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δ♯(2, 2)-Ideal Centroaffine Hypersurfaces of Dimension 4

Handan Yıldırım* and Luc Vrancken

Abstract. Ideal submanifolds have been studied from various aspects since Chen in-

vented δ-invariants in early 1990s (see [12] for a survey). In centroaffine differential

geometry, Chen’s invariants denoted by δ♯ are used to determine an optimal bound

for the squared norm of the Tchebychev vector field of a hypersurface. We point out

that a hypersurface attaining this bound is said to be an ideal centroaffine hypersur-

face. In this paper, we deal with δ♯(2, 2)-ideal centroaffine hypersurfaces in R5 and

in particularly, we focus on 4-dimensional δ♯(2, 2)-ideal centroaffine hypersurfaces of

type 1.

1. Introduction

In the last decade of the last century, Chen constructed general optimal inequalities in-

cluding his δ-invariants and the squared mean curvature of Riemannian submanifolds of

real space forms to determine an optimal lower bound for the squared mean curvature of

these Riemannian submanifolds (see [12] for details).

In [13], an optimal inequality was obtained for Lagrangian submanifolds of complex

space forms. Since centroaffine differential geometry is of great interest among geometers

(for instance, see [2,3,10,12,20–22,27–32,35–39]), taking into account the similarity with

the Lagrangian case, the following δ♯-invariant was introduced for a centroaffine hypersur-

face Mn of Rn+1:

δ♯(n1, . . . , nk)(p) = τ̂(p)− sup{τ̂(L1) + · · ·+ τ̂(Lk)},

where τ̂(p) is the scalar curvature of Mn at p ∈ Mn and τ̂(Li) is the scalar curvature

of Li, i = 1, . . . , k such that L1, . . . , Lk run over all k mutually orthogonal subspaces of

TpM
n with dimLi = ni, 2 ≤ n1 ≤ · · · ≤ nk ≤ n− 1 and n1 + · · ·+ nk ≤ n (cf. [3,12]). We

emphasize that the norm of Tchebychev vector field T ♯ is one of the main invariants in

centroaffine differential geometry and general optimal inequalities related to δ♯-invariants
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include the squared norm of Tchebychev vector field T ♯ instead of the squared mean

curvature in Riemannian geometry.

Submanifolds satisfying the equality cases of the inequalities related to either δ or δ♯

are said to be ideal submanifolds. It is known that these inequalities and the classifica-

tion problem of ideal submanifols have been studied extensively by many geometers (for

example, see [1, 3–9, 11–19, 23, 25–28, 37–39]). However, there are still some submanifolds

which have not been classified yet.

We point out that the bounds for the inequalities related to δ♯-invariants are essentially

different depending on whether n1 + · · · + nk = n or n1 + · · · + nk < n. We remark that

there have been some results regarding the inequalities about δ♯-invariants for the latter

one in the literature (for instance, see [3, 27, 28, 37, 39]). However, there have been no

results published related to the inequalities regarding δ♯-invariants for the first one yet.

Because of this reason, we deal with 4-dimensional δ♯(2, 2)-ideal centoaffine hypersurfaces

in this paper. For our purpose, we mainly focus on 4-dimensional δ♯(2, 2)-ideal centroaffine

hypersurfaces of type 1. Because, taking into account the classification of δ(2, n − 2)-

ideal Lagrangian submanifolds in n-dimensional complex space forms in [14], the work

on δ♯(2, n − 2)-ideal centroaffine hypersurfaces in Rn+1 is in preparation, where n > 4

(cf. [38]). We note that the methods developed and the results obtained in [38] are applied

for 4-dimensional δ♯(2, 2)-ideal centroaffine hypersurfaces of type 2, type 3, type 4, type 5

and type 6 as explained in Section 3 and an additional assumption on the differentiable

extensions of the frame is used in some cases. We emphasize that different cases depending

on the form of the difference tensor are crucial for these problems.

2. Preliminaries

In this section, we recall some basic notions about centroaffine hypersurfaces by means

of [35].

Let Mn be an n-dimensional C∞-manifold and F : Mn → Rn+1 be a non-degenerate

hypersurface whose position vector is nowhere tangent to Mn. Then, F is a transversal

field along itself and ξ = −F is said to be the centroaffine normal. Following [35], F

together with this normalization is said to be a centroaffine hypersurface.

Let X,Y, Z ∈ χ(Mn). The centroaffine structure equations are given by

DXF∗(Y ) = F∗(∇XY ) + h(X,Y )ξ,(2.1)

DXξ = −F∗(X),(2.2)

where D denotes the canonical flat connection of Rn+1, ∇ is a torsion-free connection

on Mn which is called the induced centroaffine connection and h is a non-degenerate
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symmetric (0, 2)-tensor field which is called the centroaffine metric. The corresponding

equations of Gauss and Codazzi are given respectively by

R(X,Y )Z = h(Y,Z)X − h(X,Z)Y,(2.3)

(∇Xh)(Y, Z) = (∇Y h)(X,Z).(2.4)

The totally symmetric (0, 3)-tensor field C(X,Y, Z) = (∇Xh)(Y,Z) is said to be the cubic

form.

We assume that the centroaffine hypersurface is definite, i.e., h is definite. If h is

negative definite, we shall replace ξ = −F by ξ = F for the affine normal. In this way, the

centroaffine metric h becomes positive definite. In both cases, equations (2.1) and (2.4)

hold whereas equations (2.2) and (2.3) change sign. When ξ = −F (respectively, ξ = F ),

Mn is said to be positive (respectively, negative) definite.

Let ∇̂ be the Levi–Civita connection of h. Moreover, denote by R̂ (respectively, τ̂) the

curvature tensor (respectively, the scalar curvature) of ∇̂. The difference tensor K is then

defined by

KXY = K(X,Y ) = ∇XY − ∇̂XY

which is a symmetric (1, 2)-tensor field. K and C are related by

C(X,Y, Z) = −2h(KXY, Z).

Thus, for each X, KX is self-adjoint with respect to h.

The Tchebychev form T and the Tchebychev vector field T ♯ of Mn are defined by

T (X) =
1

n
traceKX and h(T ♯, X) = T (X).

If T = 0 and Mn is a centroaffine hypersurface of the equiaffine space, then Mn is a

so-called proper equiaffine hypersphere centered at the origin, in the sense of [35]. Note

that it is an elliptic (respectively, a hyperbolic) equiaffine hypersphere when it is positive

(respectively, negative) definite. If K vanishes, then Mn is a hyperquadric centered at

the origin. Note that it is an ellipsoid (respectively, a two-sheeted hyperboloid) if Mn is

positive (respectively, negative) definite.

It is well known in centroaffine differential geometry that

h(KXY, Z) = h(Y,KXZ),

R̂(X,Y )Z = KY KXZ −KXKY Z + ϵ
(
h(Y,Z)X − h(X,Z)Y

)
,

(∇̂K)(X,Y, Z) = (∇̂K)(Y, Z,X) = (∇̂K)(Z,X, Y ),

where ϵ = 1 (respectively, ϵ = −1) when Mn is positive (respectively, negative) definite.
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3. δ♯-invariants, inequalities and ideal immersions

Let Mn be an n-dimensional Riemannian manifold. For a plane section π ⊂ TpM
n, where

p ∈ Mn, let κ̂(π) be the sectional curvature of Mn associated with π. For an orthonormal

basis {e1, . . . , en} of TpM
n, the scalar curvature τ̂ at p is defined by

τ̂(p) =
∑
i<j

κ̂(ei ∧ ej), 1 ≤ i < j ≤ n.

Let L be a subspace of TpM
n with dimension r ≥ 2 and {e1, . . . , er} be an orthonormal

basis of L. The scalar curvature τ̂(L) of L is defined by

τ̂(L) =
∑
α<β

κ̂(eα ∧ eβ), 1 ≤ α < β ≤ r.

Given two integers n ≥ 3 and k ≥ 1, the finite set consisting of all k-tuples (n1, . . . , nk) of

integers satisfying

2 ≤ n1 ≤ · · · ≤ nk ≤ n− 1 and n1 + · · ·+ nk ≤ n

is denoted by S(n, k). Moreover, the union
⋃

k≥1 S(n, k) is denoted by S(n).
For each (n1, . . . , nk) ∈ S(n) and each p ∈ Mn, the invariant δ(n1, . . . , nk)(p) is defined

by

δ(n1, . . . , nk)(p) = τ̂(p)− inf{τ̂(L1) + · · ·+ τ̂(Lk)},

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpM
n such that dimLi =

ni, i = 1, . . . , k (cf. [12]).

In [7,12], Chen proved a sharp general inequality between δ(n1, . . . , nk) and the squared

mean curvature H2 for submanifolds in real space forms. For Lagrangian submanifolds

of complex projective spaces, the final sharp inequality was obtained in [13]. Taking into

account [3] (see also [12]), it is clear that this inequality can be adapted to centroaffine

differential geometry by defining the following invariant for a centroaffine hypersurface

Mn of Rn+1:

δ♯(n1, . . . , nk)(p) = τ̂(p)− sup{τ̂(L1) + · · ·+ τ̂(Lk)},

where (n1, . . . , nk) ∈ S(n), p ∈ Mn and L1, . . . , Lk run over all k mutually orthogonal

subspaces of TpM
n such that dimLi = ni, i = 1, . . . , k. The difference with the Lagrangian

case is due to the difference of sign in the Gauss equation.

Throughout this paper, we deal with the case n1+· · ·+nk = n in centroaffine differential

geometry. As a result, before stating the inequality in this case, we introduce some

notations. For a given δ♯-invariant δ♯(n1, . . . , nk) on Mn (n ≥ 3, k ≥ 1 and 2 ≤ n1 ≤
· · · ≤ nk ≤ n− 1) and a given point p ∈ Mn, we consider mutually orthogonal subspaces
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L1, . . . , Lk of TpM
n maximizing the quantity τ̂(L1) + · · · + τ̂(Lk). We then choose an

orthonormal basis {e1, . . . , en} for TpM
n such that

e1, . . . , en1 ∈ L1, en1+1, . . . , en1+n2 ∈ L2, . . . , en1+···+nk−1+1, . . . , en1+···+nk
∈ Lk

and define

∆1 := {1, . . . , n1}, ∆2 := {n1 + 1, . . . , n1 + n2}, . . . ,

∆k := {n1 + · · ·+ nk−1 + 1, . . . , n1 + · · ·+ nk}.

From now on, we use the following conventions for the ranges of summation indices:

A,B,C ∈ {1, . . . , n}, i, j ∈ {1, . . . , k}, αi, βi ∈ ∆i.

The components of the difference tensor is denoted by KC
AB = h

(
K(eA, eB), eC

)
. Due to

the symmetry of the cubic form, these are symmetric with respect to three indices A, B

and C. Adapting the proof of [13] (cf. also [12]), we have the following theorem in the

centroaffine case:

Theorem 3.1. Let Mn be a definite centroaffine hypersurface of Rn+1. Take ϵ = 1

(respectively, ϵ = −1) when Mn is positive (respectively, negative) definite. Then, for

each k-tuple (n1, . . . , nk) ∈ S(n) with n1 + · · ·+ nk = n, we have

(3.1)

δ♯(n1, . . . , nk) ≥ −
n2
(
k − 1− 2

∑k
i=2

1
ni+2

)
2
(
k − 2

∑k
i=2

1
ni+2

) ∥T ♯∥2 + 1

2

(
n(n− 1)−

k∑
i=1

ni(ni − 1)

)
ϵ.

The equality case of inequality (3.1) holds at a point p ∈ Mn if and only if one has

(i) KA
αiαj

= 0 if i ̸= j and A ̸= αi, αj,

(ii) if nj ̸= min{n1, . . . , nk}:

K
βj
αiαi = 0 if i ̸= j and

∑
αj∈∆j

K
βj
αjαj = 0,

(iii) if nj = min{n1, . . . , nk}:∑
αj∈∆j

K
βj
αjαj = (ni + 2)K

βj
αiαi for any i ̸= j and any αi ∈ ∆i.

A centroaffine immersion of Mn into Rn+1 is called δ♯(n1, . . . , nk)-ideal if it satisfies

the equality case of inequality (3.1) identically. A centroaffine immersion of Mn into Rn+1

is called ideal if it is δ♯(n1, . . . , nk)-ideal for the corresponding (n1, . . . , nk) ∈ S(n).
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We now restrict ourselves to the case of δ♯(2, 2)-ideal centroaffine hypersurfaces in R5.

Of course, we do not know whether the decomposition obtained in the previous theorem

is unique. Depending on how the Tchebychev vector field T ♯ is related to a possible

decomposition of the tangent space TM4, we can consider the following types of such

ideal hypersurfaces:

1. M4 is of type 1 if, for any possible decomposition of TM4, T ♯ has a component in

the directions of both L1 and L2. In this case, we can pick e1 ∈ L1 and e3 ∈ L2 such

that T ♯ is a combination of e1 and e3.

2. M4 is of type 2 if there exists a decomposition of TM4 such that T ♯ is contained in

L1 and the difference tensor K restricted to L2 does not vanish identically. In this

case, we pick e1 such that T ♯ is a multiple of e1 and we make a rotation in L2 such

that h
(
K(e3, e3), e4

)
= 0.

3. M4 is of type 3 if there exists a decomposition of TM4 such that T ♯ is contained in

L1 and K restricted to L2 vanishes identically. In this case, we pick e1 such that T ♯

is a multiple of e1. We still retain a rotation freedom in L2.

4. M4 is of type 4 if, for any decomposition of TM4, T ♯ vanishes and the restrictions of

K to both L1 and L2 are non-vanishing. Applying a rotation in both spaces, we may

assume that the basis is chosen such that h
(
K(e1, e1), e2

)
= 0 = h

(
K(e3, e3), e4

)
.

5. M4 is of type 5 if there exists a decomposition of TM4 such that T ♯ vanishes, the

restriction of K to L1 is non-vanishing and the restriction of K to L2 vanishes.

In this case, it follows easily that this happens if and only if M4 is a δ♯(2)-ideal

centroaffine hypersurface with vanishing T ♯. These can be classified by following the

same approach in [24] (see also [16,17]).

6. M4 is of type 6 if there exists a decomposition of TM4 such that T ♯ vanishes and

the restrictions of K to both L1 and L2 vanish. We point out that this is valid if and

only if K vanishes identically. Therefore, by the classical Berwald theorem (cf. [35])

and the fact that the metric is definite, we get that M4 is either a hyperboloid or

an ellipsoid.

Note that since both eigenspaces of a 4-dimensional δ♯(2, 2)-ideal centroaffine hyper-

surface have the same dimension, it follows from the theorem that the conditions for a

4-dimensional δ♯(2, 2)-centroaffine hypersurface to be ideal are weaker than the ones for a

δ♯(2, n−2)-centroaffine hypersurface of Rn+1 with n > 4. We emphasize that, in the latter

case, T ♯ would automatically be in the direction of the first distribution and therefore sub-

manifolds of type 1 would not occur. However, this also means that in order to deal with
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4-dimensional δ♯(2, 2)-ideal centroaffine hypersurfaces of type 2, . . . , type 6, the methods

developed and the results obtained in [38] are applied, where an additional assumption on

the differentiable extensions of the frame is used in some cases. For this reason, we only

give the classification of 4-dimensional δ♯(2, 2)-ideal centroaffine hypersurfaces of type 1

throughout this paper.

We emphasize that, in order to complete the classification of 4-dimensional δ♯(2, 2)-

ideal centroaffine hypersurfaces, it is sufficient

1. to obtain a classification of 4-dimensional δ♯(2, 2)-ideal centroaffine hypersurfaces of

type 1,

2. to show that the frames in the cases of type 2, . . . , type 6 can always be chosen in

a differentiable way. We remark that these cases can be studied in exactly the same

way as δ♯(2, n− 2)-ideal centroaffine hypersurfaces in Rn+1 with n > 4 (see [38] for

the details and see [14] for Lagrangian case).

4. δ♯(2, 2)-ideal centroaffine hypersurfaces of type 1 in R5

In this section, we suppose that M4 is a δ♯(2, 2)-ideal definite centroaffine hypersurface of

type 1 in R5. We assume that the affine normal is chosen such that the affine metric h is

positive definite. In this case, expressing the conditions of Theorem 3.1 and choosing an

appropriate orthonormal basis in each ∆i, we have the following lemma:

Lemma 4.1. Let M4 be a δ♯(2, 2)-ideal definite centroaffine hypersurface of type 1 in R5.

Then, at each point p of M4, there exists an orthonormal frame {e1, . . . , e4} such that

K(e1, e1) = (a1 + 3b3)e1 + a2e2 + a3e3, K(e1, e2) = a2e1 + (b3 − a1)e2,

K(e3, e3) = b3e1 + (b1 + 3a3)e3 + b2e4, K(e3, e4) = b2e3 + (a3 − b1)e4,

K(e2, e2) = (b3 − a1)e1 − a2e2 + a3e3, K(e4, e4) = b3e1 + (a3 − b1)e3 − b2e4,

K(e1, e3) = a3e1 + b3e3, K(e1, e4) = b3e4, K(e2, e3) = a3e2, K(e2, e4) = 0,

where a1, a2, a3, b1, b2, b3 ∈ R such that a3 ̸= 0 ̸= b3.

Since a3 ̸= 0 and b3 ̸= 0, we deduce that

Lemma 4.2. Let M4 be a δ♯(2, 2)-ideal definite centroaffine hypersurface of type 1 in R5.

Then, if necessary by restricting to an open dense set, around each point p of M4, there

exists an orthonormal frame field which can be also denoted by {e1, . . . , e4} such that

K(e1, e1) = (a1 + 3b3)e1 + a2e2 + a3e3, K(e1, e2) = a2e1 + (b3 − a1)e2,

K(e3, e3) = b3e1 + (b1 + 3a3)e3 + b2e4, K(e3, e4) = b2e3 + (a3 − b1)e4,

K(e2, e2) = (b3 − a1)e1 − a2e2 + a3e3, K(e4, e4) = b3e1 + (a3 − b1)e3 − b2e4,

K(e1, e3) = a3e1 + b3e3, K(e1, e4) = b3e4, K(e2, e3) = a3e2, K(e2, e4) = 0,
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where a1, a2, a3, b1, b2 and b3 are functions such that a3 ̸= 0 ̸= b3.

Proof. First, we remark that

T ♯ =
3

2
(b3e1 + a3e3).

This implies that b23 + a23 is a differentiable function. We then introduce a vector v by

v =
4

9

(
K(T ♯, T ♯)− 9

2
(a23 + b23)T

♯

)
.

Hence, we have

v = a1b
2
3e1 + a2b

2
3e2 + a23b1e3 + a23b2e4

which implies that (a21 + a22)b
4
3 + a43(b

2
1 + b22) and a1b

3
3 + b1a

3
3 are differentiable functions.

It can be easily verified that

K(T ♯, v)− 3

2
(a23 + b23)v

=
3

2

(
(2a33b1b3 + b33(a

2
1 + a22 + 2a1b3))e1 + (a33(2a3b1 + b21 + b22) + 2a1a3b

3
3)e3

)
.

Now, there are two possibilities. First, we assume that this vector and T ♯ are linearly

independent. In this case, we get

a23(b
2
1 + b22)− b23(a

2
1 + a22) ̸= 0.

We introduce a differentiable vector w by

w = K(T ♯, v)− 3

2
(b23 + a23)v − 2(a33b1 + b33a1)T

♯.

It can be easily seen that

w =
3

2

(
(a21 + a22)b

3
3e1 + (b21 + b22)a

3
3e3
)
.

Because of our assumption, w and T ♯ are linearly independent. In order to simplify

notations, we write

a1 =
ã1
b3

, a2 =
ã2
b3

, b1 =
b̃1
a3

, b2 =
b̃2
a3

.

It follows respectively from the inner products ⟨T ♯, T ♯⟩, ⟨v, v⟩, ⟨T ♯, w⟩, ⟨T ♯, v⟩ and ⟨v, w⟩
that there exist differentiable functions d1, . . . , d5 such that

b23 + a23 = d1,(4.1)

b23(ã1
2 + ã2

2) + a23(b̃1
2
+ b̃2

2
) = d2,(4.2)

b23(ã1
2 + ã2

2) + a23(b̃1
2
+ b̃2

2
) = d3,(4.3)

b23ã1 + a23b̃1 = d4,

b23ã1(ã1
2 + ã2

2) + a23b̃1(b̃1
2
+ b̃2

2
) = d5.
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We now introduce

w̃ = K(v, w)− 3

2
d3v − d4w − d5T

♯

which gives

w̃ =
3

2

(
(ã1

2 + ã2
2)2b3e1 + (b̃1

2
+ b̃2

2
)2a3e3

)
.

Therefore, ⟨w̃, w̃⟩ yields that

(4.4) b23(ã1
2 + ã2

2)2 + a23(b̃1
2
+ b̃2

2
)2 = d6

is a differentiable function. It is clear that we can solve (4.1) and (4.2) for a23 and b23.

Substituting these solutions into (4.3) and (4.4), we get solutions for ã1
2+ã2

2 and b̃1
2
+b̃2

2
.

These solutions allow us to express e1 and e3 in a differentiable way by means of the

differentiable vector fields T ♯ and w. Additionally, from the last two equations, we can

also express ã1 and b̃1 in a differentiable way. Now, looking at either K(e1, e1) or K(e3, e3),

for the eigenspaces of either Ke1 or Ke3 restricted to the space {e2, e4}, we see that e2 and

e4 are determined uniquely unless a2 = b2 = 0 = a1 = b1.

Next, we consider the case

a23(b
2
1 + b22) = b23(a

2
1 + a22)

or equivalently

b̃1
2
+ b̃2

2
= ã1

2 + ã2
2.

We define the vectors T ♯, v and w as before. In this case, w = (ã1
2 + ã2

2)T ♯ implying

that ã1
2 + ã2

2 is differentiable. Under the above case, we define a differentiable vector

w̃ = K(v, v) + (ã1
2 + ã2

2 − 2ã1b
2
3 − 2a23b̃1)v −

2

3
(ã1

2 + ã2
2)(a23 + b23)T

♯.

Thus, we get

w̃ = (ã1
2 + ã2

2)(2ã1b3e1 + 2b̃1a3e3).

Proceeding now in the same way as in the previous case, we obtain a differentiable

frame unless b̃1 = ã1, in which case (if necessary by replacing e4 by −e4) we may also

assume that b̃2 = ã2. As before, we can easily get that ã1, ã2 and a23+ b23 are differentiable

functions. The vectors T ♯ and v are linearly independent if and only if a2 ̸= 0. We

also have that the space spanned by T ♯ and v is invariant under K. Consequently, its

orthogonal complement is also invariant under KT ♯ . Since ã2 ̸= 0, we see that this space

has two distinct eigenvalues (and so two well-determined unitary eigenvectors f1 and f2).

Computing h
(
K(f1, f1), f2

)
yields the differentiability of

a23−b23
a3b3

and therefore e1, e2, e3

and e4 can be expressed by means of T ♯, v, f1 and f2 in a differentiable way.

Next, we consider the case that ã2 = 0 and ã1 ̸= 0 on an open set. In this case,

K(T ♯, T ♯) is a multiple of T ♯. Hence, we obtain that ã1 and a23 + b23 are differentiable
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functions. We also find that w̃ = −a3e1+ b3e3 is a vector of the length a23+ b23 spanning a

1-dimensional eigenspace of KT ♯ . Consequently, w̃ is a differentiable vector. Computing

h
(
K(w̃, w̃), w̃

)
, we deduce that

a23−b23
a3b3

is also differentiable. Thus, we get e1 and e3 in a

differentiable way. As explained in the first case, this also gives e2 and e4.

Finally, we consider the case with an additional condition ã1 = 0. In this case, we take

the differentiable frame as the vector T ♯ together with 3 arbitrary mutually orthogonal

unitary vector fields. A straightforward computation shows that this differentiable frame

is compatible with Chen’s equality, where a1 = a2 = b1 = b2 = b3 = 0. Note that in this

case, M4 is not of type 1 with respect to the new frame since a1 = a2 = b1 = b2 = b3 = 0.

Moreover, in this case, we have the decompositions of TM4 in mutually orthogonal planes,

each of which realising the equality.

We note that if both a3 and b3 vanish, then the classification results can be obtained

in a similar way to that of Lagrangian submanifolds of complex space forms (see [16,17]).

From now on, we always work on the open dense subset introduced in Lemma 4.2. We

denote by Γ̂k
ij (respectively, ω̂k

j (ei)) the Christoffel symbols (respectively, the connection

forms) according to the Levi–Civita connection of the affine metric.

Since M4 is of type 1, a3 ̸= 0 ̸= b3. Note that if a1 = a2 = b1 = b2 = 0, we can change

the frame to make it of type 3 (cf. [20]). So, this case is excluded here. Hence, there are two

cases to consider (if necessary) after interchanging distributions: (i) a21 + a22 ̸= 0 ̸= b21 + b22
on an open set or (ii) a21 + a22 = 0 and b21 + b22 ̸= 0 on an open set. We call the first case

type (1i) and it is the case that will be considered in detail in the remainer of this paper.

Using the fact that C is totally symmetric, we have the following Levi–Civita connections

for the case (i) by a tedious, long and straightforward computations:

∇̂e1e1 =
a1d2 − a2d3

b3
e2 + c3e3 + c2e4,

∇̂e1e2 =
−a1d2 + a2d3

b3
e1,

∇̂e1e3 = −c3e1 −
b3c2
a3

e4,

∇̂e1e4 = −c2e1 +
b3c2
a3

e3,

∇̂e2e1 =
a3(b3κ+ c3)− b1c3 − b2c2

b3
e2,

∇̂e2e2 =
−a3(b3κ+ c3) + b1c3 + b2c2

b3
e1 + c3e3 + c2e4,

∇̂e2e3 = −c3e2,

∇̂e2e4 = −c2e2,
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∇̂e3e1 = −a3d2
b3

e2 − d3e3,

∇̂e3e2 =
a3d2
b3

e1 − d2e3,

∇̂e3e3 = d3e1 + d2e2 +
b1c2 − b2c3

a3
e4,

∇̂e3e4 = −b1c2 − b2c3
a3

e3,

∇̂e4e1 = −d3e4,

∇̂e4e2 = −d2e4,

∇̂e4e3 =
−a1d3 − a2d2 + b3(d3 + a3κ)

a3
e4,

∇̂e4e4 = d3e1 + d2e2 +
a1d3 + a2d2 − b3(d3 + a3κ)

a3
e3,

where c2, c3, d2, d3 and κ are additional unknown functions and the coefficients a3, b3, a2,

b2, a1 and b1 of the difference tensor satisfy respectively the following system of differential

equations:

� For the function a3, we have

e1(a3) = −b3c3,

e2(a3) = 0,

e3(a3) = −2b2c2 − 2b1c3 − a2d2 − a1d3 + b3(d3 + a3κ),

e4(a3) = b1c2 − b2c3.

� For the function b3, we obtain

e1(b3) = −b2c2 − b1c3 − 2a2d2 − 2a1d3 + a3(c3 + b3κ),

e2(b3) = a1d2 − a2d3,

e3(b3) = −a3d3,

e4(b3) = 0.

� For the function a2, we deduce

e1(a2) =
−a11b3 + 3a2

(
b1c3 + b2c2 − a3(c3 + b3κ)

)
b3

,

e2(a2) = a22 − b2c2 −
a2(−3a1d2 + 3a2d3 + b3d2)

b3
,

e3(a2) = a2c3 +
3a1a3d2

b3
,

e4(a2) = a2c2.
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� For the function b2, we find

e1(b2) =
3b1b3c2

a3
+ b2d3,

e2(b2) = b2d2,

e3(b2) = −b11 +
3b2
(
a2d2 + a1d3 − b3(d3 + a3κ)

)
a3

,

e4(b2) = b22 −
b2(a3c2 − 3b1c2 + 3b2c3)

a3
− a2d2.

� For the function a1, we get

e1(a1) =
3a1
(
b2c2 + (−a3 + b1)c3

)
b3

− (a22 − b2c2 + a2d2 + 2a1d3 + 3a1a3κ),

e2(a1) =
−a11b3 + (3a1 − 2b3)(a1d2 − a2d3)

b3
,

e3(a1) = a1c3 −
3a2a3d2

b3
,

e4(a1) = a1c2.

� For the function b1, we obtain

e1(b1) = −3b2b3c2
a3

+ b1d3,

e2(b1) = b1d2,

e3(b1) =
3b1
(
a2d2 + (a1 − b3)d3

)
a3

− (b22 + b2c2 + 2b1c3 − a2d2 + 3b1b3κ),

e4(b1) = −b11 +
(2a3 − 3b1)(−b1c2 + b2c3)

a3
.

In the above, a11, a22, b11 and b22 are arbitrary functions defined additionally.

We now focus on the distributions D1 = {e1, e2} and D2 = {e3, e4}. For this reason,

we recall some notions about distributions (see [34] for the details). Let (Mn, h) be a

Riemannian manifold and ∇̂ be its Levi–Civita connection. Then, a subbundle E ⊂ TMn

is called autoparallel if ∇̂XY ∈ E holds for all X,Y ∈ E, whereas a subbundle E is

called totally umbilical if there exists a vector field H ∈ E⊥ such that h(∇̂XY, Z) =

h(X,Y )h(H,Z) for all X,Y ∈ E and Z ∈ E⊥. Here, H is said to be the mean curvature

vector of E. If, moreover, h(∇̂XH,Z) = 0 holds, E is called spherical.

From the formulas for the Levi–Civita connection, we deduce that both of the distri-

butions D1 and D2 are integrable. Moreover, since one is also the orthogonal complement

of the other one, their orthogonal complements are also integrable. Furthermore, we see

that each subbundle with the mean curvature vector c3e3 + c2e4 or d3e1 + d2e2 is totally
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umbilical in that case. In sense of Definition 3 of [33], this implies that M4 is a TP net

and in view of Proposition 4 of [33], the manifold has the structure of a twisted product.

In order to obtain a classification, we now have to consider the following subcases:

1. a1 ̸= 0 and b1 ̸= 0, 2. a1 ̸= 0 and b1 = 0, 3. a1 = b1 = 0.

Suppose that a1 ̸= 0 and b1 ̸= 0. We first try to find coordinate vector fields. We know

that M4 is a twisted product. We try to take isothermal coordinates on each of the two

components, i.e., we try to find isothermal coordinates which are linear combinations of

respectively e1, e2 and e3, e4. Take U × V , where U ⊂ R2, V ⊂ R2, (u1, u2) ∈ U and

(v1, v2) ∈ V in order to define the vector fields as follows:

g1 = u1e1 + u2e2, g2 = −u2e1 + u1e2, g3 = v1e3 + v2e4, g4 = −v2e3 + v1e4,

where

u1 =
ρ2 cos

(
1
3 arctan

(
a2
a1

))√
a21 + a22

, u2 =
ρ2 sin

(
1
3 arctan

(
a2
a1

))√
a21 + a22

,

v1 =
ρ1 cos

(
1
3 arctan

(
b2
b1

))√
b21 + b22

, v2 =
ρ1 sin

(
1
3 arctan

(
b2
b1

))√
b21 + b22

such that ρ2 is a function depending only on the first component and ρ1 is a function

depending only on the second component. It follows now by a straightforward computation

that

[g1, g3] = [g1, g4] = [g2, g3] = [g2, g4] = 0.

Moreover, [g1, g2] and [g3, g4] also vanish if and only if the functions ρ1 and ρ2 satisfy the

following system of differential equations:

e1(ρ2) = − 2ρ2
3(a21 + a22)b3

(
a11a2b3 + a1b3(a22 − b2c2 + a2d2)

+ 3a21(−b2c2 + a3c3 − b1c3 + b3d3 + a3b3κ)

+ a22
(
− 3b2c2 − 3b1c3 + b3d3 + 3a3(b3κ+ c3)

))
,

e2(ρ2) =
2ρ2

3(a21 + a22)b3

(
3a31d2 − 3a21(b3d2 + a2d3)− a2(−a22b3 + b2b3c2 + 2a2b3d2 + 3a22d3)

+ a1
(
− a11b3 + a2(3a2d2 + 2b3d3)

))
,

e3(ρ1) = − 2ρ1
3a3(b21 + b22)

(
− 3(b21 + b22)

(
a2d2 + (a1 − b3)d3

)
+ a3

(
b11b2 + b1(b22 + b2c2 − a2d2) + 3b21(b3κ+ c3) + b22(3b3κ+ c3)

))
,

e4(ρ1) = − 2ρ1
3a3(b21 + b22)

(
− 3(b21 + b22)(b1c2 − b2c3)

+ a3
(
3b21c2 + b1(b11 − 2b2c3) + b2(−b22 + 2b2c2 + a2d2)

))
.
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Of course, we have to check if such functions ρ1 and ρ2 exist or not. In order to do so, we

have to verify that the so called integrability conditions stated as

ei
(
ej(ρk)

)
− ej

(
ei(ρk)

)
=
(
∇̂eiej − ∇̂ejei

)
(ρk)

are satisfied. It can be easily verified by using the Gauss equations and by checking the

integrability conditions for the other functions. We remark that the Gauss equation yields

the following:

e2(c2) = e2(c3) = 0,

e4(d2) = e4(d3) = 0,

e1(c3) = −b3(a
2
3 + c22)

a3
,

e1(c2) =
b3c2c3
a3

,

e3(d3) = −a3(b
2
3 + d22)

b3
,

e3(d2) =
a3d2d3

b3
,

e1(d2) =
d3(a2d3 − a1d2)

b3
− a2b3 + d2d3,

e3(c2) = −c3(b1c2 − b2c3)

a3
− a3b2 + c2c3,

e4(c3) = −a3b2 + c2c3 −
c2
(
a2d2 + a1d3 − b3(d3 + a3κ)

)
a3

,

e2(d3) = −a2b3 + d2d3 −
d2
(
b2c2 + b1c3 − a3(c3 + b3κ)

)
b3

,

e3(c3) = −2a23 − a3b1 − a1b3 − 2b23 + c23 + d23 + q1 + ϵ,

e1(d3) =
b1b3c

2
2 − b2b3c2c3 + a1a3d

2
2 − a2a3d2d3 − a3b3q1

a3b3
,

e2(d2) = 2a1b3 +
b1c

2
2 − b2c2c3 + a3d

2
2 − a3q1

a3

+
b33 + (b2c2 − a3c3 + b1c3)d3 − b3d3(d3 + a3κ)

b3
,

e4(c2) =
1

a3

(
− a33 + a23b1 − a1a3b3 − 2a3b

2
3 + a3c

2
2 − b1c

2
2 + b2c2c3 + a2c3d2

+ a1c3d3 − b3c3d3 + a3d
2
3 + a3q1 + a3ϵ− a3b3c3κ

)
,

where q1 is an additional unknown function. We now denote ei(κ) by κ̃i. Then, it follows

from the integrability conditions for c3 and d3 that

κ̃1 =
1

a23b
2
3

(
b3(a1 + 2b3)c2(b1c2 − b2c3) + a22a3(−b23 + d23)
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+ a2a3d2(3b2c2 − 3a3c3 + 3b1c3 − 2a1d3 + 2b3d3 − a3b3κ)

+ a23
(
b2b3c2κ− a1d3(3c3 + b3κ) + b1b3(−b3 + c3κ)

)
+ a3

(
a21d

2
2 + a1

(
b33 + 3(b2c2 + b1c3)d3 − b3(d

2
2 + d23 + q1)

)
+ b3(2b

3
3 − a11d2 − a22d3 + 2b2c2d3 + b1c3d3 − b3ϵ+ b23c3κ)

)
− a33b3

(
c3κ+ b3(−2 + κ2)

))
,

κ̃2 =
1

a23b
2
3

(
3a21a3d2d3 − 3a22a3d2d3 + a3b3(a22d2 + b1c3d2 − a11d3)

+ a1a3
(
− d2(b2c2 − a3c3 + b1c3 + 3b3d3) + a2(b

2
3 + 3d22 − 3d23)

)
+ a2

(
b3c2(b1c2 − b2c3)− a23c3d3 + a3

(
2b33 + (b2c2 + b1c3)d3 − b3(d

2
2 − 2d23 + q1)

)))
,

κ̃3 =
1

a23b
2
3

(
2a43b3 + b3

(
− b1b2c2c3 + b22c

2
3 + 3a2b2c2d2 + 3a2b1c3d2

+ 3(a1 − b3)(b2c2 + b1c3)d3
)
+ a33b3(−b1 + d3κ)

− a23(b
2
1b3 + b22b3 + a1b

2
3 − 2b33 − 2a1d

2
2 + 2a2d2d3 + b3ϵ+ b33κ

2)

+ a3b3
(
− b11c2 − b22c3 + 2b2c2c3 + 2a2c3d2 − b3(b2c2 − a2d2 + b3d3)κ

+ a1
(
− b1b3 + d3(c3 + b3κ)

)
+ b1

(
− c22 + d23 + q1 + ϵ− b3(2b3 + c3κ)

)))
,

κ̃4 =
1

a23b3

(
(b1c2 − b2c3)(2b2c2 + 3b1c3 − a2d2 + b3d3)

+ a1(−a3b2b3 + a3c2d3 − b1c2d3 + b2c3d3)

+ a3
(
b22c2 − (b11 + 3b1c2)c3 + b2(−2b23 − c22 + 3c23 + d23 + q1 + ϵ)

))
.

A long but straightforward computation shows that all the Gauss equations as well as

the integrability conditions for the functions a3 and b3 are satisfied. The integrability

conditions for the functions a1, b1, a2 and b2 give that

e1(a11) =
1

a3b23

(
− a22a3b3d2d3 + w1 + a2b3

(
3b3c2(b1c2 − b2c3)

+ a3(b
3
3 + 2b3d

2
2 + 4a22d3 − 5b2c2d3 − b1c3d3 + 3b3d

2
3 − 3b3q1)

+ a23d3(c3 + b3κ)
)

+ a3b3
(
b3(3a22 − 4b2c2)d2 + 4a11

(
b2c2 + b1c3 − b3d3 − a3(c3 + b3κ)

)))
,

e2(a11) =
1

a3b23

(
− t1 + a2a3

(
− 12a21d2d3

+ a1d2
(
− 12b2c2 − 12b1c3 + 11b3d3 + 12a3(c3 + b3κ)

)
+ b3

(
− 4a11d3 + d2(−b2c2 + a3c3 − b1c3 + b3d3 + a3b3κ)

)))
,

e3(a11) =
1

b23

(
2b3
(
a11b3c3 + 2a3(a22 − b2c2)d2

)
− 3a21a3d2d3 + 3a22a3d2d3

+ a2
(
b3(3b1c

2
2 − 3b2c2c3 − 2b3c3d3)

+ a3
(
3(b2c2 + b1c3)d3 + b3

(
b23 + 2d22 − 3(d23 + q1)

))
− 3a23d3(c3 + b3κ)

)
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+ 3a1
(
a2a3(3b

2
3 − 3d22 − d23) + d2

(
b23c3 − a3(b2c2 + b1c3 − 2b3d3)

+ a23(c3 + b3κ)
)))

,

e4(a11) = c2(2a11 + 3a1d2 − 2a2d3),

e1(a22) =
1

a3b23

(
12a32a3d2d3 + t1 + a22a3

(
− 7b33 + 12

(
(b2c2 − a3c3 + b1c3)d3

+ a1(−d22 + d23)
)
+ b3

(
6d22 − d3(5d3 + 12a3κ)

))
+ b3

(
b23c2(3b1c2 + b2c3) + a3

(
a11(4a1 − b3)d2 + b2c2(−4b2c2 − 4b1c3 + b3d3)

)
+ 4a23b2c2(c3 + b3κ) + 4a22a3

(
b2c2 + b1c3 − a3(c3 + b3κ)

)))
,

e2(a22) =
1

a3b23

(
w1 + a1a3

(
12a22d2d3

+ 4d2
(
− 3a1(b2c2 − a3c3 + b1c3 + a1d3) + b3

(
a22 − b2c2 + 3a1(d3 + a3κ)

))
+ a2

(
− 8b33 + 12(−a1d

2
2 + b2c2d3 − a3c3d3 + b1c3d3 + a1d

2
3)

+ b3
(
5d22 − 6d3(d3 + 2a3κ)

))))
,

e3(a22) =
1

a3b23

(
3a21a

2
3(2b

2
3 − d22) + 3a22a

2
3(−b23 + 2d22 + d23)

+ a2d2
(
3b2b

2
3c2 − 2a3b

2
3c3 + a23(3b2c2 + 3b1c3 + 7b3d3)− 3a33(c3 + b3κ)

)
− 3a1

(
a3b3c2(−b1c2 + b2c3)− b2b

2
3c2d3

− a23
(
b33 + (b2c2 + b1c3 + 2a2d2)d3 − b3(d

2
2 + d23 + q1)

)
+ a33d3(c3 + b3κ)

)
− b3

(
a23(b

2
2b3 + 4a11d2) + b2b3(b1c2c3 − b2c

2
3 + 3b3c2d3)

+ a3b3
(
− 2a22c3 + c2(b11 + b2c3 + 3b2b3κ)

)))
,

e4(a22) =
1

a3

(
− a33b2 + a23b1b2 + b2

(
2b1c

2
2 + c3(−2b2c2 + a2d2 + a1d3 − b3d3)

)
+ a3

(
− a1b2b3 + c2(2a22 + b22 − 3a2d2)

+ b2
(
− 2c22 + d23 + q1 + ϵ− b3(2b3 + c3κ)

)))
,

e1(b11) =
1

a23

(
− 5a33b2b3 + a23(6b1b2b3 + 2b11d3 + 3b1c2d3 − 2b2c3d3)

+ 3b3
(
− b21c2c3 + b2c3(2b2c2 + a2d2 + a1d3 − b3d3)

− b1
(
4b2c

2
2 + b2c

2
3 + a2c2d2 + (a1 − b3)c2d3

))
+ a3b3

(
− 3a1b2b3 + c2(4b22 + 6b1c3 − 4a2d2 + 3b1b3κ)

+ b2
(
2c22 + 3(d23 + q1 + ϵ)− 3b3(2b3 + c3κ)

)))
,

e2(b11) = (2b11 + 3b1c2 − 2b2c3)d2,

e3(b11) =
1

a23

(
z1 + a3

(
4b11

(
a2d2 + (a1 − b3)d3

)
+ b2c3(4b22 + 2b2c2 − 5a2d2 − a1d3 + b3d3)

− 12b21c2(c3 + b3κ) + b1
(
− 4b22c2 + 4a2c2d2 + b2

(
− 8c22 + 6c3(c3 + 2b3κ)

))))
,
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e4(b11) =
1

a23b3

(
− x1 + a3b3

(
4(b22 − a2d2)(a2d2 + a1d3 − b3d3)

− b2
(
4b11c3 + a2c2d2 + (a1 − b3)c2d3

)
+ b1c2(4b11 + 11b2c3 + 12b2b3κ) + b22(6c

2
2 − 5c23 − 12b3c3κ)

))
,

e1(b22) =
1

a23b3

(
a22a

2
3(−b23 + d23)− a2d2

(
− 3b23(b2c2 + b1c3)

+ a23
(
− 3b2c2 − 3b1c3 + (a1 + b3)d3

)
+ 3a33(c3 + b3κ)

)
− b3

(
3a33b1b3 + a23(−3b21b3 + 3b22b3 + a11d2 − 2b22d3 + 2b2c2d3)

+ 3b3
(
2b21c

2
2 − 2b22c

2
2 − 3b1b2c2c3 − b22c

2
3 + (−a1 + b3)(b2c2 + b1c3)d3

)
+ a3b3

(
3a1b1b3 + c2(4b11 − 7b2c3 + 3b2b3κ)

+ 3b1(2b
2
3 + c22 − d23 − q1 − ϵ+ b3c3κ)

)))
,

e2(b22) =
1

a3b3

(
a3b3(a22 + 2b22 − 3b2c2)d2 + a1a2a3(2b

2
3 + 3d22)− 3a22a3d2d3

− a2
(
b3c2(−b1c2 + b2c3)− a3

(
b33 + (b2c2 + b1c3)d3 − b3(2d

2
2 + d23 + q1)

)
+ a23d3(c3 + b3κ)

))
,

e3(b22) =
1

a23b3

(
12b2b3(−b1c2 + b2c3)(b2c2 + b1c3 + a2d2 + a1d3 − b3d3)

+ a33
(
− 7b22b3 + d2(3a1d2 + a2d3)

)
+ x1

+ a23b3
(
− b11c2 + b2c2c3 + a2c3d2 + b3(−4b22 + b2c2 + 4a2d2)κ

))
,

e4(b22) =
1

a23

(
5a43b2 − 5a33b1b2 − 12b1(b1c2 − b2c3)(b2c2 + b1c3 + a2d2 + a1d3 − b3d3)

+ z1 + a23
(
3a1b2b3 − 3b22c2 + 4a2c2d2 + 4b11(c3 + b3κ)

+ b2
(
− 2c22 − 3(2c23 + d23 + q1 + ϵ) + b3(6b3 − c3κ)

)))
,

where t1, x1, w1 and z1 are additional unknown functions. It now follows that the inte-

grability conditions for the functions ρ1 and ρ2 are also satisfied. Thus, g1, g2, g3 and

g4 can be interpreted as coordinate vector fields. Moreover, using Proposition 1 of [33],

we see that these vector fields are parallel vector fields for the underlying structure on

the twisted product related to both components. Furthermore, using the formulas for the

derivatives of the functions, it follows that

g1

(
g3

(
ln

u21 + u22
v21 + v22

))
= 0, g1

(
g4

(
ln

u21 + u22
v21 + v22

))
= 0,

g2

(
g3

(
ln

u21 + u22
v21 + v22

))
= 0, g2

(
g4

(
ln

u21 + u22
v21 + v22

))
= 0.

This implies that we can write
√
u21 + u22 =

eκ1
µ and

√
v21 + v22 = eκ2

µ , where κ1 is a function

depending only on the first component and κ2 is a function depending only on the second
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component. We also get that there exist functions k1, . . . , k6 such that

K(g1, g1) = (4k1 + k3)g1 + k2g2 + k5
u21 + u22
v21 + v22

g3 + k4
u21 + u22
v21 + v22

g4,

K(g1, g2) = k2g1 − k3g2,

K(g1, g3) = k5g1 + k1g3,

K(g1, g4) = k4g1 + k1g4,

K(g2, g2) = −k3g1 + 3k2g2 + k5
u21 + u22
v21 + v22

g3 + k4
u21 + u22
v21 + v22

g4,

K(g2, g3) = k5g2 + k2g3,

K(g2, g4) = k4g2 + k2g4,

K(g3, g3) = k1
v21 + v22
u21 + u22

g1 + k2
v21 + v22
u21 + u22

g2 + (4k5 + k6)g3 + k4g4,

K(g3, g4) = k4g3 − k6g4,

K(g4, g4) = k1
v21 + v22
u21 + u22

g1 + k2
v21 + v22
u21 + u22

g2 − k6g3 + 3k4g4.

Consequently, in order to complete the classification, it is now sufficient to check which

twister spaces can be immersed as centroaffine hypersurfaces with cubic form as described

above. In order to do so, we need to express everything in terms of the vector fields g1,

g2, g3, g4 and the twistor metric. We start with U × V , where U ⊂ R2 and V ⊂ R2 are

equipped with its canonical metric. We can consider g1 and g2 (respectively, g3 and g4)

as the standard basis on the first (respectively, second) component. The twistor metric

is determined by the functions κ1, κ2 and µ, where κ1 is a function depending only on

the first component and κ2 is a function depending only on the second component. We

point out that since each surface is conformally flat, this can be also considered as the

twistor product of two surfaces with the same twistor function 1
µ . We emphasize that

these surfaces correspond to equiaffine spheres (cf. [32]).

On the other hand, we note that the case (2) a1 ̸= 0 and b1 = 0 and the case (3) a1 = 0

and b1 = 0, using similar computations, lead to the same result.

Summarizing the previous computations, we have shown the following:

Theorem 4.3. Let F : M4 → R5 be a δ♯(2, 2)-ideal definite centroaffine hypersurface of

type (1i). Then, we have locally

M4 =
1

µ
(M2

1 ×M2
2 )

such that M2
1 ⊂ R3 is a surface with metric ⟨ · , · ⟩ = e2κ1(dx21 + dx22) and M2

2 ⊂ R3 is

a surface with metric ⟨ · , · ⟩ = e2κ2(dy21 + dy22). Moreover, in terms of the standard basis
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{
∂

∂x1
, ∂
∂x2

, ∂
∂y1

, ∂
∂y2

}
, we have

K

(
∂

∂x1
,

∂

∂x1

)
= (4k1 + k3)

∂

∂x1
+ k2

∂

∂x2
+ k5

λ2
1

λ2
2

∂

∂y1
+ k4

λ2
1

λ2
2

∂

∂y2
,

K

(
∂

∂x1
,

∂

∂x2

)
= k2

∂

∂x1
− k3

∂

∂x2
,

K

(
∂

∂x1
,

∂

∂y1

)
= k5

∂

∂x1
+ k1

∂

∂y1
,

K

(
∂

∂x1
,

∂

∂y2

)
= k4

∂

∂x1
+ k1

∂

∂y2
,

K

(
∂

∂x2
,

∂

∂x2

)
= −k3

∂

∂x1
+ 3k2

∂

∂x2
+ k5

λ2
1

λ2
2

∂

∂y1
+ k4

λ2
1

λ2
2

∂

∂y2
,

K

(
∂

∂x2
,

∂

∂y1

)
= k5

∂

∂x2
+ k2

∂

∂y1
,

K

(
∂

∂x2
,

∂

∂y2

)
= k4

∂

∂x2
+ k2

∂

∂y2
,

K

(
∂

∂y1
,

∂

∂y1

)
= k1

λ2
2

λ2
1

∂

∂x1
+ k2

λ2
2

λ2
1

∂

∂x2
+ (4k5 + k6)

∂

∂y1
+ k4

∂

∂y2
,

K

(
∂

∂y1
,

∂

∂y2

)
= k4

∂

∂y1
− k6

∂

∂y2
,

K

(
∂

∂y2
,

∂

∂y2

)
= k1

λ2
2

λ2
1

∂

∂x1
+ k2

λ2
2

λ2
1

∂

∂x2
− k6

∂

∂y1
+ 3k4

∂

∂y2
,

where λ1 =
eκ1
µ and λ2 =

eκ2
µ .

We emphasize that any M4 constructed in this theorem is a δ♯(2, 2)-ideal definite

centroaffine hypersurface of type (1i) in R5.

In the following, “,” used after the index in the expressions ki, κj , n11 and r11 shows

that partial derivative(s) is (are) taken, where i = 1, . . . , 6 and j = 1, 2.

Lemma 4.4. If M4 is as described in Theorem 4.3, then there exist constants C1, C2 and

C such that

(k1 + k3)e
2κ1 = C1,(4.5)

(k5 + k6)e
2κ2 = C2,(4.6)

2C2
1e

−6κ1 + (κ1,x1x1 + κ1,x2x2)e
−2κ1 = C,(4.7)

2C2
2e

−6κ2 + (κ2,y1y1 + κ2,y2y2)e
−2κ2 = −C.(4.8)

Moreover, we have the following system of differential equations:

k1,x1 =
e2κ1n11 + k1κ1,x1µ− k2κ1,x2µ− (2k1 + C1e

−2κ1)µx1

µ
,
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k1,x2 =
k2κ1,x1µ+ k1κ1,x2µ− k2µx1 + (−k1 + C1e

−2κ1)µx2

µ
,

k1,y1 = −(k5µx1 + k1µy1)

µ
,

k1,y2 = −(k4µx1 + k1µy2)

µ
,

k2,x1 =
k2κ1,x1µ+ k1κ1,x2µ− k2µx1 + (−k1 + C1e

−2κ1)µx2

µ
,

k2,x2 =
e2κ1n11 − k1κ1,x1µ+ k2κ1,x2µ+ C1e

−2κ1µx1 − 2k2µx2

µ
,

k2,y1 = −(k5µx2 + k2µy1)

µ
,

k2,y2 = −(k4µx2 + k2µy2)

µ
,

k3,x1 =
−k1κ1,x1µ− 2C1e

−2κ1κ1,x1µ+ k2κ1,x2µ− e2κ1n11 + (2k1 + C1e
−2κ1)µx1

µ
,

k3,x2 = −k2κ1,x1µ+ k1κ1,x2µ− k2µx1 − k1µx2 + C1e
−2κ1(2κ1,x2µ+ µx2)

µ
,

k3,y1 =
k5µx1 + k1µy1

µ
,

k3,y2 =
k4µx1 + k1µy2

µ
,

k4,x1 = −(k4µx1 + k1µy2)

µ
,

k4,x2 = −(k4µx2 + k2µy2)

µ
,

k4,y1 =
k4κ2,y1µ+ k5κ2,y2µ− k4µy1 + (−k5 + C2e

−2κ2)µy2

µ
,

k4,y2 =
e2κ2n11 − k5κ2,y1µ+ k4κ2,y2µ+ C2e

−2κ2µy1 − 2k4µy2

µ
,

k5,x1 = −(k5µx1 + k1µy1)

µ
,

k5,x2 = −(k5µx2 + k2µy1)

µ
,

k5,y1 =
e2κ2n11 + k5κ2,y1µ− k4κ2,y2µ− (2k5 + C2e

−2κ2)µy1

µ
,

k5,y2 =
k4κ2,y1µ+ k5κ2,y2µ− k4µy1 + (−k5 + C2e

−2κ2)µy2

µ
,

k6,x1 =
k5µx1 + k1µy1

µ
,

k6,x2 =
k5µx2 + k2µy1

µ
,
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k6,y1 =
−k5κ2,y1µ− 2C2e

−2κ2κ2,y1µ+ k4κ2,y2µ− e2κ2n11 + (2k5 + C2e
−2κ2)µy1

µ
,

k6,y2 = −k4κ2,y1µ+ k5κ2,y2µ− k4µy1 − k5µy2 + C2e
−2κ2(2κ2,y2µ+ µy2)

µ
,

where n11 is expressed by

n11 = −e−2κ1d11 + e−2κ1k1κ1,x1µ− e−2κ1k2κ1,x2µ+ e−2κ1(3k1 + k3)µx1 + 2e−2κ1k2µx2

or

n11 = −e−2κ2m11 + e−2κ2k5κ2,y1µ− e−2κ2k4κ2,y2µ+ e−2κ2(3k5 + k6)µy1 + 2e−2κ2k4µy2

such that d11 and m11 are functions.

Remark 4.5. Because of equations (4.5)–(4.8) and the paper [32], M2
1 and M2

2 correspond

to equiaffine spheres.

It can be easily verified that

n11,x1 =
e−2(κ1+κ2)

2µ

(
k1e

2κ2
(
(k21 + k22)µ

2 + e2κ1(−ϵ+ Cµ2)− µ2
x1

− µ2
x2

)
+ k1e

2κ1
(
(k24 + k25)µ

2 − µ2
y1 − µ2

y2

))
,

n11,x2 =
e−2(κ1+κ2)

2µ

(
k2e

2κ2
(
(k21 + k22)µ

2 + e2κ1(−ϵ+ Cµ2)− µ2
x1

− µ2
x2

)
+ k2e

2κ1
(
(k24 + k25)µ

2 − µ2
y1 − µ2

y2

))
,

n11,y1 =
e−2(κ1+κ2)

2µ

(
− k5e

2κ2
(
− (k21 + k22)µ

2 + e2κ1(ϵ+ Cµ2) + µ2
x1

+ µ2
x2

)
+ k5e

2κ1
(
(k24 + k25)µ

2 − µ2
y1 − µ2

y2

))
,

n11,y2 =
e−2(κ1+κ2)

2µ

(
− k4e

2κ2
(
− (k21 + k22)µ

2 + e2κ1(ϵ+ Cµ2) + µ2
x1

+ µ2
x2

)
+ k4e

2κ1
(
(k24 + k25)µ

2 − µ2
y1 − µ2

y2

))
.

We can write

n11,x1 = k1

(
Cµ

2
+ r11

)
, n11,x2 = k2

(
Cµ

2
+ r11

)
,

n11,y1 = k5

(
−Cµ

2
+ r11

)
, n11,y2 = k4

(
−Cµ

2
+ r11

)
,

where

r11 =
e−2(κ1+κ2)

2µ

(
e2κ2

(
(k21 + k22)µ

2 + e2κ1(−ϵ)− µ2
x1

− µ2
x2

)
+ e2κ1

(
(k24 + k25)µ

2 − µ2
y1 − µ2

y2

))
.
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Moreover, it can be easily seen that

r11,x1 = k1n11 −
1

2
Cµx1 , r11,x2 = k2n11 −

1

2
Cµx2 ,

r11,y1 = k5n11 +
1

2
Cµy1 , r11,y2 = k4n11 +

1

2
Cµy2 .

On the other hand, a straightforward computation yields

µx1x1 =
1

2µ
e−2(κ1+κ2)

(
− 2k1C1e

2κ2µ2

+ e2(κ1+κ2)
(
− (3k21 + k22)µ

2 + 2κ1,x1µµx1 + µ2
x1

− 2κ1,x2µµx2 + µ2
x2

)
+ e4κ1

(
− (k24 + k25)µ

2 + e2κ2(ϵ+ Cµ2) + µ2
y1 + µ2

y2

))
,

µx1x2 = k2(−k1 + C1e
−2κ1)µ+ κ1,x2µx1 + κ1,x1µx2 ,

µx1y1 = −k1k5µ,

µx1y2 = −k1k4µ,

µx2x2 =
1

2µ
e−2(κ1+κ2)

(
2k1C1e

2κ2µ2

+ e2(κ1+κ2)
(
− (k21 + 3k22)µ

2 − 2κ1,x1µµx1 + µ2
x1

+ 2κ1,x2µµx2 + µ2
x2

)
+ e4κ1

(
− (k24 + k25)µ

2 + e2κ2(ϵ+ Cµ2) + µ2
y1 + µ2

y2

))
,

µx2y1 = −k2k5µ,

µx2y2 = −k2k4µ,

µy1y1 =
1

2µ
e−2(κ1+κ2)

(
− 2k5C2e

2κ1µ2

+ e4κ2
(
− (k21 + k22)µ

2 + e2κ1(ϵ− Cµ2) + µ2
x1

+ µ2
x2

)
+ e2(κ1+κ2)

(
− (k24 + 3k25)µ

2 + 2κ2,y1µµy1 + µ2
y1 − 2κ2,y2µµy2 + µ2

y2

))
,

µy1y2 = k4
(
− k5 + C2e

−2κ2
)
µ+ κ2,y2µy1 + κ2,y1µy2 ,

µy2y2 =
1

2µ
e−2(κ1+κ2)

(
2k5C2e

2κ1µ2 + e4κ2
(
− (k21 + k22)µ

2 + e2κ1(ϵ− Cµ2) + µ2
x1

+ µ2
x2

)
+ e2(κ1+κ2)

(
− (3k24 + k25)µ

2 − 2κ2,y1µµy1 + µ2
y1 + 2κ2,y2µµy2 + µ2

y2

))
.

We now define

f1 = e−2κ1(k1µ− µx1)(k1µ+ µx1),

f2 = e−2κ1(k2µ− µx2)(k2µ+ µx2),

f3 =

(
n11 − r11 +

1

2
Cµ

)
(k1µ− µx1),

f4 = e−2κ1(k1µ− µx1)(k2µ+ µx2),

f5 = e−2κ1(k2µ− µx2)(k1µ+ µx1),



δ♯(2, 2)-Ideal Centroaffine Hypersurfaces of Dimension 4 1097

f6 =

(
n11 − r11 +

1

2
Cµ

)
(k2µ− µx2),

f7 = e2κ1

(
n11 − r11 +

1

2
Cµ

)(
n11 + r11 −

1

2
Cµ

)
,

f8 =

(
n11 + r11 −

1

2
Cµ

)
(k1µ+ µx1),

f9 =

(
n11 + r11 −

1

2
Cµ

)
(k2µ+ µx2),

g1 = e−2κ2(k5µ− µy1)(k5µ+ µy1),

g2 = e−2κ2(k4µ− µy2)(k4µ+ µy2),

g3 =

(
n11 − r11 −

1

2
Cµ

)
(k5µ− µy1),

g4 = e−2κ2(k5µ+ µy1)(k4µ− µy2),

g5 = e−2κ2(k5µ− µy1)(k4µ+ µy2),

g6 =

(
n11 − r11 −

1

2
Cµ

)
(k4µ− µy2),

g7 = e2κ2

(
n11 − r11 −

1

2
Cµ

)(
n11 + r11 +

1

2
Cµ

)
,

g8 =

(
n11 + r11 +

1

2
Cµ

)
(k5µ+ µy1),

g9 =

(
n11 + r11 +

1

2
Cµ

)
(k4µ+ µy2)

such that

k1 =
e2κ1

(
f3(−2(n11 + r11) + Cµ)− f8(2n11 − 2r11 + Cµ)

)
−4µf7

,

k2 =
e2κ1

(
f6(−2(n11 + r11) + Cµ)− f9(2n11 − 2r11 + Cµ)

)
−4µf7

,

k4 =
e2κ2

(
g9(−2n11 + 2r11 + Cµ)− g6(2(n11 + r11) + Cµ)

)
−4µg7

,

k5 =
e2κ2

(
g8(−2n11 + 2r11 + Cµ)− g3(2(n11 + r11) + Cµ)

)
−4µg7

,

µx1 =
e2κ1

(
f8(2n11 − 2r11 + Cµ)− f3(2(n11 + r11)− Cµ)

)
4f7

,

µx2 =
e2κ1

(
f9(2n11 − 2r11 + Cµ)− f6(2(n11 + r11)− Cµ)

)
4f7

,

µy1 =
e2κ2

(
g3(2(n11 + r11) + Cµ) + g8(−2n11 + 2r11 + Cµ)

)
−4g7

,

µy2 =
e2κ2

(
g6(2(n11 + r11) + Cµ) + g9(−2n11 + 2r11 + Cµ)

)
−4g7

.
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We point out that whereas f1, f2, f3, f4, f5, f6, f7, f8 and f9 depend only on x1 and x2; g1,

g2, g3, g4, g5, g6, g7, g8 and g9 depend only on y1 and y2. Moreover, we define two maps

F1 and F2 by

(4.9)

F1 : M2
1 −→ N

(x1, x2) 7−→


f1 f5 f8

f4 f2 f9

f3 f6 f7


and

(4.10)

F2 : M2
2 −→ N

(y1, y2) 7−→


g1 g4 g8

g5 g2 g9

g3 g6 g7

 ,

where N ⊂ R3×3 is the space of 3× 3 matrices of rank 1 over R.
Note that F1 is determined by

∂f1
∂x1

= f3 − κ1,x2f4 − κ1,x2f5 + f8,

∂f1
∂x2

= (κ1,x1 + C1e
−2κ1)f4 + (κ1,x1 − C1e

−2κ1)f5,

∂f2
∂x1

= κ1,x2f4 + κ1,x2f5,

∂f2
∂x2

= −(κ1,x1 + C1e
−2κ1)f4 − (κ1,x1 − C1e

−2κ1)f5 + f6 + f9,

∂f3
∂x1

= Ce2κ1f1 + (κ1,x1 + C1e
−2κ1)f3 − κ1,x2f6 + f7,

∂f3
∂x2

= κ1,x2f3 + Ce2κ1f4 + (κ1,x1 − C1e
−2κ1)f6,

∂f4
∂x1

= κ1,x2f1 − κ1,x2f2 + 2C1e
−2κ1f4 + f9,

∂f4
∂x2

= (−κ1,x1 + C1e
−2κ1)f1 + (κ1,x1 − C1e

−2κ1)f2 + f3,

∂f5
∂x1

= κ1,x2f1 − κ1,x2f2 − 2C1e
−2κ1f5 + f6,

∂f5
∂x2

= −(κ1,x1 + C1e
−2κ1)f1 + (κ1,x1 + C1e

−2κ1)f2 + f8,

∂f6
∂x1

= κ1,x2f3 + Ce2κ1f5 + (κ1,x1 − C1e
−2κ1)f6,

∂f6
∂x2

= Ce2κ1f2 − (κ1,x1 + C1e
−2κ1)f3 + κ1,x2f6 + f7,
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∂f7
∂x1

= Ce2κ1f3 + 2κ1,x1f7 + Ce2κ1f8,

∂f7
∂x2

= Ce2κ1f6 + 2κ1,x2f7 + Ce2κ1f9,

∂f8
∂x1

= Ce2κ1f1 + f7 + (κ1,x1 − C1e
−2κ1)f8 − κ1,x2f9,

∂f8
∂x2

= Ce2κ1f5 + κ1,x2f8 + (κ1,x1 + C1e
−2κ1)f9,

∂f9
∂x1

= Ce2κ1f4 + κ1,x2f8 + (κ1,x1 + C1e
−2κ1)f9,

∂f9
∂x2

= Ce2κ1f2 + f7 + (−κ1,x1 + C1e
−2κ1)f8 + κ1,x2f9.

Furthermore, F2 is determined by

∂g1
∂y1

= g3 − κ2,y2g4 − κ2,y2g5 + g8,

∂g1
∂y2

= (κ2,y1 − C2e
−2κ2)g4 + (κ2,y1 + C2e

−2κ2)g5,

∂g2
∂y1

= κ2,y2g4 + κ2,y2g5,

∂g2
∂y2

= (−κ2,y1 + C2e
−2κ2)g4 − (κ2,y1 + C2e

−2κ2)g5 + g6 + g9,

∂g3
∂y1

= −Ce2κ2g1 + (κ2,y1 + C2e
−2κ2)g3 − κ2,y2g6 + g7,

∂g3
∂y2

= κ2,y2g3 − Ce2κ2g5 + (κ2,y1 − C2e
−2κ2)g6,

∂g4
∂y1

= κ2,y2g1 − κ2,y2g2 − 2C2e
−2κ2g4 + g6,

∂g4
∂y2

= −(κ2,y1 + C2e
−2κ2)g1 + (κ2,y1 + C2e

−2κ2)g2 + g8,

∂g5
∂y1

= κ2,y2g1 − κ2,y2g2 + 2C2e
−2κ2g5 + g9,

∂g5
∂y2

= (−κ2,y1 + C2e
−2κ2)g1 + (κ2,y1 − C2e

−2κ2)g2 + g3,

∂g6
∂y1

= κ2,y2g3 − Ce2κ2g4 + (κ2,y1 − C2e
−2κ2)g6,

∂g6
∂y2

= −Ce2κ2g2 − (κ2,y1 + C2e
−2κ2)g3 + κ2,y2g6 + g7,

∂g7
∂y1

= −Ce2κ2g3 + 2κ2,y1g7 − Ce2κ2g8,

∂g7
∂y2

= −Ce2κ2g6 + 2κ2,y2g7 − Ce2κ2g9,

∂g8
∂y1

= −Ce2κ2g1 + g7 + (κ2,y1 − C2e
−2κ2)g8 − κ2,y2g9,
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∂g8
∂y2

= −Ce2κ2g4 + κ2,y2g8 + (κ2,y1 + C2e
−2κ2)g9,

∂g9
∂y1

= −Ce2κ2g5 + κ2,y2g8 + (κ2,y1 + C2e
−2κ2)g9,

∂g9
∂y2

= −Ce2κ2g2 + g7 − (κ2,y1 − C2e
−2κ2)g8 + κ2,y2g9.

It is easy to check that these derivatives preserve the rank one conditions as well as the

conditions

−f7e
−2κ1 + Cf1 + Cf2 = D1, g7e

−2κ2 + Cg1 + Cg2 = D2,

where D1 + D2 − Cϵ = 0. We point out that if we take the initial conditions in N , the

solutions will remain in N .

Conversely, starting with two equiaffine spheres (see [32]) and 2 maps in the space of

3× 3 matrices of rank 1 over R with suitable initial conditions, we obtain

(k1µ+ µx1)
2 + (k2µ+ µx2)

2 + e4κ1

(
n11 − r11 +

1

2
Cµ

)2

= (k1µ− µx1)
2 + (k2µ− µx2)

2 + e4κ1

(
n11 + r11 −

1

2
Cµ

)2
(4.11)

and

(k5µ+ µy1)
2 + (k4µ+ µy2)

2 + e4κ2

(
n11 − r11 −

1

2
Cµ

)2

= (k5µ− µy1)
2 + (k4µ− µy2)

2 + e4κ2

(
n11 + r11 +

1

2
Cµ

)2

.

(4.12)

Applying the existence and uniqueness theorem gives an ideal definite δ♯(2, 2)-immersion

of type (1i). As a result, we have the following corollary:

Corollary 4.6. Let F : M4 → R5 be a definite centroaffine hypersurface. It is δ♯(2, 2)-ideal

and of type (1i) if and only if

M4 =
1

µ
(M2

1 ×M2
2 ),

where M2
1 ⊂ R3 is a surface with metric ⟨ · , · ⟩ = e2κ1(dx21+dx22) and M2

2 ⊂ R3 is a surface

with metric ⟨ · , · ⟩ = e2κ2(dy21 + dy22) such that F1 is a map given in (4.9) and F2 is a map

given in (4.10) with suitable initial conditions.

Proof. We have already seen that if M4 is a δ♯(2, 2)-ideal definite centroaffine hypersurface

of type (1i), we have the twisted product decomposition and the corresponding maps F1

and F2. Conversely, given a twisted product decomposition and such maps, it follows

from the definitions of fl and gl, where l = 1, . . . , 9, that we can determine functions k1,

k2, k4, k5, µx1 , µx2 , µy1 , µy2 , n11 and r11 (by means of fl and gl and therefore in terms
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of F1 and F2). Moreover, equations (4.11) and (4.12) show that these functions satisfy

the differential equations for ki,xj , ki,yj , n11,xj , n11,yj , r11,xj , r11,yj , where i = 1, . . . , 6 and

j = 1, 2, as well as the second order differential equations for the function µ. Applying

then the existence and uniqueness theorem for the definite centroaffine hypersurface, we

obtain the desired result.
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[12] , Pseudo-Riemannian Geometry, δ-Invariants and Applications, World Scien-

tific Publishing, Hackensack, NJ, 2011.

[13] B.-Y. Chen, F. Dillen, J. Van der Veken and L. Vrancken, Curvature inequalities

for Lagrangian submanifolds: The final solution, Differential Geom. Appl. 31 (2013),

no. 6, 808–819.

[14] , Classification of δ(2, n− 2)-ideal Lagrangian submanifolds in n-dimensional

complex space forms, J. Math. Anal. Appl. 458 (2018), no. 2, 1456–1485.

[15] B.-Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Characterizations of Rieman-

nian space forms, Einstein spaces and conformally flat spaces, Proc. Amer. Math.

Soc. 128 (2000), no. 2, 589–598.

[16] B.-Y. Chen and A. Prieto-Mart́ın, Classification of Lagrangian submanifolds in com-

plex space forms satisfying a basic equality involving δ(2, 2), Differential Geom. Appl.

30 (2012), no. 1, 107–123.

[17] B.-Y. Chen, A. Prieto-Mart́ın and X. Wang, Lagrangian submanifolds in complex

space forms satisfying an improved equality involving δ(2, 2), Publ. Math. Debrecen

82 (2013), no. 1, 193–217.

[18] B.-Y. Chen, L. Vrancken and X. Wang, Lagrangian submanifolds in complex space

forms satisfying equality in the optimal inequality involving δ(2, . . . , 2), Beitr. Algebra

Geom. 62 (2021), no. 1, 251–264.

[19] B.-Y. Chen and H. Yıldırım, Classification of ideal submanifolds of real space forms

with type number ≤ 2, J. Geom. Phys. 92 (2015), 167–180.

[20] X. Cheng and Z. Hu, An optimal inequality on locally strongly convex centroaffine

hypersurfaces, J. Geom. Anal. 28 (2018), no. 1, 643–655.

[21] X. Cheng, Z. Hu and M. Moruz, Classification of the locally strongly convex cen-

troaffine hypersurfaces with parallel cubic form, Results Math. 72 (2017), no. 1-2,

419–469.

[22] V. Cortés, M. Nardmann and S. Suhr, Completeness of hyperbolic centroaffine hyper-

surfaces, Comm. Anal. Geom. 24 (2016), no. 1, 59–92.



δ♯(2, 2)-Ideal Centroaffine Hypersurfaces of Dimension 4 1103

[23] F. Dillen, M. Petrovic and L. Verstraelen, Einstein, conformally flat and semi-

symmetric submanifolds satisfying Chen’s equality, Israel J. Math. 100 (1997), 163–

169.

[24] F. Dillen, C. Scharlach, K. Schoels and L. Vrancken, Special Lagrangian 4-folds with

SO(2)⋊ S3-symmetry in complex space forms, Taiwanese J. Math. 19 (2015), no. 3,

759–792.

[25] F. Dillen and L. Vrancken, Totally real submanifolds in S6(1) satisfying Chen’s equal-

ity, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1633–1646.
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