Continuity of Generalized Riesz Potentials for Double Phase Functionals with Variable Exponents over Metric Measure Spaces

Takao Ohno* and Tetsu Shimomura

Abstract

Our aim in this paper is to deal with the continuity of generalized Riesz potentials $I_{\rho, \tau} f$ of functions in Morrey spaces $L^{\Phi, \nu(\cdot), \kappa}(X)$ of double phase functionals with variable exponents over bounded non-doubling metric measure spaces. What is new in this paper is that ρ depends on $x \in X$.

1. Introduction

Let (X, d, μ) be a metric measure space, where X is a bounded set, d is a metric on X and μ is a nonnegative complete Borel regular outer measure on X which is finite in every bounded set. We often write X instead of (X, d, μ). For $x \in X$ and $r>0$, we denote by $B(x, r)$ the open ball in X centered at x with radius r and $d_{X}=\sup \{d(x, y): x, y \in X\}$. We assume that

$$
\mu(\{x\})=0
$$

for $x \in X$ and $0<\mu(B(x, r))<\infty$ for $x \in X$ and $r>0$ for simplicity. We do not assume that μ has a so-called doubling condition. Recall that a Radon measure μ is said to be doubling if there exists a constant $c_{0}>0$ such that $\mu(B(x, 2 r)) \leq c_{0} \mu(B(x, r))$ for all $x \in \operatorname{supp}(\mu)(=X)$ and $r>0$ (see [2]). For the Gauss measure space, see [11]. Otherwise μ is said to be non-doubling. For examples of non-doubling metric measure spaces we refer to 22, 28 .

We consider the family (ρ) of all functions ρ satisfying the following conditions: $\rho(x, r)$: $X \times(0, \infty) \rightarrow(0, \infty)$ is a measurable function such that there exist constants $0<k<1$, $0<k_{1}<k_{2}$ and $C_{\rho}>0$ such that

$$
\begin{equation*}
\sup _{k r \leq s \leq r} \rho(x, s) \leq C_{\rho} \int_{k_{1} r}^{k_{2} r} \rho(x, s) \frac{d s}{s} \tag{1.1}
\end{equation*}
$$

for all $r>0$ and there exists a constant $C>0$ such that

$$
\begin{equation*}
\int_{0}^{\max \left\{1,2 k_{2}\right\} d_{X}} \rho(x, s) \frac{d s}{s} \leq C \tag{1.2}
\end{equation*}
$$

Received October 31, 2022; Accepted February 22, 2023.
Communicated by Sanghyuk Lee.
2020 Mathematics Subject Classification. 31B15, 46E35.
Key words and phrases. Riesz potentials, Morrey spaces, double phase functionals, variable exponents, continuity, non-doubling measure.
*Corresponding author.
for all $x \in X$. What is new in this paper is that ρ depends on $x \in X$. We do not assume the doubling condition on ρ.

We can include a variety of examples of ρ satisfying (1.1) and (1.2) as will be seen in Remark 4.3 and Example 4.4 below.

For $\tau \geq 1$ and a function $\rho \in(\rho)$, we define the generalized Riesz potential $I_{\rho, \tau} f$ for a locally integrable function f on X by

$$
I_{\rho, \tau} f(x)=\int_{X} \frac{\rho(x, d(x, y)) f(y)}{\mu(B(x, \tau d(x, y)))} d \mu(y)
$$

(see e.g. 27, 32). The operator $I_{\rho, \tau}$ is also called the generalized fractional integral operator. When $X=\mathbf{R}^{N}, \mu=d x, I_{\rho, 1} f(x)$ is equal to $I_{\rho} f(x)=\int_{X} \frac{\rho(x,|x-y|) f(y)}{|x-y|^{N}} d y$. When $\rho(x, r)=\rho(r), I_{\rho} f$ was first introduced by Nakai 21]. See also [9]. If $X=\mathbf{R}^{N}, \mu=d x$ and $\rho(x, r)=r^{\alpha(x)}$ with $0<\inf _{x \in \mathbf{R}^{N}} \alpha(x) \leq \sup _{x \in \mathbf{R}^{N}} \alpha(x)<N$, then $I_{\rho, 1} f(x)$ is equal to $U_{\alpha(x)} f(x)=\int_{\mathbf{R}^{N}}|x-y|^{\alpha(x)-N} f(y) d y$.

Double phase problems have been studied intensively in variable exponent analysis and regularity theory of PDEs by many mathematicians (see e.g. $1,4,6,6,13,17,33$).

In the previous paper 23], we considered the case $\widetilde{\Phi}(x, t)$ is a double phase functional given by

$$
\widetilde{\Phi}(x, t)=t^{p}+(b(x) t)^{q}
$$

where $1<p<q$ and $b(\cdot)$ is non-negative, bounded and Hölder continuous of order $\theta \in(0,1]$ (cf. [5]). In 23] we studied the continuity of Riesz potentials $\widetilde{I}_{\rho, \tau} f$ of functions in Morrey spaces $L^{\widetilde{\Phi}, \nu, \kappa}(X)$ of the double phase functionals $\widetilde{\Phi}(x, t)$ when ρ does not depend on $x \in X$, where

$$
\widetilde{I}_{\rho, \tau} f(x)=\int_{X} \frac{\rho(d(x, y)) f(y)}{\mu(B(x, \tau d(x, y)))} d \mu(y) .
$$

We refer to [24] for the Euclidean case. See also [15, Theorem 4.1] and [16, Theorem 4.1].
As in 13,24 , we consider the case $\Phi(x, t)$ as a double phase functional given by

$$
\Phi(x, t)=t^{p(x)}+(b(x) t)^{q(x)},
$$

where $p(x)<q(x)$ and $b(\cdot)$ is non-negative, bounded and Hölder continuous of order $\theta \in(0,1]$ (cf. 3,26$])$.

In this paper, we shall extend $[23,24$ from the case ρ does not depend on $x \in X$ to the case ρ depends on $x \in X$. In fact, we show the continuity of generalized Riesz potential $I_{\rho, \tau} f$ of functions f in Morrey spaces $L^{\Phi, \nu(\cdot), \kappa}(X)$ of the double phase functionals $\Phi(x, t)$ over bounded non-doubling metric measure spaces X (see Theorem4.1), as an extension of [23, Theorem 1] and [24, Theorem 2.2]. Our key lemma is Lemma 3.2.

We refer to [25, 27, 29, 32 for the boundedness of $I_{\rho, \tau} f$, to [10] for Gagliardo-Nirenberg inequality for $I_{\rho, \tau} f$ and to e.g. [7,9, 21] for the boundedness of $I_{\rho} f$.

Throughout this paper, let C denote various constants independent of the variables in question.

2. Preliminaries

Let $p(\cdot)$ be a measurable functions on X such that
(P1) $1 \leq p^{-}:=\inf _{x \in X} p(x) \leq \sup _{x \in X} p(x)=: p^{+}<\infty$,
(P2) $p(\cdot)$ is log-Hölder continuous on X, namely

$$
|p(x)-p(y)| \leq \frac{C_{p}}{\log (e+1 / d(x, y))}, \quad x, y \in X
$$

with a constant $C_{p} \geq 0$.
Let $\nu(\cdot)$ be a measurable functions on X such that

$$
0<\nu^{-}:=\inf _{x \in X} \nu(x) \leq \sup _{x \in X} \nu(x)=: \nu^{+}<\infty .
$$

For $\kappa \geq 1$, the Morrey space with variable exponents $L^{p(\cdot), \nu(\cdot), \kappa}(X)$ is the family of measurable functions f on X satisfying

$$
L^{p(\cdot), \nu(\cdot), \kappa}(X)=\left\{\left.f \in L_{\mathrm{loc}}^{1}(X)\left|\sup _{\substack{x \in X \\ 0<r<d_{X}}} \frac{r^{\nu(x)}}{\mu(B(x, \kappa r))} \int_{B(x, r)}\right| f(y)\right|^{p(y)} d \mu(y)<\infty\right\} .
$$

It is a Banach space with respect to the norm

$$
\|f\|_{L^{p(\cdot), \nu(\cdot), \kappa}(X)}=\inf \left\{\lambda>0 \left\lvert\, \sup _{\substack{x \in X \\ 0<r<d_{X}}} \frac{r^{\nu(x)}}{\mu(B(x, \kappa r))} \int_{B(x, r)}\left(\frac{|f(y)|}{\lambda}\right)^{p(y)} d \mu(y) \leq 1\right.\right\}
$$

(cf. see [19]). When $p(\cdot)=p$ and $\nu(\cdot)=\nu$, we see that the definition of $L^{p, \nu, \kappa}(X)$ does not depend on κ as long as X is the Euclidean space and $\kappa>1$ (see [18, 31]) and that $L^{p, \nu, \kappa}(X)$ can depend on κ (see 30$]$).

We consider a function

$$
\Phi(x, t): X \times[0, \infty) \rightarrow[0, \infty)
$$

satisfying the following conditions ($\Phi 1$) and ($\Phi 2$):
$(\Phi 1) \Phi(\cdot, t)$ is measurable on X for each $t \geq 0$ and $\Phi(x, \cdot)$ is convex on $[0, \infty)$ for each $x \in X$;
($\Phi 2$) there exists a constant $A_{1} \geq 1$ such that

$$
A_{1}^{-1} \leq \Phi(x, 1) \leq A_{1} \quad \text { for all } x \in X
$$

For $\kappa \geq 1$, the Musielak-Orlicz-Morrey space $L^{\Phi, \nu(\cdot), \kappa}(X)$ is defined by

$$
\begin{aligned}
& L^{\Phi, \nu(\cdot), \kappa}(X) \\
= & \left\{f \in L_{\mathrm{loc}}^{1}(X) \left\lvert\, \sup _{\substack{x \in X \\
0<r<d_{X}}} \frac{r^{\nu(x)}}{\mu(B(x, \kappa r))} \int_{B(x, r)} \Phi\left(y, \frac{|f(y)|}{\lambda}\right) d \mu(y)<\infty\right. \text { for some } \lambda>0\right\} .
\end{aligned}
$$

It is a Banach space with respect to the norm

$$
\|f\|_{L^{\Phi, \nu(\cdot), \kappa}(X)}=\inf \left\{\lambda>0 \left\lvert\, \sup _{\substack{x \in X \\ 0<r<d_{X}}} \frac{r^{\nu(x)}}{\mu(B(x, \kappa r))} \int_{B(x, r)} \Phi\left(y, \frac{|f(y)|}{\lambda}\right) d \mu(y) \leq 1\right.\right\}
$$

(see 12,20).
Let $q(\cdot)$ be a measurable function on X such that
(Q1) $1 \leq q^{-}:=\inf _{x \in X} q(x) \leq \sup _{x \in X} q(x)=: q^{+}<\infty$,
(Q2) $q(\cdot)$ is log-Hölder continuous on X, namely

$$
|q(x)-q(y)| \leq \frac{C_{q}}{\log (e+1 / d(x, y))}, \quad x, y \in X
$$

with a constant $C_{q} \geq 0$.
In what follows, set

$$
\Phi(x, t)=t^{p(x)}+(b(x) t)^{q(x)},
$$

where $p(x)<q(x)$ and $b(\cdot)$ is non-negative, bounded and Hölder continuous of order $\theta \in(0,1]$ (cf. [5]).

3. Lemmas

Let's begin with the following lemma.
Lemma 3.1. (see [16, Lemma 2.1] or [14, Lemma 2.7]) There exists a constant $C>0$ such that

$$
\frac{r^{\nu(x) / p(x)}}{\mu(B(x, \kappa r))} \int_{B(x, r)}|f(y)| d \mu(y) \leq C
$$

for all $x \in X, 0<r<d_{X}$ and measurable functions f on X with $\|f\|_{L^{p(\cdot), \nu(\cdot), \kappa}(X)} \leq 1$.
We give an estimate inside and outside balls.

Lemma 3.2. Let $\beta \in \mathbf{R}, \iota>0$ and $\rho_{1} \in(\rho)$. Let f be a nonnegative function on X such that $\|f\|_{L^{p(\cdot), \nu(\cdot), \kappa(X)}} \leq 1$. If $1 \leq \kappa<\tau$, then there exists a constant $C>0$ such that

$$
\begin{equation*}
\int_{B(x, r)} \frac{d(x, y)^{\beta} \rho_{1}(x, \iota d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) d \mu(y) \leq C \int_{0}^{k_{2} \iota r} t^{-\nu(x) / p(x)+\beta} \rho_{1}(x, t) \frac{d t}{t} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{X \backslash B(x, r)} \frac{d(x, y)^{\beta} \rho_{1}(x, \iota d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) d \mu(y) \leq C \int_{k_{1} \iota r}^{2 k_{2} \iota d_{X}} t^{-\nu(x) / p(x)+\beta} \rho_{1}(x, t) \frac{d t}{t} \tag{3.2}
\end{equation*}
$$

for all $x \in X$ and $0<r \leq d_{X}$.

Proof. Let f be a nonnegative function on X such that $\|f\|_{L^{p(\cdot), \nu(\cdot), \kappa(X)}} \leq 1$. Take $\gamma \in \mathbf{R}$ such that $1<\gamma \leq \min \{1 / k, \tau / \kappa, 2\}$. If $y \in B\left(x, \gamma^{j} r\right) \backslash B\left(x, \gamma^{j-1} r\right)$ for $j \in \mathbf{Z}$, then we see from (1.1) that

$$
\begin{aligned}
\frac{d(x, y)^{\beta} \rho_{1}(x, \iota d(x, y))}{\mu(B(x, \tau d(x, y)))} & \leq \frac{\max \left\{1, \gamma^{-\beta}\right\}\left(\gamma^{j} r\right)^{\beta}}{\mu\left(B\left(x, \tau \gamma^{j-1} r\right)\right)} \sup _{\gamma^{j-1} \iota r \leq s \leq \gamma^{j} \iota r} \rho_{1}(x, s) \\
& \leq \frac{\max \left\{1, \gamma^{-\beta}\right\}\left(\gamma^{j} r\right)^{\beta}}{\mu\left(B\left(x, \tau \gamma^{j-1} r\right)\right)} \sup _{k \gamma^{j} \iota r \leq s \leq \gamma^{j} \iota r} \rho_{1}(x, s) \\
& \leq \frac{C_{\rho_{1}} \max \left\{1, \gamma^{-\beta}\right\}\left(\gamma^{j} r\right)^{\beta}}{\mu\left(B\left(x, \kappa \gamma^{j} r\right)\right)} \int_{\gamma^{j} k_{1} \iota r}^{\gamma^{j} k_{2} \iota r} \rho_{1}(x, s) \frac{d s}{s}
\end{aligned}
$$

since $\gamma \leq \min \{1 / k, \tau / \kappa\}$. By Lemma 3.1, we obtain

$$
\begin{aligned}
& \int_{B\left(x, \gamma^{j} r\right) \backslash B\left(x, \gamma^{j-1} r\right)} \frac{d(x, y)^{\beta} \rho_{1}(x, \iota d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) d \mu(y) \\
\leq & C_{\rho_{1}} \max \left\{1, \gamma^{-\beta}\right\}\left(\gamma^{j} r\right)^{\beta} \int_{\gamma^{j} k_{1} \iota r}^{\gamma^{j} k_{2} \iota r} \rho_{1}(x, s) \frac{d s}{s} \cdot \frac{1}{\mu\left(B\left(x, \kappa \gamma^{j} r\right)\right)} \int_{B\left(x, \gamma^{j} r\right)} f(y) d \mu(y) \\
\leq & C_{1} C_{\rho_{1}} \max \left\{1,2^{-\beta}\right\}\left(\gamma^{j} r\right)^{-\nu(x) / p(x)+\beta} \int_{\gamma^{j} k_{1} \iota r}^{\gamma^{j} k_{2} \iota r} \rho_{1}(x, s) \frac{d s}{s} \\
\leq & C_{1} C_{\rho_{1}} \max \left\{1,2^{-\beta}\right\} \\
& \times \max \left\{\left(\iota k_{1}\right)^{\nu(x) / p(x)-\beta},\left(\iota k_{2}\right)^{\nu(x) / p(x)-\beta}\right\} \int_{\gamma^{j} k_{1} \iota r}^{\gamma^{j} k_{2} \iota r} s^{-\nu(x) / p(x)+\beta} \rho_{1}(x, s) \frac{d s}{s} \\
\leq & C_{2} \int_{\gamma^{j} k_{1} \iota r}^{\gamma^{j} k_{2} \iota r} s^{-\nu(x) / p(x)+\beta} \rho_{1}(x, s) \frac{d s}{s}
\end{aligned}
$$

for $j \in \mathbf{Z}$, where

$$
C_{2}=C_{1} C_{\rho_{1}} \max \left\{1,2^{-\beta}\right\} \max \left\{\left(\iota k_{1}\right)^{\nu^{+} / p^{--\beta}},\left(\iota k_{1}\right)^{\nu^{-} / p^{+}-\beta},\left(\iota k_{2}\right)^{\nu^{+} / p^{-}-\beta},\left(\iota k_{2}\right)^{\nu^{-} / p^{+}-\beta}\right\} .
$$

Therefore we obtain

$$
\begin{aligned}
& \int_{B(x, r)} \frac{d(x, y)^{\beta} \rho_{1}(x, \iota d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) d \mu(y) \\
= & \sum_{j=0}^{\infty} \int_{B\left(x, \gamma^{-j} r\right) \backslash B\left(x, \gamma^{-j-1} r\right)} \frac{d(x, y)^{\beta} \rho_{1}(x, \iota d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) d \mu(y) \\
\leq & C_{2} \sum_{j=0}^{\infty} \int_{\gamma^{-j} k_{1} \iota r}^{\gamma^{-j} k_{2} \iota r} s^{-\nu(x) / p(x)+\beta} \rho_{1}(x, s) \frac{d s}{s} .
\end{aligned}
$$

Let j_{0} be the smallest integer such that $k_{2} / k_{1} \leq \gamma^{j_{0}}$. Then we have

$$
\begin{aligned}
\int_{B(x, r)} \frac{d(x, y)^{\beta} \rho_{1}(x, \iota d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) d \mu(y) & \leq C_{2} \sum_{j=0}^{\infty} \int_{\gamma^{-j-j_{0} k_{2} \iota r}}^{\gamma^{-j} k_{2} \iota r} s^{-\nu(x) / p(x)+\beta} \rho_{1}(x, s) \frac{d s}{s} \\
& \leq j_{0} C_{2} \int_{0}^{k_{2} \iota r} s^{-\nu(x) / p(x)+\beta} \rho_{1}(x, s) \frac{d s}{s}
\end{aligned}
$$

which proves (3.1).
Let j_{1} be the smallest integer such that $d_{X} \leq \gamma^{j_{1}} r$. Then we obtain

$$
\begin{aligned}
& \int_{X \backslash B(x, r)} \frac{d(x, y)^{\beta} \rho_{1}(x, \iota d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) d \mu(y) \\
= & \sum_{j=1}^{j_{1}} \int_{B\left(x, \gamma^{j} r\right) \backslash B\left(x, \gamma^{j-1} r\right)} \frac{d(x, y)^{\beta} \rho_{1}(x, \iota d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) d \mu(y) \\
\leq & C_{2} \sum_{j=1}^{j_{1}} \int_{\gamma^{j} k_{1} \iota r}^{\gamma^{j} k_{2} \iota r} s^{-\nu(x) / p(x)+\beta} \rho_{1}(x, s) \frac{d s}{s} \\
\leq & C_{2} \sum_{j=1}^{j_{1}} \int_{\gamma^{j-j_{0}} k_{2} \iota r}^{\gamma^{j} k_{2} \iota r} s^{-\nu(x) / p(x)+\beta} \rho_{1}(x, s) \frac{d s}{s} \\
\leq & j_{0} C_{2} \int_{k_{1} \iota r}^{\gamma k_{2} \iota d_{X}} s^{-\nu(x) / p(x)+\beta} \rho_{1}(x, s) \frac{d s}{s} \\
\leq & j_{0} C_{2} \int_{k_{1} \iota r}^{2 k_{2} \iota d_{X}} s^{-\nu(x) / p(x)+\beta} \rho_{1}(x, s) \frac{d s}{s},
\end{aligned}
$$

which proves (3.2).
Here note that $2 k_{2} \iota d_{X}$ in (3.2) can be replaced by $a k_{2} \iota d_{X}$ with $a>1$.

4. Continuity of generalized Riesz potentials

Before we state our theorem we consider the following conditions:
$(\rho \mu)$ there are constants $\eta_{1}>0, \eta_{2}>0, \iota_{1}>0, \iota_{2} \geq 1, \sigma_{1}>1$ and $c_{1}>0$ such that

$$
\begin{equation*}
\left|\frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))}-\frac{\rho(x, d(z, y))}{\mu(B(z, \tau d(z, y)))}\right| \leq c_{1} \frac{d(x, z)^{\eta_{1}}}{d(x, y)^{\eta_{2}}} \frac{\rho\left(x, \iota_{1} d(x, y)\right)}{\mu\left(B\left(x, \iota_{2} d(x, y)\right)\right)} \tag{4.1}
\end{equation*}
$$

whenever $d(x, z) \leq d(x, y) / \sigma_{1}$,
($\rho 1$) there are functions $h(x, z): X \times X \rightarrow[0, \infty)$ and $\widetilde{\rho} \in(\rho)$ and constants $\iota_{3}>0$, $\iota_{4}>0, \sigma_{2}>1$ and $c_{2}>0$ such that

$$
\begin{equation*}
|\rho(x, d(z, y))-\rho(z, d(z, y))| \leq c_{2} h(x, z)\left\{\widetilde{\rho}\left(x, \iota_{3} d(x, y)\right)+\widetilde{\rho}\left(z, \iota_{4} d(z, y)\right)\right\} \tag{4.2}
\end{equation*}
$$

whenever $d(x, z) \leq d(x, y) / \sigma_{2}$.
Let $\sigma=\max \left\{\sigma_{1}, \sigma_{2}\right\}$. For $x, z \in X$ and $0<r \leq d_{X}$, we consider the functions

$$
\begin{aligned}
\psi_{1}(x, z, r)= & \int_{0}^{k_{2} \sigma r} t^{-\nu(x) / p(x)+\theta} \rho(x, t) \frac{d t}{t}+\int_{0}^{k_{2} \sigma r} t^{-\nu(x) / q(x)} \rho(x, t) \frac{d t}{t} \\
& +\int_{0}^{k_{2}(\sigma+1) r} t^{-\nu(z) / p(z)+\theta} \rho(z, t) \frac{d t}{t}+\int_{0}^{k_{2}(\sigma+1) r} t^{-\nu(z) / q(z)} \rho(z, t) \frac{d t}{t} \\
& +r^{\theta} \int_{k_{1}(\sigma-1) r}^{2 k_{2} d_{X}} t^{-\nu(z) / p(z)} \rho(z, t) \frac{d t}{t}
\end{aligned}
$$

and

$$
\begin{aligned}
\psi_{2}(x, z, r)= & r^{\eta_{1}} \int_{k_{1} \sigma \iota_{1} r}^{2 k_{2} \iota_{1} d_{X}} t^{-\nu(x) / p(x)+\theta-\eta_{2}} \rho(x, t) \frac{d t}{t} \\
& +r^{\eta_{1}} \int_{k_{1} \sigma \iota_{1} r}^{2 k_{2} \iota_{1} d_{X}} t^{-\nu(x) / q(x)-\eta_{2}} \rho(x, t) \frac{d t}{t}
\end{aligned}
$$

Further we set

$$
\begin{aligned}
& \psi_{3}(x, z, r) \\
= & h(x, z) \int_{k_{1} \sigma \iota_{3} r}^{2 k_{2} \iota_{3} d_{X}} t^{-\nu(x) / p(x)+\theta} \widetilde{\rho}(x, t) \frac{d t}{t}+h(x, z) \int_{k_{1} \sigma \iota_{3} r}^{2 k_{2} \iota_{3} d_{X}} t^{-\nu(x) / q(x)} \widetilde{\rho}(x, t) \frac{d t}{t} \\
& +h(x, z) \int_{k_{1}(\sigma-1) \iota_{4} r}^{2 k_{2} \iota_{4} d_{X}} t^{-\nu(z) / p(z)+\theta} \widetilde{\rho}(z, t) \frac{d t}{t}+h(x, z) \int_{k_{1}(\sigma-1) \iota_{4} r}^{2 k_{2} \iota_{4} d_{X}} t^{-\nu(z) / q(z)} \widetilde{\rho}(z, t) \frac{d t}{t}
\end{aligned}
$$

for $x, z \in X$ and $0<r \leq d_{X}$.
We prove the following theorem, as an extension of [23, Theorem 1] and [24, Theorem 2.2]. See also [15, Theorem 4.1] and [16, Theorem 4.1].

Theorem 4.1. Assume that ρ satisfies $(\rho \mu)$ and $(\rho 1)$. If $1 \leq \kappa<\min \left\{\tau(1-1 / \sigma)-1 / \sigma, \iota_{2}\right\}$, then there exists a constant $C>0$ such that

$$
\left|b(x) I_{\rho, \tau} f(x)-b(z) I_{\rho, \tau} f(z)\right| \leq C \sum_{k=1}^{3} \psi_{k}(x, z, d(x, z))
$$

for all $x, z \in X$ with $\psi_{1}(x, z, d(x, z))<\infty$ and measurable functions f on X with $\|f\|_{L^{\Phi, \nu(\cdot), \kappa}(X)} \leq 1$.
Remark 4.2. Let $x, z \in X$ with $x \neq z$ and $\psi_{1}(x, z, d(x, z))<\infty$. Then note that

$$
\begin{aligned}
& \int_{0}^{k_{2} \sigma d(x, z)} t^{-\nu(x) / p(x)+\theta} \rho(x, t) \frac{d t}{t}+\int_{0}^{k_{2} \sigma d(x, z)} t^{-\nu(x) / q(x)} \rho(x, t) \frac{d t}{t} \\
+ & \int_{0}^{k_{2}(\sigma+1) d(x, z)} t^{-\nu(z) / p(z)+\theta} \rho(z, t) \frac{d t}{t}+\int_{0}^{k_{2}(\sigma+1) d(x, z)} t^{-\nu(z) / q(z)} \rho(z, t) \frac{d t}{t}<\infty
\end{aligned}
$$

Let f be a nonnegative measurable function f on X with $\|f\|_{L^{\Phi, \nu(\cdot), \kappa}(X)} \leq 1$. By Lemma 3.2 and (1.2), we see that

$$
\begin{aligned}
& \int_{X} \frac{d(x, y)^{\theta} \rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) d \mu(y) \\
= & \int_{B(x, d(x, z))} \frac{d(x, y)^{\theta} \rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) d \mu(y) \\
& +\int_{X \backslash B(x, d(x, z))} \frac{d(x, y)^{\theta} \rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) d \mu(y) \\
\leq & C\left\{\int_{0}^{k_{2} d(x, z)} t^{-\nu(x) / p(x)+\theta} \rho(x, t) \frac{d t}{t}+\int_{k_{1} d(x, z)}^{2 k_{2} d_{X}} t^{-\nu(x) / p(x)+\theta} \rho(x, t) \frac{d t}{t}\right\} \\
\leq & C\left\{\int_{0}^{k_{2} \sigma d(x, z)} t^{-\nu(x) / p(x)+\theta} \rho(x, t) \frac{d t}{t}+d(x, z)^{-\nu(x) / p(x)} \int_{0}^{2 k_{2} d_{X}} \rho(x, t) \frac{d t}{t}\right\} \\
< & \infty
\end{aligned}
$$

and that

$$
\begin{aligned}
& \int_{X} \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))}\{b(y) f(y)\} d \mu(y) \\
= & \int_{B(x, d(x, z))} \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))}\{b(y) f(y)\} d \mu(y) \\
& +\int_{X \backslash B(x, d(x, z))} \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))}\{b(y) f(y)\} d \mu(y) \\
\leq & C\left\{\int_{0}^{k_{2} d(x, z)} t^{-\nu(x) / q(x)} \rho(x, t) \frac{d t}{t}+\int_{k_{1} d(x, z)}^{2 k_{2} d_{X}} t^{-\nu(x) / q(x)} \rho(x, t) \frac{d t}{t}\right\} \\
\leq & C\left\{\int_{0}^{k_{2} \sigma d(x, z)} t^{-\nu(x) / q(x)} \rho(x, t) \frac{d t}{t}+d(x, z)^{-\nu(x) / q(x)} \int_{0}^{2 k_{2} d_{X}} \rho(x, t) \frac{d t}{t}\right\} \\
< & \infty .
\end{aligned}
$$

Hence

$$
b(x) I_{\rho, \tau} f(x) \leq \int_{X} \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))}|b(x)-b(y)| f(y) d \mu(y)
$$

$$
\begin{aligned}
& +\int_{X} \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} b(y) f(y) d \mu(y) \\
\leq & C \int_{X} \frac{d(x, y)^{\theta} \rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) d \mu(y) \\
& +\int_{X} \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))}\{b(y) f(y)\} d \mu(y)<\infty .
\end{aligned}
$$

Similarly, we see that $b(z) I_{\rho, \tau} f(z)<\infty$, so that $\left|b(x) I_{\rho, \tau} f(x)-b(z) I_{\rho, \tau} f(z)\right|$ in Theorem4.1 is well defined.

Proof of Theorem 4.1. We may assume that f is nonnegative on X. Let f be a nonnegative function on X such that $\|f\|_{L^{\Phi, \nu(\cdot), \kappa}(X)} \leq 1$. Let $x, z \in X$ and set $r=d(x, z)$. First we estimate the following three terms:

$$
\begin{aligned}
I_{1}(x) & =b(x) \int_{B(x, \sigma r)} \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) d \mu(y) \\
I_{2}(z) & =b(z) \int_{B(z,(\sigma+1) r)} \frac{\rho(z, d(z, y))}{\mu(B(z, \tau d(z, y)))} f(y) d \mu(y)
\end{aligned}
$$

and

$$
I_{3}(z)=r^{\theta} \int_{X \backslash B(z,(\sigma-1) r)} \frac{\rho(z, d(z, y))}{\mu(B(z, \tau d(z, y)))} f(y) d \mu(y)
$$

For $I_{1}(x)$, we have

$$
\begin{aligned}
I_{1}(x) \leq & \int_{B(x, \sigma r)} \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))}|b(x)-b(y)| f(y) d \mu(y) \\
& +\int_{B(x, \sigma r)} \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} b(y) f(y) d \mu(y) \\
\leq & C \int_{B(x, \sigma r)} \frac{d(x, y)^{\theta} \rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) d \mu(y) \\
& +\int_{B(x, \sigma r)} \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))}\{b(y) f(y)\} d \mu(y) \\
= & C I_{11}(x)+I_{12}(x) .
\end{aligned}
$$

We obtain from (3.1),

$$
I_{11}(x) \leq C \int_{0}^{k_{2} \sigma r} t^{-\nu(x) / p(x)+\theta} \rho(x, t) \frac{d t}{t} \quad \text { and } \quad I_{12}(x) \leq C \int_{0}^{k_{2} \sigma r} t^{-\nu(x) / q(x)} \rho(x, t) \frac{d t}{t}
$$

since $1 \leq \kappa<\tau$. For $I_{3}(z)$, we have by (3.2),

$$
I_{3}(z) \leq C r^{\theta} \int_{k_{1}(\sigma-1) r}^{2 k_{2} d_{X}} t^{-\nu(z) / p(z)} \rho(z, t) \frac{d t}{t}
$$

since $1 \leq \kappa<\tau$. Therefore, we find

$$
\begin{equation*}
I_{1}(x)+I_{2}(z)+I_{3}(z) \leq C \psi_{1}(x, z, r) \tag{4.3}
\end{equation*}
$$

Next we estimate the following term:

$$
I_{4}(z)=r^{\eta_{1}} b(x) \int_{X \backslash B(x, \sigma r)} \frac{d(x, y)^{-\eta_{2}} \rho\left(x, \iota_{1} d(x, y)\right)}{\mu\left(B\left(x, \iota_{2} d(x, y)\right)\right)} f(y) d \mu(y) .
$$

Then we have

$$
\begin{aligned}
I_{4}(x) \leq & r^{\eta_{1}} \int_{X \backslash B(x, \sigma r)} \frac{d(x, y)^{-\eta_{2}} \rho\left(x, \iota_{1} d(x, y)\right)}{\mu\left(B\left(x, \iota_{2} d(x, y)\right)\right)}|b(x)-b(y)| f(y) d \mu(y) \\
& +r^{\eta_{1}} \int_{X \backslash B(x, \sigma r)} \frac{d(x, y)^{-\eta_{2}} \rho\left(x, \iota_{1} d(x, y)\right)}{\mu\left(B\left(x, \iota_{2} d(x, y)\right)\right)} b(y) f(y) d \mu(y) \\
\leq & C r^{\eta_{1}} \int_{X \backslash B(x, \sigma r)} \frac{d(x, y)^{\theta-\eta_{2}} \rho\left(x, \iota_{1} d(x, y)\right)}{\mu\left(B\left(x, \iota_{2} d(x, y)\right)\right)} f(y) d \mu(y) \\
& +r^{\eta_{1}} \int_{X \backslash B(x, \sigma r)} \frac{d(x, y)^{-\eta_{2}} \rho\left(x, \iota_{1} d(x, y)\right)}{\mu\left(B\left(x, \iota_{2} d(x, y)\right)\right)}\{b(y) f(y)\} d \mu(y) \\
= & C I_{41}(x)+I_{42}(x) .
\end{aligned}
$$

Note from (3.2) that

$$
I_{41}(x) \leq C r^{\eta_{1}} \int_{k_{1} \sigma \iota_{1} r}^{2 k_{2} \iota_{1} d_{X}} t^{-\nu(x) / p(x)+\theta-\eta_{2}} \rho(x, t) \frac{d t}{t}
$$

and that

$$
I_{42}(x) \leq C r^{\eta_{1}} \int_{k_{1} \sigma \iota_{1} r}^{2 k_{2} \iota_{1} d_{X}} t^{-\nu(x) / q(x)-\eta_{2}} \rho(x, t) \frac{d t}{t}
$$

since $1 \leq \kappa<\iota_{2}$. Therefore, we find

$$
\begin{equation*}
I_{4}(x) \leq C \psi_{2}(x, z, r) \tag{4.4}
\end{equation*}
$$

Finally we estimate the following two terms:

$$
I_{5}(x, z)=b(x) h(x, z) \int_{X \backslash B(x, \sigma r)} \frac{\widetilde{\rho}\left(x, \iota_{3} d(x, y)\right)}{\mu(B(z, \tau d(z, y)))} f(y) d \mu(y)
$$

and

$$
I_{6}(x, z)=b(x) h(x, z) \int_{X \backslash B(z,(\sigma-1) r)} \frac{\widetilde{\rho}\left(z, \iota_{4} d(z, y)\right)}{\mu(B(z, \tau d(z, y)))} f(y) d \mu(y) .
$$

For $I_{5}(x, z)$, set $\tau^{\prime}=\tau(1-1 / \sigma)-1 / \sigma$. Note that

$$
\begin{equation*}
\left(1-\frac{1}{\sigma}\right) d(x, y) \leq d(z, y) \leq\left(1+\frac{1}{\sigma}\right) d(x, y) \tag{4.5}
\end{equation*}
$$

and that

$$
B\left(x, \tau^{\prime} d(x, y)\right) \subset B(z, \tau d(z, y))
$$

for $y \in X \backslash B(x, \sigma r)$. Hence, we have

$$
\begin{aligned}
I_{5}(x, z) \leq & b(x) h(x, z) \int_{X \backslash B(x, \sigma r)} \frac{\widetilde{\rho}\left(x, \iota_{3} d(x, y)\right)}{\mu\left(B\left(x, \tau^{\prime} d(x, y)\right)\right)} f(y) d \mu(y) \\
\leq & h(x, z) \int_{X \backslash B(x, \sigma r)} \frac{\widetilde{\rho}\left(x, \iota_{3} d(x, y)\right)}{\mu\left(B\left(x, \tau^{\prime} d(x, y)\right)\right)}|b(x)-b(y)| f(y) d \mu(y) \\
& +h(x, z) \int_{X \backslash B(x, \sigma r)} \frac{\widetilde{\rho}\left(x, \iota_{3} d(x, y)\right)}{\mu\left(B\left(x, \tau^{\prime} d(x, y)\right)\right)} b(y) f(y) d \mu(y) \\
\leq & C h(x, z) \int_{X \backslash B(x, \sigma r)} \frac{d(x, y)^{\theta} \widetilde{\rho}\left(x, \iota_{3} d(x, y)\right)}{\mu\left(B\left(x, \tau^{\prime} d(x, y)\right)\right)} f(y) d \mu(y) \\
& +h(x, z) \int_{X \backslash B(x, \sigma r)} \frac{\widetilde{\rho}\left(x, \iota_{3} d(x, y)\right)}{\mu\left(B\left(x, \tau^{\prime} d(x, y)\right)\right)}\{b(y) f(y)\} d \mu(y) \\
= & C I_{51}(x, z)+I_{52}(x, z) .
\end{aligned}
$$

Note from (3.2) that

$$
I_{51}(x, z) \leq C h(x, z) \int_{k_{1} \sigma \iota_{3} r}^{2 k_{2} \iota_{3} d_{X}} t^{-\nu(x) / p(x)+\theta} \widetilde{\rho}(x, t) \frac{d t}{t}
$$

and that

$$
I_{52}(x, z) \leq C h(x, z) \int_{k_{1} \sigma \iota_{3} r}^{2 k_{2} \iota_{3} d_{X}} t^{-\nu(x) / q(x)} \widetilde{\rho}(x, t) \frac{d t}{t}
$$

since $1 \leq \kappa<\tau^{\prime}$. By (4.5) we have

$$
\begin{aligned}
I_{6}(x, z) \leq & h(x, z) \int_{X \backslash B(z,(\sigma-1) r)} \frac{\widetilde{\rho}\left(z, \iota_{4} d(z, y)\right)}{\mu(B(z, \tau d(z, y)))}|b(x)-b(y)| f(y) d \mu(y) \\
& +h(x, z) \int_{X \backslash B(z,(\sigma-1) r)} \frac{\widetilde{\rho}\left(z, \iota_{4} d(z, y)\right)}{\mu(B(z, \tau d(z, y)))} b(y) f(y) d \mu(y) \\
\leq & C h(x, z) \int_{X \backslash B(z,(\sigma-1) r)} \frac{d(x, y)^{\theta} \widetilde{\rho}\left(z, \iota_{4} d(z, y)\right)}{\mu(B(z, \tau d(z, y)))} f(y) d \mu(y) \\
& +h(x, z) \int_{X \backslash B(z,(\sigma-1) r) r} \frac{\widetilde{\rho}\left(z, \iota_{4} d(z, y)\right)}{\mu(B(z, \tau d(z, y)))} b(y) f(y) d \mu(y) \\
\leq & C h(x, z) \int_{X \backslash B(z,(\sigma-1) r)} \frac{d(z, y)^{\theta} \widetilde{\rho}\left(z, \iota_{4} d(z, y)\right)}{\mu(B(z, \tau d(z, y)))} f(y) d \mu(y) \\
& +h(x, z) \int_{X \backslash B(z,(\sigma-1) r)} \frac{\widetilde{\rho}\left(z, \iota_{4} d(z, y)\right)}{\mu(B(z, \tau d(z, y)))}\{b(y) f(y)\} d \mu(y) \\
= & C I_{61}(x, z)+I_{62}(x, z) .
\end{aligned}
$$

Note from (3.2) that

$$
I_{61}(x, z) \leq C h(x, z) \int_{k_{1}(\sigma-1) \iota_{4} r}^{2 k_{2} \iota_{4} d_{X}} t^{-\nu(z) / p(z)+\theta} \widetilde{\rho}(z, t) \frac{d t}{t}
$$

and that

$$
I_{62}(x, z) \leq C h(x, z) \int_{k_{1}(\sigma-1) \iota_{4} r}^{2 k_{2} \iota_{4} d_{X}} t^{-\nu(z) / q(z)} \widetilde{\rho}(z, t) \frac{d t}{t}
$$

since $1 \leq \kappa<\tau$. Therefore, we find

$$
\begin{equation*}
I_{5}(x, z)+I_{6}(x, z) \leq C \psi_{3}(x, z, r) \tag{4.6}
\end{equation*}
$$

Note from 4.1) and (4.2),

$$
\begin{aligned}
& \left|\frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))}-\frac{\rho(z, d(z, y))}{\mu(B(z, \tau d(z, y)))}\right| \\
\leq & \left|\frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))}-\frac{\rho(x, d(z, y))}{\mu(B(z, \tau d(z, y)))}\right|+\left|\frac{\rho(x, d(z, y))}{\mu(B(z, \tau d(z, y)))}-\frac{\rho(z, d(z, y))}{\mu(B(z, \tau d(z, y)))}\right| \\
\leq & C\left\{r^{\eta_{1}} \frac{d(x, y)^{-\eta_{2}} \rho\left(x, \iota_{1} d(x, y)\right)}{\mu\left(B\left(x, \iota_{2} d(x, y)\right)\right)}+h(x, z) \frac{\widetilde{\rho}\left(x, \iota_{3} d(x, y)\right)+\widetilde{\rho}\left(z, \iota_{4} d(z, y)\right)}{\mu(B(z, \tau d(z, y)))}\right\}
\end{aligned}
$$

for $y \in X \backslash B(x, \sigma r)$, so that

$$
\begin{aligned}
& \left|b(x) I_{\rho, \tau} f(x)-b(z) I_{\rho, \tau} f(z)\right| \\
& \leq b(x) \int_{B(x, \sigma r)} \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) d \mu(y)+b(z) \int_{B(x, \sigma r)} \frac{\rho(z, d(z, y))}{\mu(B(z, \tau d(z, y)))} f(y) d \mu(y) \\
& \quad+|b(x)-b(z)| \int_{X \backslash B(x, \sigma r)} \frac{\rho(z, d(z, y))}{\mu(B(z, \tau d(z, y)))} f(y) d \mu(y) \\
& \quad+b(x) \int_{X \backslash B(x, \sigma r)}\left|\frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))}-\frac{\rho(z, d(z, y))}{\mu(B(z, \tau d(z, y)))}\right| f(y) d \mu(y) \\
& \leq C\left\{I_{1}(x)+I_{2}(z)+I_{3}(z)+I_{4}(x)+I_{5}(x, z)+I_{6}(x, z)\right\} .
\end{aligned}
$$

Hence we obtain by (4.3), 4.4 and 4.6),

$$
\left|b(x) I_{\rho, \tau} f(x)-b(z) I_{\rho, \tau} f(z)\right| \leq C \sum_{k=1}^{3} \psi_{k}(x, z, r)
$$

Thus we complete the proof.
Remark 4.3. (1) If ρ satisfies the doubling condition, that is, there exists a constant $C>0$ such that

$$
C^{-1} \leq \frac{\rho(x, r)}{\rho(x, s)} \leq C
$$

for $x \in X$ and $1 / 2 \leq r / s \leq 2$, then ρ satisfies whenever $k=1 / 2$ and $2 k_{1}=k_{2}$.
(2) If ρ is increasing in the second variable, then ρ satisfies 1.1 with $k=1 / 2, k_{1}=1$ and $k_{2}=2$.
(3) If ρ is decreasing in the second variable, then ρ satisfies with $k=1 / 2, k_{1}=1 / 4$ and $k_{2}=1 / 2$.

Example 4.4. (i) Let $\alpha(\cdot)$ be a measurable function on X such that

$$
0<\alpha^{-}:=\inf _{x \in X} \alpha(x) \leq \sup _{x \in X} \alpha(x)=: \alpha^{+}<\infty
$$

and $\rho(x, r)=r^{\alpha(x)}$. Then ρ satisfies (1.1) and (1.2) with $k=1 / 2, k_{1}=1$ and $k_{2}=2$ by Remark 4.3(1) or (2).
(ii) Let $x_{0} \in X$ and $\rho(x, r)=\left(1+d\left(x_{0}, x\right) / r\right) r^{\alpha}$ for some $\alpha>0$. Then ρ satisfies 1.1) with $k=1 / 2, k_{1}=1$ and $k_{2}=2$ by Remark 4.3(1). Further, if $\alpha>1$, then

$$
\int_{0}^{1} \rho(x, s) \frac{d s}{s} \leq\left(1+d\left(x_{0}, x\right)\right) \int_{0}^{1} s^{\alpha-1} \frac{d s}{s} \leq \frac{1+d_{X}}{\alpha-1}
$$

so that ρ satisfies (1.2).
(iii) Let $\alpha>0$ and let $A(\cdot)$ be a positive measurable function on X. Set

$$
\rho(x, r)= \begin{cases}A(x) r^{\alpha} & \text { for } 0<r<1 \\ A(x) e^{-(r-1)} & \text { for } r \geq 1\end{cases}
$$

Then ρ satisfies (1.1) and (1.2) with $k=1 / 2, k_{1}=1 / 4$ and $k_{2}=1 / 2$ by Remark 4.3(1) and (3). See 10].
(iv) Let $\rho(x, r)=\mu(B(x, \tau r))^{\eta}$ for some $0<\eta<1$ and $\tau \geq 1$. Then ρ satisfies (1.1) with $k=1 / 2, k_{1}=1$ and $k_{2}=2$ by Remark 4.3(2). Further, if μ satisfies the upper Ahlfors condition $\mu(B(x, r)) \leq C r^{Q}(x \in X, r>0)$ for some $Q>0$, then ρ satisfies (1.2). See 27,32 .
(v) Let $\alpha(\cdot)$ be as in (i) and let $\rho(x, r)=r^{\alpha(x)} e^{-a / r}(\log (e+1 / r))^{\beta}$ for $a \geq 0$ and $\beta \in \mathbf{R}$. Then ρ satisfies (1.1) and (1.2) with $k=1 / 2, k_{1}=1$ and $k_{2}=2$. In fact, there exists a constant $C_{1}>0$ such that

$$
r_{1}^{-\alpha^{-} / 2} \rho\left(x, r_{1}\right) \leq C_{1} r_{2}^{-\alpha^{-} / 2} \rho\left(x, r_{2}\right)
$$

whenever $0<r_{1}<r_{2}$, so that

$$
\sup _{r / 2 \leq s \leq r} \rho(x, s) \leq C_{1} \rho(x, r) \leq \frac{C_{1}^{2}}{\log 2} \int_{r}^{2 r} \rho(x, s) \frac{d s}{s}
$$

for all $r>0$ and

$$
\int_{0}^{1} \rho(x, s) \frac{d s}{s} \leq C_{1} \rho(x, 1) \int_{0}^{1} s^{\alpha^{-} / 2} \frac{d s}{s} \leq \frac{2 C_{1}}{\alpha^{-}} e^{-a}(\log (e+1))^{\beta}
$$

for all $x \in X$.

5. Corollaries

In this section, we give consequences of Theorem 4.1.
Let $\alpha(\cdot)$ be a measurable function on X such that $0<\alpha^{-} \leq \alpha^{+}<\infty$.
Remark 5.1. Let $\rho(x, r)=r^{\alpha(x)} e^{-a / r}(\log (e+1 / r))^{\beta}$ for $a \geq 0$ and $\beta \in \mathbf{R}$. Then $(\rho 1)$ holds for $\iota_{3}=3 / 2, \iota_{4}=1, \sigma_{2}=2, h(x, z)=|\alpha(x)-\alpha(z)|$ and $\widetilde{\rho}(x, r)=r^{\alpha(x)} e^{-a / r}(\log (e+$ $1 / r))^{\beta+1}$.

In fact, we have by the mean value property

$$
\begin{aligned}
& |\rho(x, d(z, y))-\rho(z, d(z, y))| \\
= & e^{-a / d(z, y)}(\log (e+1 / d(z, y)))^{\beta}\left|d(z, y)^{\alpha(x)}-d(z, y)^{\alpha(z)}\right| \\
\leq & e^{-a / d(z, y)}(\log (e+1 / d(z, y)))^{\beta}|\alpha(x)-\alpha(z)|\left(d(z, y)^{\alpha(x)}+d(z, y)^{\alpha(z)}\right)|\log d(z, y)| \\
\leq & C h(x, z)\{\widetilde{\rho}(x, d(z, y))+\widetilde{\rho}(z, d(z, y))\} \\
\leq & C h(x, z)\{\widetilde{\rho}(x, 3 d(x, y) / 2)+\widetilde{\rho}(z, d(z, y))\}
\end{aligned}
$$

whenever $d(x, z) \leq d(x, y) / 2$ since $d(x, y) / 2 \leq d(z, y) \leq 3 d(x, y) / 2$ for all $x, z \in X$ with $d(x, z) \leq d(x, y) / 2$.
Remark 5.2. Let G be an open bounded set in \mathbf{R}^{N}. Let $\rho(x, r)=r^{\alpha(x)} e^{-a / r}(\log (e+1 / r))^{\beta}$ for $a \geq 0$ and $\beta \in \mathbf{R}$.
(1) If $a=0$, then $(\rho \mu)$ holds for $\eta_{1}=\eta_{2}=\iota_{1}=\iota_{2}=1$ and $\sigma_{1}=2$.
(2) If $a>0$, then $(\rho \mu)$ holds for $\eta_{1}=1, \eta_{2}=2, \iota_{1}=3 / 2, \iota_{2}=1$ and $\sigma_{1}=2$. We refer to 24, Remark 2.3].

We set

$$
\psi_{4}(x, z)=d(x, z)^{\alpha(x)}\left(d(x, z)^{-\nu(x) / p(x)+\theta}+d(x, z)^{-\nu(x) / q(x)}\right)
$$

and

$$
\psi_{5}(x, z)=d(x, z)^{\alpha(z)}\left(d(x, z)^{-\nu(z) / p(z)+\theta}+d(x, z)^{-\nu(z) / q(z)}\right)
$$

for $x, z \in X$.
As in the proof of [24, Corollary 3.1], we obtain the following corollary by Theorem 4.1 .
Corollary 5.3. Let $\rho(x, r)=r^{\alpha(x)}(\log (e+1 / r))^{\beta}$ for $\beta \in \mathbf{R}$. Let X be a non-doubling metric measure space. Assume that ($\rho \mu$) holds. Suppose

$$
\inf _{x \in X}(\nu(x)-\alpha(x) p(x))>0, \quad \inf _{x \in X}\left(\nu(x)-\left(\alpha(x)+\theta-\eta_{2}\right) p(x)\right)>0
$$

and

$$
\inf _{x \in X}((\alpha(x)+\theta) p(x)-\nu(x))>0
$$

Further suppose

$$
\inf _{x \in X}\left(\nu(x)-\left(\alpha(x)-\eta_{2}\right) q(x)\right)>0 \quad \text { and } \quad \inf _{x \in X}(\alpha(x) q(x)-\nu(x))>0
$$

If $1 \leq \kappa<\min \left\{\tau(1-1 / \sigma)-1 / \sigma, \iota_{2}\right\}$, then there exists a constant $C>0$ such that

$$
\begin{aligned}
& \left|b(x) I_{\rho, \tau} f(x)-b(z) I_{\rho, \tau} f(z)\right| \\
& \leq C \\
& \quad\left[\left(\psi_{4}(x, z)+\psi_{5}(x, z)+\min \left\{d(x, z)^{\eta_{1}-\eta_{2}} \psi_{4}(x, z), d(x, z)^{\eta_{1}-\eta_{2}} \psi_{5}(x, z)\right\}\right)\right. \\
& \left.\quad \times(\log (e+1 / d(x, z)))^{\beta}+|\alpha(x)-\alpha(z)|\right]
\end{aligned}
$$

for all $x, z \in X$ and measurable functions f on X with $\|f\|_{L^{\Phi, \nu(\cdot), \kappa}(X)} \leq 1$.
Remark 5.4. The assumptions like $\inf _{x \in X}(\nu(x)-\alpha(x) p(x))>0$ in Corollary 5.3 were considered in [24, Corollary 3.1].

When $\rho(x, r)=r^{\alpha(x)}$, we write $I_{\rho, \tau} f=I_{\alpha(\cdot), \tau} f$, which is called the Riesz potential of variable order $\alpha(\cdot)$. If we take $\beta=0$ in Corollary 5.3 , we obtain the next corollary.

Corollary 5.5. Let $\rho(x, r)=r^{\alpha(x)}$. Let X be a non-doubling metric measure space. Assume that ($\rho \mu$) holds. Suppose

$$
\inf _{x \in X}(\nu(x)-\alpha(x) p(x))>0, \quad \inf _{x \in X}\left(\nu(x)-\left(\alpha(x)+\theta-\eta_{2}\right) p(x)\right)>0
$$

and

$$
\inf _{x \in X}((\alpha(x)+\theta) p(x)-\nu(x))>0
$$

Further suppose

$$
\inf _{x \in X}\left(\nu(x)-\left(\alpha(x)-\eta_{2}\right) q(x)\right)>0 \quad \text { and } \quad \inf _{x \in X}(\alpha(x) q(x)-\nu(x))>0
$$

Assume that $\alpha(\cdot)$ and $\nu(\cdot)$ are log-Hölder continuous on X. If $1 \leq \kappa<\min \{\tau(1-1 / \sigma)-$ $\left.1 / \sigma, \iota_{2}\right\}$, then there exists a constant $C>0$ such that

$$
\left|b(x) I_{\alpha(\cdot), \tau} f(x)-b(z) I_{\alpha(\cdot), \tau} f(z)\right| \leq C\left\{\psi_{4}(x, z)+d(x, z)^{\eta_{1}-\eta_{2}} \psi_{4}(x, z)+|\alpha(x)-\alpha(z)|\right\}
$$

for all $x, z \in X$ and measurable functions f on X with $\|f\|_{L^{\Phi, \nu(\cdot), \kappa}(X)} \leq 1$.
When $\rho(x, r)=r^{\alpha(x)} e^{-a / r}(\log (e+1 / r))^{\beta}$, we obtain the next corollary by Theorem 4.1. Corollary 5.6. Let $\rho(x, r)=r^{\alpha(x)} e^{-a / r}(\log (e+1 / r))^{\beta}$ for $a>0$ and $\beta \in \mathbf{R}$. Let X be a non-doubling metric measure space. Assume that ($\rho \mu$) holds. If $1 \leq \kappa<\min \{\tau(1-1 / \sigma)-$ $\left.1 / \sigma, \iota_{2}\right\}$, then there exists a constant $C>0$ such that

$$
\left|b(x) I_{\rho, \tau} f(x)-b(z) I_{\rho, \tau} f(z)\right| \leq C\left\{d(x, z)^{\theta}+d(x, z)^{\eta_{1}}+|\alpha(x)-\alpha(z)|\right\}
$$

for all $x, z \in X$ and measurable functions f on X with $\|f\|_{L^{\Phi, \nu(\cdot), \kappa(X)}} \leq 1$.

To get this, we note, for $b \in \mathbf{R}$, there exists a constant $c>0$ such that

$$
\int_{0}^{r} t^{b} e^{-a / t}(\log (e+1 / t))^{\beta} \frac{d t}{t} \leq c r^{\theta}
$$

for all $0<r \leq d_{X}$.
For the case $L^{p(\cdot), \nu(\cdot), \kappa}(X)$, we obtain the following corollaries. The following corollary is a consequence of Theorem 4.1 with $b(\cdot) \equiv 1$ and $\rho(x, r)=r^{\alpha(x)}(\log (e+1 / r))^{\beta}$.

Corollary 5.7. Let $\rho(x, r)=r^{\alpha(x)}(\log (e+1 / r))^{\beta}$ for $\beta \in \mathbf{R}$. Let X be a non-doubling metric measure space. Assume that ($\rho \mu$) holds. Suppose

$$
\inf _{x \in X}\left(\nu(x)-\left(\alpha(x)-\eta_{2}\right) p(x)\right)>0 \quad \text { and } \quad \inf _{x \in X}(\alpha(x) p(x)-\nu(x))>0
$$

If $1 \leq \kappa<\min \left\{\tau(1-1 / \sigma)-1 / \sigma, \iota_{2}\right\}$, then there exists a constant $C>0$ such that

$$
\begin{aligned}
& \left|I_{\rho, \tau} f(x)-I_{\rho, \tau} f(z)\right| \\
& \leq C \\
& C\left[\left(d(x, z)^{\alpha(x)-\nu(x) / p(x)}+d(x, z)^{\alpha(z)-\nu(z) / p(z)}\right.\right. \\
& \left.\quad+\min \left\{d(x, z)^{\alpha(x)-\nu(x) / p(x)+\eta_{1}-\eta_{2}}, d(x, z)^{\alpha(z)-\nu(z) / p(z)+\eta_{1}-\eta_{2}}\right\}\right)(\log (e+1 / d(x, z)))^{\beta} \\
& \quad+|\alpha(x)-\alpha(z)|]
\end{aligned}
$$

for all $x, z \in X$ and measurable functions f on X with $\|f\|_{L^{p(\cdot), \nu(\cdot), \kappa(X)}} \leq 1$.
The next corollary is a consequence of Theorem 4.1 with $b(\cdot) \equiv 1$ and $\rho(x, r)=$ $r^{\alpha(x)} e^{-a / r}(\log (e+1 / r))^{\beta}$.

Corollary 5.8. Let $\rho(x, r)=r^{\alpha(x)} e^{-a / r}(\log (e+1 / r))^{\beta}$ for $a>0$ and $\beta \in \mathbf{R}$. Let X be a non-doubling metric measure space. Assume that ($\rho \mu$) holds. If $1 \leq \kappa<\min \{\tau(1-1 / \sigma)-$ $\left.1 / \sigma, \iota_{2}\right\}$, then there exists a constant $C>0$ such that

$$
\left|I_{\rho, \tau} f(x)-I_{\rho, \tau} f(z)\right| \leq C\left\{d(x, z)^{\eta_{1}}+|\alpha(x)-\alpha(z)|\right\}
$$

for all $x, z \in X$ and measurable functions f on X with $\|f\|_{L^{p(\cdot), \nu(\cdot), \kappa(X)}} \leq 1$.
The following corollary is the doubling metric measure case of Corollary 5.3 .
Corollary 5.9. Let $\rho(x, r)=r^{\alpha(x)}(\log (e+1 / r))^{\beta}$ for $\beta \in \mathbf{R}$. Let X be a doubling metric measure space. Assume that ($\rho \mu$) holds. Suppose

$$
\inf _{x \in X}(\nu(x)-\alpha(x) p(x))>0, \quad \inf _{x \in X}\left(\nu(x)-\left(\alpha(x)+\theta-\eta_{2}\right) p(x)\right)>0
$$

and

$$
\inf _{x \in X}((\alpha(x)+\theta) p(x)-\nu(x))>0
$$

Further suppose

$$
\inf _{x \in X}\left(\nu(x)-\left(\alpha(x)-\eta_{2}\right) q(x)\right)>0 \quad \text { and } \quad \inf _{x \in X}(\alpha(x) q(x)-\nu(x))>0
$$

Then there exists a constant $C>0$ such that

$$
\begin{aligned}
& \left|b(x) I_{\rho, 1} f(x)-b(z) I_{\rho, 1} f(z)\right| \\
& \leq C \\
& \quad\left[\left(\psi_{4}(x, z)+\psi_{5}(x, z)+\min \left\{d(x, z)^{\eta_{1}-\eta_{2}} \psi_{4}(x, z), d(x, z)^{\eta_{1}-\eta_{2}} \psi_{5}(x, z)\right\}\right)\right. \\
& \left.\quad \times(\log (e+1 / d(x, z)))^{\beta}+|\alpha(x)-\alpha(z)|\right]
\end{aligned}
$$

for all $x, z \in X$ and measurable functions f on X with $\|f\|_{L^{\Phi, \nu(\cdot), 1}(X)} \leq 1$.
The following corollary is the doubling metric measure case of Corollary 5.6.
Corollary 5.10. Let $\rho(x, r)=r^{\alpha(x)} e^{-a / r}(\log (e+1 / r))^{\beta}$ for $a>0$ and $\beta \in \mathbf{R}$. Let X be a doubling metric measure space. Assume that $(\rho \mu)$ holds. Then there exists a constant $C>0$ such that

$$
\left|b(x) I_{\rho, 1} f(x)-b(z) I_{\rho, 1} f(z)\right| \leq C\left\{d(x, z)^{\theta}+d(x, z)^{\eta_{1}}+|\alpha(x)-\alpha(z)|\right\}
$$

for all $x, z \in X$ and measurable functions f on X with $\|f\|_{L^{\Phi, \nu(\cdot), 1}(X)} \leq 1$.

Acknowledgments

We would like to express our deep thanks to the referee for carefully reading the manuscript and giving kind comments and useful suggestions.

References

[1] P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), no. 2, Paper No. 62, 48 pp .
[2] A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics 17, European Mathematical Society (EMS), Zürich, 2011.
[3] S.-S. Byun and H.-S. Lee, Calderón-Zygmund estimates for elliptic double phase problems with variable exponents, J. Math. Anal. Appl. 501 (2021), no. 1, Paper No. 124015, 31 pp .
[4] S.-S. Byun, S. Liang and S. Zheng, Nonlinear gradient estimates for double phase elliptic problems with irregular double obstacles, Proc. Amer. Math. Soc. 147 (2019), no. 9, 3839-3854.
[5] M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), no. 2, 443-496.
[6] , Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), no. 1, 219-273.
[7] Eridani, H. Gunawan and E. Nakai, On generalized fractional integral operators, Sci. Math. Jpn. 60 (2004), no. 3, 539-550.
[8] C. De Filippis and G. Palatucci, Hölder regularity for nonlocal double phase equations, J. Differential Equations 267 (2019), no. 1, 547-586.
[9] H. Gunawan, A note on the generalized fractional integral operators, J. Indones. Math. Soc. 9 (2003) no. 1, 39-43.
[10] D. Hashimoto, Y. Sawano and T. Shimomura, Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces over quasi-metric measure spaces, Colloq. Math. 161 (2020), no. 1, 51-66.
[11] L. Liu, Y. Sawano and D. Yang, Morrey-type spaces on Gauss measure spaces and boundedness of singular integrals, J. Geom. Anal. 24 (2014), no. 2, 1007-1051.
[12] F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137 (2013), no. 1, 76-96.
[13] , Sobolev's inequality for double phase functionals with variable exponents, Forum Math. 31 (2019), no. 2, 517-527.
[14] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents, Complex Var. Elliptic Equ. 56 (2011), no. 7-9, 671-695.
[15] , Campanato-Morrey spaces for the double phase functionals, Rev. Mat. Complut. 33 (2020), no. 3, 817-834.
[16] , Campanato-Morrey spaces for the double phase functionals with variable exponents, Nonlinear Anal. 197 (2020), 111827, 19 pp.
[17] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's theorem for double phase functionals, Math. Inequal. Appl. 23 (2020), no. 1, 17-33.
[18] Y. Mizuta, T. Shimomura and T. Sobukawa, Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces, Osaka J. Math. 46 (2009), no. 1, 255-271.
[19] C. B. Morrey, Jr, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126-166.
[20] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics 1034, Springer-Verlag, Berlin, 1983.
[21] E. Nakai, On generalized fractional integrals, Taiwanese J. Math. 5 (2001), no. 3, 587-602.
[22] T. Ohno and T. Shimomura, Sobolev inequalities for Riesz potentials of functions in $L^{p(\cdot)}$ over nondoubling measure spaces, Bull. Aust. Math. Soc. 93 (2016), no. 1, 128-136.
[23] \qquad , Continuity of generalized Riesz potentials for double phase functionals, Math. Inequal. Appl. 24 (2021), no. 3, 715-723.
[24] _, Continuity of generalized Riesz potentials for double phase functionals with variable exponents, Glas. Mat. Ser. III 56(76) (2021), no. 2, 329-341.
[25] _, Generalized fractional integral operators on variable exponent Morrey spaces of an integral form, Acta Math. Hungar. 167 (2022), no. 1, 201-214.
[26] M. A. Ragusa and A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020), no. 1, 710-728.
[27] Y. Sawano, M. Shigematsu and T. Shimomura, Generalized Riesz potentials of functions in Morrey spaces $L^{(1, \varphi ; \kappa)}(G)$ over non-doubling measure spaces, Forum Math. 32 (2020), no. 2, 339-359.
[28] Y. Sawano and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents, Collect. Math. 64 (2013), no. 3, 313-350.
[29] ___ Predual spaces of generalized grand Morrey spaces over non-doubling measure spaces, Georgian Math. J. 27 (2020), no. 3, 433-439.
[30] Y. Sawano, T. Shimomura and H. Tanaka, A remark on modified Morrey spaces on metric measure spaces, Hokkaido Math. J. 47 (2018), no. 1, 1-15.
[31] Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1535-1544.
[32] I. Sihwaningrum, H. Gunawan and E. Nakai, Maximal and fractional integral operators on generalized Morrey spaces over metric measure spaces, Math. Nachr. 291 (2018), no. 8-9, 1400-1417.
[33] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675-710.

Takao Ohno

Faculty of Education, Oita University, Dannoharu Oita-city 870-1192, Japan
E-mail address: t-ohno@oita-u.ac.jp

Tetsu Shimomura

Department of Mathematics, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima 739-8524, Japan
E-mail address: tshimo@hiroshima-u.ac.jp

