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Non-Gorenstein Locus and Almost Gorenstein Property of the Ehrhart Ring

of the Stable Set Polytope of a Cycle Graph

Mitsuhiro Miyazaki

Abstract. Let R be the Ehrhart ring of the stable set polytope of a cycle graph which

is not Gorenstein. We describe the non-Gorenstein locus of SpecR. Further, we show

that R is almost Gorenstein. Moreover, we show that the conjecture of Hibi and

Tsuchiya is true.

1. Introduction

In this paper, we call a simple graph consisting of exactly one cycle a cycle graph. An

even cycle graph, i.e., a cycle graph with even vertices is bipartite and therefore is perfect.

By the result of Ohsugi and Hibi [14, Theorem 2.1(b)], the Ehrhart ring of the stable

set polytope of a perfect graph is Gorenstein if and only if sizes of maximal cliques are

constant. In particular, the Ehrhart ring of the stable set polytope of an even cycle graph

is Gorenstein.

On the other hand, in the course of studying the h-vector of graded Cohen–Macaulay

rings, Hibi and Tsuchiya [8, Theorem 1] showed that the Ehrhart ring of the stable set

polytope of an odd cycle graph is Gorenstein if and only if the size of the cycle is less

than or equal to 5. They used the fact that cycle graphs are t-perfect. Later the present

author vastly generalized this result to general t-perfect graphs and characterized when

the Ehrhart ring of the stable set polytope is Gorenstein completely [12]: the Ehrhart

ring of the stable set polytope of a t-perfect graph G = (V,E) is Gorenstein if and only

if (i) E = ∅, (ii) G has no isolated vertex nor triangle and there is no odd cycle without

chord and length at least 7 or (iii) every maximal clique of G has size at least 3 and there

is no odd cycle without chord and length at least 5.

In this paper, we study the Ehrhart ring of the stable set polytope of a cycle graph

which is not Gorenstein. Our main tool of research is the trace ideal of the canonical

module. Herzog, Hibi and Stamate [6, Lemma 2.1] showed that if R is a Cohen–Macaulay

local or graded ring over a field with canonical module ωR, then Rp is Gorenstein if and
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only if p ̸⊃ tr(ωR) for p ∈ SpecR, where tr(ωR) is the trace of ωR. In particular, tr(ωR)

is a defining ideal of the non-Gorenstein locus of R. Therefore, one can study the non-

Gorenstein locus of SpecR of a Cohen–Macaulay ring R by examining the trace of its

canonical module.

In this paper, we first describe the non-Gorenstein locus of the SpecR of the Ehrhart

ring R of the stable set polytope of an odd cycle graph with length at least 7. We describe

minimal prime ideals of tr(ωR) explicitly and show that all of them have exactly the half

dimension of the dimension of R.

Next we analyze the structure of ωR more precisely. We show that there is a unique

monomial in ωR with minimal degree. Moreover, we show that there is a unique system of

generators of ωR consisting of monomials. By analyzing the margin of monomials in ωR

with respect to the odd cycle condition of t-perfect graphs, we classify the monomials in

ωR and express the structure of ωR by using this classification. Using this expression of

the structure of ωR, we show that R is an almost Gorenstein graded ring (for the definition

of almost Gorenstein property, see [5]).

Finally, we study the Ulrich module appeared in the investigation of almost Gorenstein

property and show that the conjecture of Hibi and Tsuchiya [8, Conjecture 1] is true.

2. Preliminaries

In this section, we establish notation and terminology. For unexplained terminology of

commutative algebra, we consult [1] and of graph theory, we consult [3].

In this paper, all rings and algebras are assumed to be commutative with an identity

element. Further, all graphs are assumed to be finite, simple and without loop. We denote

the set of nonnegative integers, the set of integers, the set of rational numbers and the set

of real numbers by N, Z, Q and R respectively.

For a set X, we denote by #X the cardinality of X. For sets X and Y , we define

X \ Y := {x ∈ X | x /∈ Y }. For nonempty sets X and Y , we denote the set of maps from

X to Y by Y X . If X is a finite set, we identify RX with the Euclidean space R#X . For

f, f1, f2 ∈ RX and a ∈ R, we define maps f1±f2 and af by (f1±f2)(x) = f1(x)±f2(x) and

(af)(x) = a(f(x)) for x ∈ X. Let A be a subset ofX. We define the characteristic function

χA ∈ RX of A by χA(x) = 1 for x ∈ A and χA(x) = 0 for x ∈ X \ A. For a nonempty

subset X of RX , we denote by convX (resp. aff X ) the convex hull (resp. affine span)

of X .

Definition 2.1. LetX be a finite set and ξ ∈ RX . For B ⊂ X, we set ξ+(B) :=
∑

b∈B ξ(b).

A stable set of a graph G = (V,E) is a subset S of V with no two elements of S are

adjacent. We treat the empty set as a stable set.
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Definition 2.2. The stable set polytope STAB(G) of a graph G = (V,E) is

conv{χS ∈ RV | S is a stable set of G}.

Note that χ{v} ∈ STAB(G) for any v ∈ V and χ∅ ∈ STAB(G). In particular,

dimSTAB(G) = #V .

Next we fix notation about Ehrhart rings. Let K be a field, X a finite set and P

a rational convex polytope in RX , i.e., a convex polytope whose vertices are contained

in QX . Let −∞ be a new element with −∞ /∈ X and set X− := X ∪ {−∞}. Also let

{Tx}x∈X− be a family of indeterminates indexed by X−. For f ∈ ZX−
, we denote the

Laurent monomial
∏

x∈X− T
f(x)
x by T f . We set deg Tx = 0 for x ∈ X and deg T−∞ = 1.

Then the Ehrhart ring of P over a field K is the N-graded subring

K
[
T f
∣∣∣ f ∈ ZX−

, f(−∞) > 0,
1

f(−∞)
f
∣∣∣
X

∈ P

]

of the Laurent polynomial ring K[T±1
x | x ∈ X−], where f |X is the restriction of f to X.

We denote the Ehrhart ring of P over K by EK[P].

It is known that EK[P] is Noetherian and dimEK[P] = dimP + 1. It is also known

that EK[P] is normal and Cohen–Macaulay by the result of Hochster [9]. Moreover, by the

description of the canonical module of a normal affine semigroup ring by Stanley [15, p. 82],

we see the following

Lemma 2.3. The ideal

⊕

f∈ZX− ,f(−∞)>0, 1
f(−∞)

f
∣∣
X
∈relintP

KT f

of EK[P] is the canonical module of EK[P], where relintP denotes the interior of P in

the topological space aff P.

We denote the ideal of the above lemma by ωEK[P] and call the canonical ideal of

EK[P].

Let G = (V,E) be a graph. G is, by definition, t-perfect if

STAB(G) =

{
f ∈ RV

∣∣∣ 0 ≤ f(x) ≤ 1 for any x ∈ V , f+(e) ≤ 1 for any e ∈ E

and f+(C) ≤ #C − 1

2
for any odd cycle C in G

}
.

Let G = (V,E) be a cycle graph with length n, i.e., V = {v0, v1, . . . , vn−1}, E =

{{vi, vj} | i − j ≡ 1 (mod n)}. It is shown by Mahjoub [10] that G is t-perfect. If n is

even, then G is a bipartite graph and therefore is perfect. Thus, by the result of Ohsugi

and Hibi [14, Theorem 2.1(b)], EK[STAB(G)] is Gorenstein.
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In this paper, we study EK[STAB(G)] the case where it is not Gorenstein. Therefore,

we assume that the length of G is 2ℓ+1, where ℓ is a positive integer. Hibi and Tsuchiya [8,

Theorem 1] (see also [12, Corollary 3.9]) showed that if G is a cycle graph of length 2ℓ+1,

then EK[STAB(G)] is Gorenstein if and only if ℓ ≤ 2. Therefore, we mainly consider the

case where ℓ ≥ 3.

Our main tool is the result of Herzog, Hibi and Stamate [6] about the trace of the

canonical module.

Definition 2.4. Let R be a ring and M an R-module. We set

tr(M) :=
∑

φ∈Hom(M,R)

φ(M)

and call tr(M) the trace of M .

We recall the following

Fact 2.5. [6, Lemma 1.1] Let R be a ring and I an ideal of R containing an R-regular

element. Also let Q(R) be the total quotient ring of fractions of R and set I−1 := {x ∈
Q(R) | xI ⊂ R}. Then

tr(I) = I−1I.

Note that if R is a Noetherian normal domain and I is a divisorial ideal, then I−1 =

I(−1), the inverse element of I in Div(R). Moreover, we recall the following

Fact 2.6. [6, Lemma 2.1] Let R be a Cohen–Macaulay local or graded ring over a field

with canonical module ωR. Then for p ∈ Spec(R),

Rp is Gorenstein ⇐⇒ p ̸⊃ tr(ωR).

In particular, the non-Gorenstein locus of SpecR is V (tr(ωR)).

We also recall the following our previous results.

Definition 2.7. Let G′ = (V ′, E′) be a graph. We set

K = K (G′)

:= {K ⊂ V ′ | K is a clique of G′ and size of K is less than or equal to 3}.

Further, for n ∈ Z, we define tU (n)(G′) to be the set of µ ∈ ZV ′−
satisfying the following

conditions:

(1) µ(z) ≥ n for any z ∈ V ′,

(2) µ+(K) ≤ µ(−∞)− n for any maximal element K of K and



Ehrhart Ring of the Stable Set Polytope of a Cycle Graph 445

(3) µ+(C) ≤ µ(−∞)#C−1
2 − n for any odd cycle C without chord and length at least 5.

By this notation, the following holds.

Fact 2.8. [12, Remark 3.10] If G′ is a t-perfect graph, then

ω
(n)
EK[STAB(G′)] =

⊕

µ∈tU(n)(G′)

KTµ

for any n ∈ Z, where ω(n)
EK[STAB(G′)] is the n-th power of ωEK[STAB(G′)] in Div(EK[STAB(G

′)]).

We abbreviate tU (n)(G) as tU (n) in the rest of this paper. The following lemma is very

easily proved but very useful.

Lemma 2.9. Suppose that η ∈ tU (1) and ζ ∈ tU (−1). If x ∈ V and (η + ζ)(x) = 0, then

η(x) = 1 and ζ(x) = −1.

3. Non-Gorenstein loci of the Ehrhart rings of the stable set polytopes of cycle

graphs

In this section, we state the non-Gorenstein loci of the Ehrhart rings of the stable set

polytopes of cycle graphs. Since it is known that the Ehrhart rings of the stable set

polytopes of even graphs and odd cycle graphs with length at most 5 are Gorenstein, we

focus our attention to odd cycles with length at least 7.

Let G = (V,E) be a cycle graph with length 2ℓ+1, where ℓ is an integer with ℓ ≥ 3. We

set R = EK[STAB(G)], V = {v0, v1, . . . , v2ℓ} and E = {{vi, vj} | i− j ≡ 1 (mod 2ℓ+ 1)}.
Further, we set ej = {vj , vj+1} for 0 ≤ j ≤ 2ℓ− 1 and e2ℓ = {v2ℓ, v0}.

Let pi be the ideal of R generated by {Tµ | µ ∈ tU (0), µ(vi) > 0 or µ+(V ) < ℓµ(−∞)},
i.e.,

pi =
⊕

µ∈tU(0)

µ(vi)>0 or µ+(V )<ℓµ(−∞)

KTµ

for 0 ≤ i ≤ 2ℓ. Then pi is the prime ideal corresponding to the face Pi = {f ∈ STAB(G) |
f(vi) = 0, f+(V ) = ℓ} of STAB(G), i.e., EK[Pi] = R/pi. With this notation, we see the

following

Theorem 3.1. In the above setting, it holds that

√
tr(ωR) =

2ℓ⋂

i=0

pi.

In particular, non-Gorenstein locus of the Ehrhart ring R of the stable set polytope of G

is a closed subset of SpecR of dimension ℓ+ 1.
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This theorem follows from Lemmas 3.2, 3.3, 3.4 and 3.5 below.

Before stating the lemmas, we need some preparation. For i with 0 ≤ i ≤ 2ℓ, we define

µi ∈ ZV −
by

µi(vj) =




1 if j − i ≡ 0, 2, 4, . . . , 2ℓ− 2 (mod 2ℓ+ 1),

0 otherwise
and µi(−∞) = 1

and set νi = µi|V . For example, the case where ℓ = 4, νi are as follows, where the top

vertex is v0 and v1, v2, . . . , v8 are aligned anti-clockwise.
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Next we analyze the dimension of Pi. By symmetry, we see that dimPi = dimP0

for any i.Next we analyze the dimension of Pi. By symmetry, we see that dimPi = dimP0

for any i.

If f ∈ P0, then f(v0) = 0 and f+(V ) = ℓ. Since f+(V ) = f(v0) +
∑ℓ

j=1 f
+(e2j−1)

and f+(ej) ≤ 1 for any j, we see that

f+(e2j−1) = 1 for 1 ≤ j ≤ ℓ.

These linear equations and f(v0) = 0 are independent. Therefore we see that dimP0 ≤
2ℓ+ 1− (ℓ+ 1) = ℓ.

Next we prove the reverse inequality. It is easily verified that ν2, ν4, . . . , ν2ℓ and ν1

are elements of P0. The matrix whose columns correspond to v0, v1, . . . , v2ℓ and rows
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correspond to ν4 − ν2, ν6 − ν4, . . . , ν2ℓ − ν2ℓ−2, ν1 − ν2ℓ respectively is




0 1 −1 0 0 · · · · · · 0 0 0 0

0 0 0 1 −1 · · · · · · 0 0 0 0

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0 0 0 · · · · · · 1 −1 0 0

0 0 0 0 0 · · · · · · 0 0 1 −1




.

This is a rank ℓ matrix. Therefore, we see the following

Lemma 3.2. It holds that dimPi = ℓ for any i with 0 ≤ i ≤ 2ℓ. In particular, dimR/pi =

ℓ+ 1 for any i with 0 ≤ i ≤ 2ℓ.

Next we state the following

Lemma 3.3. Let i be an integer with 0 ≤ i ≤ 2ℓ. Then pi ⊃ tr(ωR).

Proof. We may assume that i = 0. Let Tµ be an arbitrary monomial in tr(ωR). We

deduce a contradiction by assuming Tµ /∈ p0.

Since Tµ ∈ tr(ωR), there are η ∈ tU (1) and ζ ∈ tU (−1) with µ = η + ζ. Since Tµ /∈ p0,

it holds that µ(v0) = 0 and therefore η(v0) = 1 by Lemma 2.9. Thus,

η+(V ) =
ℓ∑

j=1

η+(e2j−1) + 1.

Since η+(e2j−1) + 1 ≤ η(−∞) for 1 ≤ j ≤ ℓ, we see that

η+(V ) ≤
ℓ∑

j=1

(η(−∞)− 1) + 1 = ℓη(−∞)− ℓ+ 1.

On the other hand, since Tµ /∈ p0,

µ+(V ) = ℓµ(−∞).

Moreover, since

η+(V ) + 1 ≤ ℓη(−∞), ζ+(V )− 1 ≤ ℓζ(−∞),

η(−∞) + ζ(−∞) = µ(−∞) and η+(V ) + ζ+(V ) = µ+(V ) = ℓµ(−∞),
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we see that

η+(V ) + 1 = ℓη(−∞).

Therefore,

ℓη(−∞)− 1 = η+(V ) ≤ ℓη(−∞)− ℓ+ 1

and we see that ℓ ≤ 2. This contradicts to the assumption.

By Lemma 3.3, we see that

tr(ωR) ⊂
2ℓ⋂

i=0

pi.

Since the right hand side is a radical ideal, we see that

√
tr(ωR) ⊂

2ℓ⋂

i=0

pi.

In order to show the reverse inclusion, we first state the following

Lemma 3.4. If µ ∈ tU (0) and µ(vi) > 0 for any i, then Tµ ∈
√
tr(ωR).

Proof. Define η, ζ ∈ ZV −
by

η(x) =




ℓ− 1 if x ∈ V ,

2ℓ− 1 if x = −∞
and ζ(x) =




(ℓ− 2)µ(x)− ℓ+ 1 if x ∈ V ,

(ℓ− 2)µ(x)− 2ℓ+ 1 if x = −∞.

Then η + ζ = (ℓ− 2)µ.

For x ∈ V ,

η(x) = ℓ− 1 ≥ 1 and ζ(x) = (ℓ− 2)µ(x)− ℓ+ 1 ≥ ℓ− 2− ℓ+ 1 = −1

since ℓ ≥ 3 and µ(x) ≥ 1. Further, for e ∈ E,

η+(e) + 1 = 2(ℓ− 1) + 1 = 2ℓ− 1 = η(−∞)

and

ζ+(e)− 1 = (ℓ− 2)µ+(e)− 2(ℓ− 1)− 1 ≤ (ℓ− 2)µ(−∞)− 2ℓ+ 1 = ζ(−∞).

Finally,

η+(V ) + 1 = (2ℓ+ 1)(ℓ− 1) + 1 = 2ℓ2 − ℓ = ℓ(2ℓ− 1) = ℓη(−∞)

and

ζ+(V )− 1 = (ℓ− 2)µ+(V )− (2ℓ+ 1)(ℓ− 1)− 1 ≤ ℓ(ℓ− 2)µ(−∞)− 2ℓ2 + ℓ

= ℓ((ℓ− 2)µ(−∞)− 2ℓ+ 1) = ℓζ(−∞).
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Therefore, η ∈ tU (1) and ζ ∈ tU (−1). Thus, we see that

(Tµ)ℓ−2 = T (ℓ−2)µ = T ηT ζ ∈ ωRω
(−1)
R = tr(ωR)

and therefore

Tµ ∈
√
tr(ωR).

Finally, we state the following

Lemma 3.5. Let µ ∈ tU (0) and µ+(V ) < ℓµ(−∞). Then Tµ ∈
√

tr(ωR).

Proof. Define η, ζ ∈ ZV −
by

η(x) =




1 if x ∈ V ,

3 if x = −∞
and ζ(x) =




(ℓ− 2)µ(x)− 1 if x ∈ V ,

(ℓ− 2)µ(−∞)− 3 if x = −∞.

Then η + ζ = (ℓ− 2)µ.

It is obvious that η(x) ≥ 1 and ζ(x) ≥ −1 for any x ∈ V . Let e be an arbitrary edge

in G. Then

η+(e) + 1 = 2 + 1 = η(−∞)

and

ζ+(e)− 1 = (ℓ− 2)µ+(e)− 2− 1 ≤ (ℓ− 2)µ(−∞)− 3 = ζ(−∞).

Further,

η+(V ) + 1 = (2ℓ+ 1) + 1 ≤ 3ℓ = ℓη(−∞)

and, since µ+(V ) + 1 ≤ ℓµ(−∞) by assumption, we see that

ζ+(V )− 1 = (ℓ− 2)µ+(V )− (2ℓ+ 1)− 1 = (ℓ− 2)(µ+(V ) + 1)− 3ℓ

≤ (ℓ− 2)ℓµ(−∞)− 3ℓ = ℓζ(−∞).

Therefore, η ∈ tU (1) and ζ ∈ tU (−1). Thus, we see that

(Tµ)ℓ−2 = T (ℓ−2)µ = T ηT ζ ∈ ωRω
(−1)
R = tr(ωR)

and therefore

Tµ ∈
√
tr(ωR).
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4. Almost Gorenstein property

In this section, we show that the Ehrhart rings of the stable set polytopes of cycle graphs

are almost Gorenstein graded rings. For the definition of almost Gorenstein property,

see [5]. In this paper, we only treat almost Gorenstein graded property and we say almost

Gorenstein graded as almost Gorenstein for short. We focus our attention to odd cycle

graphs of length at least 7 by the same reason as the previous section.

Our main purpose of this section is to show the following

Theorem 4.1. Let G be a cycle graph with length 2ℓ+1, where ℓ is an integer with ℓ ≥ 3.

Then R = EK[STAB(G)] is an almost Gorenstein ring.

In order to prove this theorem, we need some preparation. Let ℓ, G, R, vi, ei, µi and

νi for 0 ≤ i ≤ 2ℓ be as in Section 3. Further, for integer k with 1 ≤ k ≤ ℓ − 1, we define

ηk ∈ ZV −
by

ηk(x) =




k if x ∈ V ,

2k + 1 if x = −∞.

Then it is easily verified that ηk ∈ tU (1) for any k. Note that ℓηk(−∞) − η+k (V ) = ℓ − k

and η+k (e) + 1 = ηk(−∞) for any e ∈ E and 1 ≤ k ≤ ℓ− 1.

Since for any η ∈ tU (1) and for any i with 0 ≤ i ≤ 2ℓ, it holds that

η(−∞) ≥ η+(ei) + 1 ≥ 3,

we see that T η1 is the unique monomial in ωR with minimum degree 3. In particular,

a(R) = −deg T η1 = −3. Therefore, we consider the morphism φ : R → ωR(3) of graded

R-modules with φ(1) = T η1 . R is, by definition, almost Gorenstein if and only if Cokφ is

an Ulrich module.

Lemma 4.2. It holds that

(Imφ)(−3) =
⊕

η∈tU(1)

ℓη(−∞)−η+(V )≥ℓ−1

KT η.

Proof. First note that (Imφ)(−3) = T η1R.

Let η be an arbitrary element of tU (1) with ℓη(−∞)− η+(V ) ≥ ℓ− 1. Set µ = η − η1.

Then

µ(x) = η(x)− η1(x) = η(x)− 1 ≥ 0

for any x ∈ V ,

µ+(e) = η+(e)− η+1 (e) = η+(e)− 2 = (η+(e) + 1)− 3 ≤ η(−∞)− η1(−∞) = µ(−∞)
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for any e ∈ E and

ℓµ(−∞)− µ+(V ) = ℓη(−∞)− η+(V )− (ℓη1(−∞)− η+1 (V ))

≥ (ℓ− 1)− (ℓ− 1)

= 0.

Therefore, we see that µ ∈ tU (0). Thus, we see that

T η = T η1Tµ ∈ T η1R.

On the other hand, if T η is a monomial in T η1R, then there is µ ∈ tU (0) with η = µ+η1.

Since T η ∈ T η1R ⊂ ωR, we see that η ∈ tU (1) by Fact 2.8. Further,

ℓη(−∞)− η+(V ) = ℓµ(−∞)− µ+(V ) + ℓη1(−∞)− η+1 (V )

≥ ℓη1(−∞)− η+1 (V )

= ℓ− 1.

Thus we see that

(Imφ)(−3) = T η1R =
⊕

η∈tU(1)

ℓη(−∞)−η+(V )≥ℓ−1

KT η.

Next, we set

P := {f ∈ STAB(G) | f+(V ) = ℓ}.

Then P is a face of STAB(G). Further, we set

tU (0)
0 := {µ ∈ tU (0) | µ+(V ) = ℓµ(−∞)} and R(0) :=

⊕

µ∈tU(0)
0

KTµ.

Then R(0) is a subalgebra of R and the Ehrhart ring EK[P] of P. Note that µi ∈ tU (0)
0

for 0 ≤ i ≤ 2ℓ.

Lemma 4.3. It holds that

R(0) = K[Tµ0 , Tµ1 , . . . , Tµ2ℓ ].

Proof. Since µi ∈ tU (0)
0 for 0 ≤ i ≤ 2ℓ, it is clear that R(0) ⊃ K[Tµ0 , Tµ1 , . . . , Tµ2ℓ ].

Let µ be an arbitrary element of tU (0)
0 . We prove by induction on µ(−∞) that Tµ ∈

K[Tµ0 , Tµ1 , . . . , Tµ2ℓ ].

If µ(−∞) = 0, then µ = 0 and Tµ = 1 ∈ K[Tµ0 , Tµ1 , . . . , Tµ2ℓ ]. Suppose that µ(−∞) >

0. We first consider the case where µ(x) > 0 for any x ∈ V . Since

(2ℓ+ 1)µ(−∞) > 2ℓµ(−∞) = 2µ+(V ) =
2ℓ∑

i=0

µ+(ei),
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we see that there is i with µ+(ei) < µ(−∞). By symmetry, we may assume that

µ+(e0) < µ(−∞).

Set µ′ = µ− µ2. Then

µ′(x) = µ(x)− µ2(x) ≥ µ(x)− 1 ≥ 0

for any x ∈ V , since µ(x) > 0. If e ∈ E and e ̸= e0, then

(µ′)+(e) = µ+(e)− µ+
2 (e) = µ+(e)− 1 ≤ µ(−∞)− 1 = µ′(−∞).

Further,

(µ′)+(e0) = µ+(e0)− µ+
2 (e0) = µ+(e0) < µ(−∞)

by assumption. Therefore,

(µ′)+(e0) ≤ µ(−∞)− 1 = µ′(−∞).

Moreover,

(µ′)+(V ) = µ+(V )− µ+
2 (V ) = ℓµ(−∞)− ℓµ2(−∞) = ℓµ′(−∞).

Therefore, µ′ ∈ tU (0)
0 and by induction hypothesis, we see that Tµ′ ∈ K[Tµ0 , Tµ1 , . . . , Tµ2ℓ ].

Thus,

Tµ = Tµ′
Tµ2 ∈ K[Tµ0 , Tµ1 , . . . , Tµ2ℓ ].

Next consider the case where µ(x) = 0 for some x ∈ V . By symmetry, we may assume

that µ(v0) = 0. Since
∑ℓ

i=0 µ
+(e2i−1) = µ(v0) +

∑ℓ
i=0 µ

+(e2i−1) = µ+(V ) = ℓµ(−∞) and

µ+(ej) ≤ µ(−∞) for any j, we see that

µ(e2i−1) = µ(−∞) for any 1 ≤ i ≤ ℓ.

First consider the case where µ(v2i) = 0 for any 1 ≤ i ≤ ℓ. In this case, µ(v2i−1) =

µ+(e2i−1) = µ(−∞) > 0 for any 1 ≤ i ≤ ℓ. Set µ′ = µ− µ1. Then

µ′(v2i−1) = µ(v2i−1)− µ1(v2i−1) = µ(v2i−1)− 1 ≥ 0

for 1 ≤ i ≤ ℓ and

µ′(x) = µ(x)− µ1(x) = µ(x) ≥ 0

for any x ∈ V \ {v1, v3, . . . , v2ℓ−1}. Further,

(µ′)+(e2i−1) = µ+(e2i−1)− µ+
1 (e2i−1) = µ(−∞)− 1 = µ′(−∞)
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for any 1 ≤ i ≤ ℓ,

(µ′)+(e2i) = µ+(e2i)− µ+
1 (e2i) = µ(v2i+1)− 1 = µ(−∞)− 1 = µ′(−∞)

for 0 ≤ i ≤ ℓ− 1 and

(µ′)+(e2ℓ) = µ+(e2ℓ)− µ+
1 (e2ℓ) = µ(v2ℓ) + µ(v0) = 0 ≤ µ(−∞)− 1 = µ′(−∞).

Moreover,

(µ′)+(V ) = µ+(V )− µ+
1 (V ) = ℓµ(−∞)− ℓµ1(−∞) = ℓµ′(−∞).

Therefore, µ′ ∈ tU (0)
0 and by induction hypothesis, we see that Tµ′ ∈ K[Tµ0 , Tµ1 , . . . , Tµ2ℓ ].

Thus,

Tµ = Tµ′
Tµ1 ∈ K[Tµ0 , Tµ1 , . . . , Tµ2ℓ ].

If µ(v2i) ̸= 0 for some i with 1 ≤ i ≤ ℓ, set j = min{i | 1 ≤ i ≤ ℓ, µ(v2i) ̸= 0}. For i

with 1 ≤ i ≤ j − 1,

µ(v2i−1) = µ(v2i−1) + µ(v2i) = µ+(e2i−1) = µ(−∞) > 0

since µ+(e2i−1) = µ(−∞) and µ(v2i) = 0. Further, if j < ℓ, then µ(v2j) > 0 and

µ(v2j) + µ(v2j+1) = µ+(e2j) ≤ µ(−∞), we see that µ(v2j+1) < µ(−∞). Moreover, since

µ(v2j+1) + µ(v2j+2) = µ+(e2j+1) = µ(−∞), we see that µ(v2j+2) > 0. By the same

argument and induction, we see that

µ(v2i) > 0 for j ≤ i ≤ ℓ.

Set µ′ = µ− µ2j . Since

µ2j(vk) =




1 if k ∈ {1, 3, . . . , 2j − 3, 2j, 2j + 2, . . . , 2ℓ},
0 otherwise

and

µ(vk) > 0 if k ∈ {1, 3, . . . , 2j − 3, 2j, 2j + 2, . . . , 2ℓ},

we see that

µ(x) ≥ 0 for any x ∈ V .

Further, if i ̸= 2j − 2, then, since µ+
2j(ei) = µ2j(−∞) = 1, we see that

(µ′)+(ei) = µ+(ei)− µ+
2j(ei) ≤ µ(−∞)− µ2j(−∞) = µ′(−∞).

Moreover, since µ(v2j−1) < µ(v2j−1) + µ(v2j) = µ+(e2j−1) = µ(−∞) and µ(v2j−2) = 0 by

the definition of j, we see that

(µ′)+(e2j−2) = µ+(e2j−2)− µ+
2j(e2j−2) = µ(v2j−2) + µ(v2j−1) ≤ µ(−∞)− 1 = µ′(−∞).
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Finally,

(µ′)+(V ) = µ+(V )− µ+
2j(V ) = ℓµ(−∞)− ℓµ2j(−∞) = ℓµ′(−∞).

Thus, we see that µ′ ∈ tU (0)
0 . Therefore, by induction hypothesis, we see that Tµ′ ∈

K[Tµ0 , Tµ1 , . . . , Tµ2ℓ ] and

Tµ = Tµ′
Tµ2j ∈ K[Tµ0 , Tµ1 , . . . , Tµ2ℓ ].

Next we consider the dimension of P. The matrix whose columns correspond to

v0, v1, . . . , v2ℓ and rows correspond to ν3−ν1, ν4−ν2, . . . , ν2ℓ−ν2ℓ−2, ν0−ν2ℓ−1 and ν1−ν2ℓ

respectively is 


1 −1 0 0 · · · · · · 0 0 0

0 1 −1 0 · · · · · · 0 0 0

0 0 1 −1 · · · · · · 0 0 0
...

...
. . .

. . .
...

...
...

...
...

. . .
. . .

...
...

...
...

...
. . .

. . .
...

...

0 0 0 0 · · · · · · 1 −1 0

0 0 0 0 · · · · · · 0 1 −1




.

This is a matrix of rank 2ℓ. Since νi ∈ P for 0 ≤ i ≤ 2ℓ, we see that dimP ≥ 2ℓ. On the

other hand, EK[P] = R(0) = K[Tµ0 , Tµ1 , . . . , Tµ2ℓ ] by Lemma 4.3. Since dimEK[P] =

dimP + 1, we see that dimP = 2ℓ. Moreover, we see that Tµ0 , Tµ1 , . . . , Tµ2ℓ are alge-

braically independent over K. Since deg Tµi = µ(−∞) = 1 for 0 ≤ i ≤ 2ℓ, we see the

following

Lemma 4.4. R(0) is isomorphic to the polynomial ring with 2ℓ+1 variables equipped with

the standard grading.

For k with 2 ≤ k ≤ ℓ− 1, we set

Ck :=
⊕

η∈tU(1)

ℓη(−∞)−η+(V )=ℓ−k

KT η.

Then we see the following

Lemma 4.5. Ck is a rank 1 free R(0)-module with basis T ηk for 2 ≤ k ≤ ℓ− 1.

Proof. First, if µ ∈ tU (0)
0 , then it is easily verified that µ+ ηk ∈ tU (1) and

ℓ(µ+ ηk)(−∞)− (µ+ ηk)
+(V ) = ℓηk(−∞)− η+k (V ) = ℓ− k.
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Therefore TµT ηk ∈ Ck.

Conversely, assume that η ∈ tU (1) and ℓη(−∞)−η+(V ) = ℓ−k. Set µ = η−ηk. Then

µ+(V ) = η+(V )− η+k (V ) = ℓη(−∞)− (ℓ− k)− (ℓηk(−∞)− (ℓ− k))

= ℓ(η(−∞)− ηk(−∞)) = ℓµ(−∞)

and, since η+k (e) + 1 = ηk(−∞),

µ+(e) = (η+(e) + 1)− (η+k (e) + 1) ≤ η(−∞)− ηk(−∞) = µ(−∞).

Finally, we show that µ(x) ≥ 0 for any x ∈ V . Assume the contrary. Then, by

symmetry, we may assume that µ(v0) < 0. Then

µ+(V ) = µ(v0) +

ℓ∑

i=1

µ+(e2i−1) < ℓµ(−∞),

contradicting the fact shown above. Therefore, µ(x) ≥ 0 for any x ∈ V and we see that

µ ∈ tU (0)
0 . Thus,

Ck =

( ⊕

µ∈tU(0)
0

KTµ

)
T ηk = T ηkR(0).

Since Ck and R(0) are contained in a domain R, we see that Ck is a rank 1 free R(0)-module

with basis T ηk .

Now we state the proof of Theorem 4.1. Since

ωR =
⊕

η∈tU(1)

KT η

=

( ⊕

η∈tU(1)

ℓη(−∞)−η+(V )≥ℓ−1

KTµ

)
⊕

ℓ−1⊕

k=2

( ⊕

η∈tU(1)

ℓη(−∞)−η+(V )=ℓ−k

KT η

)

= (Imφ)(−3)⊕
ℓ−1⊕

k=2

Ck,

we see that

Cokφ ∼=
(

ℓ−1⊕

k=2

Ck

)
(3)

as graded R(0)-modules. Since each Ck is a free R(0)-module, R(0) is isomorphic to a

polynomial ring with 2ℓ+1 variables over K and multiplicity of a module can be computed

by its Hilbert series, we see that

e(Cokφ) = ℓ− 2.
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Next, we show that T η1 , T η2 , . . . , T ηℓ−1 is a minimal system of generators of ωR. As-

sume the contrary. Then there are i and j with i ̸= j and µ ∈ tU (0) such that

T ηi = TµT ηj .

Since i = ηi(v0) = µ(v0) + ηj(v0) ≥ j, we see that i > j and µ(x) = ηi(x)− ηj(x) = i− j

for any x ∈ V . On the other hand, it holds that

µ(−∞) = ηi(−∞)− ηj(−∞) = (2i+ 1)− (2j + 1) = 2(i− j).

Therefore,

ℓµ(−∞)− µ+(V ) = 2ℓ(i− j)− (2ℓ+ 1)(i− j) < 0,

contradicting the fact that µ ∈ tU (0).

Thus, we see that T η1 , T η2 , . . . , T ηℓ−1 is a minimal system of generators of ωR and

µ(Cokφ) = ℓ− 2.

Therefore, we see that Cokφ is an Ulrich module and R is an almost Gorenstein ring.

5. Hibi–Tsuchiya’s conjecture

In [7], Hibi made several conjectures on the h-vectors of Cohen–Macaulay standard graded

algebras. In particular, he conjectured that an h-vector of a standard graded Cohen–

Macaulay domain is flawless [7, Conjecture 1.4]. The h-vector (h0, h1, . . . , hs), hs ̸= 0 of

a Cohen–Macaulay standard graded algebra is flawless if hi ≤ hs−i for 0 ≤ i ≤ ⌊s/2⌋
and hi−1 ≤ hi for 1 ≤ i ≤ ⌊s/2⌋. Niesi and Robbiano [13] disproved Hibi’s conjecture by

constructing a Cohen–Macaulay standard graded domain whose h-vector is (1, 3, 5, 4, 4, 1).

Recently, Hibi and Tsuchiya [8] computed by Normaliz [2] if ℓ = 3, 4 or 5 then the

h-vector of R is

(1, 21, 84, 85, 21, 1), (1, 66, 744, 2305, 2304, 745, 66, 1)

or (1, 187, 5049, 37247, 96448, 96449, 37246, 5050, 187, 1)

respectively and made the following

Conjecture 5.1. [8, Conjecture 1] If ℓ ≥ 3, then the h-vector of R is the following form:

(
1, h1, h2, . . . , hℓ−1, hℓ−1 + (−1)ℓ−1, hℓ−2 + (−1)ℓ−2, . . . , h3 − 1, h2 + 1, h1, 1

)
.

Note that since dimR = 2ℓ+2 and a(R) = −3, it holds that s = dimR+a(R) = 2ℓ−1.

Now we prove the following
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Theorem 5.2. Conjecture 5.1 is true.

Proof. We use the notation of the previous section. Also for a finitely generated graded

R-module M , we denote by H(M,λ) the Hilbert series of M , i.e.,

H(M,λ) =
∑

n∈Z
(dimKMn)λ

n.

Then

H(R, λ) =
h0 + h1λ+ · · ·+ hsλ

s

(1− λ)2ℓ+2
.

Further, by the second proof of [15, Theorem 4.1], we see that

H(ωR(3), λ) =
hs + hs−1λ+ · · ·+ h0λ

s

(1− λ)2ℓ+2
.

On the other hand, since Ck is a rank 1 free R(0)-module with basis T ηk and deg T ηk =

2k + 1, we see that

H(Ck, λ) =
λ2k+1

(1− λ)2ℓ+1

as R(0)-modules for 2 ≤ k ≤ ℓ− 1. Further, since Cokφ =
(⊕ℓ−1

k=2Ck

)
(3), we see that

dimK(Cokφ)n =
ℓ−1∑

k=2

dimK(Ck)n+3

for any n ∈ Z. Thus

H(Cokφ, λ) =
λ2 + λ4 + · · ·+ λ2ℓ−4

(1− λ)2ℓ+1

=
λ2 − λ3 + λ4 − λ5 + · · ·+ λ2ℓ−4 − λ2ℓ−3

(1− λ)2ℓ+2
.

Since

H(ωR(3), λ) = H(R, λ) +H(Cokφ, λ),

we see that

hs = h0, hs−1 = h1 and hs−i = hi + (−1)i for 2 ≤ i ≤ 2ℓ− 3.

The assertion follows from these equations, since h0 = 1.

By [4, Theorem 8.1] and [11, Theorem 2.4], we see that R is standard graded. There-

fore, we see the following result, since the h-vectors of the Ehrhart rings of odd cycle

graphs with length at least 9 are non-flawless.

Corollary 5.3. There is an infinite sequence of standard graded Cohen–Macaulay domains

whose h-vectors are non-flawless.
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