x
im

a
ti
o

n
 u

* (x
,0

) 

exact

 =0.0001

(e) δ = 0.0001 and β = (0.01 ∗ δ)2/3

Figure 7.2: The numerical results for Example 7.2.
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Table 7.2: Relative error of the regularization methods of Example 7.2 for α =

(0.8, 0.6, 0.4) with ϵ = 1%, 0.1%, 0.01% and β = (0.01 ∗ δ)2/3.

β\ϵ ϵ = 1% ϵ = 1% ϵ = 0.01%

β = (0.01 ∗ δ)2/3 0.0947 0.0484 0.0177

Moreover, to verify the effectiveness of the fractional-order quasi-reversibility regular-

ization method, we firstly present numerical result without regularization method shown

in Figure 7.2(b). We can see that effect of reconstructing the initial value is not ideal. This

is easy to predict because our inverse problem is mildly ill-posed. On the other hand, the

numerical results under regularization method are presented in Figures 7.2(c)–(e) in case

of the noisy levels ϵ = 0.01, 0.001, 0.0001 with reasonable choice strategy β = (0.01∗δ)2/3.
We can also see that the relative error decreases as the noise data decreases, and the fitting

in the image is more optimal.

Example 7.3. We continue to consider the backward problem for a three-term time

fractional diffusion equation in one-dimensional case. But here we consider a initial state

that is a piecewise function with two cusps. All other definite conditions are the same as

in the previous examples.

Let the exact initial function be

f(x) =


x if 0 ≤ x < π

4 ,

−2x+ 3
4π if π

4 ≤ x < π
2 ,

1
2 − 1

2π if π
2 ≤ x ≤ π.

Table 7.3: Relative error of the regularization methods of Example 7.3 for α =

(0.9, 0.7, 0.5) with ϵ = 1%, 0.1%, 0.01% and β = (0.01 ∗ δ)2/3.

β\ϵ ϵ = 1% ϵ = 0.1% ϵ = 0.01%

β = (0.01 ∗ δ)2/3 0.2384 0.0870 0.0280

The input data u(x, T ) is also obtained by solving the forward problem using the

finite difference method, and the result is displayed in Figure 7.3(a). The numerical result

without regularization method is shown in Figure 7.3(b). And in case of noisy levels

ϵ = 0.01, 0.001, 0.0001 with a fine choice strategy β = (0.01 ∗ δ)2/3, the reconstruction

results are presented in Figures 7.3(c), 7.3(d) and 7.3(e). We come to a conclusion similar

to the previous example. In Tables 7.1–7.3, we show the relative error e(u, ϵ) with different

noise levels ϵ under the prior selection rule for regularization parameter β.
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(b) No regularization method

0 0.5 1 1.5 2 2.5 3 3.5

x

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

u
(x

,0
) 

a
n

d
 i
ts

 a
p

p
ro

x
im

a
ti
o

n
 u

* (x
,0

) 

exact

 =0.01

(c) ϵ = 0.01 and β = (0.01 ∗ δ)2/3
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(d) ϵ = 0.001 and β = (0.01 ∗ δ)2/3
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(e) ϵ = 0.0001 and β = (0.01 ∗ δ)2/3

Figure 7.3: The numerical results for Example 7.3.

Now we can draw the following conclusions from above numerical test. First, the

numerical result of the inverse problem is very dependent on the regularization param-

eter although the backward problem is a mildly ill-posed. Secondly, as with the other

inverse problem calculation results, the reconstruction effect for backward problem be-

comes unsatisfactory with the increase of noise level. Finally, the reconstruction effect

of the fractional-order quasi-reversibility regularization method proposed in this paper is

not better than that of the classical quasi-reversibility method for smooth unknown initial
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values, but the inversion results for non-smooth functions are still quite well. This can be

seen from the numerical results in Examples 7.2 and 7.3.

8. Concluding remark

This paper considers a backward problem for a multi-term time-fractional diffusion dif-

fusion equation by using the fractional-order quasi-reversibility method. Adding a small

perturbation related to the time fractional derivative to the original equation make the

original problem become well-posed. Based on the properties of multinomial Mittag-Leffler

function, we demonstrate the well-posedness and regularity of the regularized solution, and

we also illustrate that the backward problem for time-fractional diffusion equation is mildly

ill-posed. Under an a-priori parameter choice rule, we prove the convergence and conver-

gence rate of the regularized solution. Also, we propose a finite difference sequence for the

direct problem as well as the regularization problem. Finally, the numerical experiments

for three numerical examples show that our proposed method is effective.

Acknowledgments

This work is supported by the NSF of China (grant no. 12201502), the Youth Sci-

ence and Technology Fund of Gansu Province (grant no. 20JR10RA099), the Innovation

Capacity Improvement Project for Colleges and Universities of Gansu Province (grant

no. 2020B-088) and the Northwest Normal University Graduate Research Project (grant

no. 2022KYZZ-S119).

References

[1] E. E. Adams and L. W. Gelhar, Field study of dispersion in a heterogeneous aquifer:

2. Spatial moments analysis, Water Resour. Res. 28 (1992), no. 12, 3293–3307.

[2] S. Djennadi, N. Shawagfeh and O. Abu Arqub, A fractional Tikhonov regularization

method for an inverse backward and source problems in the time-space fractional

diffusion equations, Chaos Solitons Fractals 150 (2021), Paper No. 111127, 9 pp.

[3] X. Feng, M. Zhao and Z. Qian, A Tikhonov regularization method for solving a back-

ward time-space fractional diffusion problem, J. Comput. Appl. Math. 411 (2022),

Paper No. 114236, 20 pp.

[4] M. Giona, S. Cerbelli and H. E. Roman, Fractional diffusion equation and relaxation

in complex viscoelastic materials, Phys. A: Stat. Mech. Appl. 191 (1992), no. 1-4,

449–453.



Backward Problem for MTFDE 1207

[5] Y. Han, X. Xiong and X. Xue, A fractional Landweber method for solving backward

time-fractional diffusion problem, Comput. Math. Appl. 78 (2019), no. 1, 81–91.

[6] Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An

explanation of long-tailed profiles, Water Resour. Res. 34 (1998), no. 5, 1027–1033.

[7] D. Jiang, Z. Li, Y. Liu and M. Yamamoto, Weak unique continuation property and

a related inverse source problem for time-fractional diffusion-advection equations, In-

verse Problems 33 (2017), no. 5, 055013, 22 pp.

[8] S. Jiang and Y. Wu, An inverse space-dependent source problem for a multi-term time

fractional diffusion equation, J. Math. Phys. 61 (2020), no. 12, 121502, 16 pp.

[9] B. Jin, R. Lazarov, Y. Liu and Z. Zhou, The Galerkin finite element method for a

multi-term time-fractional diffusion equation, J. Comput. Phys. 281 (2015), 825–843.

[10] B. Jin and W. Rundell, A tutorial on inverse problems for anomalous diffusion pro-

cesses, Inverse Problems 31 (2015), no. 3, 035003, 40 pp.

[11] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Frac-

tional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science B.V.,

Amsterdam, 2006.

[12] Y. S. Li, L. L. Sun, Z. Q. Zhang and T. Wei, Identification of the time-dependent

source term in a multi-term time-fractional diffusion equation, Numer. Algorithms

82 (2019), no. 4, 1279–1301.

[13] Z. Li, X. Huang and M. Yamamoto, Initial-boundary value problems for multi-term

time-fractional diffusion equations with x-dependent coefficients, Evol. Equ. Control

Theory 9 (2020), no. 1, 153–179.

[14] Z. Li, O. Y. Imanuvilov and M. Yamamoto, Uniqueness in inverse boundary value

problems for fractional diffusion equations, Inverse Problems 32 (2016), no. 1, 015004,

16 pp.

[15] Z. Li, Y. Liu and M. Yamamoto, Initial-boundary value problems for multi-term time-

fractional diffusion equations with positive constant coefficients, Appl. Math. Comput.

257 (2015), 381–397.

[16] Z. Li and M. Yamamoto, Uniqueness for inverse problems of determining orders of

multi-term time-fractional derivatives of diffusion equation, Appl. Anal. 94 (2015),

no. 3, 570–579.



1208 Liangliang Sun, Yuxin Wang and Maoli Chang

[17] , Inverse problems of determining coefficients of the fractional partial differen-

tial equations, in: Handbook of Fractional Calculus with Applications: Vol. 2, 443–464,

De Gruyter, Berlin, 2019.

[18] C.-L. Lin and G. Nakamura, Unique continuation property for multi-terms time frac-

tional diffusion equations, Math. Ann. 373 (2019), no. 3-4, 929–952.

[19] J. J. Liu and M. Yamamoto, A backward problem for the time-fractional diffusion

equation, Appl. Anal. 89 (2010), no. 11, 1769–1788.

[20] Y. Liu, H. Sun, X. Yin and L. Feng, Fully discrete spectral method for solving a novel

multi-term time-fractional mixed diffusion and diffusion-wave equation, Z. Angew.

Math. Phys. 71 (2020), no. 1, Paper No. 21, 19 pp.

[21] Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-

fractional diffusion equation, J. Math. Anal. Appl. 374 (2011), no. 2, 538–548.

[22] W. Ma and L. Sun, Inverse potential problem for a semilinear generalized fractional

diffusion equation with spatio-temporal dependent coefficients, Inverse Problems 39

(2023), no. 1, Paper No. 015005, 29 pp.

[23] F. Mainardi, A. Mura, G. Pagnini and R. Gorenflo, Time-fractional diffusion of dis-

tributed order, J. Vib. Control 14 (2008), no. 9-10, 1267–1290.

[24] D. A. Murio, Implicit finite difference approximation for time fractional diffusion

equations, Comput. Math. Appl. 56 (2008), no. 4, 1138–1145.

[25] R. R. Nigmatullin, The realization of the generalized transfer equation in a medium

with fractal geometry, Phys. Stat. Sol. (b) 133 (1986), no. 1, 425–430.

[26] I. Podlubny, Fractional Differential Equations, Math. Sci. Engrg. 198, Academic

Press, San Diego, CA, 1999.

[27] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional

diffusion-wave equations and applications to some inverse problems, J. Math. Anal.

Appl. 382 (2011), no. 1, 426–447.

[28] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives:

Theory and applications, Gordon and Breach Science Publishers, Yverdon, 1993.

[29] W. Shi, X. Xiong and X. Xue, A fractional-order quasi-reversibility method to a

backward problem for the time fractional diffusion equation, J. Comput. Appl. Math.

394 (2021), Paper No. 113552, 14 pp.



Backward Problem for MTFDE 1209

[30] C. Sun, G. Li and X. Jia, Numerical inversion for the initial distribution in the multi-

term time-fractional diffusion equation using final observations, Adv. Appl. Math.

Mech. 9 (2017), no. 6, 1525–1546.

[31] L. L. Sun and M. L. Chang, Galerkin spectral method for a multi-term time-fractional

diffusion equation and an application to inverse source problem, Netw. Heterog. Media

18 (2023), no. 1, 212–243.

[32] L. L. Sun, Y. S. Li and Y. Zhang, Simultaneous inversion of the potential term and the

fractional orders in a multi-term time-fractional diffusion equation, Inverse Problems

37 (2021), no. 5, Paper No. 055007, 26 pp.

[33] L. Sun, Y. Zhang and T. Wei, Recovering the time-dependent potential function in a

multi-term time-fractional diffusion equation, Appl. Numer. Math. 135 (2019), 228–

245.

[34] N. H. Tuan, L. D. Long and S. Tatar, Tikhonov regularization method for a backward

problem for the inhomogeneous time-fractional diffusion equation, Appl. Anal. 97

(2018), no. 5, 842–863.

[35] J.-G. Wang and T. Wei, An iterative method for backward time-fractional diffusion

problem, Numer. Methods Partial Differential Equations 30 (2014), no. 6, 2029–2041.

[36] J.-G. Wang, T. Wei and Y.-B. Zhou, Tikhonov regularization method for a backward

problem for the time-fractional diffusion equation, Appl. Math. Model. 37 (2013),

no. 18-19, 8518–8532.

[37] T. Wei and J.-G. Wang, A modified quasi-boundary value method for the backward

time-fractional diffusion problem, ESAIM Math. Model. Numer. Anal. 48 (2014),

no. 2, 603–621.

[38] T. Wei and J. Xian, Variational method for a backward problem for a time-fractional

diffusion equation, ESAIM Math. Model. Numer. Anal. 53 (2019), no. 4, 1223–1244.

[39] L. Yuan, X. Cheng and K. Liang, Solving a backward problem for a distributed-order

time fractional diffusion equation by a new adjoint technique, J. Inverse Ill-Posed

Probl. 28 (2020), no. 4, 471–488.

[40] R. Zheng, F. Liu and X. Jiang, A Legendre spectral method on graded meshes for

the two-dimensional multi-term time-fractional diffusion equation with non-smooth

solutions, Appl. Math. Lett. 104 (2020), 106247, 8 pp.



1210 Liangliang Sun, Yuxin Wang and Maoli Chang

Liangliang Sun, Yuxin Wang and Maoli Chang

School of Mathematics and statistics, Northwest Normal University, Gansu 730000,

China

E-mail addresses: sunll0321@163.com, wangyuxin0405@163.com,

cml0524wait@163.com


	Introduction
	Preliminaries
	Ill-posedness of inverse problem and fractional-order quasi-reversibility method
	Convergence analysis and error estimate
	The convergence rate of the corresponding solution
	Numerical algorithm
	Numerical experiments
	Concluding remark

