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Continuity of Generalized Riesz Potentials for Double Phase Functionals

with Variable Exponents over Metric Measure Spaces

Takao Ohno* and Tetsu Shimomura

Abstract. Our aim in this paper is to deal with the continuity of generalized Riesz

potentials Iρ,τf of functions in Morrey spaces LΦ,ν(·),κ(X) of double phase functionals

with variable exponents over bounded non-doubling metric measure spaces. What is

new in this paper is that ρ depends on x ∈ X.

1. Introduction

Let (X, d, µ) be a metric measure space, where X is a bounded set, d is a metric on X

and µ is a nonnegative complete Borel regular outer measure on X which is finite in every

bounded set. We often write X instead of (X, d, µ). For x ∈ X and r > 0, we denote by

B(x, r) the open ball in X centered at x with radius r and dX = sup{d(x, y) : x, y ∈ X}.
We assume that

µ({x}) = 0

for x ∈ X and 0 < µ(B(x, r)) <∞ for x ∈ X and r > 0 for simplicity. We do not assume

that µ has a so-called doubling condition. Recall that a Radon measure µ is said to be

doubling if there exists a constant c0 > 0 such that µ(B(x, 2r)) ≤ c0µ(B(x, r)) for all

x ∈ supp(µ) (= X) and r > 0 (see [2]). For the Gauss measure space, see [11]. Otherwise

µ is said to be non-doubling. For examples of non-doubling metric measure spaces we

refer to [22,28].

We consider the family (ρ) of all functions ρ satisfying the following conditions: ρ(x, r) :

X × (0,∞) → (0,∞) is a measurable function such that there exist constants 0 < k < 1,

0 < k1 < k2 and Cρ > 0 such that

(1.1) sup
kr≤s≤r

ρ(x, s) ≤ Cρ

∫ k2r

k1r
ρ(x, s)

ds

s

for all r > 0 and there exists a constant C > 0 such that

(1.2)

∫ max{1,2k2}dX

0
ρ(x, s)

ds

s
≤ C
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for all x ∈ X. What is new in this paper is that ρ depends on x ∈ X. We do not assume

the doubling condition on ρ.

We can include a variety of examples of ρ satisfying (1.1) and (1.2) as will be seen in

Remark 4.3 and Example 4.4 below.

For τ ≥ 1 and a function ρ ∈ (ρ), we define the generalized Riesz potential Iρ,τf for a

locally integrable function f on X by

Iρ,τf(x) =

∫
X

ρ(x, d(x, y))f(y)

µ(B(x, τd(x, y)))
dµ(y)

(see e.g. [27, 32]). The operator Iρ,τ is also called the generalized fractional integral op-

erator. When X = RN , µ = dx, Iρ,1f(x) is equal to Iρf(x) =
∫
X

ρ(x,|x−y|)f(y)
|x−y|N dy. When

ρ(x, r) = ρ(r), Iρf was first introduced by Nakai [21]. See also [9]. If X = RN , µ = dx

and ρ(x, r) = rα(x) with 0 < infx∈RN α(x) ≤ supx∈RN α(x) < N , then Iρ,1f(x) is equal to

Uα(x)f(x) =
∫
RN |x− y|α(x)−Nf(y) dy.

Double phase problems have been studied intensively in variable exponent analysis

and regularity theory of PDEs by many mathematicians (see e.g. [1, 4–6,8, 13,17,33]).

In the previous paper [23], we considered the case Φ̃(x, t) is a double phase functional

given by

Φ̃(x, t) = tp + (b(x)t)q,

where 1 < p < q and b(·) is non-negative, bounded and Hölder continuous of order θ ∈ (0, 1]

(cf. [5]). In [23] we studied the continuity of Riesz potentials Ĩρ,τf of functions in Morrey

spaces LΦ̃,ν,κ(X) of the double phase functionals Φ̃(x, t) when ρ does not depend on x ∈ X,

where

Ĩρ,τf(x) =

∫
X

ρ(d(x, y))f(y)

µ(B(x, τd(x, y)))
dµ(y).

We refer to [24] for the Euclidean case. See also [15, Theorem 4.1] and [16, Theorem 4.1].

As in [13,24], we consider the case Φ(x, t) as a double phase functional given by

Φ(x, t) = tp(x) + (b(x)t)q(x),

where p(x) < q(x) and b(·) is non-negative, bounded and Hölder continuous of order

θ ∈ (0, 1] (cf. [3, 26]).

In this paper, we shall extend [23,24] from the case ρ does not depend on x ∈ X to the

case ρ depends on x ∈ X. In fact, we show the continuity of generalized Riesz potential

Iρ,τf of functions f in Morrey spaces LΦ,ν(·),κ(X) of the double phase functionals Φ(x, t)

over bounded non-doubling metric measure spaces X (see Theorem 4.1), as an extension

of [23, Theorem 1] and [24, Theorem 2.2]. Our key lemma is Lemma 3.2.

We refer to [25,27,29,32] for the boundedness of Iρ,τf , to [10] for Gagliardo–Nirenberg

inequality for Iρ,τf and to e.g. [7, 9, 21] for the boundedness of Iρf .
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Throughout this paper, let C denote various constants independent of the variables in

question.

2. Preliminaries

Let p(·) be a measurable functions on X such that

(P1) 1 ≤ p− := infx∈X p(x) ≤ supx∈X p(x) =: p+ <∞,

(P2) p(·) is log-Hölder continuous on X, namely

|p(x)− p(y)| ≤ Cp

log(e+ 1/d(x, y))
, x, y ∈ X

with a constant Cp ≥ 0.

Let ν(·) be a measurable functions on X such that

0 < ν− := inf
x∈X

ν(x) ≤ sup
x∈X

ν(x) =: ν+ <∞.

For κ ≥ 1, the Morrey space with variable exponents Lp(·),ν(·),κ(X) is the family of mea-

surable functions f on X satisfying

Lp(·),ν(·),κ(X) =

f ∈ L1
loc(X)

∣∣∣∣ sup
x∈X

0<r<dX

rν(x)

µ(B(x, κr))

∫
B(x,r)

|f(y)|p(y) dµ(y) <∞

 .

It is a Banach space with respect to the norm

∥f∥Lp(·),ν(·),κ(X) = inf

λ > 0

∣∣∣∣ sup
x∈X

0<r<dX

rν(x)

µ(B(x, κr))

∫
B(x,r)

(
|f(y)|
λ

)p(y)

dµ(y) ≤ 1


(cf. see [19]). When p(·) = p and ν(·) = ν, we see that the definition of Lp,ν,κ(X) does

not depend on κ as long as X is the Euclidean space and κ > 1 (see [18, 31]) and that

Lp,ν,κ(X) can depend on κ (see [30]).

We consider a function

Φ(x, t) : X × [0,∞) → [0,∞)

satisfying the following conditions (Φ1) and (Φ2):

(Φ1) Φ( · , t) is measurable on X for each t ≥ 0 and Φ(x, · ) is convex on [0,∞) for each

x ∈ X;
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(Φ2) there exists a constant A1 ≥ 1 such that

A−1
1 ≤ Φ(x, 1) ≤ A1 for all x ∈ X.

For κ ≥ 1, the Musielak–Orlicz–Morrey space LΦ,ν(·),κ(X) is defined by

LΦ,ν(·),κ(X)

=

f ∈ L1
loc(X)

∣∣∣∣ sup
x∈X

0<r<dX

rν(x)

µ(B(x, κr))

∫
B(x,r)

Φ

(
y,

|f(y)|
λ

)
dµ(y) <∞ for some λ > 0

 .

It is a Banach space with respect to the norm

∥f∥LΦ,ν(·),κ(X) = inf

λ > 0

∣∣∣∣ sup
x∈X

0<r<dX

rν(x)

µ(B(x, κr))

∫
B(x,r)

Φ

(
y,

|f(y)|
λ

)
dµ(y) ≤ 1


(see [12,20]).

Let q(·) be a measurable function on X such that

(Q1) 1 ≤ q− := infx∈X q(x) ≤ supx∈X q(x) =: q+ <∞,

(Q2) q(·) is log-Hölder continuous on X, namely

|q(x)− q(y)| ≤ Cq

log(e+ 1/d(x, y))
, x, y ∈ X

with a constant Cq ≥ 0.

In what follows, set

Φ(x, t) = tp(x) + (b(x)t)q(x),

where p(x) < q(x) and b(·) is non-negative, bounded and Hölder continuous of order

θ ∈ (0, 1] (cf. [5]).

3. Lemmas

Let’s begin with the following lemma.

Lemma 3.1. (see [16, Lemma 2.1] or [14, Lemma 2.7]) There exists a constant C > 0

such that
rν(x)/p(x)

µ(B(x, κr))

∫
B(x,r)

|f(y)| dµ(y) ≤ C

for all x ∈ X, 0 < r < dX and measurable functions f on X with ∥f∥Lp(·),ν(·),κ(X) ≤ 1.

We give an estimate inside and outside balls.
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Lemma 3.2. Let β ∈ R, ι > 0 and ρ1 ∈ (ρ). Let f be a nonnegative function on X such

that ∥f∥Lp(·),ν(·),κ(X) ≤ 1. If 1 ≤ κ < τ , then there exists a constant C > 0 such that

(3.1)

∫
B(x,r)

d(x, y)βρ1(x, ιd(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y) ≤ C

∫ k2ιr

0
t−ν(x)/p(x)+βρ1(x, t)

dt

t

and

(3.2)

∫
X\B(x,r)

d(x, y)βρ1(x, ιd(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y) ≤ C

∫ 2k2ιdX

k1ιr
t−ν(x)/p(x)+βρ1(x, t)

dt

t

for all x ∈ X and 0 < r ≤ dX .

Proof. Let f be a nonnegative function on X such that ∥f∥Lp(·),ν(·),κ(X) ≤ 1. Take γ ∈ R

such that 1 < γ ≤ min{1/k, τ/κ, 2}. If y ∈ B(x, γjr) \B(x, γj−1r) for j ∈ Z, then we see

from (1.1) that

d(x, y)βρ1(x, ιd(x, y))

µ(B(x, τd(x, y)))
≤ max{1, γ−β}(γjr)β

µ(B(x, τγj−1r))
sup

γj−1ιr≤s≤γjιr

ρ1(x, s)

≤ max{1, γ−β}(γjr)β

µ(B(x, τγj−1r))
sup

kγjιr≤s≤γjιr

ρ1(x, s)

≤ Cρ1 max{1, γ−β}(γjr)β

µ(B(x, κγjr))

∫ γjk2ιr

γjk1ιr
ρ1(x, s)

ds

s

since γ ≤ min{1/k, τ/κ}. By Lemma 3.1, we obtain∫
B(x,γjr)\B(x,γj−1r)

d(x, y)βρ1(x, ιd(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y)

≤ Cρ1 max{1, γ−β}(γjr)β
∫ γjk2ιr

γjk1ιr
ρ1(x, s)

ds

s
· 1

µ(B(x, κγjr))

∫
B(x,γjr)

f(y) dµ(y)

≤ C1Cρ1 max{1, 2−β}(γjr)−ν(x)/p(x)+β

∫ γjk2ιr

γjk1ιr
ρ1(x, s)

ds

s

≤ C1Cρ1 max{1, 2−β}

×max
{
(ιk1)

ν(x)/p(x)−β, (ιk2)
ν(x)/p(x)−β

}∫ γjk2ιr

γjk1ιr
s−ν(x)/p(x)+βρ1(x, s)

ds

s

≤ C2

∫ γjk2ιr

γjk1ιr
s−ν(x)/p(x)+βρ1(x, s)

ds

s

for j ∈ Z, where

C2 = C1Cρ1 max{1, 2−β}max
{
(ιk1)

ν+/p−−β, (ιk1)
ν−/p+−β, (ιk2)

ν+/p−−β, (ιk2)
ν−/p+−β

}
.
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Therefore we obtain∫
B(x,r)

d(x, y)βρ1(x, ιd(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y)

=
∞∑
j=0

∫
B(x,γ−jr)\B(x,γ−j−1r)

d(x, y)βρ1(x, ιd(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y)

≤ C2

∞∑
j=0

∫ γ−jk2ιr

γ−jk1ιr
s−ν(x)/p(x)+βρ1(x, s)

ds

s
.

Let j0 be the smallest integer such that k2/k1 ≤ γj0 . Then we have∫
B(x,r)

d(x, y)βρ1(x, ιd(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y) ≤ C2

∞∑
j=0

∫ γ−jk2ιr

γ−j−j0k2ιr
s−ν(x)/p(x)+βρ1(x, s)

ds

s

≤ j0C2

∫ k2ιr

0
s−ν(x)/p(x)+βρ1(x, s)

ds

s
,

which proves (3.1).

Let j1 be the smallest integer such that dX ≤ γj1r. Then we obtain∫
X\B(x,r)

d(x, y)βρ1(x, ιd(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y)

=

j1∑
j=1

∫
B(x,γjr)\B(x,γj−1r)

d(x, y)βρ1(x, ιd(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y)

≤ C2

j1∑
j=1

∫ γjk2ιr

γjk1ιr
s−ν(x)/p(x)+βρ1(x, s)

ds

s

≤ C2

j1∑
j=1

∫ γjk2ιr

γj−j0k2ιr
s−ν(x)/p(x)+βρ1(x, s)

ds

s

≤ j0C2

∫ γk2ιdX

k1ιr
s−ν(x)/p(x)+βρ1(x, s)

ds

s

≤ j0C2

∫ 2k2ιdX

k1ιr
s−ν(x)/p(x)+βρ1(x, s)

ds

s
,

which proves (3.2).

Here note that 2k2ιdX in (3.2) can be replaced by ak2ιdX with a > 1.

4. Continuity of generalized Riesz potentials

Before we state our theorem we consider the following conditions:
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(ρµ) there are constants η1 > 0, η2 > 0, ι1 > 0, ι2 ≥ 1, σ1 > 1 and c1 > 0 such that

(4.1)

∣∣∣∣ ρ(x, d(x, y))

µ(B(x, τd(x, y)))
− ρ(x, d(z, y))

µ(B(z, τd(z, y)))

∣∣∣∣ ≤ c1
d(x, z)η1

d(x, y)η2
ρ(x, ι1d(x, y))

µ(B(x, ι2d(x, y)))

whenever d(x, z) ≤ d(x, y)/σ1,

(ρ1) there are functions h(x, z) : X × X → [0,∞) and ρ̃ ∈ (ρ) and constants ι3 > 0,

ι4 > 0, σ2 > 1 and c2 > 0 such that

(4.2) |ρ(x, d(z, y))− ρ(z, d(z, y))| ≤ c2h(x, z)
{
ρ̃(x, ι3d(x, y)) + ρ̃(z, ι4d(z, y))

}
whenever d(x, z) ≤ d(x, y)/σ2.

Let σ = max{σ1, σ2}. For x, z ∈ X and 0 < r ≤ dX , we consider the functions

ψ1(x, z, r) =

∫ k2σr

0
t−ν(x)/p(x)+θρ(x, t)

dt

t
+

∫ k2σr

0
t−ν(x)/q(x)ρ(x, t)

dt

t

+

∫ k2(σ+1)r

0
t−ν(z)/p(z)+θρ(z, t)

dt

t
+

∫ k2(σ+1)r

0
t−ν(z)/q(z)ρ(z, t)

dt

t

+ rθ
∫ 2k2dX

k1(σ−1)r
t−ν(z)/p(z)ρ(z, t)

dt

t

and

ψ2(x, z, r) = rη1
∫ 2k2ι1dX

k1σι1r
t−ν(x)/p(x)+θ−η2ρ(x, t)

dt

t

+ rη1
∫ 2k2ι1dX

k1σι1r
t−ν(x)/q(x)−η2ρ(x, t)

dt

t
.

Further we set

ψ3(x, z, r)

= h(x, z)

∫ 2k2ι3dX

k1σι3r
t−ν(x)/p(x)+θρ̃(x, t)

dt

t
+ h(x, z)

∫ 2k2ι3dX

k1σι3r
t−ν(x)/q(x)ρ̃(x, t)

dt

t

+ h(x, z)

∫ 2k2ι4dX

k1(σ−1)ι4r
t−ν(z)/p(z)+θρ̃(z, t)

dt

t
+ h(x, z)

∫ 2k2ι4dX

k1(σ−1)ι4r
t−ν(z)/q(z)ρ̃(z, t)

dt

t

for x, z ∈ X and 0 < r ≤ dX .

We prove the following theorem, as an extension of [23, Theorem 1] and [24, Theo-

rem 2.2]. See also [15, Theorem 4.1] and [16, Theorem 4.1].

Theorem 4.1. Assume that ρ satisfies (ρµ) and (ρ1). If 1 ≤ κ < min{τ(1−1/σ)−1/σ, ι2},
then there exists a constant C > 0 such that

∣∣b(x)Iρ,τf(x)− b(z)Iρ,τf(z)
∣∣ ≤ C

3∑
k=1

ψk(x, z, d(x, z))
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for all x, z ∈ X with ψ1(x, z, d(x, z)) < ∞ and measurable functions f on X with

∥f∥LΦ,ν(·),κ(X) ≤ 1.

Remark 4.2. Let x, z ∈ X with x ̸= z and ψ1(x, z, d(x, z)) <∞. Then note that∫ k2σd(x,z)

0
t−ν(x)/p(x)+θρ(x, t)

dt

t
+

∫ k2σd(x,z)

0
t−ν(x)/q(x)ρ(x, t)

dt

t

+

∫ k2(σ+1)d(x,z)

0
t−ν(z)/p(z)+θρ(z, t)

dt

t
+

∫ k2(σ+1)d(x,z)

0
t−ν(z)/q(z)ρ(z, t)

dt

t
<∞.

Let f be a nonnegative measurable function f onX with ∥f∥LΦ,ν(·),κ(X) ≤ 1. By Lemma 3.2

and (1.2), we see that∫
X

d(x, y)θρ(x, d(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y)

=

∫
B(x,d(x,z))

d(x, y)θρ(x, d(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y)

+

∫
X\B(x,d(x,z))

d(x, y)θρ(x, d(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y)

≤ C

{∫ k2d(x,z)

0
t−ν(x)/p(x)+θρ(x, t)

dt

t
+

∫ 2k2dX

k1d(x,z)
t−ν(x)/p(x)+θρ(x, t)

dt

t

}

≤ C

{∫ k2σd(x,z)

0
t−ν(x)/p(x)+θρ(x, t)

dt

t
+ d(x, z)−ν(x)/p(x)

∫ 2k2dX

0
ρ(x, t)

dt

t

}
<∞

and that ∫
X

ρ(x, d(x, y))

µ(B(x, τd(x, y)))
{b(y)f(y)} dµ(y)

=

∫
B(x,d(x,z))

ρ(x, d(x, y))

µ(B(x, τd(x, y)))
{b(y)f(y)} dµ(y)

+

∫
X\B(x,d(x,z))

ρ(x, d(x, y))

µ(B(x, τd(x, y)))
{b(y)f(y)} dµ(y)

≤ C

{∫ k2d(x,z)

0
t−ν(x)/q(x)ρ(x, t)

dt

t
+

∫ 2k2dX

k1d(x,z)
t−ν(x)/q(x)ρ(x, t)

dt

t

}

≤ C

{∫ k2σd(x,z)

0
t−ν(x)/q(x)ρ(x, t)

dt

t
+ d(x, z)−ν(x)/q(x)

∫ 2k2dX

0
ρ(x, t)

dt

t

}
<∞.

Hence

b(x)Iρ,τf(x) ≤
∫
X

ρ(x, d(x, y))

µ(B(x, τd(x, y)))
|b(x)− b(y)|f(y) dµ(y)
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+

∫
X

ρ(x, d(x, y))

µ(B(x, τd(x, y)))
b(y)f(y) dµ(y)

≤ C

∫
X

d(x, y)θρ(x, d(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y)

+

∫
X

ρ(x, d(x, y))

µ(B(x, τd(x, y)))
{b(y)f(y)} dµ(y) <∞.

Similarly, we see that b(z)Iρ,τf(z) <∞, so that
∣∣b(x)Iρ,τf(x)−b(z)Iρ,τf(z)∣∣ in Theorem 4.1

is well defined.

Proof of Theorem 4.1. We may assume that f is nonnegative on X. Let f be a nonneg-

ative function on X such that ∥f∥LΦ,ν(·),κ(X) ≤ 1. Let x, z ∈ X and set r = d(x, z). First

we estimate the following three terms:

I1(x) = b(x)

∫
B(x,σr)

ρ(x, d(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y),

I2(z) = b(z)

∫
B(z,(σ+1)r)

ρ(z, d(z, y))

µ(B(z, τd(z, y)))
f(y) dµ(y)

and

I3(z) = rθ
∫
X\B(z,(σ−1)r)

ρ(z, d(z, y))

µ(B(z, τd(z, y)))
f(y) dµ(y).

For I1(x), we have

I1(x) ≤
∫
B(x,σr)

ρ(x, d(x, y))

µ(B(x, τd(x, y)))
|b(x)− b(y)|f(y) dµ(y)

+

∫
B(x,σr)

ρ(x, d(x, y))

µ(B(x, τd(x, y)))
b(y)f(y) dµ(y)

≤ C

∫
B(x,σr)

d(x, y)θρ(x, d(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y)

+

∫
B(x,σr)

ρ(x, d(x, y))

µ(B(x, τd(x, y)))
{b(y)f(y)} dµ(y)

= CI11(x) + I12(x).

We obtain from (3.1),

I11(x) ≤ C

∫ k2σr

0
t−ν(x)/p(x)+θρ(x, t)

dt

t
and I12(x) ≤ C

∫ k2σr

0
t−ν(x)/q(x)ρ(x, t)

dt

t

since 1 ≤ κ < τ . For I3(z), we have by (3.2),

I3(z) ≤ Crθ
∫ 2k2dX

k1(σ−1)r
t−ν(z)/p(z)ρ(z, t)

dt

t
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since 1 ≤ κ < τ . Therefore, we find

(4.3) I1(x) + I2(z) + I3(z) ≤ Cψ1(x, z, r).

Next we estimate the following term:

I4(z) = rη1b(x)

∫
X\B(x,σr)

d(x, y)−η2ρ(x, ι1d(x, y))

µ(B(x, ι2d(x, y)))
f(y) dµ(y).

Then we have

I4(x) ≤ rη1
∫
X\B(x,σr)

d(x, y)−η2ρ(x, ι1d(x, y))

µ(B(x, ι2d(x, y)))
|b(x)− b(y)|f(y) dµ(y)

+ rη1
∫
X\B(x,σr)

d(x, y)−η2ρ(x, ι1d(x, y))

µ(B(x, ι2d(x, y)))
b(y)f(y) dµ(y)

≤ Crη1
∫
X\B(x,σr)

d(x, y)θ−η2ρ(x, ι1d(x, y))

µ(B(x, ι2d(x, y)))
f(y) dµ(y)

+ rη1
∫
X\B(x,σr)

d(x, y)−η2ρ(x, ι1d(x, y))

µ(B(x, ι2d(x, y)))
{b(y)f(y)} dµ(y)

= CI41(x) + I42(x).

Note from (3.2) that

I41(x) ≤ Crη1
∫ 2k2ι1dX

k1σι1r
t−ν(x)/p(x)+θ−η2ρ(x, t)

dt

t

and that

I42(x) ≤ Crη1
∫ 2k2ι1dX

k1σι1r
t−ν(x)/q(x)−η2ρ(x, t)

dt

t

since 1 ≤ κ < ι2. Therefore, we find

(4.4) I4(x) ≤ Cψ2(x, z, r).

Finally we estimate the following two terms:

I5(x, z) = b(x)h(x, z)

∫
X\B(x,σr)

ρ̃(x, ι3d(x, y))

µ(B(z, τd(z, y)))
f(y) dµ(y)

and

I6(x, z) = b(x)h(x, z)

∫
X\B(z,(σ−1)r)

ρ̃(z, ι4d(z, y))

µ(B(z, τd(z, y)))
f(y) dµ(y).

For I5(x, z), set τ
′ = τ(1− 1/σ)− 1/σ. Note that

(4.5)

(
1− 1

σ

)
d(x, y) ≤ d(z, y) ≤

(
1 +

1

σ

)
d(x, y)
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and that

B(x, τ ′d(x, y)) ⊂ B(z, τd(z, y))

for y ∈ X \B(x, σr). Hence, we have

I5(x, z) ≤ b(x)h(x, z)

∫
X\B(x,σr)

ρ̃(x, ι3d(x, y))

µ(B(x, τ ′d(x, y)))
f(y) dµ(y)

≤ h(x, z)

∫
X\B(x,σr)

ρ̃(x, ι3d(x, y))

µ(B(x, τ ′d(x, y)))
|b(x)− b(y)|f(y) dµ(y)

+ h(x, z)

∫
X\B(x,σr)

ρ̃(x, ι3d(x, y))

µ(B(x, τ ′d(x, y)))
b(y)f(y) dµ(y)

≤ Ch(x, z)

∫
X\B(x,σr)

d(x, y)θρ̃(x, ι3d(x, y))

µ(B(x, τ ′d(x, y)))
f(y) dµ(y)

+ h(x, z)

∫
X\B(x,σr)

ρ̃(x, ι3d(x, y))

µ(B(x, τ ′d(x, y)))
{b(y)f(y)} dµ(y)

= CI51(x, z) + I52(x, z).

Note from (3.2) that

I51(x, z) ≤ Ch(x, z)

∫ 2k2ι3dX

k1σι3r
t−ν(x)/p(x)+θρ̃(x, t)

dt

t

and that

I52(x, z) ≤ Ch(x, z)

∫ 2k2ι3dX

k1σι3r
t−ν(x)/q(x)ρ̃(x, t)

dt

t

since 1 ≤ κ < τ ′. By (4.5) we have

I6(x, z) ≤ h(x, z)

∫
X\B(z,(σ−1)r)

ρ̃(z, ι4d(z, y))

µ(B(z, τd(z, y)))
|b(x)− b(y)|f(y) dµ(y)

+ h(x, z)

∫
X\B(z,(σ−1)r)

ρ̃(z, ι4d(z, y))

µ(B(z, τd(z, y)))
b(y)f(y) dµ(y)

≤ Ch(x, z)

∫
X\B(z,(σ−1)r)

d(x, y)θρ̃(z, ι4d(z, y))

µ(B(z, τd(z, y)))
f(y) dµ(y)

+ h(x, z)

∫
X\B(z,(σ−1)r)

ρ̃(z, ι4d(z, y))

µ(B(z, τd(z, y)))
b(y)f(y) dµ(y)

≤ Ch(x, z)

∫
X\B(z,(σ−1)r)

d(z, y)θρ̃(z, ι4d(z, y))

µ(B(z, τd(z, y)))
f(y) dµ(y)

+ h(x, z)

∫
X\B(z,(σ−1)r)

ρ̃(z, ι4d(z, y))

µ(B(z, τd(z, y)))
{b(y)f(y)} dµ(y)

= CI61(x, z) + I62(x, z).
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Note from (3.2) that

I61(x, z) ≤ Ch(x, z)

∫ 2k2ι4dX

k1(σ−1)ι4r
t−ν(z)/p(z)+θρ̃(z, t)

dt

t

and that

I62(x, z) ≤ Ch(x, z)

∫ 2k2ι4dX

k1(σ−1)ι4r
t−ν(z)/q(z)ρ̃(z, t)

dt

t

since 1 ≤ κ < τ . Therefore, we find

(4.6) I5(x, z) + I6(x, z) ≤ Cψ3(x, z, r).

Note from (4.1) and (4.2),∣∣∣∣ ρ(x, d(x, y))

µ(B(x, τd(x, y)))
− ρ(z, d(z, y))

µ(B(z, τd(z, y)))

∣∣∣∣
≤

∣∣∣∣ ρ(x, d(x, y))

µ(B(x, τd(x, y)))
− ρ(x, d(z, y))

µ(B(z, τd(z, y)))

∣∣∣∣+ ∣∣∣∣ ρ(x, d(z, y))

µ(B(z, τd(z, y)))
− ρ(z, d(z, y))

µ(B(z, τd(z, y)))

∣∣∣∣
≤ C

{
rη1

d(x, y)−η2ρ(x, ι1d(x, y))

µ(B(x, ι2d(x, y)))
+ h(x, z)

ρ̃(x, ι3d(x, y)) + ρ̃(z, ι4d(z, y))

µ(B(z, τd(z, y)))

}
for y ∈ X \B(x, σr), so that∣∣b(x)Iρ,τf(x)− b(z)Iρ,τf(z)

∣∣
≤ b(x)

∫
B(x,σr)

ρ(x, d(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y) + b(z)

∫
B(x,σr)

ρ(z, d(z, y))

µ(B(z, τd(z, y)))
f(y) dµ(y)

+ |b(x)− b(z)|
∫
X\B(x,σr)

ρ(z, d(z, y))

µ(B(z, τd(z, y)))
f(y) dµ(y)

+ b(x)

∫
X\B(x,σr)

∣∣∣∣ ρ(x, d(x, y))

µ(B(x, τd(x, y)))
− ρ(z, d(z, y))

µ(B(z, τd(z, y)))

∣∣∣∣ f(y) dµ(y)
≤ C

{
I1(x) + I2(z) + I3(z) + I4(x) + I5(x, z) + I6(x, z)

}
.

Hence we obtain by (4.3), (4.4) and (4.6),

∣∣b(x)Iρ,τf(x)− b(z)Iρ,τf(z)
∣∣ ≤ C

3∑
k=1

ψk(x, z, r).

Thus we complete the proof.

Remark 4.3. (1) If ρ satisfies the doubling condition, that is, there exists a constant

C > 0 such that

C−1 ≤ ρ(x, r)

ρ(x, s)
≤ C

for x ∈ X and 1/2 ≤ r/s ≤ 2, then ρ satisfies (1.1) whenever k = 1/2 and 2k1 = k2.
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(2) If ρ is increasing in the second variable, then ρ satisfies (1.1) with k = 1/2, k1 = 1

and k2 = 2.

(3) If ρ is decreasing in the second variable, then ρ satisfies (1.1) with k = 1/2, k1 = 1/4

and k2 = 1/2.

Example 4.4. (i) Let α(·) be a measurable function on X such that

0 < α− := inf
x∈X

α(x) ≤ sup
x∈X

α(x) =: α+ <∞

and ρ(x, r) = rα(x). Then ρ satisfies (1.1) and (1.2) with k = 1/2, k1 = 1 and k2 = 2

by Remark 4.3(1) or (2).

(ii) Let x0 ∈ X and ρ(x, r) = (1 + d(x0, x)/r)r
α for some α > 0. Then ρ satisfies (1.1)

with k = 1/2, k1 = 1 and k2 = 2 by Remark 4.3(1). Further, if α > 1, then∫ 1

0
ρ(x, s)

ds

s
≤ (1 + d(x0, x))

∫ 1

0
sα−1 ds

s
≤ 1 + dX

α− 1
,

so that ρ satisfies (1.2).

(iii) Let α > 0 and let A(·) be a positive measurable function on X. Set

ρ(x, r) =

A(x)rα for 0 < r < 1,

A(x)e−(r−1) for r ≥ 1.

Then ρ satisfies (1.1) and (1.2) with k = 1/2, k1 = 1/4 and k2 = 1/2 by Re-

mark 4.3(1) and (3). See [10].

(iv) Let ρ(x, r) = µ(B(x, τr))η for some 0 < η < 1 and τ ≥ 1. Then ρ satisfies (1.1)

with k = 1/2, k1 = 1 and k2 = 2 by Remark 4.3(2). Further, if µ satisfies the upper

Ahlfors condition µ(B(x, r)) ≤ CrQ (x ∈ X, r > 0) for some Q > 0, then ρ satisfies

(1.2). See [27,32].

(v) Let α(·) be as in (i) and let ρ(x, r) = rα(x)e−a/r(log(e+1/r))β for a ≥ 0 and β ∈ R.

Then ρ satisfies (1.1) and (1.2) with k = 1/2, k1 = 1 and k2 = 2. In fact, there

exists a constant C1 > 0 such that

r
−α−/2
1 ρ(x, r1) ≤ C1r

−α−/2
2 ρ(x, r2)

whenever 0 < r1 < r2, so that

sup
r/2≤s≤r

ρ(x, s) ≤ C1ρ(x, r) ≤
C2
1

log 2

∫ 2r

r
ρ(x, s)

ds

s

for all r > 0 and∫ 1

0
ρ(x, s)

ds

s
≤ C1ρ(x, 1)

∫ 1

0
sα

−/2 ds

s
≤ 2C1

α− e−a(log(e+ 1))β

for all x ∈ X.
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5. Corollaries

In this section, we give consequences of Theorem 4.1.

Let α(·) be a measurable function on X such that 0 < α− ≤ α+ <∞.

Remark 5.1. Let ρ(x, r) = rα(x)e−a/r(log(e + 1/r))β for a ≥ 0 and β ∈ R. Then (ρ1)

holds for ι3 = 3/2, ι4 = 1, σ2 = 2, h(x, z) = |α(x)−α(z)| and ρ̃(x, r) = rα(x)e−a/r(log(e+

1/r))β+1.

In fact, we have by the mean value property

|ρ(x, d(z, y))− ρ(z, d(z, y))|

= e−a/d(z,y)(log(e+ 1/d(z, y)))β
∣∣d(z, y)α(x) − d(z, y)α(z)

∣∣
≤ e−a/d(z,y)(log(e+ 1/d(z, y)))β|α(x)− α(z)|

(
d(z, y)α(x) + d(z, y)α(z)

)
| log d(z, y)|

≤ Ch(x, z)
{
ρ̃(x, d(z, y)) + ρ̃(z, d(z, y))

}
≤ Ch(x, z)

{
ρ̃(x, 3d(x, y)/2) + ρ̃(z, d(z, y))

}
whenever d(x, z) ≤ d(x, y)/2 since d(x, y)/2 ≤ d(z, y) ≤ 3d(x, y)/2 for all x, z ∈ X with

d(x, z) ≤ d(x, y)/2.

Remark 5.2. Let G be an open bounded set in RN . Let ρ(x, r) = rα(x)e−a/r(log(e+1/r))β

for a ≥ 0 and β ∈ R.

(1) If a = 0, then (ρµ) holds for η1 = η2 = ι1 = ι2 = 1 and σ1 = 2.

(2) If a > 0, then (ρµ) holds for η1 = 1, η2 = 2, ι1 = 3/2, ι2 = 1 and σ1 = 2. We refer

to [24, Remark 2.3].

We set

ψ4(x, z) = d(x, z)α(x)
(
d(x, z)−ν(x)/p(x)+θ + d(x, z)−ν(x)/q(x)

)
and

ψ5(x, z) = d(x, z)α(z)
(
d(x, z)−ν(z)/p(z)+θ + d(x, z)−ν(z)/q(z)

)
for x, z ∈ X.

As in the proof of [24, Corollary 3.1], we obtain the following corollary by Theorem 4.1.

Corollary 5.3. Let ρ(x, r) = rα(x)(log(e + 1/r))β for β ∈ R. Let X be a non-doubling

metric measure space. Assume that (ρµ) holds. Suppose

inf
x∈X

(ν(x)− α(x)p(x)) > 0, inf
x∈X

(ν(x)− (α(x) + θ − η2)p(x)) > 0

and

inf
x∈X

((α(x) + θ)p(x)− ν(x)) > 0.
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Further suppose

inf
x∈X

(ν(x)− (α(x)− η2)q(x)) > 0 and inf
x∈X

(α(x)q(x)− ν(x)) > 0.

If 1 ≤ κ < min{τ(1− 1/σ)− 1/σ, ι2}, then there exists a constant C > 0 such that∣∣b(x)Iρ,τf(x)− b(z)Iρ,τf(z)
∣∣

≤ C
[(
ψ4(x, z) + ψ5(x, z) + min

{
d(x, z)η1−η2ψ4(x, z), d(x, z)

η1−η2ψ5(x, z)
})

× (log(e+ 1/d(x, z)))β + |α(x)− α(z)|
]

for all x, z ∈ X and measurable functions f on X with ∥f∥LΦ,ν(·),κ(X) ≤ 1.

Remark 5.4. The assumptions like infx∈X(ν(x) − α(x)p(x)) > 0 in Corollary 5.3 were

considered in [24, Corollary 3.1].

When ρ(x, r) = rα(x), we write Iρ,τf = Iα(·),τf , which is called the Riesz potential of

variable order α(·). If we take β = 0 in Corollary 5.3, we obtain the next corollary.

Corollary 5.5. Let ρ(x, r) = rα(x). Let X be a non-doubling metric measure space.

Assume that (ρµ) holds. Suppose

inf
x∈X

(ν(x)− α(x)p(x)) > 0, inf
x∈X

(ν(x)− (α(x) + θ − η2)p(x)) > 0

and

inf
x∈X

((α(x) + θ)p(x)− ν(x)) > 0.

Further suppose

inf
x∈X

(ν(x)− (α(x)− η2)q(x)) > 0 and inf
x∈X

(α(x)q(x)− ν(x)) > 0.

Assume that α(·) and ν(·) are log-Hölder continuous on X. If 1 ≤ κ < min{τ(1− 1/σ)−
1/σ, ι2}, then there exists a constant C > 0 such that∣∣b(x)Iα(·),τf(x)− b(z)Iα(·),τf(z)

∣∣ ≤ C
{
ψ4(x, z) + d(x, z)η1−η2ψ4(x, z) + |α(x)− α(z)|

}
for all x, z ∈ X and measurable functions f on X with ∥f∥LΦ,ν(·),κ(X) ≤ 1.

When ρ(x, r) = rα(x)e−a/r(log(e+1/r))β, we obtain the next corollary by Theorem 4.1.

Corollary 5.6. Let ρ(x, r) = rα(x)e−a/r(log(e+ 1/r))β for a > 0 and β ∈ R. Let X be a

non-doubling metric measure space. Assume that (ρµ) holds. If 1 ≤ κ < min{τ(1−1/σ)−
1/σ, ι2}, then there exists a constant C > 0 such that∣∣b(x)Iρ,τf(x)− b(z)Iρ,τf(z)

∣∣ ≤ C
{
d(x, z)θ + d(x, z)η1 + |α(x)− α(z)|

}
for all x, z ∈ X and measurable functions f on X with ∥f∥LΦ,ν(·),κ(X) ≤ 1.
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To get this, we note, for b ∈ R, there exists a constant c > 0 such that∫ r

0
tbe−a/t(log(e+ 1/t))β

dt

t
≤ crθ

for all 0 < r ≤ dX .

For the case Lp(·),ν(·),κ(X), we obtain the following corollaries. The following corollary

is a consequence of Theorem 4.1 with b(·) ≡ 1 and ρ(x, r) = rα(x)(log(e+ 1/r))β.

Corollary 5.7. Let ρ(x, r) = rα(x)(log(e + 1/r))β for β ∈ R. Let X be a non-doubling

metric measure space. Assume that (ρµ) holds. Suppose

inf
x∈X

(ν(x)− (α(x)− η2)p(x)) > 0 and inf
x∈X

(α(x)p(x)− ν(x)) > 0.

If 1 ≤ κ < min{τ(1− 1/σ)− 1/σ, ι2}, then there exists a constant C > 0 such that∣∣Iρ,τf(x)− Iρ,τf(z)
∣∣

≤ C
[(
d(x, z)α(x)−ν(x)/p(x) + d(x, z)α(z)−ν(z)/p(z)

+min
{
d(x, z)α(x)−ν(x)/p(x)+η1−η2 , d(x, z)α(z)−ν(z)/p(z)+η1−η2

})
(log(e+ 1/d(x, z)))β

+ |α(x)− α(z)|
]

for all x, z ∈ X and measurable functions f on X with ∥f∥Lp(·),ν(·),κ(X) ≤ 1.

The next corollary is a consequence of Theorem 4.1 with b(·) ≡ 1 and ρ(x, r) =

rα(x)e−a/r(log(e+ 1/r))β.

Corollary 5.8. Let ρ(x, r) = rα(x)e−a/r(log(e+ 1/r))β for a > 0 and β ∈ R. Let X be a

non-doubling metric measure space. Assume that (ρµ) holds. If 1 ≤ κ < min{τ(1−1/σ)−
1/σ, ι2}, then there exists a constant C > 0 such that∣∣Iρ,τf(x)− Iρ,τf(z)

∣∣ ≤ C
{
d(x, z)η1 + |α(x)− α(z)|

}
for all x, z ∈ X and measurable functions f on X with ∥f∥Lp(·),ν(·),κ(X) ≤ 1.

The following corollary is the doubling metric measure case of Corollary 5.3.

Corollary 5.9. Let ρ(x, r) = rα(x)(log(e+ 1/r))β for β ∈ R. Let X be a doubling metric

measure space. Assume that (ρµ) holds. Suppose

inf
x∈X

(ν(x)− α(x)p(x)) > 0, inf
x∈X

(ν(x)− (α(x) + θ − η2)p(x)) > 0

and

inf
x∈X

((α(x) + θ)p(x)− ν(x)) > 0.
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Further suppose

inf
x∈X

(ν(x)− (α(x)− η2)q(x)) > 0 and inf
x∈X

(α(x)q(x)− ν(x)) > 0.

Then there exists a constant C > 0 such that∣∣b(x)Iρ,1f(x)− b(z)Iρ,1f(z)
∣∣

≤ C
[(
ψ4(x, z) + ψ5(x, z) + min

{
d(x, z)η1−η2ψ4(x, z), d(x, z)

η1−η2ψ5(x, z)
})

× (log(e+ 1/d(x, z)))β + |α(x)− α(z)|
]

for all x, z ∈ X and measurable functions f on X with ∥f∥LΦ,ν(·),1(X) ≤ 1.

The following corollary is the doubling metric measure case of Corollary 5.6.

Corollary 5.10. Let ρ(x, r) = rα(x)e−a/r(log(e+ 1/r))β for a > 0 and β ∈ R. Let X be

a doubling metric measure space. Assume that (ρµ) holds. Then there exists a constant

C > 0 such that∣∣b(x)Iρ,1f(x)− b(z)Iρ,1f(z)
∣∣ ≤ C

{
d(x, z)θ + d(x, z)η1 + |α(x)− α(z)|

}
for all x, z ∈ X and measurable functions f on X with ∥f∥LΦ,ν(·),1(X) ≤ 1.
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[3] S.-S. Byun and H.-S. Lee, Calderón–Zygmund estimates for elliptic double phase

problems with variable exponents, J. Math. Anal. Appl. 501 (2021), no. 1, Paper

No. 124015, 31 pp.

[4] S.-S. Byun, S. Liang and S. Zheng, Nonlinear gradient estimates for double phase

elliptic problems with irregular double obstacles, Proc. Amer. Math. Soc. 147 (2019),

no. 9, 3839–3854.



830 Takao Ohno and Tetsu Shimomura

[5] M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch.

Ration. Mech. Anal. 215 (2015), no. 2, 443–496.

[6] , Bounded minimisers of double phase variational integrals, Arch. Ration.

Mech. Anal. 218 (2015), no. 1, 219–273.

[7] Eridani, H. Gunawan and E. Nakai, On generalized fractional integral operators, Sci.

Math. Jpn. 60 (2004), no. 3, 539–550.
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