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On Derangement Polynomials of Type D

Chak-On Chow

Abstract. Enumeration of derangements in the symmetric group Sn is classical. Ex-

tensions of the enumerative results to the hyperoctahedral group Bn are combinatori-

ally sound. That in the even-signed permutation groupDn remains largely unexplored.

Let dDn (q) =
∑

σ∈DD
n
qmaj(σ) be the generating function of derangements inDn by their

major indices. We study in this work properties of dDn (q), including recurrence rela-

tions and factorial generating function. By proving the ratio monotonicity of dDn (q),

the unimodality, log-concavity and spiral property of dDn (q) are also established.

1. Introduction

Enumeration of derangements in the symmetric group Sn is classical. The formula of the

classical derangement numbers is readily obtained by a routine application of the princi-

ple of inclusion-exclusion [13, Chapter 2]. Enumeration of n-derangements by a certain

permutation statistic is also well studied. Notable developments along this direction in-

clude Brenti [1] and Wachs [14], which enumerates n-derangements by their excedances

and major indices, respectively.

Extensions of the enumerative results to other families of groups are combinatorially

sound. For instance, Chow [5] enumerates derangements in the hyperoctahedral group

Bn by their flag major indices; Chow [7], and Chen et al. [3] independently enumerate

derangements in Bn by their number of excedances; Chow [6] enumerates multiderange-

ments by their excedances; Chow and Mansour [8] enumerate derangements in the wreath

product Cr ≀Sn by their number of excedances. See Section 2 for undefined terms.

Since the symmetric group Sn and the hyperoctahedral group Bn are Coxeter groups

of types A and B, respectively, from the Coxeter group theoretic point of view, the next

direction of development is to count derangements in the even-signed permutation group

Dn. However, unlike the types A and B cases, the type D case remains largely unexplored

even in purely counting the number of type D derangements. This is even so in q-counting

even-signed derangements because natural type D permutation statistics are unavailable

in the literature.
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This paper is the first of a series on derangement polynomials of type D. The purpose

of the present work is to fill in a basic piece in the enumerative theory of type D derange-

ments. By q-counting derangements in Dn by their major indices, we obtain properties

of the type D derangement polynomial dDn (q) :=
∑

σ∈DD
n
qmaj(σ), including recurrence

relations and factorial generating function. By letting q → 1, results of plain counting

even-signed derangements so obtained allow us to exhibit and contrast certain features of

the type D theory with the types A and B counterparts.

Studies of other properties of derangement polynomials are available in the literature.

In a study of q-analogue of the principle of inclusion-exclusion, Chen and Rota [2] proved

that the unsigned derangement polynomial dn(q) :=
∑

σ∈Dn
qmaj(σ), which was shown by

Wachs [14] to be expressible as [n]q!
∑n

k=0(−1)kq(
k
2)/[k]q!, is unimodal for all n and posed

the following conjecture.

Conjecture 1.1. The maximum coefficient appearing in the derangement polynomial

dn(q) is that of q⌈n(n−1)/4⌉, where ⌈x⌉ denotes the smallest integer ≥ x.

By listing the coefficients of dn(q) spirally away from that of q⌈n(n−1)/4⌉, and by showing

the resulting list of coefficients being weakly decreasing, Zhang [15] settled Conjecture 1.1

in the affirmative. The spirally listed coefficients being weakly decreasing is termed the

spiral property.

Chen and Xia [4] later introduced the notion of ratio monotonicity of positive se-

quences, and proved this property of the coefficients of dn(q). The ratio monotonicity

then implies the spiral property and log-concavity, the latter property in turn implies uni-

modality. It is important to note that the orientation of the spiral in the sense of Chen

and Xia is opposite to that of Zhang, and has become the standard for later publications,

we shall adhere to this standard in the sequel. See Example 4.2.

The log-concavity of the coefficients of the nth typeB derangement polynomial dBn (q) :=∑
σ∈DB

n
qfmaj(σ) is recently proved by Liu and Du [11], thus yielding a proved weaker type

B version of Conjecture 1.1, weaker in the sense that only unimodality is deduced, the

exact location of the maximum coefficient is not asserted.

As dDn (q) resembles dn(q), by proving the ratio monotonicity of the coefficients of

dDn (q), we are able to deduce the spiral property, log-concavity and unimodality of them.

The organization of this paper is as follows. In the next section, we gather some

notations and preliminary results which will be needed in the subsequent sections. In

Section 3, we introduce the type D derangement polynomial dDn (q); by utilising a result

of Foata and Han [9], we q-count derangements in Dn by their major indices. By letting

q → 1, the q-counting results specialize to results of plain counting derangements in Dn.

In the final section, we prove the strict ratio monotonicity of the coefficients of dDn (q), and

deduce the unimodality, log-concavity and spiral property enjoyed by dDn (q).
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2. Notations and preliminaries

We collect in this section notations and results that will be needed in the sequel.

Let N, Z, Q and R denote, as usual, the sets of all non-negative integers, integers,

rational numbers and real numbers, respectively. Let n ∈ N. Denote by [n] the interval of

integers {1, 2, . . . , n} (in particular, [0] = ∅).
If S is a finite set, then its cardinality is denoted by #S.

Let n be a positive integer. Let Sn denote the symmetric group on n letters, which

is a Coxeter group of type A and of rank n − 1 generated by {s1, . . . , sn−1}, where for

i = 1, 2, . . . , n− 1, si = (i, i+ 1) is the simple transposition exchanging i and i+ 1. Any

element π of Sn is a permutation of length n represented by the word π(1)π(2) · · ·π(n).
Let Bn denote the nth hyperoctahedral group, which is a Coxeter group of type B

and of rank n generated by {sB0 , s1, . . . , sn−1}, where sB0 = (1, 1) is the sign change. Any

element π of Bn is a signed permutation satisfying π(−i) = −π(i) for all i ∈ [n] and

represented by the signed word π(1)π(2) · · ·π(n), where |π| := |π(1)||π(2)| · · · |π(n)| ∈ Sn.

Let Dn denote the nth even-signed permutation group, which is a Coxeter group of

type D and of rank n generated by {sD0 , s1, . . . , sn−1}, where sD0 = (1, 2) is the even-sign

change. An element π of Dn is a signed n-permutation such that #{i ∈ [n] : π(i) < 0} is

even. The representation of π as the signed word π(1)π(2) · · ·π(n) applies in the present

even-signed case.

Let σ be an n-permutation, signed or not. An integer i ∈ [n] is said to be a fixed point

of σ if σ(i) = i; σ is said to be a derangement if it has no fixed point. Denote by Dn, DB
n

and DD
n sets of derangements in Sn, Bn and Dn, respectively.

As far as Section 3 is concerned, we need several permutation statistics. An n-

permutation σ is said to have a (type A) descent at position i ∈ [n− 1] if σ(i) > σ(i+ 1).

The major index of σ is defined as

maj(σ) :=
n−1∑

i=1

iχ(σ(i) > σ(i+ 1)),

i.e., maj(σ) is the sum of all (type A) descents of σ, where χ(P ) = 1 or 0 depending on

whether the statement P is true or not. The number of negative letters of σ is defined as

N(σ) := #{i ∈ [n] : σ(i) < 0}.

The flag major index of σ is defined as

fmaj(σ) := 2maj(σ) +N(σ).

Let z and q be commuting indeterminates. For n ∈ N, define the q-integer and q-

factorial by

[n]q := 1 + q + · · ·+ qn−1 and [n]q! := [1]q[2]q · · · [n]q,
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respectively. Define the q-exponential E(z; q) by

E(z; q) :=
∑

n≥0

q(
n
2)zn

[n]q!
.

A result needed in Section 3 is the following:

(2.1)
∑

σ∈DB
n

qfmaj(σ)zN(σ) =
n∑

k=0

(−1)kq2(
k
2)(1 + zq)n−k [n]q2 !

[k]q2 !
,

due to Foata and Han [9].

Let a1, a2, . . . , an be a sequence of positive numbers. It is said to be unimodal if there

exists 1 ≤ j ≤ n such that ai ≤ ai+1 for i = 1, . . . , j − 1 and ai ≥ ai+1 for i = j, . . . , n− 1;

it is log-concave if a2k ≥ ak−1ak+1 holds for 1 < k < n; it is ratio monotone if

(2.2)
a1
an

≤ a2
an−1

≤ · · · ≤
a⌊n/2⌋
a⌈n/2⌉+1

≤ 1

and

(2.3)
an
a2

≤ an−1

a3
≤ · · · ≤

a⌊n/2⌋+2

a⌈n/2⌉
≤ 1

hold, where ⌊·⌋ and ⌈·⌉ denote the floor function and the ceiling function, respectively.

The sequence is strictly ratio monotone if all the inequalities are strict.

The chains of inequalities (2.2)–(2.3) involve approximately half of the sequence. One

can bundle up to involve the whole sequence, as follows.

Proposition 2.1. If a sequence a1, a2, . . . , an of positive numbers is ratio monotone, then

(2.4)
a1
an

≤ a2
an−1

≤ · · · ≤ an
a1

and

(2.5)
an
a2

≤ an−1

a3
≤ · · · ≤ a2

an

hold.

Proof. First note that ⌈n/2⌉ = ⌊n/2⌋ + χ(n odd). Consider the odd n case. Taking

reciprocals of (2.2), we have

a⌈n/2⌉
a⌊n/2⌋+1

= 1 ≤
a⌈n/2⌉+1

a⌊n/2⌋
≤ · · · ≤ an−1

a2
≤ an

a1
.

By chaining up (2.2) and the preceding chain of inequalities, (2.4) follows. Proofs of the

even n case and that of (2.5), being similar, are omitted.
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3. A class of type D derangement polynomials

In this section, we q-count even-signed n-derangements by their major indices.

Towards this end, we define the type D derangement polynomial by

dDn (q) =
∑

σ∈DD
n

qmaj(σ), n = 1, 2, . . . .

The first few non-trivial members of dDn (q) are as follows:

dD1 (q) = 0,

dD2 (q) = 1 + 2q,

dD3 (q) = 2 + 5q + 5q2 + 2q3,

dD4 (q) = 4 + 14q + 24q2 + 29q3 + 25q4 + 15q5 + 6q6,

dD5 (q) = 8 + 36q + 84q2 + 142q3 + 192q4 + 214q5 + 197q6 + 149q7 + 91q8 + 41q9 + 10q10,

dD6 (q) = 16 + 88q + 256q2 + 540q3 + 924q4 + 1352q5 + 1730q6 + 1956q7 + 1970q8

+ 1768q9 + 1405q10 + 977q11 + 583q12 + 285q13 + 103q14 + 22q15,

dD7 (q) = 32 + 208q + 720q2 + 1800q3 + 3648q4 + 6352q5 + 9812q6 + 13692q7 + 17456q8

+ 20480q9 + 22210q10 + 22316q11 + 20778q12 + 17888q13 + 14182q14

+ 10285q15 + 6749q16 + 3939q17 + 1985q18 + 819q19 + 249q20 + 42q21.

It is readily observed from the above list that for each n ≥ 4, the sequence of coefficients

of dDn (q) has a single peak.

Theorem 3.1. We have

(i) for n ≥ 1, dDn (q) =
n∑

k=0

(−1)kq(
k
2)2n−1−k [n]q!

[k]q!
+

(−1)nq(
n
2)

2
;

(ii) for n ≥ 2, dDn (q) = 2[n]qd
D
n−1(q) + (−1)nq(

n−1
2 )([n]q + qn−1

)
;

(iii) 2 +
∑

n≥1

dDn (q
2)un

[2]q[4]q · · · [2n− 2]q[n]q
=

(1 + q − u)E
( −u
1+q ; q

2
)

1 + q − 2u
+

(1 + q − uq)E
(−uq
1+q ; q

2
)

1 + q − 2uq
;

(iv) for n ≥ 2,

dDn+1(q) =

(
[n]q(2[n+ 1]q + qn−1)

[n]q + qn−1

)
dDn (q) +

(
2qn−1[n]q([n+ 1]q + qn)

[n]q + qn−1

)
dDn−1(q).

Proof. It is clear that DB
n = DD

n ∪DD
n , where D

D
n = {σ ∈ DB

n : N(σ) ≡ 1 (mod 2)}. Since
fmaj(σ) = 2maj(σ) +N(σ), the identity (2.1) can be written as

∑

σ∈DD
n

q2maj(σ)(qz)N(σ) +
∑

σ∈DD
n

q2maj(σ)(qz)N(σ) =
n∑

k=0

(−1)kq2(
k
2)(1 + zq)n−k [n]q2 !

[k]q2 !
.
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Setting z = −q−1 yields

(3.1)
∑

σ∈DD
n

q2maj(σ) −
∑

σ∈DD
n

q2maj(σ) = (−1)nq2(
n
2);

setting z = q−1 then yields

(3.2)
∑

σ∈DD
n

q2maj(σ) +
∑

σ∈DD
n

q2maj(σ) =

n∑

k=0

(−1)kq2(
k
2)2n−k [n]q2 !

[k]q2 !
.

Summing (3.1) and (3.2), we get

(3.3)
∑

σ∈DD
n

q2maj(σ) =
n∑

k=0

(−1)kq2(
k
2)2n−1−k [n]q2 !

[k]q2 !
+

(−1)nq2(
n
2)

2
.

Replacing q2 by q, (i) follows.

From (i), we have

dDn (q) = 2[n]q

(
n−1∑

k=0

(−1)kq(
k
2)2n−2−k [n− 1]q!

[k]q!
+

(−1)n−1q(
n−1
2 )

2

)

+ (−1)nq(
n−1
2 )[n]q + (−1)nq(

n
2)

= 2[n]qd
D
n−1(q) + (−1)nq(

n−1
2 )([n]q + qn−1

)
,

which is (ii).

(iii) Pulling out the last summand on the right side of (3.3), followed by replacing k

by n− k, we get

∑

σ∈DD
n

q2maj(σ) =
n∑

k=1

(−1)n−kq2(
n−k
2 )2k−1 [n]q2 !

[n− k]q2 !
+ (−1)nq2(

n
2).

Multiplying the above identity by un/([2]q[4]q · · · [2n− 2]q[n]q), followed by summing over

n ≥ 1, we get

∑

n≥1

un
∑

σ∈DD
n
q2maj(σ)

[2]q[4]q · · · [2n− 2]q[n]q

=
∑

n≥1

un

[2]q[4]q · · · [2n− 2]q[n]q

(
n∑

k=1

(−1)n−kq2(
n−k
2 )2k−1 [n]q2 !

[n− k]q2 !
+ (−1)nq2(

n
2)

)

= I + II,

where

II =
∑

n≥1

(−u)nq2(
n
2)

[2]q[4]q · · · [2n− 2]q[n]q
=
∑

n≥1

(1 + qn)
( −u
1+q

)n
q2(

n
2)

[n]q2 !

= E

( −u

1 + q
; q2
)
+ E

( −uq

1 + q
; q2
)
− 2,
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and

I =
∑

n≥1

un

[2]q[4]q · · · [2n− 2]q[n]q

n∑

k=1

(−1)n−kq2(
n−k
2 )2k−1 [n]q2 !

[n− k]q2 !

=
∑

n≥1

(1 + qn)
(

u
1+q

)n

[n]q2 !

n∑

k=1

(−1)n−kq2(
n−k
2 )2k−1 [n]q2 !

[n− k]q2 !

=
u

1 + q

∑

k≥1

(
2u

1 + q

)k−1∑

n≥k

( −u
1+q

)n−k
q2(

n−k
2 )

[n− k]q2 !

+
uq

1 + q

∑

k≥1

(
2uq

1 + q

)k−1∑

n≥k

(−uq
1+q

)n−k
q2(

n−k
2 )

[n− k]q2 !

=
uE
( −u
1+q ; q

2
)

1 + q − 2u
+

uqE
(−uq
1+q ; q

2
)

1 + q − 2uq
.

Consequently,

2 +
∑

n≥1

un
∑

σ∈DD
n
q2maj(σ)

[2]q[4]q · · · [2n− 2]q[n]q

=
uE
( −u
1+q ; q

2
)

1 + q − 2u
+

uqE
(−uq
1+q ; q

2
)

1 + q − 2uq
+ E

( −u

1 + q
; q2
)
+ E

( −uq

1 + q
; q2
)

=
(1 + q − u)E

( −u
1+q ; q

2
)

1 + q − 2u
+

(1 + q − uq)E
(−uq
1+q ; q

2
)

1 + q − 2uq
,

which is (iii).

From (ii), we have

dDn+1(q)

q(
n
2)
(
[n+ 1]q + qn

) =
2[n+ 1]qd

D
n (q)

q(
n
2)
(
[n+ 1]q + qn

) + (−1)n+1,

dDn (q)

q(
n−1
2 )([n]q + qn−1

) =
2[n]qd

D
n−1(q)

q(
n−1
2 )([n]q + qn−1

) + (−1)n,

whose sum can be simplified to yield

dDn+1(q) =

(
[n]q(2[n+ 1]q + qn−1)

[n]q + qn−1

)
dDn (q) +

(
2qn−1[n]q([n+ 1]q + qn)

[n]q + qn−1

)
dDn−1(q),

which is (iv).

In Theorem 3.1(i), for 0 ≤ k ≤ n, the kth summand (−1)kq(
k
2)2n−1−k[k + 1]q[k +

2]q · · · [n]q is a polynomial in q of degree
(
k
2

)
+
∑n−1

i=k i =
(
n
2

)
. Amongst the elements of

DD
n , the maximal major index

(
n
2

)
is attained by 12 · · ·n ∈ DD

n when n is even, and by

213 · · ·n ∈ DD
n when n is odd.
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Comparing Theorem 3.1(iii), namely

2 +
∑

n≥1

dDn (q
2)

un

[2]q[4]q · · · [2n− 2]q[n]q
=

(1 + q − u)E
( −u
1+q ; q

2
)

1 + q − 2u

+
(1 + q − uq)E

(−uq
1+q ; q

2
)

1 + q − 2uq
,

(3.4)

to the corresponding type B result [5, Theorem 5(ii)]:

∑

n≥0

dBn (q)
un

[2]q[4]q · · · [2n]q
=

E
( −u
1+q ; q

2
)

1− u
,

where dBn (q) =
∑

σ∈DB
n
qfmaj(σ), the right side of (3.4) bifurcates into a sum of two terms.

An explanation of this bifurcation is as follows.

With the help of Mathematica, we see that the expansion of the first term reads

(1 + q − u)E
( −u
1+q ; q

2
)

1 + q − 2u
= 1 + (1 + 2q2)

(
u

1+q

)2

[2]q2 !
+ (2 + 5q2 + 5q4 + 2q6)

(
u

1+q

)3

[3]q2 !

+ (4 + 14q2 + 24q4 + 29q6 + 25q8 + 15q10 + 6q12)

(
u

1+q

)4

[4]q2 !
+ · · ·

= 1 + dD2 (q
2)

(
u

1+q

)2

[2]q2 !
+ dD3 (q

2)

(
u

1+q

)3

[3]q2 !
+ dD4 (q

2)

(
u

1+q

)4

[4]q2 !
+ · · · ;

the expansion of the second term is the same as that of the first term with uq in place of

u. Since [2k]q = (1 + q)[k]q2 and (1 + qn)[n]q = (1 + q)[n]q2 , summing those two terms

(1 + q − u)E
( −u
1+q ; q

2
)

1 + q − 2u
+

(1 + q − uq)E
(−uq
1+q ; q

2
)

1 + q − 2uq
= 2 +

∑

n≥2

dDn (q
2)

(
u

1+q

)n
(1 + qn)

[n]q2 !

results in cancellation of “2” in the factor [2n]q = (1 + q)[n]q2 in the denominator of the

summands.

Theorem 3.1(i) can also be written as

(Theorem 3.1(i)′) dDn (q) = 2n−1[n]q!
n−1∑

k=0

(−1)kq(
k
2)

2k[k]q!
+ (−1)nq(

n
2).

For n ≥ 1, let dDn := #DD
n be the nth type D derangement number. Note that D1 consists

of the identity permutation of length 1 only so that DD
1 = ∅ and dD1 = 0. It is immediate

to see that as q → 1, Theorem 3.1 specializes to the counterparts of Theorem 3.2.

Theorem 3.2. The following results hold:
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(i) for n ≥ 1, dDn = 2n−1n!

n−1∑

k=0

(−1)k

2kk!
+ (−1)n;

(ii) for n ≥ 1, dDn = 2ndDn−1 + (−1)n(n+ 1);

(iii) dD(u) := 2 +
∑

n≥1

dDn
un

2n−1n!
=

(2− u)e−u/2

1− u
;

(iv) for n ≥ 1, dDn+1 =

(
n(2n+ 3)

n+ 1

)
dDn +

(
2n(n+ 2)

n+ 1

)
dDn−1;

(v) for n ≥ 1, 2n−1n! =

n∑

k=0

(
n

k

)
dDk ;

(vi) dD(u) satisfies the following linear first order ordinary differential equation

2(u− 1)(u− 2)(dD)′(u) + u(u− 3)dD(u) = 0

in Q[[u]];

(vii) for n ≥ 2, dDn+1 = 3ndDn + (5− 2n)ndDn−1 − 2(n− 1)ndDn−2.

Proof. As q → 1, Theorem 3.1(i)′ specializes to (i), and Theorem 3.1(ii)–(iv) specialize to

(ii)–(iv), respectively.

Denote by Dn,k the set of all elements of Dn having k fixed points. Then Dn =⋃n
k=0Dn,k, where the union is disjoint. Let σ ∈ Dn,k. The subword of fixed points of σ

can be chosen in
(
n
k

)
ways, and the non-fixed point subword is an even-signed derangement

of length n− k. Hence, 2n−1n! =
∑n

k=0

(
n
k

)
dDn−k and (v) follows.

By logarithmic differentiation of dD(u), we have

(dD)′(u)
dD(u)

=
d

du
ln

(
(2− u)e−u/2

1− u

)
= − u(u− 3)

2(u− 1)(u− 2)

from which (vi) follows.

Substituting dD(u) = 2 +
∑

n≥1 d
D
n u

n/2n−1n! and

(dD)′(u) =
∑

n≥1

dDn
un−1

2n−1(n− 1)!
=
∑

n≥0

dDn+1

un

2nn!

into (vi), followed by extracting the coefficient of un, (vii) follows.

Some comments on Theorem 3.2 are in order. The formula of dDn in Theorem 3.2(i)

resembles its type B counterpart, namely

dBn = 2nn!
n∑

k=0

(−1)k

2kk!
.
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Theorem 3.2(iv) and (vii) are new in the sense that dDn satisfies a four-term recurrence

relation with integral coefficients, of which some are negative, and that dDn also satisfies

a three-term recurrence relation but with rational coefficients! These two properties are

absent in the types A and B derangement theories.

Theorem 3.2(iv) is the type D analogue of a recurrence relation for the classical de-

rangement number dn := n!
∑n

k=0(−1)k/k!, namely

dn+1 = n(dn + dn−1),

which follows by eliminating (−1)n+1 from the other recurrences

dn+1 = (n+ 1)dn + (−1)n+1 and dn = ndn−1 + (−1)n

satisfied by dn.

Values of the first ten members of dDn are

dD1 = 0, dD2 = 3, dD3 = 14, dD4 = 117, dD5 = 1164, dD6 = 13975,

dD7 = 195642, dD8 = 3130281, dD9 = 56345048, dD10 = 1126900971,

which happen to be the first 10 numbers of direct isometries that are derangements of the

(n−1)-dimensional facets of an n-cube [10], registered as sequence A161936 at OEIS [12].

This suggests that geometric interpretation of dDn is a possible direction for development.

4. Ratio monotonicity of dDn (q) and consequences

The goal of this section is to prove the (strict) ratio monotonicity of the coefficients (see

Theorem 4.8), hence deducing the unimodality, log-concavity and spiral property, of dDn (q).

A few little lemmas are needed for the proof of the main theorem. The next lemma is

similar to [4, Lemma 2.3]. We provide below a slick proof of it.

Lemma 4.1. For positive numbers c0, c1, . . . , ck+1, d0, d1, . . . , dk+1 satisfying

d0
c0

<
d1
c1

< · · · < dk
ck

<
dk+1

ck+1
,

there hold

(a)

∑k
i=1 di∑k
i=1 ci

<

∑k+1
i=1 di∑k+1
i=1 ci

, (b)

∑k
i=1 di∑k
i=1 ci

<

∑k+1
i=2 di∑k+1
i=2 ci

, (c)

∑k
i=1 di∑k
i=0 ci

<

∑k+1
i=1 di∑k+1
i=0 ci

.

Proof. (a) follows from

∑k+1
i=1 di∑k+1
i=1 ci

−
∑k

i=1 di∑k
i=1 ci

=
ck+1

(dk+1

ck+1

∑k
i=1 ci −

∑k
i=1 di

)
∑k+1

i=1 ci
∑k

i=1 ci
>

ck+1

(
dk
ck

∑k−1
i=1 ci −

∑k−1
i=1 di

)
∑k+1

i=1 ci
∑k

i=1 ci

> · · · >
ck+1

(
d2
c2
c1 − d1

)
∑k+1

i=1 ci
∑k

i=1 ci
> 0,
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(b) from

∑k+1
i=2 di∑k+1
i=2 ci

−
∑k

i=1 di∑k
i=1 ci

=
(dk+1c1 − ck+1d1) +

(
dk+1

∑k
i=2 ci − ck+1

∑k
i=2 di

)
+
(
c1
∑k

i=2 di − d1
∑k

i=2 ci
)

∑k+1
i=2 ci

∑k
i=1 ci

> 0,

where the positivity of successive terms of the numerator follows from the assumption,

and from the same approach in (a), and (c) from

∑k+1
i=1 di∑k+1
i=0 ci

−
∑k

i=1 di∑k
i=0 ci

=

(
dk+1

∑k
i=1 ci − ck+1

∑k
i=1 di

)
+ c0dk+1∑k+1

i=0 ci
∑k

i=0 ci
> 0.

Example 4.2. By listing the coefficients of dD4 (q) = 4+14q+24q2+29q3+25q4+15q5+6q6

spirally, we get the chain of (strict) inequalities

4 < 6 < 14 < 15 < 24 < 25 < 29,

and this defines the (strict) spiral property of the coefficients of dD4 (q). The chains of

inequalities (2.2)–(2.3) in this case are 4
6 < 14

15 < 24
25 < 1 and 6

14 < 15
24 < 25

29 < 1, thus

showing the coefficients of dD4 (q) being strictly ratio monotone. The chains of inequali-

ties (2.4)–(2.5) in this case are

4

6
<

14

15
<

24

25
<

29

29
<

25

24
<

15

14
<

6

4
and

6

14
<

15

24
<

25

29
<

29

25
<

24

15
<

14

6
,

which also hold.

10 C.-O. CHOW

Proof. (a) follows from

∑k+1
i=1 di∑k+1
i=1 ci

−
∑k

i=1 di∑k
i=1 ci

=
ck+1

(dk+1

ck+1

∑k
i=1 ci −

∑k
i=1 di

)
∑k+1

i=1 ci
∑k

i=1 ci
>

ck+1

(
dk
ck

∑k−1
i=1 ci −

∑k−1
i=1 di

)
∑k+1

i=1 ci
∑k

i=1 ci

> · · · >
ck+1

(
d2
c2
c1 − d1

)
∑k+1

i=1 ci
∑k

i=1 ci
> 0,

(b) from
∑k+1

i=2 di∑k+1
i=2 ci

−
∑k

i=1 di∑k
i=1 ci

=
(dk+1c1 − ck+1d1) + (dk+1

∑k
i=2 ci − ck+1

∑k
i=2 di) + (c1

∑k
i=2 di − d1

∑k
i=2 ci)∑k+1

i=2 ci
∑k

i=1 ci
> 0,

where the positivity of successive terms of the numerator follows from the assumption, and
from the same approach in (a), and (c) from

∑k+1
i=1 di∑k+1
i=0 ci

−
∑k

i=1 di∑k
i=0 ci

=
(dk+1

∑k
i=1 ci − ck+1

∑k
i=1 di) + c0dk+1∑k+1

i=0 ci
∑k

i=0 ci
> 0.

�

Example 6. By listing the coefficients of dD4 (q) = 4 + 14q + 24q2 + 29q3 + 25q4 + 15q5 + 6q6

spirally,

4 14 24 29 25 15 6

we get the chain of (strict) inequalities

4 < 6 < 14 < 15 < 24 < 25 < 29,

and this defines the (strict) spiral property of the coefficients of dD4 (q). The chains of in-
equalities (2)–(3) in this case are 4

6
< 14

15
< 24

25
< 1 and 6

14
< 15

24
< 25

29
< 1, thus showing the

coefficients of dD4 (q) being strictly ratio monotone. The chains of inequalities (4)–(5) in this
case are

4
6
< 14

15
< 24

25
< 29

29
< 25

24
< 15

14
< 6

4
, and 6

14
< 15

24
< 25

29
< 29

25
< 24

15
< 14

6
,

which also hold. �

Example 7. Listing the coefficients of dD5 (q) spirally, we have

8 < 10 < 36 < 41 < 84 < 91 < 142 < 149 < 192 < 197 < 214,

Figure 4.1

Example 4.3. Listing the coefficients of dD5 (q) spirally, we have

8 < 10 < 36 < 41 < 84 < 91 < 142 < 149 < 192 < 197 < 214,

i.e., the coefficients of dD5 (q) enjoy the strict spiral property. The chains of inequali-

ties (2.2)–(2.3) in this case are

8

10
<

36

41
<

84

91
<

142

149
<

192

197
< 1 and

10

36
<

41

84
<

91

142
<

149

192
<

197

214
< 1,
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i.e., the coefficients of dD5 (q) are strictly ratio monotone. The chains of inequalities (2.4)–

(2.5) in this case are

8

10
<

36

41
<

84

91
<

142

149
<

192

197
<

214

214
<

197

192
<

149

142
<

91

84
<

41

36
<

10

8
,

10

36
<

41

84
<

91

142
<

149

192
<

197

214
<

214

197
<

192

149
<

142

91
<

84

41
<

36

10
,

respectively, which also hold.

Interested readers can verify that dD6 (q) and dD7 (q) listed at the beginning of Section 3

also enjoy the strict spiral property. Write dDn (q) =
∑δn

k=0 cn,kq
k, where δn =

(
n
2

)
. Explicit

formulas of certain cn,k’s are obtainable by analyzing Theorem 3.1(i).

Lemma 4.4. For n ≥ 4, we have

cn,0 = 2n−2, cn,1 = 2n−3(2n− 1), cn,2 = 2n−3(n2 − 4),

cn,3 =
2n−4

3
(2n3 + 3n2 − 23n+ 3),

cn,δn−3 =
1

81

[
2n−3(−73− 192n− 18n2 + 36n3) + (−1)n+1

]
,

cn,δn−2 =
1

27

[
2n−2(18n2 − 24n− 23) + (−1)n+1

]
,

cn,δn−1 =
1

9

[
2n−1(6n− 7) + (−1)n+1

]
,

cn,δn =
2

3

[
(−1)n + 2n−1

]
.

Proof. Consider cn,2. Since for 0 ≤ k ≤ n, the kth summand (−1)kq(
k
2)2n−1−k[k+ 1]q[k+

2]q · · · [n]q of dDn (q) is a polynomial in q with lowest order term (−1)kq(
k
2)2n−1−k, only the

first three summands contribute the monomial q2, whose coefficient is

2n−1

[(
n− 1

2

)
+

(
n− 2

1

)]
− 2n−2

[(
n− 1

2

)
+

(
n− 2

1

)]
+ 2n−3

(
n− 2

1

)

= 2n−3(n2 − 4).

Formulas of other coefficients are derived in a similar manner, whose details are omitted.

Lemma 4.5. For n ≥ 4, we have

cn+1,k =





2
∑k

i=0 cn,i for 0 ≤ k ≤ n,

2
∑k

i=k−n cn,i for n+ 1 ≤ k ≤ δn − 1,

2
∑δn

i=k−n cn,i + (−1)n+1 for δn ≤ k ≤ δn+1 − 1,

2cn,δn + 2(−1)n+1 for k = δn+1.
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Proof. Theorem 3.1(ii) with n+ 1 in place of n reads

dDn+1(q) = 2[n+ 1]qd
D
n (q) + (−1)n+1q(

n
2)
(
[n+ 1]q + qn

)

= 2
n∑

j=0

δn∑

i=0

cn,iq
i+j + (−1)n+1qδn(1 + q + · · ·+ qn−1 + 2qn).

The lemma then follows from equating the coefficients of qk on both sides.

Lemma 4.6. If the coefficients cn,0, cn,1, . . . , cn,δn of dDn (q) satisfy

cn,0
cn,δn

<
cn,1

cn,δn−1
< · · · < cn,δn

cn,0
and

cn,δn
cn,1

<
cn,δn−1

cn,2
< · · · < cn,1

cn,δn
,

there also hold

c̃n,0
c̃n,δn

<
c̃n,1

c̃n,δn−1
< · · · < c̃n,δn

c̃n,0
and

c̃n,δn
c̃n,1

<
c̃n,δn−1

c̃n,2
< · · · < c̃n,1

c̃n,δn
,

where c̃n,k := 2cn,k for k = 0, 1, . . . , δn − 1 and c̃n,δn := 2cn,δn ± 1.

Proof. It is clear that

c̃n,1
c̃n,δn−1

<
c̃n,2

c̃n,δn−2
< · · · < c̃n,δn−1

c̃n,1
and

c̃n,δn−1

c̃n,2
<

c̃n,δn−2

c̃n,3
< · · · < c̃n,2

c̃n,δn−1

hold. It remains to check that

c̃n,0
c̃n,δn

<
c̃n,1

c̃n,δn−1
and

c̃n,δn
c̃n,1

<
c̃n,δn−1

c̃n,2
,

which follow from

c̃n,1
c̃n,δn−1

− c̃n,0
c̃n,δn

=
2n−2(2n− 1)

2
9 [2

n−1(6n− 7) + (−1)n+1]
− 2n−1

4
3 [(−1)n + 2n−1]± 1

=
2n−3[3 · 2n+1 + (−1)n(18n− 6)± 3

4(18n− 9)]

[2n−1(6n− 7) + (−1)n+1][(−1)n + 2n−1 ± 3
4 ]

> 0,

c̃n,δn−1

c̃n,2
− c̃n,δn

c̃n,1
=

2
9 [2

n−1(6n− 7) + (−1)n+1]

2n−2(n2 − 4)
−

4
3 [(−1)n + 2n−1 ± 3

4 ]

2n−2(2n− 1)

=
2n−1(6n2 − 20n+ 31) + (−1)n+1(6n2 + 2n− 25)∓ 9

2(n
2 − 4)

9 · 2n−3(n2 − 4)(2n− 1)

> 0.

Lemma 4.7. For n ≥ 6, we have n+ 2 < ⌊ δn+1+1
2 ⌋ ≤ ⌈ δn+1+1

2 ⌉ < δn.
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Proof. The second inequality is trivial. The remaining inequalities follow from

δn −
⌈
δn+1 + 1

2

⌉
=

⌊
n2 − 3n− 2

4

⌋
=





(k − 2)(4k + 5) + 9 if n = 4k, k ≥ 2,

(k − 2)(4k + 7) + 13 if n = 4k + 1, k ≥ 2,

(k − 1)(4k + 5) + 4 if n = 4k + 2, k ≥ 1,

(k − 1)(4k + 7) + 6 if n = 4k + 3, k ≥ 1,

⌊
δn+1 + 1

2

⌋
− (n+ 2) =

⌊
n2 − 3n− 6

4

⌋
=





(k − 2)(4k + 5) + 8 if n = 4k, k ≥ 2,

(k − 2)(4k + 7) + 12 if n = 4k + 1, k ≥ 2,

(k − 1)(4k + 5) + 3 if n = 4k + 2, k ≥ 1,

(k − 1)(4k + 7) + 5 if n = 4k + 3, k ≥ 1.

Theorem 4.8. For n ≥ 4, the coefficients of dDn (q) satisfy

cn,0
cn,δn

<
cn,1

cn,δn−1
< · · · <

cn,⌊(δn+1)/2⌋−1

cn,⌈(δn+1)/2⌉
< 1,(4.1)

cn,δn
cn,1

<
cn,δn−1

cn,2
< · · · <

cn,⌊(δn+1)/2⌋+1

cn,⌈(δn+1)/2⌉−1
< 1.(4.2)

Proof. We proceed by induction on n, (4.1)–(4.2) are explicitly shown to be true in Ex-

ample 4.2 for n = 4. Assume that (4.1) and (4.2) hold for n. Proposition 2.1 insures

that

cn,0
cn,δn

<
cn,1

cn,δn−1
< · · · < cn,δn−1

cn,1
<

cn,δn
cn,0

,(4.3)

cn,δn
cn,1

<
cn,δn−1

cn,2
< · · · < cn,2

cn,δn−1
<

cn,1
cn,δn

.(4.4)

For j = 0, 1, . . . , δn, let dj = cn,j and cj = cn,δn−j . By (4.3) and Lemma 4.1, the following

inequalities hold:

∑k+1
i=0 cn,i∑δn

i=δn−(k+1) cn,i
>

∑k
i=0 cn,i∑δn

i=δn−k cn,i
, k = 1, 2, . . . , n− 1,

∑n+1
i=1 cn,i∑δn−1

i=δn−(n+1) cn,i
>

∑n
i=0 cn,i∑δn

i=δn−n cn,i
,

∑k+1
i=k+1−n cn,i∑δn+1−(k+1)

i=δn−(k+1) cn,i
>

∑k
i=k−n cn,i∑δn+1−k
i=δn−k cn,i

, k = n+ 1, n+ 2, . . . , δn − 1,

∑δn
i=k+1−n cn,i∑δn+1−(k+1)

i=0 cn,i
>

∑δn
i=k−n cn,i∑δn+1−k
i=0 cn,i

, k = δn, δn + 1, . . . , δn+1 − 2.
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By Lemma 4.6, the above inequalities also hold with cn,i replaced by c̃n,i. By Lemma 4.4,

we have

cn+1,1

cn+1,δn+1−1
− cn+1,0

cn+1,δn+1

=
2n−2(2n+ 1)

1
9(2

n(6n− 1) + (−1)n+2)
− 2n−1

2
3(2

n + (−1)n+1)

=
3 · 2n−1(2n+1 + (−1)n+1(3n+ 2))

(2n + (−1)n+1)(2n(6n− 1) + (−1)n+2)
> 0,

for 1 ≤ k ≤ n− 1,

cn+1,k+1

cn+1,δn+1−(k+1)
− cn+1,k

cn+1,δn+1−k

=

∑k+1
i=0 2cn,i∑δn−1

i=δn−(k+1) 2cn,i + (2cn,δn ± 1)
−

∑k
i=0 2cn,i∑δn−1

i=δn−k 2cn,i + (2cn,δn ± 1)

=

∑k+1
i=0 c̃n,i∑δn

i=δn−(k+1) c̃n,i
−

∑k
i=0 c̃n,i∑δn

i=δn−k c̃n,i
> 0,

cn+1,n+1

cn+1,δn+1−(n+1)
− cn+1,n

cn+1,δn+1−n
=

∑n+1
i=1 2cn,i∑δn−1

i=δn−(n+1) 2cn,i
−

∑n
i=0 2cn,i∑δn−1

i=δn−n 2cn,i + (2cn,δn ± 1)

=

∑n+1
i=1 c̃n,i∑δn−1

i=δn−(n+1) c̃n,i
−

∑n
i=0 c̃n,i∑δn

i=δn−n c̃n,i
> 0,

for n+ 1 ≤ k ≤ δn − 2,

cn+1,k+1

cn+1,δn+1−(k+1)
− cn+1,k

cn+1,δn+1−k
=

∑k+1
i=k+1−n 2cn,i∑δn+1−(k+1)

i=δn−(k+1) 2cn,i
−
∑k

i=k−n 2cn,i∑δn+1−k
i=δn−k 2cn,i

> 0,

cn+1,δn

cn+1,n
− cn+1,δn−1

cn+1,n+1
=

∑δn−1
i=δn−n 2cn,i + (2cn,δn ± 1)∑n

i=0 2cn,i
−
∑δn−1

i=δn−(n+1) 2cn,i∑n+1
i=1 2cn,i

=

∑δn
i=δn−n c̃n,i∑n

i=0 c̃n,i
−
∑δn−1

i=δn−(n+1) c̃n,i∑n+1
i=1 c̃n,i

> 0,

for δn ≤ k ≤ δn+1 − 2,

cn+1,k+1

cn+1,δn+1−(k+1)
− cn+1,k

cn+1,δn+1−k

=

∑δn−1
i=k+1−n 2cn,i + (2cn,δn ± 1)

∑δn+1−(k+1)
i=0 2cn,i

−
∑δn−1

i=k−n 2cn,i + (2cn,δn ± 1)
∑δn+1−k

i=0 2cn,i

=

∑δn
i=k+1−n c̃n,i∑δn+1−(k+1)

i=0 c̃n,i
−
∑δn

i=k−n c̃n,i∑δn+1−k
i=0 c̃n,i

> 0,

cn+1,δn+1

cn+1,0
− cn+1,δn+1−1

cn+1,1
=

2
3(2

n + (−1)n+1)

2n−1
−

1
9(2

n(6n− 1) + (−1)n)

2n−2(2n+ 1)

=
2n+1 + (−1)n+1(3n+ 2)

9(2n+ 1)2n−3
> 0,
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(4.3) also holds with n+1 in place of n. This finishes the induction and the proof of (4.3).

As (4.3) includes (4.1) except the rightmost inequality, a proof of this latter inequality with

n+ 1 in place of n is needed. By Lemma 4.7, we have n+ 2 < ⌊ δn+1+1
2 ⌋ ≤ ⌈ δn+1+1

2 ⌉ < δn

so that

1−
cn+1,⌊(δn+1+1)/2⌋−1

cn+1,⌈(δn+1+1)/2⌉

= 1−
∑⌊(δn+1+1)/2⌋−1

i=⌊(δn+1+1)/2⌋−(n+1) 2cn,i
∑⌈(δn+1+1)/2⌉

i=⌈(δn+1+1)/2⌉−n 2cn,i

=





cn,(δn+1+1)/2−cn,(δn+1+1)/2−(n+1)∑(δn+1+1)/2

i=(δn+1+1)/2−n
cn,i

if δn+1 is odd,

cn,δn+1/2
+cn,δn+1/2+1−(cn,δn+1/2−(n+1)+cn,δn+1/2−n)∑(δn+1/2)+1

i=(δn+1/2)−(n−1)
cn,i

if δn+1 is even

> 0

because 0 < δn+1+1
2 − δn+1

2 < δn+1
2 −

( δn+1+1
2 −(n+1)

)
⇒ cn,(δn+1+1)/2−(n+1) < cn,(δn+1+1)/2,

etc. This finishes the proof of (4.1) with n + 1 in place of n. Proofs of (4.2) and (4.4),

being similar, are omitted.

Corollary 4.9. For n ≥ 4, the sequence of coefficients of dDn (q) is log-concave, that is,

(4.5)
cn,0
cn,1

<
cn,1
cn,2

< · · · < cn,δn−2

cn,δn−1
<

cn,δn−1

cn,δn
.

Proof. First note that (4.1) and (4.2) have, respectively, ⌊ δn+1
2 ⌋ and ⌈ δn+1

2 ⌉ − 1 parts,

excluding the rightmost 1. Consider the case that δn is odd. Multiplying (4.1) to (4.2)

with the rightmost 1 included, we get

(4.6)
cn,0
cn,1

<
cn,1
cn,2

< · · · <
cn,(δn+1)/2−1

cn,(δn+1)/2
< 1.

Multiplying (4.1) with cn,0/cn,δn dropped to (4.2), we get

cn,δn
cn,δn−1

<
cn,δn−1

cn,δn−2
< · · · <

cn,(δn+1)/2+1

cn,(δn+1)/2
< 1.

By taking reciprocals of the preceding chain of inequalities, we then have

(4.7) 1 <
cn,(δn+1)/2

cn,(δn+1)/2+1
< · · · < cn,δn−2

cn,δn−1
<

cn,δn−1

cn,δn
.

Chaining up (4.6) and (4.7), (4.5) follows. The proof of the even δn case, being similar, is

omitted.
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It is readily checked that for 2 ≤ n ≤ 3, coefficients of dDn (q) are unimodal, log-concave

and possess the spiral property. For n ≥ 4, the strict ratio monotonicity of the coefficients

of dDn (q) insures that the maximum coefficient of dDn (q) occurs as the last spirally listed

one, which is that of qkn , where kn = ⌊12(
(
n
2

)
+ 1)⌋ = ⌈n(n−1)

4 ⌉. Summarising, we have the

next theorem.

Theorem 4.10. For n ≥ 4, coefficients of dDn (q) are strictly unimodal, log-concave, and

possess the spiral property. Moreover, the maximal coefficient of dDn (q) is uniquely attained

as that of q⌈n(n−1)/4⌉.

We have studied in this work the derangement polynomial dDn (q) =
∑

σ∈DD
n
qmaj(σ)

by the major indices of σ ∈ DD
n , and proved the strict ratio monotonicity of dDn (q),

which in turn implies the log-concavity, spiral property and unimodality of dDn (q). A next

extension is to study the derangement polynomial
∑

σ∈DD
n
qfmajD(σ), where fmajD is a

suitably defined flag major index over Dn. This is a subject for further research.

Acknowledgments

The author thanks the referees for careful reading of the manuscript and valuable com-

ments/suggestions that have led to much improved readability of this paper.

References

[1] F. Brenti, Unimodal polynomials arising from symmetric functions, Proc. Amer.

Math. Soc. 108 (1990), no. 4, 1133–1141.

[2] W. Y. C. Chen and G.-C. Rota, q-analogs of the inclusion-exclusion principle and

permutations with restricted position, Discrete Math. 104 (1992), no. 1, 7–22.

[3] W. Y. C. Chen, R. L. Tang and A. F. Y. Zhao, Derangement polynomials and ex-

cedances of type B, Electron. J. Combin. 16 (2009), no. 2, Special volume in honor

of Anders Björner, Research Paper 15, 16 pp.

[4] W. Y. C. Chen and E. X. W. Xia, The ratio monotonicity of the q-derangement

numbers, Discrete Math. 311 (2011), no. 6, 393–397.

[5] C.-O. Chow, On derangement polynomials of type B, Sém. Lothar. Combin. 55 (2006),

Art. B55b, 6 pp.

[6] , Counting multiderangements by excedances, Sém. Lothar. Combin. 59 (2008),

Art. B59d, 16 pp.



646 Chak-On Chow

[7] , On derangement polynomials of type B: II, J. Combin. Theory Ser. A 116

(2009), no. 4, 816–830.

[8] C.-O. Chow and T. Mansour, Counting derangements, involutions and unimodal el-

ements in the wreath product Cr ≀Sn, Israel J. Math. 179 (2010), 425–448.

[9] D. Foata and G.-N. Han, Signed words and permutations IV: Fixed and pixed points,

Israel J. Math. 163 (2008), 217–240.

[10] G. Gordon and E. McMahon, Moving faces to other places: Facet derangements,

Amer. Math. Monthly 117 (2010), no. 10, 865–880.

[11] E. H. Liu and W. Du, The log-concavity of the q-derangement numbers of type B,

Open Math. 16 (2018), no. 1, 127–132.

[12] The On-Line Encyclopedia of Integer Sequences, published electronically at

https://oeis.org.

[13] R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Studies in Advanced

Mathematics 49, Cambridge University Press, Cambridge, 1997.

[14] M. L. Wachs, On q-derangement numbers, Proc. Amer. Math. Soc. 106 (1989), no. 1,

273–278.

[15] X.-D. Zhang, On the spiral property of the q-derangement numbers, Discrete Math.

159 (1996), no. 1, 295–298.

Chak-On Chow

28A, Block 2, Banyan Garden, Cheung Sha Wan, Hong Kong

E-mail address: cchow@alum.mit.edu


	Introduction
	Notations and preliminaries
	A class of type D derangement polynomials
	Ratio monotonicity of  and consequences

