Continuity of Generalized Riesz Potentials for Double Phase Functionals with Variable Exponents over Metric Measure Spaces

Takao Ohno* and Tetsu Shimomura

Abstract. Our aim in this paper is to deal with the continuity of generalized Riesz potentials $I_{\rho,\tau}f$ of functions in Morrey spaces $L^{\Phi,\nu(\cdot),\kappa}(X)$ of double phase functionals with variable exponents over bounded non-doubling metric measure spaces. What is new in this paper is that ρ depends on $x \in X$.

1. Introduction

Let (X, d, μ) be a metric measure space, where X is a bounded set, d is a metric on X and μ is a nonnegative complete Borel regular outer measure on X which is finite in every bounded set. We often write X instead of (X, d, μ) . For $x \in X$ and r > 0, we denote by B(x, r) the open ball in X centered at x with radius r and $d_X = \sup\{d(x, y) : x, y \in X\}$. We assume that

$$\mu(\{x\}) = 0$$

for $x \in X$ and $0 < \mu(B(x,r)) < \infty$ for $x \in X$ and r > 0 for simplicity. We do not assume that μ has a so-called doubling condition. Recall that a Radon measure μ is said to be doubling if there exists a constant $c_0 > 0$ such that $\mu(B(x,2r)) \leq c_0 \mu(B(x,r))$ for all $x \in \operatorname{supp}(\mu)$ (= X) and r > 0 (see [2]). For the Gauss measure space, see [11]. Otherwise μ is said to be non-doubling. For examples of non-doubling metric measure spaces we refer to [22,28].

We consider the family (ρ) of all functions ρ satisfying the following conditions: $\rho(x, r)$: $X \times (0, \infty) \to (0, \infty)$ is a measurable function such that there exist constants 0 < k < 1, $0 < k_1 < k_2$ and $C_{\rho} > 0$ such that

(1.1)
$$\sup_{kr \le s \le r} \rho(x,s) \le C_{\rho} \int_{k_1 r}^{k_2 r} \rho(x,s) \, \frac{ds}{s}$$

for all r > 0 and there exists a constant C > 0 such that

(1.2)
$$\int_{0}^{\max\{1,2k_2\}d_X} \rho(x,s) \, \frac{ds}{s} \le C$$

Received October 31, 2022; Accepted February 22, 2023.

Communicated by Sanghyuk Lee.

Key words and phrases. Riesz potentials, Morrey spaces, double phase functionals, variable exponents, continuity, non-doubling measure.

*Corresponding author.

²⁰²⁰ Mathematics Subject Classification. 31B15, 46E35.

for all $x \in X$. What is new in this paper is that ρ depends on $x \in X$. We do not assume the doubling condition on ρ .

We can include a variety of examples of ρ satisfying (1.1) and (1.2) as will be seen in Remark 4.3 and Example 4.4 below.

For $\tau \geq 1$ and a function $\rho \in (\rho)$, we define the generalized Riesz potential $I_{\rho,\tau}f$ for a locally integrable function f on X by

$$I_{\rho,\tau}f(x) = \int_X \frac{\rho(x, d(x, y))f(y)}{\mu(B(x, \tau d(x, y)))} \, d\mu(y)$$

(see e.g. [27,32]). The operator $I_{\rho,\tau}$ is also called the generalized fractional integral operator. When $X = \mathbf{R}^N$, $\mu = dx$, $I_{\rho,1}f(x)$ is equal to $I_{\rho}f(x) = \int_X \frac{\rho(x,|x-y|)f(y)}{|x-y|^N} dy$. When $\rho(x,r) = \rho(r)$, $I_{\rho}f$ was first introduced by Nakai [21]. See also [9]. If $X = \mathbf{R}^N$, $\mu = dx$ and $\rho(x,r) = r^{\alpha(x)}$ with $0 < \inf_{x \in \mathbf{R}^N} \alpha(x) \le \sup_{x \in \mathbf{R}^N} \alpha(x) < N$, then $I_{\rho,1}f(x)$ is equal to $U_{\alpha(x)}f(x) = \int_{\mathbf{R}^N} |x-y|^{\alpha(x)-N}f(y) dy$.

Double phase problems have been studied intensively in variable exponent analysis and regularity theory of PDEs by many mathematicians (see e.g. [1,4–6,8,13,17,33]).

In the previous paper [23], we considered the case $\widetilde{\Phi}(x,t)$ is a double phase functional given by

$$\widetilde{\Phi}(x,t) = t^p + (b(x)t)^q,$$

where $1 and <math>b(\cdot)$ is non-negative, bounded and Hölder continuous of order $\theta \in (0, 1]$ (cf. [5]). In [23] we studied the continuity of Riesz potentials $\tilde{I}_{\rho,\tau}f$ of functions in Morrey spaces $L^{\tilde{\Phi},\nu,\kappa}(X)$ of the double phase functionals $\tilde{\Phi}(x,t)$ when ρ does not depend on $x \in X$, where

$$\widetilde{I}_{\rho,\tau}f(x) = \int_X \frac{\rho(d(x,y))f(y)}{\mu(B(x,\tau d(x,y)))} \, d\mu(y).$$

We refer to [24] for the Euclidean case. See also [15, Theorem 4.1] and [16, Theorem 4.1].

As in [13,24], we consider the case $\Phi(x,t)$ as a double phase functional given by

$$\Phi(x,t) = t^{p(x)} + (b(x)t)^{q(x)},$$

where p(x) < q(x) and $b(\cdot)$ is non-negative, bounded and Hölder continuous of order $\theta \in (0, 1]$ (cf. [3, 26]).

In this paper, we shall extend [23,24] from the case ρ does not depend on $x \in X$ to the case ρ depends on $x \in X$. In fact, we show the continuity of generalized Riesz potential $I_{\rho,\tau}f$ of functions f in Morrey spaces $L^{\Phi,\nu(\cdot),\kappa}(X)$ of the double phase functionals $\Phi(x,t)$ over bounded non-doubling metric measure spaces X (see Theorem 4.1), as an extension of [23, Theorem 1] and [24, Theorem 2.2]. Our key lemma is Lemma 3.2.

We refer to [25,27,29,32] for the boundedness of $I_{\rho,\tau}f$, to [10] for Gagliardo–Nirenberg inequality for $I_{\rho,\tau}f$ and to e.g. [7,9,21] for the boundedness of $I_{\rho}f$.

Throughout this paper, let C denote various constants independent of the variables in question.

2. Preliminaries

Let $p(\cdot)$ be a measurable functions on X such that

- (P1) $1 \le p^- := \inf_{x \in X} p(x) \le \sup_{x \in X} p(x) =: p^+ < \infty,$
- (P2) $p(\cdot)$ is log-Hölder continuous on X, namely

$$|p(x) - p(y)| \le \frac{C_p}{\log(e + 1/d(x, y))}, \quad x, y \in X$$

with a constant $C_p \ge 0$.

Let $\nu(\cdot)$ be a measurable functions on X such that

$$0 < \nu^{-} := \inf_{x \in X} \nu(x) \le \sup_{x \in X} \nu(x) =: \nu^{+} < \infty.$$

For $\kappa \geq 1$, the Morrey space with variable exponents $L^{p(\cdot),\nu(\cdot),\kappa}(X)$ is the family of measurable functions f on X satisfying

$$L^{p(\cdot),\nu(\cdot),\kappa}(X) = \left\{ f \in L^1_{\text{loc}}(X) \mid \sup_{\substack{x \in X \\ 0 < r < d_X}} \frac{r^{\nu(x)}}{\mu(B(x,\kappa r))} \int_{B(x,r)} |f(y)|^{p(y)} d\mu(y) < \infty \right\}.$$

It is a Banach space with respect to the norm

$$\|f\|_{L^{p(\cdot),\nu(\cdot),\kappa}(X)} = \inf\left\{\lambda > 0 \mid \sup_{\substack{x \in X \\ 0 < r < d_X}} \frac{r^{\nu(x)}}{\mu(B(x,\kappa r))} \int_{B(x,r)} \left(\frac{|f(y)|}{\lambda}\right)^{p(y)} d\mu(y) \le 1\right\}$$

(cf. see [19]). When $p(\cdot) = p$ and $\nu(\cdot) = \nu$, we see that the definition of $L^{p,\nu,\kappa}(X)$ does not depend on κ as long as X is the Euclidean space and $\kappa > 1$ (see [18, 31]) and that $L^{p,\nu,\kappa}(X)$ can depend on κ (see [30]).

We consider a function

$$\Phi(x,t)\colon X\times[0,\infty)\to[0,\infty)$$

satisfying the following conditions $(\Phi 1)$ and $(\Phi 2)$:

(Φ 1) $\Phi(\cdot, t)$ is measurable on X for each $t \ge 0$ and $\Phi(x, \cdot)$ is convex on $[0, \infty)$ for each $x \in X$;

 $(\Phi 2)$ there exists a constant $A_1 \ge 1$ such that

$$A_1^{-1} \le \Phi(x, 1) \le A_1$$
 for all $x \in X$.

For $\kappa \geq 1$, the Musielak–Orlicz–Morrey space $L^{\Phi,\nu(\cdot),\kappa}(X)$ is defined by

$$L^{\Phi,\nu(\cdot),\kappa}(X) = \left\{ f \in L^1_{\text{loc}}(X) \mid \sup_{\substack{x \in X \\ 0 < r < d_X}} \frac{r^{\nu(x)}}{\mu(B(x,\kappa r))} \int_{B(x,r)} \Phi\left(y, \frac{|f(y)|}{\lambda}\right) \, d\mu(y) < \infty \text{ for some } \lambda > 0 \right\}.$$

It is a Banach space with respect to the norm

$$\|f\|_{L^{\Phi,\nu(\cdot),\kappa}(X)} = \inf\left\{\lambda > 0 \mid \sup_{\substack{x \in X \\ 0 < r < d_X}} \frac{r^{\nu(x)}}{\mu(B(x,\kappa r))} \int_{B(x,r)} \Phi\left(y, \frac{|f(y)|}{\lambda}\right) d\mu(y) \le 1\right\}$$

(see [12, 20]).

Let $q(\cdot)$ be a measurable function on X such that

(Q1)
$$1 \le q^- := \inf_{x \in X} q(x) \le \sup_{x \in X} q(x) =: q^+ < \infty,$$

(Q2) $q(\cdot)$ is log-Hölder continuous on X, namely

$$|q(x) - q(y)| \le \frac{C_q}{\log(e + 1/d(x, y))}, \quad x, y \in X$$

with a constant $C_q \ge 0$.

In what follows, set

$$\Phi(x,t) = t^{p(x)} + (b(x)t)^{q(x)},$$

where p(x) < q(x) and $b(\cdot)$ is non-negative, bounded and Hölder continuous of order $\theta \in (0, 1]$ (cf. [5]).

3. Lemmas

Let's begin with the following lemma.

Lemma 3.1. (see [16, Lemma 2.1] or [14, Lemma 2.7]) There exists a constant C > 0 such that

$$\frac{r^{\nu(x)/p(x)}}{\mu(B(x,\kappa r))}\int_{B(x,r)}|f(y)|\,d\mu(y)\leq C$$

for all $x \in X$, $0 < r < d_X$ and measurable functions f on X with $\|f\|_{L^{p(\cdot),\nu(\cdot),\kappa}(X)} \leq 1$.

We give an estimate inside and outside balls.

Lemma 3.2. Let $\beta \in \mathbf{R}$, $\iota > 0$ and $\rho_1 \in (\rho)$. Let f be a nonnegative function on X such that $\|f\|_{L^{p(\cdot),\nu(\cdot),\kappa}(X)} \leq 1$. If $1 \leq \kappa < \tau$, then there exists a constant C > 0 such that

(3.1)
$$\int_{B(x,r)} \frac{d(x,y)^{\beta} \rho_1(x,\iota d(x,y))}{\mu(B(x,\tau d(x,y)))} f(y) \, d\mu(y) \le C \int_0^{k_2 \iota r} t^{-\nu(x)/p(x)+\beta} \rho_1(x,t) \, \frac{dt}{t}$$

and

(3.2)
$$\int_{X \setminus B(x,r)} \frac{d(x,y)^{\beta} \rho_1(x,\iota d(x,y))}{\mu(B(x,\tau d(x,y)))} f(y) \, d\mu(y) \le C \int_{k_1 \iota r}^{2k_2 \iota d_X} t^{-\nu(x)/p(x)+\beta} \rho_1(x,t) \, \frac{dt}{t}$$

for all $x \in X$ and $0 < r \le d_X$.

Proof. Let f be a nonnegative function on X such that $||f||_{L^{p(\cdot),\nu(\cdot),\kappa}(X)} \leq 1$. Take $\gamma \in \mathbf{R}$ such that $1 < \gamma \leq \min\{1/k, \tau/\kappa, 2\}$. If $y \in B(x, \gamma^j r) \setminus B(x, \gamma^{j-1}r)$ for $j \in \mathbf{Z}$, then we see from (1.1) that

$$\frac{d(x,y)^{\beta}\rho_{1}(x,\iota d(x,y))}{\mu(B(x,\tau d(x,y)))} \leq \frac{\max\{1,\gamma^{-\beta}\}(\gamma^{j}r)^{\beta}}{\mu(B(x,\tau\gamma^{j-1}r))} \sup_{\gamma^{j-1}\iota r \leq s \leq \gamma^{j}\iota r} \rho_{1}(x,s)$$
$$\leq \frac{\max\{1,\gamma^{-\beta}\}(\gamma^{j}r)^{\beta}}{\mu(B(x,\tau\gamma^{j-1}r))} \sup_{k\gamma^{j}\iota r \leq s \leq \gamma^{j}\iota r} \rho_{1}(x,s)$$
$$\leq \frac{C_{\rho_{1}}\max\{1,\gamma^{-\beta}\}(\gamma^{j}r)^{\beta}}{\mu(B(x,\kappa\gamma^{j}r))} \int_{\gamma^{j}k_{1}\iota r}^{\gamma^{j}k_{2}\iota r} \rho_{1}(x,s) \frac{ds}{s}$$

since $\gamma \leq \min\{1/k, \tau/\kappa\}$. By Lemma 3.1, we obtain

$$\begin{split} &\int_{B(x,\gamma^{j}r)\setminus B(x,\gamma^{j-1}r)} \frac{d(x,y)^{\beta}\rho_{1}(x,\iota d(x,y))}{\mu(B(x,\tau d(x,y)))} f(y) \, d\mu(y) \\ &\leq C_{\rho_{1}} \max\{1,\gamma^{-\beta}\}(\gamma^{j}r)^{\beta} \int_{\gamma^{j}k_{1}\iota r}^{\gamma^{j}k_{2}\iota r} \rho_{1}(x,s) \, \frac{ds}{s} \cdot \frac{1}{\mu(B(x,\kappa\gamma^{j}r))} \int_{B(x,\gamma^{j}r)} f(y) \, d\mu(y) \\ &\leq C_{1}C_{\rho_{1}} \max\{1,2^{-\beta}\}(\gamma^{j}r)^{-\nu(x)/p(x)+\beta} \int_{\gamma^{j}k_{1}\iota r}^{\gamma^{j}k_{2}\iota r} \rho_{1}(x,s) \, \frac{ds}{s} \\ &\leq C_{1}C_{\rho_{1}} \max\{1,2^{-\beta}\} \\ &\quad \times \max\{(\iota k_{1})^{\nu(x)/p(x)-\beta},(\iota k_{2})^{\nu(x)/p(x)-\beta}\} \int_{\gamma^{j}k_{1}\iota r}^{\gamma^{j}k_{2}\iota r} s^{-\nu(x)/p(x)+\beta}\rho_{1}(x,s) \, \frac{ds}{s} \\ &\leq C_{2}\int_{\gamma^{j}k_{1}\iota r}^{\gamma^{j}k_{2}\iota r} s^{-\nu(x)/p(x)+\beta}\rho_{1}(x,s) \, \frac{ds}{s} \end{split}$$

for $j \in \mathbf{Z}$, where

$$C_{2} = C_{1}C_{\rho_{1}}\max\{1, 2^{-\beta}\}\max\{(\iota k_{1})^{\nu^{+}/p^{-}-\beta}, (\iota k_{1})^{\nu^{-}/p^{+}-\beta}, (\iota k_{2})^{\nu^{+}/p^{-}-\beta}, (\iota k_{2})^{\nu^{-}/p^{+}-\beta}\}.$$

Therefore we obtain

$$\int_{B(x,r)} \frac{d(x,y)^{\beta} \rho_{1}(x,\iota d(x,y))}{\mu(B(x,\tau d(x,y)))} f(y) d\mu(y)$$

= $\sum_{j=0}^{\infty} \int_{B(x,\gamma^{-j}r) \setminus B(x,\gamma^{-j-1}r)} \frac{d(x,y)^{\beta} \rho_{1}(x,\iota d(x,y))}{\mu(B(x,\tau d(x,y)))} f(y) d\mu(y)$
 $\leq C_{2} \sum_{j=0}^{\infty} \int_{\gamma^{-j}k_{1}\iota r}^{\gamma^{-j}k_{2}\iota r} s^{-\nu(x)/p(x)+\beta} \rho_{1}(x,s) \frac{ds}{s}.$

Let j_0 be the smallest integer such that $k_2/k_1 \leq \gamma^{j_0}$. Then we have

$$\begin{split} \int_{B(x,r)} \frac{d(x,y)^{\beta} \rho_1(x,\iota d(x,y))}{\mu(B(x,\tau d(x,y)))} f(y) \, d\mu(y) &\leq C_2 \sum_{j=0}^{\infty} \int_{\gamma^{-j-j_0} k_2 \iota r}^{\gamma^{-j} k_2 \iota r} s^{-\nu(x)/p(x)+\beta} \rho_1(x,s) \, \frac{ds}{s} \\ &\leq j_0 C_2 \int_0^{k_2 \iota r} s^{-\nu(x)/p(x)+\beta} \rho_1(x,s) \, \frac{ds}{s}, \end{split}$$

which proves (3.1).

Let j_1 be the smallest integer such that $d_X \leq \gamma^{j_1} r$. Then we obtain

$$\begin{split} &\int_{X\setminus B(x,r)} \frac{d(x,y)^{\beta}\rho_{1}(x,\iota d(x,y))}{\mu(B(x,\tau d(x,y)))} f(y) \, d\mu(y) \\ &= \sum_{j=1}^{j_{1}} \int_{B(x,\gamma^{j}r)\setminus B(x,\gamma^{j-1}r)} \frac{d(x,y)^{\beta}\rho_{1}(x,\iota d(x,y))}{\mu(B(x,\tau d(x,y)))} f(y) \, d\mu(y) \\ &\leq C_{2} \sum_{j=1}^{j_{1}} \int_{\gamma^{j}k_{1}\iota r}^{\gamma^{j}k_{2}\iota r} s^{-\nu(x)/p(x)+\beta}\rho_{1}(x,s) \, \frac{ds}{s} \\ &\leq C_{2} \sum_{j=1}^{j_{1}} \int_{\gamma^{j-j_{0}}k_{2}\iota r}^{\gamma^{j}k_{2}\iota r} s^{-\nu(x)/p(x)+\beta}\rho_{1}(x,s) \, \frac{ds}{s} \\ &\leq j_{0}C_{2} \int_{k_{1}\iota r}^{\gamma^{k_{2}\iota d_{X}}} s^{-\nu(x)/p(x)+\beta}\rho_{1}(x,s) \, \frac{ds}{s} \\ &\leq j_{0}C_{2} \int_{k_{1}\iota r}^{2k_{2}\iota d_{X}} s^{-\nu(x)/p(x)+\beta}\rho_{1}(x,s) \, \frac{ds}{s}, \end{split}$$

which proves (3.2).

Here note that $2k_2\iota d_X$ in (3.2) can be replaced by $ak_2\iota d_X$ with a > 1.

4. Continuity of generalized Riesz potentials

Before we state our theorem we consider the following conditions:

 $(\rho\mu)$ there are constants $\eta_1 > 0$, $\eta_2 > 0$, $\iota_1 > 0$, $\iota_2 \ge 1$, $\sigma_1 > 1$ and $c_1 > 0$ such that

(4.1)
$$\left|\frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} - \frac{\rho(x, d(z, y))}{\mu(B(z, \tau d(z, y)))}\right| \le c_1 \frac{d(x, z)^{\eta_1}}{d(x, y)^{\eta_2}} \frac{\rho(x, \iota_1 d(x, y))}{\mu(B(x, \iota_2 d(x, y)))}$$
whenever $d(x, z) \le d(x, y)/\sigma_1$,

(ρ 1) there are functions $h(x,z): X \times X \to [0,\infty)$ and $\tilde{\rho} \in (\rho)$ and constants $\iota_3 > 0$, $\iota_4 > 0, \sigma_2 > 1$ and $c_2 > 0$ such that

(4.2)
$$|\rho(x, d(z, y)) - \rho(z, d(z, y))| \le c_2 h(x, z) \{ \widetilde{\rho}(x, \iota_3 d(x, y)) + \widetilde{\rho}(z, \iota_4 d(z, y)) \}$$

whenever $d(x, z) \leq d(x, y)/\sigma_2$.

Let $\sigma = \max{\{\sigma_1, \sigma_2\}}$. For $x, z \in X$ and $0 < r \le d_X$, we consider the functions

$$\begin{split} \psi_1(x,z,r) &= \int_0^{k_2 \sigma r} t^{-\nu(x)/p(x)+\theta} \rho(x,t) \, \frac{dt}{t} + \int_0^{k_2 \sigma r} t^{-\nu(x)/q(x)} \rho(x,t) \, \frac{dt}{t} \\ &+ \int_0^{k_2 (\sigma+1)r} t^{-\nu(z)/p(z)+\theta} \rho(z,t) \, \frac{dt}{t} + \int_0^{k_2 (\sigma+1)r} t^{-\nu(z)/q(z)} \rho(z,t) \, \frac{dt}{t} \\ &+ r^\theta \int_{k_1 (\sigma-1)r}^{2k_2 d_X} t^{-\nu(z)/p(z)} \rho(z,t) \, \frac{dt}{t} \end{split}$$

and

$$\psi_2(x,z,r) = r^{\eta_1} \int_{k_1 \sigma \iota_1 r}^{2k_2 \iota_1 d_X} t^{-\nu(x)/p(x)+\theta-\eta_2} \rho(x,t) \frac{dt}{t} + r^{\eta_1} \int_{k_1 \sigma \iota_1 r}^{2k_2 \iota_1 d_X} t^{-\nu(x)/q(x)-\eta_2} \rho(x,t) \frac{dt}{t}.$$

Further we set

$$\begin{split} \psi_{3}(x,z,r) \\ &= h(x,z) \int_{k_{1}\sigma\iota_{3}r}^{2k_{2}\iota_{3}d_{X}} t^{-\nu(x)/p(x)+\theta} \widetilde{\rho}(x,t) \, \frac{dt}{t} + h(x,z) \int_{k_{1}\sigma\iota_{3}r}^{2k_{2}\iota_{3}d_{X}} t^{-\nu(x)/q(x)} \widetilde{\rho}(x,t) \, \frac{dt}{t} \\ &+ h(x,z) \int_{k_{1}(\sigma-1)\iota_{4}r}^{2k_{2}\iota_{4}d_{X}} t^{-\nu(z)/p(z)+\theta} \widetilde{\rho}(z,t) \, \frac{dt}{t} + h(x,z) \int_{k_{1}(\sigma-1)\iota_{4}r}^{2k_{2}\iota_{3}d_{X}} t^{-\nu(z)/q(z)} \widetilde{\rho}(z,t) \, \frac{dt}{t} \end{split}$$

for $x, z \in X$ and $0 < r \le d_X$.

We prove the following theorem, as an extension of [23, Theorem 1] and [24, Theorem 2.2]. See also [15, Theorem 4.1] and [16, Theorem 4.1].

Theorem 4.1. Assume that ρ satisfies $(\rho\mu)$ and $(\rho 1)$. If $1 \le \kappa < \min\{\tau(1-1/\sigma)-1/\sigma, \iota_2\}$, then there exists a constant C > 0 such that

$$|b(x)I_{\rho,\tau}f(x) - b(z)I_{\rho,\tau}f(z)| \le C \sum_{k=1}^{3} \psi_k(x, z, d(x, z))$$

for all $x, z \in X$ with $\psi_1(x, z, d(x, z)) < \infty$ and measurable functions f on X with $\|f\|_{L^{\Phi, \nu(\cdot), \kappa}(X)} \leq 1.$

Remark 4.2. Let $x, z \in X$ with $x \neq z$ and $\psi_1(x, z, d(x, z)) < \infty$. Then note that

$$\begin{split} &\int_{0}^{k_{2}\sigma d(x,z)} t^{-\nu(x)/p(x)+\theta}\rho(x,t) \,\frac{dt}{t} + \int_{0}^{k_{2}\sigma d(x,z)} t^{-\nu(x)/q(x)}\rho(x,t) \,\frac{dt}{t} \\ &+ \int_{0}^{k_{2}(\sigma+1)d(x,z)} t^{-\nu(z)/p(z)+\theta}\rho(z,t) \,\frac{dt}{t} + \int_{0}^{k_{2}(\sigma+1)d(x,z)} t^{-\nu(z)/q(z)}\rho(z,t) \,\frac{dt}{t} < \infty. \end{split}$$

Let f be a nonnegative measurable function f on X with $||f||_{L^{\Phi,\nu(\cdot),\kappa}(X)} \leq 1$. By Lemma 3.2 and (1.2), we see that

$$\begin{split} &\int_{X} \frac{d(x,y)^{\theta} \rho(x,d(x,y))}{\mu(B(x,\tau d(x,y)))} f(y) \, d\mu(y) \\ &= \int_{B(x,d(x,z))} \frac{d(x,y)^{\theta} \rho(x,d(x,y))}{\mu(B(x,\tau d(x,y)))} f(y) \, d\mu(y) \\ &+ \int_{X \setminus B(x,d(x,z))} \frac{d(x,y)^{\theta} \rho(x,d(x,y))}{\mu(B(x,\tau d(x,y)))} f(y) \, d\mu(y) \\ &\leq C \left\{ \int_{0}^{k_{2}d(x,z)} t^{-\nu(x)/p(x)+\theta} \rho(x,t) \, \frac{dt}{t} + \int_{k_{1}d(x,z)}^{2k_{2}d_{X}} t^{-\nu(x)/p(x)+\theta} \rho(x,t) \, \frac{dt}{t} \right\} \\ &\leq C \left\{ \int_{0}^{k_{2}\sigma d(x,z)} t^{-\nu(x)/p(x)+\theta} \rho(x,t) \, \frac{dt}{t} + d(x,z)^{-\nu(x)/p(x)} \int_{0}^{2k_{2}d_{X}} \rho(x,t) \, \frac{dt}{t} \right\} \\ &< \infty \end{split}$$

and that

$$\begin{split} &\int_{X} \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} \{b(y)f(y)\} \, d\mu(y) \\ &= \int_{B(x, d(x, z))} \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} \{b(y)f(y)\} \, d\mu(y) \\ &+ \int_{X \setminus B(x, d(x, z))} \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y))))} \{b(y)f(y)\} \, d\mu(y) \\ &\leq C \left\{ \int_{0}^{k_{2}d(x, z)} t^{-\nu(x)/q(x)} \rho(x, t) \, \frac{dt}{t} + \int_{k_{1}d(x, z)}^{2k_{2}d_{X}} t^{-\nu(x)/q(x)} \rho(x, t) \, \frac{dt}{t} \right\} \\ &\leq C \left\{ \int_{0}^{k_{2}\sigma d(x, z)} t^{-\nu(x)/q(x)} \rho(x, t) \, \frac{dt}{t} + d(x, z)^{-\nu(x)/q(x)} \int_{0}^{2k_{2}d_{X}} \rho(x, t) \, \frac{dt}{t} \right\} \\ &\leq \infty. \end{split}$$

Hence

$$b(x)I_{\rho,\tau}f(x) \le \int_X \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} |b(x) - b(y)|f(y) \, d\mu(y)$$

$$\begin{split} &+ \int_X \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} b(y) f(y) \, d\mu(y) \\ &\leq C \int_X \frac{d(x, y)^{\theta} \rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) \, d\mu(y) \\ &+ \int_X \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} \{b(y) f(y)\} \, d\mu(y) < \infty. \end{split}$$

Similarly, we see that $b(z)I_{\rho,\tau}f(z) < \infty$, so that $|b(x)I_{\rho,\tau}f(x)-b(z)I_{\rho,\tau}f(z)|$ in Theorem 4.1 is well defined.

Proof of Theorem 4.1. We may assume that f is nonnegative on X. Let f be a nonnegative function on X such that $||f||_{L^{\Phi,\nu(\cdot),\kappa}(X)} \leq 1$. Let $x, z \in X$ and set r = d(x, z). First we estimate the following three terms:

$$I_1(x) = b(x) \int_{B(x,\sigma r)} \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) \, d\mu(y),$$

$$I_2(z) = b(z) \int_{B(z,(\sigma+1)r)} \frac{\rho(z, d(z, y))}{\mu(B(z, \tau d(z, y)))} f(y) \, d\mu(y),$$

and

$$I_3(z) = r^\theta \int_{X \setminus B(z,(\sigma-1)r)} \frac{\rho(z,d(z,y))}{\mu(B(z,\tau d(z,y)))} f(y) \, d\mu(y).$$

For $I_1(x)$, we have

$$\begin{split} I_{1}(x) &\leq \int_{B(x,\sigma r)} \frac{\rho(x,d(x,y))}{\mu(B(x,\tau d(x,y)))} |b(x) - b(y)| f(y) \, d\mu(y) \\ &+ \int_{B(x,\sigma r)} \frac{\rho(x,d(x,y))}{\mu(B(x,\tau d(x,y)))} b(y) f(y) \, d\mu(y) \\ &\leq C \int_{B(x,\sigma r)} \frac{d(x,y)^{\theta} \rho(x,d(x,y))}{\mu(B(x,\tau d(x,y)))} f(y) \, d\mu(y) \\ &+ \int_{B(x,\sigma r)} \frac{\rho(x,d(x,y))}{\mu(B(x,\tau d(x,y)))} \{b(y)f(y)\} \, d\mu(y) \\ &= C I_{11}(x) + I_{12}(x). \end{split}$$

We obtain from (3.1),

$$I_{11}(x) \le C \int_0^{k_2 \sigma r} t^{-\nu(x)/p(x)+\theta} \rho(x,t) \frac{dt}{t} \quad \text{and} \quad I_{12}(x) \le C \int_0^{k_2 \sigma r} t^{-\nu(x)/q(x)} \rho(x,t) \frac{dt}{t}$$

since $1 \leq \kappa < \tau$. For $I_3(z)$, we have by (3.2),

$$I_{3}(z) \leq Cr^{\theta} \int_{k_{1}(\sigma-1)r}^{2k_{2}d_{X}} t^{-\nu(z)/p(z)} \rho(z,t) \frac{dt}{t}$$

since $1 \le \kappa < \tau$. Therefore, we find

(4.3)
$$I_1(x) + I_2(z) + I_3(z) \le C\psi_1(x, z, r).$$

Next we estimate the following term:

$$I_4(z) = r^{\eta_1} b(x) \int_{X \setminus B(x,\sigma r)} \frac{d(x,y)^{-\eta_2} \rho(x,\iota_1 d(x,y))}{\mu(B(x,\iota_2 d(x,y)))} f(y) \, d\mu(y).$$

Then we have

$$\begin{split} I_4(x) &\leq r^{\eta_1} \int_{X \setminus B(x,\sigma r)} \frac{d(x,y)^{-\eta_2} \rho(x,\iota_1 d(x,y))}{\mu(B(x,\iota_2 d(x,y)))} |b(x) - b(y)| f(y) \, d\mu(y) \\ &+ r^{\eta_1} \int_{X \setminus B(x,\sigma r)} \frac{d(x,y)^{-\eta_2} \rho(x,\iota_1 d(x,y))}{\mu(B(x,\iota_2 d(x,y)))} b(y) f(y) \, d\mu(y) \\ &\leq C r^{\eta_1} \int_{X \setminus B(x,\sigma r)} \frac{d(x,y)^{\theta - \eta_2} \rho(x,\iota_1 d(x,y))}{\mu(B(x,\iota_2 d(x,y)))} f(y) \, d\mu(y) \\ &+ r^{\eta_1} \int_{X \setminus B(x,\sigma r)} \frac{d(x,y)^{-\eta_2} \rho(x,\iota_1 d(x,y))}{\mu(B(x,\iota_2 d(x,y)))} \{b(y) f(y)\} \, d\mu(y) \\ &= C I_{41}(x) + I_{42}(x). \end{split}$$

Note from (3.2) that

$$I_{41}(x) \le Cr^{\eta_1} \int_{k_1 \sigma \iota_1 r}^{2k_2 \iota_1 d_X} t^{-\nu(x)/p(x) + \theta - \eta_2} \rho(x, t) \frac{dt}{t}$$

and that

$$I_{42}(x) \le Cr^{\eta_1} \int_{k_1 \sigma \iota_1 r}^{2k_2 \iota_1 d_X} t^{-\nu(x)/q(x) - \eta_2} \rho(x, t) \, \frac{dt}{t}$$

since $1 \leq \kappa < \iota_2$. Therefore, we find

(4.4)
$$I_4(x) \le C\psi_2(x, z, r).$$

Finally we estimate the following two terms:

$$I_5(x,z) = b(x)h(x,z) \int_{X \setminus B(x,\sigma r)} \frac{\widetilde{\rho}(x,\iota_3 d(x,y))}{\mu(B(z,\tau d(z,y)))} f(y) \, d\mu(y)$$

and

$$I_6(x,z) = b(x)h(x,z) \int_{X \setminus B(z,(\sigma-1)r)} \frac{\widetilde{\rho}(z,\iota_4 d(z,y))}{\mu(B(z,\tau d(z,y)))} f(y) \, d\mu(y).$$

For $I_5(x,z)$, set $\tau' = \tau(1-1/\sigma) - 1/\sigma$. Note that

(4.5)
$$\left(1 - \frac{1}{\sigma}\right)d(x, y) \le d(z, y) \le \left(1 + \frac{1}{\sigma}\right)d(x, y)$$

and that

$$B(x, \tau' d(x, y)) \subset B(z, \tau d(z, y))$$

for $y \in X \setminus B(x, \sigma r)$. Hence, we have

$$\begin{split} I_{5}(x,z) &\leq b(x)h(x,z) \int_{X \setminus B(x,\sigma r)} \frac{\widetilde{\rho}(x,\iota_{3}d(x,y))}{\mu(B(x,\tau'd(x,y)))} f(y) \, d\mu(y) \\ &\leq h(x,z) \int_{X \setminus B(x,\sigma r)} \frac{\widetilde{\rho}(x,\iota_{3}d(x,y))}{\mu(B(x,\tau'd(x,y)))} |b(x) - b(y)| f(y) \, d\mu(y) \\ &\quad + h(x,z) \int_{X \setminus B(x,\sigma r)} \frac{\widetilde{\rho}(x,\iota_{3}d(x,y))}{\mu(B(x,\tau'd(x,y)))} b(y) f(y) \, d\mu(y) \\ &\leq Ch(x,z) \int_{X \setminus B(x,\sigma r)} \frac{d(x,y)^{\theta} \widetilde{\rho}(x,\iota_{3}d(x,y))}{\mu(B(x,\tau'd(x,y)))} f(y) \, d\mu(y) \\ &\quad + h(x,z) \int_{X \setminus B(x,\sigma r)} \frac{\widetilde{\rho}(x,\iota_{3}d(x,y))}{\mu(B(x,\tau'd(x,y)))} \{b(y)f(y)\} \, d\mu(y) \\ &= CI_{51}(x,z) + I_{52}(x,z). \end{split}$$

Note from (3.2) that

$$I_{51}(x,z) \le Ch(x,z) \int_{k_1 \sigma \iota_3 r}^{2k_2 \iota_3 d_X} t^{-\nu(x)/p(x)+\theta} \widetilde{\rho}(x,t) \, \frac{dt}{t}$$

and that

$$I_{52}(x,z) \le Ch(x,z) \int_{k_1 \sigma \iota_3 r}^{2k_2 \iota_3 d_X} t^{-\nu(x)/q(x)} \widetilde{\rho}(x,t) \frac{dt}{t}$$

since $1 \le \kappa < \tau'$. By (4.5) we have

$$\begin{split} I_{6}(x,z) &\leq h(x,z) \int_{X \setminus B(z,(\sigma-1)r)} \frac{\widetilde{\rho}(z,\iota_{4}d(z,y))}{\mu(B(z,\tau d(z,y)))} |b(x) - b(y)| f(y) \, d\mu(y) \\ &+ h(x,z) \int_{X \setminus B(z,(\sigma-1)r)} \frac{\widetilde{\rho}(z,\iota_{4}d(z,y))}{\mu(B(z,\tau d(z,y)))} b(y) f(y) \, d\mu(y) \\ &\leq Ch(x,z) \int_{X \setminus B(z,(\sigma-1)r)} \frac{d(x,y)^{\theta} \widetilde{\rho}(z,\iota_{4}d(z,y))}{\mu(B(z,\tau d(z,y)))} f(y) \, d\mu(y) \\ &+ h(x,z) \int_{X \setminus B(z,(\sigma-1)r)} \frac{\widetilde{\rho}(z,\iota_{4}d(z,y))}{\mu(B(z,\tau d(z,y)))} b(y) f(y) \, d\mu(y) \\ &\leq Ch(x,z) \int_{X \setminus B(z,(\sigma-1)r)} \frac{d(z,y)^{\theta} \widetilde{\rho}(z,\iota_{4}d(z,y))}{\mu(B(z,\tau d(z,y)))} f(y) \, d\mu(y) \\ &+ h(x,z) \int_{X \setminus B(z,(\sigma-1)r)} \frac{\widetilde{\rho}(z,\iota_{4}d(z,y))}{\mu(B(z,\tau d(z,y)))} \{b(y)f(y)\} \, d\mu(y) \\ &= CI_{61}(x,z) + I_{62}(x,z). \end{split}$$

Note from (3.2) that

$$I_{61}(x,z) \le Ch(x,z) \int_{k_1(\sigma-1)\iota_4r}^{2k_2\iota_4d_X} t^{-\nu(z)/p(z)+\theta} \widetilde{\rho}(z,t) \, \frac{dt}{t}$$

and that

$$I_{62}(x,z) \le Ch(x,z) \int_{k_1(\sigma-1)\iota_4r}^{2k_2\iota_4d_X} t^{-\nu(z)/q(z)} \widetilde{\rho}(z,t) \, \frac{dt}{t}$$

since $1 \leq \kappa < \tau$. Therefore, we find

(4.6)
$$I_5(x,z) + I_6(x,z) \le C\psi_3(x,z,r).$$

Note from (4.1) and (4.2),

$$\begin{aligned} & \left| \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} - \frac{\rho(z, d(z, y))}{\mu(B(z, \tau d(z, y)))} \right| \\ & \leq \left| \frac{\rho(x, d(x, y))}{\mu(B(x, \tau d(x, y)))} - \frac{\rho(x, d(z, y))}{\mu(B(z, \tau d(z, y)))} \right| + \left| \frac{\rho(x, d(z, y))}{\mu(B(z, \tau d(z, y)))} - \frac{\rho(z, d(z, y))}{\mu(B(z, \tau d(z, y)))} \right| \\ & \leq C \left\{ r^{\eta_1} \frac{d(x, y)^{-\eta_2} \rho(x, \iota_1 d(x, y))}{\mu(B(x, \iota_2 d(x, y)))} + h(x, z) \frac{\widetilde{\rho}(x, \iota_3 d(x, y)) + \widetilde{\rho}(z, \iota_4 d(z, y))}{\mu(B(z, \tau d(z, y)))} \right\} \end{aligned}$$

for $y \in X \setminus B(x, \sigma r)$, so that

$$\begin{split} & |b(x)I_{\rho,\tau}f(x) - b(z)I_{\rho,\tau}f(z)| \\ & \leq b(x)\int_{B(x,\sigma r)} \frac{\rho(x,d(x,y))}{\mu(B(x,\tau d(x,y)))}f(y)\,d\mu(y) + b(z)\int_{B(x,\sigma r)} \frac{\rho(z,d(z,y))}{\mu(B(z,\tau d(z,y)))}f(y)\,d\mu(y) \\ & + |b(x) - b(z)|\int_{X\setminus B(x,\sigma r)} \frac{\rho(z,d(z,y))}{\mu(B(z,\tau d(z,y)))}f(y)\,d\mu(y) \\ & + b(x)\int_{X\setminus B(x,\sigma r)} \left|\frac{\rho(x,d(x,y))}{\mu(B(x,\tau d(x,y)))} - \frac{\rho(z,d(z,y))}{\mu(B(z,\tau d(z,y)))}\right|f(y)\,d\mu(y) \\ & \leq C\big\{I_1(x) + I_2(z) + I_3(z) + I_4(x) + I_5(x,z) + I_6(x,z)\big\}. \end{split}$$

Hence we obtain by (4.3), (4.4) and (4.6),

$$|b(x)I_{\rho,\tau}f(x) - b(z)I_{\rho,\tau}f(z)| \le C \sum_{k=1}^{3} \psi_k(x,z,r).$$

Thus we complete the proof.

Remark 4.3. (1) If ρ satisfies the doubling condition, that is, there exists a constant C > 0 such that

$$C^{-1} \le \frac{\rho(x,r)}{\rho(x,s)} \le C$$

for $x \in X$ and $1/2 \le r/s \le 2$, then ρ satisfies (1.1) whenever k = 1/2 and $2k_1 = k_2$.

- (2) If ρ is increasing in the second variable, then ρ satisfies (1.1) with k = 1/2, $k_1 = 1$ and $k_2 = 2$.
- (3) If ρ is decreasing in the second variable, then ρ satisfies (1.1) with k = 1/2, $k_1 = 1/4$ and $k_2 = 1/2$.

Example 4.4. (i) Let $\alpha(\cdot)$ be a measurable function on X such that

$$0 < \alpha^{-} := \inf_{x \in X} \alpha(x) \le \sup_{x \in X} \alpha(x) =: \alpha^{+} < \infty$$

and $\rho(x, r) = r^{\alpha(x)}$. Then ρ satisfies (1.1) and (1.2) with k = 1/2, $k_1 = 1$ and $k_2 = 2$ by Remark 4.3(1) or (2).

(ii) Let $x_0 \in X$ and $\rho(x, r) = (1 + d(x_0, x)/r)r^{\alpha}$ for some $\alpha > 0$. Then ρ satisfies (1.1) with k = 1/2, $k_1 = 1$ and $k_2 = 2$ by Remark 4.3(1). Further, if $\alpha > 1$, then

$$\int_0^1 \rho(x,s) \, \frac{ds}{s} \le (1+d(x_0,x)) \int_0^1 s^{\alpha-1} \, \frac{ds}{s} \le \frac{1+d_X}{\alpha-1}$$

so that ρ satisfies (1.2).

(iii) Let $\alpha > 0$ and let $A(\cdot)$ be a positive measurable function on X. Set

$$\rho(x, r) = \begin{cases} A(x)r^{\alpha} & \text{for } 0 < r < 1, \\ A(x)e^{-(r-1)} & \text{for } r \ge 1. \end{cases}$$

Then ρ satisfies (1.1) and (1.2) with k = 1/2, $k_1 = 1/4$ and $k_2 = 1/2$ by Remark 4.3(1) and (3). See [10].

- (iv) Let $\rho(x,r) = \mu(B(x,\tau r))^{\eta}$ for some $0 < \eta < 1$ and $\tau \ge 1$. Then ρ satisfies (1.1) with k = 1/2, $k_1 = 1$ and $k_2 = 2$ by Remark 4.3(2). Further, if μ satisfies the upper Ahlfors condition $\mu(B(x,r)) \le Cr^Q$ ($x \in X, r > 0$) for some Q > 0, then ρ satisfies (1.2). See [27,32].
- (v) Let $\alpha(\cdot)$ be as in (i) and let $\rho(x,r) = r^{\alpha(x)}e^{-a/r}(\log(e+1/r))^{\beta}$ for $a \ge 0$ and $\beta \in \mathbf{R}$. Then ρ satisfies (1.1) and (1.2) with k = 1/2, $k_1 = 1$ and $k_2 = 2$. In fact, there exists a constant $C_1 > 0$ such that

$$r_1^{-\alpha^-/2}\rho(x,r_1) \le C_1 r_2^{-\alpha^-/2}\rho(x,r_2)$$

whenever $0 < r_1 < r_2$, so that

$$\sup_{r/2 \le s \le r} \rho(x, s) \le C_1 \rho(x, r) \le \frac{C_1^2}{\log 2} \int_r^{2r} \rho(x, s) \, \frac{ds}{s}$$

for all r > 0 and

$$\int_{0}^{1} \rho(x,s) \frac{ds}{s} \le C_1 \rho(x,1) \int_{0}^{1} s^{\alpha^-/2} \frac{ds}{s} \le \frac{2C_1}{\alpha^-} e^{-a} (\log(e+1))^{\beta}$$

for all $x \in X$.

5. Corollaries

In this section, we give consequences of Theorem 4.1.

Let $\alpha(\cdot)$ be a measurable function on X such that $0 < \alpha^{-} \le \alpha^{+} < \infty$.

Remark 5.1. Let $\rho(x,r) = r^{\alpha(x)}e^{-a/r}(\log(e+1/r))^{\beta}$ for $a \ge 0$ and $\beta \in \mathbf{R}$. Then $(\rho 1)$ holds for $\iota_3 = 3/2$, $\iota_4 = 1$, $\sigma_2 = 2$, $h(x,z) = |\alpha(x) - \alpha(z)|$ and $\tilde{\rho}(x,r) = r^{\alpha(x)}e^{-a/r}(\log(e+1/r))^{\beta+1}$.

In fact, we have by the mean value property

$$\begin{aligned} &|\rho(x, d(z, y)) - \rho(z, d(z, y))| \\ &= e^{-a/d(z, y)} (\log(e + 1/d(z, y)))^{\beta} |d(z, y)^{\alpha(x)} - d(z, y)^{\alpha(z)}| \\ &\leq e^{-a/d(z, y)} (\log(e + 1/d(z, y)))^{\beta} |\alpha(x) - \alpha(z)| (d(z, y)^{\alpha(x)} + d(z, y)^{\alpha(z)})| \log d(z, y)| \\ &\leq Ch(x, z) \{ \widetilde{\rho}(x, d(z, y)) + \widetilde{\rho}(z, d(z, y)) \} \\ &\leq Ch(x, z) \{ \widetilde{\rho}(x, 3d(x, y)/2) + \widetilde{\rho}(z, d(z, y)) \} \end{aligned}$$

whenever $d(x,z) \leq d(x,y)/2$ since $d(x,y)/2 \leq d(z,y) \leq 3d(x,y)/2$ for all $x, z \in X$ with $d(x,z) \leq d(x,y)/2$.

Remark 5.2. Let G be an open bounded set in \mathbf{R}^N . Let $\rho(x, r) = r^{\alpha(x)} e^{-a/r} (\log(e+1/r))^{\beta}$ for $a \ge 0$ and $\beta \in \mathbf{R}$.

- (1) If a = 0, then $(\rho \mu)$ holds for $\eta_1 = \eta_2 = \iota_1 = \iota_2 = 1$ and $\sigma_1 = 2$.
- (2) If a > 0, then $(\rho \mu)$ holds for $\eta_1 = 1$, $\eta_2 = 2$, $\iota_1 = 3/2$, $\iota_2 = 1$ and $\sigma_1 = 2$. We refer to [24, Remark 2.3].

We set

$$\psi_4(x,z) = d(x,z)^{\alpha(x)} \left(d(x,z)^{-\nu(x)/p(x)+\theta} + d(x,z)^{-\nu(x)/q(x)} \right)$$

and

$$\psi_5(x,z) = d(x,z)^{\alpha(z)} \left(d(x,z)^{-\nu(z)/p(z)+\theta} + d(x,z)^{-\nu(z)/q(z)} \right)$$

for $x, z \in X$.

As in the proof of [24, Corollary 3.1], we obtain the following corollary by Theorem 4.1.

Corollary 5.3. Let $\rho(x,r) = r^{\alpha(x)} (\log(e+1/r))^{\beta}$ for $\beta \in \mathbf{R}$. Let X be a non-doubling metric measure space. Assume that $(\rho\mu)$ holds. Suppose

$$\inf_{x \in X} (\nu(x) - \alpha(x)p(x)) > 0, \quad \inf_{x \in X} (\nu(x) - (\alpha(x) + \theta - \eta_2)p(x)) > 0$$

and

$$\inf_{x \in X} ((\alpha(x) + \theta)p(x) - \nu(x)) > 0.$$

Further suppose

$$\inf_{x \in X} (\nu(x) - (\alpha(x) - \eta_2)q(x)) > 0 \quad and \quad \inf_{x \in X} (\alpha(x)q(x) - \nu(x)) > 0.$$

If $1 \le \kappa < \min\{\tau(1-1/\sigma) - 1/\sigma, \iota_2\}$, then there exists a constant C > 0 such that

$$\begin{aligned} &|b(x)I_{\rho,\tau}f(x) - b(z)I_{\rho,\tau}f(z)| \\ &\leq C\Big[\big(\psi_4(x,z) + \psi_5(x,z) + \min\big\{d(x,z)^{\eta_1 - \eta_2}\psi_4(x,z), d(x,z)^{\eta_1 - \eta_2}\psi_5(x,z)\big\} \big) \\ &\times \big(\log(e + 1/d(x,z))\big)^{\beta} + |\alpha(x) - \alpha(z)| \Big] \end{aligned}$$

for all $x, z \in X$ and measurable functions f on X with $||f||_{L^{\Phi,\nu(\cdot),\kappa}(X)} \leq 1$.

Remark 5.4. The assumptions like $\inf_{x \in X}(\nu(x) - \alpha(x)p(x)) > 0$ in Corollary 5.3 were considered in [24, Corollary 3.1].

When $\rho(x,r) = r^{\alpha(x)}$, we write $I_{\rho,\tau}f = I_{\alpha(\cdot),\tau}f$, which is called the Riesz potential of variable order $\alpha(\cdot)$. If we take $\beta = 0$ in Corollary 5.3, we obtain the next corollary.

Corollary 5.5. Let $\rho(x,r) = r^{\alpha(x)}$. Let X be a non-doubling metric measure space. Assume that $(\rho\mu)$ holds. Suppose

$$\inf_{x \in X} (\nu(x) - \alpha(x)p(x)) > 0, \quad \inf_{x \in X} (\nu(x) - (\alpha(x) + \theta - \eta_2)p(x)) > 0$$

and

$$\inf_{x \in X} ((\alpha(x) + \theta)p(x) - \nu(x)) > 0.$$

Further suppose

$$\inf_{x\in X}(\nu(x)-(\alpha(x)-\eta_2)q(x))>0\quad and\quad \inf_{x\in X}(\alpha(x)q(x)-\nu(x))>0.$$

Assume that $\alpha(\cdot)$ and $\nu(\cdot)$ are log-Hölder continuous on X. If $1 \le \kappa < \min\{\tau(1-1/\sigma) - 1/\sigma, \iota_2\}$, then there exists a constant C > 0 such that

$$|b(x)I_{\alpha(\cdot),\tau}f(x) - b(z)I_{\alpha(\cdot),\tau}f(z)| \le C\{\psi_4(x,z) + d(x,z)^{\eta_1 - \eta_2}\psi_4(x,z) + |\alpha(x) - \alpha(z)|\}$$

for all $x, z \in X$ and measurable functions f on X with $||f||_{L^{\Phi,\nu(\cdot),\kappa}(X)} \leq 1$.

When $\rho(x,r) = r^{\alpha(x)}e^{-a/r}(\log(e+1/r))^{\beta}$, we obtain the next corollary by Theorem 4.1.

Corollary 5.6. Let $\rho(x,r) = r^{\alpha(x)}e^{-a/r}(\log(e+1/r))^{\beta}$ for a > 0 and $\beta \in \mathbf{R}$. Let X be a non-doubling metric measure space. Assume that $(\rho\mu)$ holds. If $1 \le \kappa < \min\{\tau(1-1/\sigma) - 1/\sigma, \iota_2\}$, then there exists a constant C > 0 such that

$$|b(x)I_{\rho,\tau}f(x) - b(z)I_{\rho,\tau}f(z)| \le C\{d(x,z)^{\theta} + d(x,z)^{\eta_1} + |\alpha(x) - \alpha(z)|\}$$

for all $x, z \in X$ and measurable functions f on X with $||f||_{L^{\Phi,\nu(\cdot),\kappa}(X)} \leq 1$.

To get this, we note, for $b \in \mathbf{R}$, there exists a constant c > 0 such that

$$\int_0^r t^b e^{-a/t} (\log(e+1/t))^\beta \frac{dt}{t} \le cr^\theta$$

for all $0 < r \leq d_X$.

For the case $L^{p(\cdot),\nu(\cdot),\kappa}(X)$, we obtain the following corollaries. The following corollary is a consequence of Theorem 4.1 with $b(\cdot) \equiv 1$ and $\rho(x,r) = r^{\alpha(x)} (\log(e+1/r))^{\beta}$.

Corollary 5.7. Let $\rho(x,r) = r^{\alpha(x)} (\log(e+1/r))^{\beta}$ for $\beta \in \mathbf{R}$. Let X be a non-doubling metric measure space. Assume that $(\rho\mu)$ holds. Suppose

$$\inf_{x \in X} (\nu(x) - (\alpha(x) - \eta_2)p(x)) > 0 \quad and \quad \inf_{x \in X} (\alpha(x)p(x) - \nu(x)) > 0.$$

If $1 \le \kappa < \min\{\tau(1-1/\sigma) - 1/\sigma, \iota_2\}$, then there exists a constant C > 0 such that

$$\begin{aligned} \left| I_{\rho,\tau} f(x) - I_{\rho,\tau} f(z) \right| \\ &\leq C \Big[\Big(d(x,z)^{\alpha(x) - \nu(x)/p(x)} + d(x,z)^{\alpha(z) - \nu(z)/p(z)} \\ &+ \min \Big\{ d(x,z)^{\alpha(x) - \nu(x)/p(x) + \eta_1 - \eta_2}, d(x,z)^{\alpha(z) - \nu(z)/p(z) + \eta_1 - \eta_2} \Big\} \Big) (\log(e + 1/d(x,z)))^{\beta} \\ &+ |\alpha(x) - \alpha(z)| \Big] \end{aligned}$$

for all $x, z \in X$ and measurable functions f on X with $||f||_{L^{p(\cdot),\nu(\cdot),\kappa}(X)} \leq 1$.

The next corollary is a consequence of Theorem 4.1 with $b(\cdot) \equiv 1$ and $\rho(x, r) = r^{\alpha(x)}e^{-a/r}(\log(e+1/r))^{\beta}$.

Corollary 5.8. Let $\rho(x,r) = r^{\alpha(x)}e^{-a/r}(\log(e+1/r))^{\beta}$ for a > 0 and $\beta \in \mathbf{R}$. Let X be a non-doubling metric measure space. Assume that $(\rho\mu)$ holds. If $1 \le \kappa < \min\{\tau(1-1/\sigma) - 1/\sigma, \iota_2\}$, then there exists a constant C > 0 such that

$$\left|I_{\rho,\tau}f(x) - I_{\rho,\tau}f(z)\right| \le C\left\{d(x,z)^{\eta_1} + |\alpha(x) - \alpha(z)|\right\}$$

for all $x, z \in X$ and measurable functions f on X with $||f||_{L^{p(\cdot),\nu(\cdot),\kappa}(X)} \leq 1$.

The following corollary is the doubling metric measure case of Corollary 5.3.

Corollary 5.9. Let $\rho(x,r) = r^{\alpha(x)} (\log(e+1/r))^{\beta}$ for $\beta \in \mathbf{R}$. Let X be a doubling metric measure space. Assume that $(\rho\mu)$ holds. Suppose

$$\inf_{x \in X} (\nu(x) - \alpha(x)p(x)) > 0, \quad \inf_{x \in X} (\nu(x) - (\alpha(x) + \theta - \eta_2)p(x)) > 0$$

and

$$\inf_{x \in X} ((\alpha(x) + \theta)p(x) - \nu(x)) > 0.$$

Further suppose

$$\inf_{x \in X} (\nu(x) - (\alpha(x) - \eta_2)q(x)) > 0 \quad and \quad \inf_{x \in X} (\alpha(x)q(x) - \nu(x)) > 0.$$

Then there exists a constant C > 0 such that

$$\begin{aligned} &|b(x)I_{\rho,1}f(x) - b(z)I_{\rho,1}f(z)| \\ &\leq C\Big[\big(\psi_4(x,z) + \psi_5(x,z) + \min\big\{d(x,z)^{\eta_1 - \eta_2}\psi_4(x,z), d(x,z)^{\eta_1 - \eta_2}\psi_5(x,z)\big\} \big) \\ &\times \big(\log(e + 1/d(x,z))\big)^{\beta} + |\alpha(x) - \alpha(z)| \Big] \end{aligned}$$

for all $x, z \in X$ and measurable functions f on X with $||f||_{L^{\Phi,\nu(\cdot),1}(X)} \leq 1$.

The following corollary is the doubling metric measure case of Corollary 5.6.

Corollary 5.10. Let $\rho(x,r) = r^{\alpha(x)}e^{-a/r}(\log(e+1/r))^{\beta}$ for a > 0 and $\beta \in \mathbf{R}$. Let X be a doubling metric measure space. Assume that $(\rho\mu)$ holds. Then there exists a constant C > 0 such that

$$|b(x)I_{\rho,1}f(x) - b(z)I_{\rho,1}f(z)| \le C\{d(x,z)^{\theta} + d(x,z)^{\eta_1} + |\alpha(x) - \alpha(z)|\}$$

for all $x, z \in X$ and measurable functions f on X with $||f||_{L^{\Phi,\nu(\cdot),1}(X)} \leq 1$.

Acknowledgments

We would like to express our deep thanks to the referee for carefully reading the manuscript and giving kind comments and useful suggestions.

References

- P. Baroni, M. Colombo and G. Mingione, *Regularity for general functionals with double phase*, Calc. Var. Partial Differential Equations 57 (2018), no. 2, Paper No. 62, 48 pp.
- [2] A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics 17, European Mathematical Society (EMS), Zürich, 2011.
- [3] S.-S. Byun and H.-S. Lee, Calderón-Zygmund estimates for elliptic double phase problems with variable exponents, J. Math. Anal. Appl. 501 (2021), no. 1, Paper No. 124015, 31 pp.
- [4] S.-S. Byun, S. Liang and S. Zheng, Nonlinear gradient estimates for double phase elliptic problems with irregular double obstacles, Proc. Amer. Math. Soc. 147 (2019), no. 9, 3839–3854.

- [5] M. Colombo and G. Mingione, *Regularity for double phase variational problems*, Arch. Ration. Mech. Anal. **215** (2015), no. 2, 443–496.
- [6] _____, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), no. 1, 219–273.
- [7] Eridani, H. Gunawan and E. Nakai, On generalized fractional integral operators, Sci. Math. Jpn. 60 (2004), no. 3, 539–550.
- [8] C. De Filippis and G. Palatucci, Hölder regularity for nonlocal double phase equations, J. Differential Equations 267 (2019), no. 1, 547–586.
- [9] H. Gunawan, A note on the generalized fractional integral operators, J. Indones. Math. Soc. 9 (2003) no. 1, 39–43.
- [10] D. Hashimoto, Y. Sawano and T. Shimomura, Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces over quasi-metric measure spaces, Colloq. Math. 161 (2020), no. 1, 51–66.
- [11] L. Liu, Y. Sawano and D. Yang, Morrey-type spaces on Gauss measure spaces and boundedness of singular integrals, J. Geom. Anal. 24 (2014), no. 2, 1007–1051.
- [12] F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137 (2013), no. 1, 76–96.
- [13] _____, Sobolev's inequality for double phase functionals with variable exponents, Forum Math. **31** (2019), no. 2, 517–527.
- [14] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, *Riesz potentials and Sobolev embed*dings on Morrey spaces of variable exponents, Complex Var. Elliptic Equ. 56 (2011), no. 7-9, 671–695.
- [15] _____, Campanato-Morrey spaces for the double phase functionals, Rev. Mat. Complut. 33 (2020), no. 3, 817–834.
- [16] _____, Campanato-Morrey spaces for the double phase functionals with variable exponents, Nonlinear Anal. 197 (2020), 111827, 19 pp.
- [17] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's theorem for double phase functionals, Math. Inequal. Appl. 23 (2020), no. 1, 17–33.
- [18] Y. Mizuta, T. Shimomura and T. Sobukawa, Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces, Osaka J. Math. 46 (2009), no. 1, 255–271.

- [19] C. B. Morrey, Jr, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126–166.
- [20] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics 1034, Springer-Verlag, Berlin, 1983.
- [21] E. Nakai, On generalized fractional integrals, Taiwanese J. Math. 5 (2001), no. 3, 587–602.
- [22] T. Ohno and T. Shimomura, Sobolev inequalities for Riesz potentials of functions in L^{p(.)} over nondoubling measure spaces, Bull. Aust. Math. Soc. **93** (2016), no. 1, 128–136.
- [23] _____, Continuity of generalized Riesz potentials for double phase functionals, Math. Inequal. Appl. 24 (2021), no. 3, 715–723.
- [24] _____, Continuity of generalized Riesz potentials for double phase functionals with variable exponents, Glas. Mat. Ser. III 56(76) (2021), no. 2, 329–341.
- [25] _____, Generalized fractional integral operators on variable exponent Morrey spaces of an integral form, Acta Math. Hungar. 167 (2022), no. 1, 201–214.
- [26] M. A. Ragusa and A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020), no. 1, 710–728.
- [27] Y. Sawano, M. Shigematsu and T. Shimomura, Generalized Riesz potentials of functions in Morrey spaces L^(1,φ;κ)(G) over non-doubling measure spaces, Forum Math. 32 (2020), no. 2, 339–359.
- [28] Y. Sawano and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents, Collect. Math. 64 (2013), no. 3, 313–350.
- [29] _____, Predual spaces of generalized grand Morrey spaces over non-doubling measure spaces, Georgian Math. J. 27 (2020), no. 3, 433–439.
- [30] Y. Sawano, T. Shimomura and H. Tanaka, A remark on modified Morrey spaces on metric measure spaces, Hokkaido Math. J. 47 (2018), no. 1, 1–15.
- [31] Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1535–1544.
- [32] I. Sihwaningrum, H. Gunawan and E. Nakai, Maximal and fractional integral operators on generalized Morrey spaces over metric measure spaces, Math. Nachr. 291 (2018), no. 8-9, 1400–1417.

[33] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675–710.

Takao Ohno

Faculty of Education, Oita University, Dannoharu Oita-city 870-1192, Japan *E-mail address*: t-ohno@oita-u.ac.jp

Tetsu Shimomura

Department of Mathematics, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima 739-8524, Japan *E-mail address*: tshimo@hiroshima-u.ac.jp