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Canonical Comultiplication and Double Centraliser Property

Nan Gao*, Jing Ma and Juxia Zhang

Abstract. In this paper, we show the existence of the attached comultiplication struc-

ture on HomeAe(eA,D(Ae)) if an (eAe,A)-bimodule eA has the double centraliser

property over an algebra A with the idempotent e. Then we apply it on gendo-

Gorenstein algebras. As applications, we give a sufficient and necessary condition for

a gendo-Gorenstein algebra to be Gorenstein, and give a bocs-theoretic characterisa-

tion of the double centraliser property.

1. Introduction and main results

The double centraliser property is a frequent phenomenon in mathematics. It means that

the endomorphism algebra of A-B-bimodule M as a left A-module M is B, while the

endomorphism algebra of M as a right B-module M is A. The famous Schur–Weyl du-

ality is a special case of the double centraliser property. It refers in particular to the

double centraliser property of bimodules of classical Schur algebras and group algebras of

symmetric groups [7]. Soergel [9] gave Schur–Weyl duality of BGG-categories on complex

semisimple Lie algebras. The general double centraliser property is also called general-

ized Schur–Weyl duality in the literature. With this property, there is a close connection

and comparison method. König–Slungard–Xi [8] exhibited algebraic structures behind the

double centraliser properties, which can be used to prove the classical Schur–Weyl duality

between Schur algebras and group algebras of symmetric groups or Soergel’s structure

theorem for blocks of category O. What’s more, they studied double centraliser prop-

erties on projective-injective modules and tilting modules respectively. Fang–König [5]

constructed from the double centraliser property a comultiplication on gendo-symmetric

algebras. Brundan–Kleshchev [2] gave the applications of the double centraliser property

in higher Schur–Weyl duality, and there are examples of the double centraliser property

in quantum affine Schur–Weyl duality in [3].
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Gao and König [6] introduced gendo-d-Gorenstein algebras, which are as correspon-

dents of Gorenstein algebras under a Morita–Tachikawa correspondence. It is known that

the double centraliser property plays a key role in defining gendo-d-Gorenstein algebras.

They described the double centraliser property in terms of grade, which is also described

via dominant dimension.

In this paper, we will show the existence of the comultiplication structure attached to

the double centraliser property, and based on it, we will give a sufficient and necessary

condition for a gendo-Gorenstein algebra to be Gorenstein. We will give a bocs-theoretic

characterisation of the double centraliser property. Inspired by the comultiplication, we

will characterise the dominant dimension.

Our main results are the following.

Definition 1.1. (see Definition 2.5) There is a canonical comultiplication ∆ on

HomeAe(eA,D(Ae)) attached to the (eAe,A)-bimodule eA with the double centraliser

property up to an invertible central element of A.

In particular, if moreover (A, e) is gendo-Gorenstein, we call ∆ the associated comul-

tiplication on (A, e).

Theorem 1.2. (see Theorem 3.4) Let A be a finite-dimensional k-algebra and e an idem-

potent of A such that HomeAe(eA, eAe) ∼= Ae. The canonical bimodule associated to A is

defined to be the A-bimodule

V := HomA(DHomeAe(eA,D(Ae)), A).

Then the following are equivalent.

(i) The (eAe,A)-bimodule eA has the double centraliser property.

(ii) There is a comultiplication and counit such that (A, V ) is a bocs.

The paper is organised as follows. In Section 2, we show the existence of the attached

comultiplication structure for a gendo-Gorenstein algebra, and using it, a sufficient and

necessary condition is given for a gendo-Gorenstein algebra to be Gorenstein. We also

prove that gendo-Gorenstein algebras with the attached comultiplication are preserved

under Morita equivalences. In Section 3, we give a bocs-theoretic characterisation of the

double centraliser property.

2. Canonical comultiplications on gendo-Gorenstein algebras

In the section, we show the existence of the comultiplication structure for a gendo-

Gorenstein algebra, and moreover, give a sufficient and necessary condition for a gendo-

Gorenstein algebra to be Gorenstein. We also show that gendo-Gorenstein algebras are

preserved under Morita equivalences.
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2.1. Canonical comultiplication attached to the double centraliser property

In this subsection, we aim to exhibit a closed structure with double centraliser property.

We will derive the existence of a comultiplication from homological properties of finite-

dimensional algebras.

Let A be a finite-dimensional k-algebra over a field k and e an idempotent of A. Let

D : A -mod → Aop -mod be the duality. Then we have an A-bimodule isomorphism

D(Ae⊗eAe eA) ∼= HomeAe(eA,D(Ae)).

So there is the induced A-bimodule isomorphism

γ : Ae⊗eAe eA ∼= DHomeAe(eA,D(Ae))

such that

γ(ae⊗ eb)(f) = f(eb)(ae)

for a, b ∈ A and f ∈ HomeAe(eA,D(Ae)).

Lemma 2.1. The following are equivalent.

(i) The (eAe,A)-bimodule eA has the double centraliser property.

(ii) There is an A-bimodule isomorphism

(2.1) EndA(DHomeAe(eA,D(Ae))) ∼= A.

(iii) There is an A-bimodule isomorphism

HomA(DHomeAe(eA,D(Ae)), A) ∼= A.

Proof. (i) ⇔ (ii) Note that there is a series of A-bimodule isomorphisms induced by the

isomorphism γ:

EndA(DHomeAe(eA,D(Ae)))

∼= EndA(Ae⊗eAe eA) ∼= HomeAe(eA,HomA(Ae,Ae⊗eAe eA))

∼= HomeAe(eA, eAe⊗eAe eA) ∼= EndeAe(eA).

This implies the desired result (i).

(i) ⇔ (iii) Since there are the following A-bimodule isomorphisms induced by the

isomorphism γ:

HomA(DHomeAe(eA,D(Ae)), A)

∼= HomA(Ae⊗eAe eA,A) ∼= HomeAe(eA,HomA(Ae,A)) ∼= EndeAe(eA),

it follows that the (eAe,A)-bimodule eA has the double centraliser property if and only

if HomA(DHomeAe(eA,D(Ae)), A) ∼= A.
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Now we are going to construct the comultiplication on HomeAe(eA,D(Ae)) hidden in

the double centraliser property.

Notice that there is an isomorphism

DHomeAe(eA,D(Ae))⊗A DHomeAe(eA,D(Ae))

γ−1⊗Aγ−1

−−−−−−−→ (Ae⊗eAe eA)⊗A (Ae⊗eAe eA) ∼= Ae⊗eAe eA
γ−→ DHomeAe(eA,D(Ae)).

Let m be the composition of the canonical morphism DHomeAe(eA,D(Ae))⊗k

DHomeAe(eA,D(Ae)) → DHomeAe(eA,D(Ae))⊗ADHomeAe(eA,D(Ae)) with the above

isomorphism, i.e.,

m : DHomeAe(eA,D(Ae))⊗k DHomeAe(eA,D(Ae)) → DHomeAe(eA,D(Ae)).

Dualising m yields the map

∆: HomeAe(eA,D(Ae)) → HomeAe(eA,D(Ae))⊗k HomeAe(eA,D(Ae))

such that (ϕ ⊗ φ)∆(f) = m(φ ⊗ ϕ)(f) for any ϕ, φ ∈ DHomeAe(eA,D(Ae)) and f ∈
HomeAe(eA,D(Ae)).

Now we assume that the (eAe,A)-bimodule eA has the double centraliser property.

Then from Lemma 2.1(iii) we consider the isomorphisms

(2.2) HomA(DHomeAe(eA,D(Ae)), A)
HomA(γ,A)−−−−−−−→ HomA(Ae⊗eAe eA,A) ∼= A.

Let θ : DHomeAe(eA,D(Ae)) → A be the inverse image of 1 ∈ A under the isomorphism

(2.2). Then θ is an A-bimodule morphism with (θ ◦ γ)(ae ⊗ eb) = aeb for a, b ∈ A, and

eθ = IdeA.

In the following, we represent an element ϕ in DHomeAe(eA,D(Ae)) by γ(ae⊗ eb) for
some a, b ∈ A as γ is an isomorphism for simplicity. Then by definition of m we have the

equalities

m(γ(ae⊗ eb)⊗ γ(ce⊗ ed)) = γ(ae⊗ eb⊗ ce⊗ ed) = γ(aebce⊗ ed)

for any a, b, c, d, x, y ∈ A.

Lemma 2.2. The map m satisfies

m(1⊗m) = m(m⊗ 1)

as k-morphisms from DHomeAe(eA,D(Ae))⊗k DHomeAe(eA,D(Ae))⊗k DHomeAe(eA,

D(Ae)) → DHomeAe(eA,D(Ae)), and for any ϕ, φ ∈ DHomeAe(eA,D(Ae)),

θ(m(ϕ⊗ φ)) = θ(ϕ)θ(φ).
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Proof.

m(1⊗m)(γ(ae⊗ eb)⊗ γ(ce⊗ ed)⊗ γ(xe⊗ ey))

= m(γ(ae⊗ eb)⊗ γ(cedxe⊗ ey)) = γ(aebcedxe⊗ ey),

m(m⊗ 1)(γ(ae⊗ eb)⊗ γ(ce⊗ ed)⊗ γ(xe⊗ ey))

= m(γ(aebce⊗ ed)⊗ γ(xe⊗ ey)) = γ(aebcedxe⊗ ey)

and

(θ ◦m)(γ(ae⊗ eb)⊗ γ(ce⊗ ed)) = θ(γ(aebce⊗ ed)) = aebced = (aeb)(ced).

Lemma 2.3. Let ∆: HomeAe(eA,D(Ae)) → HomeAe(eA,D(Ae))⊗k HomeAe(eA,D(Ae))

be as above. Then we have the following.

(i) ∆ is an A-bimodule morphism.

(ii) As k-morphisms from HomeAe(eA,D(Ae)) → HomeAe(eA,D(Ae))⊗k HomeAe(eA,

D(Ae))⊗k HomeAe(eA,D(Ae)),

(1⊗∆)∆ = (∆⊗ 1)∆.

(iii) Im∆ =
{∑

i f
′
i ⊗ f ′′i

∣∣ ∑
i f

′
ia⊗ f ′′i =

∑
i f

′
i ⊗ af ′′i ,∀ a ∈ A

}
.

Consequently, the map ∆ is a coassociative comultiplication on the A-bimodule

HomeAe(eA,D(Ae)).

Proof. (i) For a, b, c, d, x, y ∈ A and f ∈ HomeAe(eA,D(Ae)), we have the equalities

(γ(ae⊗ eb)⊗ γ(ce⊗ ed))∆(xfy) = m(γ(ce⊗ ed)⊗ γ(ae⊗ eb))(xfy)

= γ(cedae⊗ eb)(xfy)

= f(ebx)(ycedae),

(γ(ae⊗ eb)⊗ γ(ce⊗ ed))((x∆(f))y) = (γ(ae⊗ ebx)⊗ γ(yce⊗ ed))∆(f)

= m(γ(yce⊗ ed)⊗ γ(ae⊗ ebx))(f)

= γ(ycedae⊗ ebx)(f)

= f(ebx)(ycedae),

(γ(ae⊗ eb)⊗ γ(ce⊗ ed))(x(∆(f)y)) = (γ(ae⊗ ebx)⊗ γ(yce⊗ ed))∆(f)

= γ(ycedae⊗ ebx)(f)

= f(ebx)(ycedae).

So ∆(xfy) = x∆(f)y, i.e., ∆ is an A-bimodule morphism.
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(ii) For any u ∈ HomeAe(eA,D(Ae)) and ϕ, φ, ψ ∈ DHomeAe(eA,D(Ae)), let ∆(u) =∑
i u

′
i ⊗ u′′i , where u

′
i, u

′′
i ∈ HomeAe(eA,D(Ae)). Then

(ϕ⊗ φ⊗ ψ)(1⊗∆)∆(u)

= (ϕ⊗ φ⊗ ψ)(1⊗∆)

(∑
i

u′i ⊗ u′′i

)
=
∑
i

ϕ(u′i)(φ⊗ ψ)∆(u′′i )

=
∑
i

ϕ(u′i)m(ψ ⊗ φ)(u′′i ) = (ϕ⊗m(ψ ⊗ φ))∆(u) = m(m(ψ ⊗ φ)⊗ ϕ)(u),

(ϕ⊗ φ⊗ ψ)(∆⊗ 1)∆(u)

= (ϕ⊗ φ⊗ ψ)(∆⊗ 1)

(∑
i

u′i ⊗ u′′i

)
=
∑
i

(ϕ⊗ φ)∆(u′i)ψ(u
′′
i )

=
∑
i

m(φ⊗ ϕ)(u′i)ψ(u
′′
i ) = (m(φ⊗ ϕ)⊗ ψ)∆(u) = m(ψ ⊗m(φ⊗ ϕ))(u).

Thus it follows from Lemma 2.2 that (1⊗∆)∆ = (∆⊗ 1)∆.

(iii) Let Σ =
{∑

i f
′
i ⊗ f ′′i

∣∣ ∑
i f

′
ia ⊗ f ′′i =

∑
i f

′
i ⊗ af ′′i ,∀ a ∈ A

}
. Then Im∆ ⊆ Σ.

Indeed, for any f ∈ HomeAe(eA,D(Ae)), let ∆(f) =
∑

i f
′
i ⊗ f ′′i . Then for any φ,ψ ∈

DHomeAe(eA,D(Ae)) and a ∈ A,

(φ⊗ ψ)

(∑
i

f ′ia⊗ f ′′i

)
= (aφ⊗ ψ)

(∑
i

f ′i ⊗ f ′′i

)
= (aφ⊗ ψ)∆(f) = m(ψ ⊗ aφ)(f),

(φ⊗ ψ)

(∑
i

f ′i ⊗ af ′′i

)
= (φ⊗ ψa)

(∑
i

f ′i ⊗ f ′′i

)
= (φ⊗ ψa)∆(f) = m(ψa⊗ φ)(f).

By definition of m, there is an equality m(ψ ⊗ aφ) = m(ψa⊗ φ). Thus ∆(f) ∈ Σ.

Conversely, on the one hand, for each f =
∑

i f
′
i ⊗ f ′′i ∈ Σ, there is a k-linear

map DHomeAe(eA,D(Ae)) → HomeAe(eA,D(Ae)), denoted by f̂ , such that f̂(φ) =∑
i φ(f

′
i)f

′′
i for any φ ∈ DHomeAe(eA,D(Ae)). Since

∑
i f

′
ia ⊗ f ′′i =

∑
i f

′
i ⊗ af ′′i for

any a ∈ A, it follows that

f̂(aφ) =
∑
i

(aφ)(f ′i)f
′′
i =

∑
i

φ(f ′ia)f
′′
i =

∑
i

φ(f ′i)af
′′
i = af̂(φ),

f̂ is a leftA-module morphism, i.e., f̂ ∈ HomA(DHomeAe(eA,D(Ae)),HomeAe(eA,D(Ae))).

This means that we define an injective map

Σ → HomA(DHomeAe(eA,D(Ae)),HomeAe(eA,D(Ae)))

by sending f to f̂ . On the other hand, we have a series of isomorphisms

HomeAe(eA,D(Ae)) ∼= HomeAe(eA,HomeAe(eAe,D(Ae)))



Canonical Comultiplication and Double Centraliser Property 45

∼= HomeAe(eA,HomA(Ae,HomeAe(eA,D(Ae))))

∼= HomA(Ae⊗eAe eA,HomeAe(eA,D(Ae)))

∼= HomA(DHomeAe(eA,D(Ae)),HomeAe(eA,D(Ae))).

Thus we obtain from ∆ being injective that Σ ⊆ Im∆. This completes the proof.

Lemma 2.4. Let

∆̃ : HomeAe(eA,D(Ae)) → HomeAe(eA,D(Ae))⊗k HomeAe(eA,D(Ae))

be a k-linear map satisfying all conditions in Lemma 2.3. Then there exists an invertible

central element z of A such that

∆̃ = ∆ ◦ z.

Proof. Note that ∆̃ induces a map

µ : DHomeAe(eA,D(Ae))⊗k DHomeAe(eA,D(Ae)) → DHomeAe(eA,D(Ae))

such that for any ϕ, φ ∈ DHomeAe(eA,D(Ae)) and f ∈ HomeAe(eA,D(Ae)),

µ(ϕ⊗ φ)(f) = (φ⊗ ϕ)∆̃(f).

By assumption µ induces an A-bimodule isomorphism

DHomeAe(eA,D(Ae))⊗A DHomeAe(eA,D(Ae)) → DHomeAe(eA,D(Ae)).

This means that there exists an A-bimodule isomorphism ω ∈ EndA(HomeAe(eA,D(Ae)))

such that ∆̃(f) = ∆(ω(f)) for all f ∈ HomeAe(eA,D(Ae)). Therefore there is an invertible

central element z ∈ A from (2.1), so that ∆̃(f) = ∆(fz) for all f ∈ HomeAe(eA,D(Ae)).

Definition 2.5. We call ∆ the canonical comultiplication on HomeAe(eA,D(Ae)) attached

to the (eAe,A)-bimodule eA with the double centraliser property up to an invertible

central element of A. In particular, if moreover (A, e) is gendo-Gorenstein, we call ∆ the

associated comultiplication on (A, e).

Remark 2.6. Let (A, e) be a gendo-symmetric k-algebra. Then HomeAe(eA,D(Ae)) ∼= A

as A-bimodules, and so the above map ∆: A→ A⊗k A is exactly the comultiplication on

A in the sense of Fang and König [5].

Now let ∆ be the canonical comultiplication on HomeAe(eA,D(Ae)). If B is Morita

equivalent to A, then there is a projective generator P in A-mod such that B ∼= EndA(P )
op,

and

M 7→ HomA(P,A)⊗A M ⊗A P

defines an equivalence F from A-bimod to B-bimod. It follows that F (Ae ⊗eAe eA) =

HomA(P,A)⊗A Ae⊗eAe eA⊗A P = HomA(P,Ae)⊗eAe eP .
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Lemma 2.7. Let f be an idempotent of B corresponding to B-module HomA(P,Ae). Then

F (∆) is the canonical comultiplication on (fBf,B)-bimodule fB.

Proof. By assumption HomA(P,Ae) ⊗eAe eP = Bf ⊗fBf fB. Then by Lemma 2.1(iii)

there are the isomorphisms

B ∼= F (A) ∼= HomB(F (Ae⊗eAe eA), B) = HomB(Bf ⊗fBf fB,B) ∼= EndfBf (fB).

Thus we obtain that the (fBf,B)-bimodule fB has the double centraliser property, and

moreover, F (∆) is the canonical comultiplication attached to the (fBf,B)-bimodule fB.

Proposition 2.8. Let A be a finite-dimensional k-algebra and e an idempotent of A such

that the (eAe,A)-bimodule eA has the double centraliser property. Then the following hold.

(i) Let E/k be any field extension. If (A, e) is gendo-Gorenstein, then AE = A⊗k E is

gendo-Gorenstein with the associated idempotent e⊗ 1E.

(ii) Let B be Morita equivalent to A via the functor F . Use the notation in Corollary 2.7.

If (A, e) is gendo-Gorenstein, then (B, f) is gendo-Gorenstein with the associated

comultiplication F (∆).

Proof. (i) Since E/k is a field extension, we have that eAEe = eAe⊗k E. Since eAe is a

Gorenstein algebra, it follows that eAEe is a Gorenstein algebra.

Note that each AE-module is of the form M ⊗k E, where M is an A-module, and also

for any A-modules M , N ,

HomAE
(M ⊗k E,N ⊗k E) ∼= HomA(M,N)⊗k E.

From this view,

EndeAEe(eAE) ∼= EndA(eA)⊗k E ∼= A⊗k E = AE ,

and for all n ≥ 1,

ExtneAEe(eAE , eAEe) ∼= ExtneAe(eA, eAe) = 0.

It follows that the (eAEe,AE)-bimodule eAE has the double centraliser property, and eAE

is a Gorenstein projective left eAEe-module. Thus AE is gendo-Gorenstein.

(ii) By Lemma 2.7 the (fBf,B)-bimodule fB has the double centraliser property and

F (∆) is the canonical comultiplication on fB. Since there are the isomorphisms

fBf = EndB(Bf) = EndB(HomA(P,Ae)) ∼= EndA(Ae) ∼= eAe,
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and

ExtnfBf (fB, fBf)
∼= ExtneAe(eA, eAe) = 0,

we get that fBf is a Gorenstein algebra and fB is a Gorenstein projective left fBf -

module. Thus (B, f) is gendo-Gorenstein with the associated comultiplication F (∆).

In the last of this subsection, we give a sufficient and necessary condition for a gendo-

Gorenstein algebra to be Gorenstein by the above comultiplication.

Proposition 2.9. Let ∆̃ be the coassociative comultiplication on HomeAe(eA,D(Ae)) such

that ∆̃ = ∆ ◦ z for an invertible central element z.

(i) (HomeAe(eA,D(Ae)), ∆̃) has a counit if and only if there is an A-bimodule isomor-

phism

DHomeAe(eA,D(Ae)) ∼= 1Aσ,

where σ : A→ A is an A-bimodule isomorphism induced by z.

(ii) If (A, e) is a gendo-Gorenstein k-algebra, then (HomeAe(eA,D(Ae)),∆) has a counit

if and only if A is Gorenstein.

Proof. (i) If ε ∈ DHomeAe(eA,D(Ae)) is a counit of (HomeAe(eA,D(Ae)), ∆̃), then for

any γ(ae⊗ eb) ∈ DHomeAe(eA,D(Ae)) and f ∈ HomeAe(eA,D(Ae)),

m(γ(ae⊗ eb)⊗ ε)(f) = (ε⊗ γ(ae⊗ eb))∆(f) = γ(ae⊗ ebz−)(f)

and

m(ε⊗ γ(ae⊗ eb))(f) = (γ(ae⊗ eb)⊗ ε)∆(f) = γ(z−ae⊗ eb)(f).

Let θ(ε) = ν. Then θ(m(γ(ae⊗ eb)⊗ ε)) = θ(γ(ae⊗ ebz−)) implies

aebν = aebz−

for any a, b ∈ A by Lemma 2.2. Since the (eAe,A)-bimodule eA has the double centraliser

property, we get that AeA is a faithful right A-module. Hence θ is surjective as an A-

bimodule morphism and thus an isomorphism by Lemma 2.1. Therefore

DHomeAe(eA,D(Ae)) ∼= 1Aσ.

Conversely, if DHomeAe(eA,D(Ae)) ∼= 1Aσ, we write this isomorphism by β :

DHomeAe(eA,D(Ae)) → 1Aσ, then

β−1(β(φ)β(ψ)) = z−β−1(β(m(φ⊗ ψ))) = z−m(φ⊗ ψ)
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for all φ,ψ ∈ DHomeAe(eA,D(Ae)). Let ε = z−β−1(1). Then

β(m(φ⊗ ε)) = β(φ),

that is,

m(φ⊗ ε) = φ ◦ z−, m(ε⊗ φ) = φ ◦ z−.

So ε is a counit of (HomeAe(eA,D(Ae)), ∆̃). The second part is verified if we take z = 1A.

(ii) Since A is gendo-Gorenstein, we get from the definition that eAe is Gorenstein.

Since DHomeAe(eA,D(Ae)) ∼= A as A-bimodules if and only if A/AeA = 0 if and

only if A and eAe are Morita equivalent. It follows that A is Gorenstein if and only

if DHomeAe(eA,D(Ae)) ∼= A as A-bimodules. Thus the desired result follows from (i) in

which z = 1A.

3. Bocs-theoretic characterisation

In the section, we will give a bocs-theoretic characterisation of the double centraliser

property.

As we have seen, given an algebra A and an idempotent e, the A-bimodule

HomA(DHomeAe(eA,D(Ae)), A) is crucial in characterisations of the double centraliser

property.

3.1. Associated canonical bimodule

In this subsection, we study the properties of this bimodule, and utilize them to provide

new characterisations of the (eAe,A)-bimodule eA having the double centraliser property

and dominant dimension of A-modules.

Definition 3.1. Let A be an algebra and e an idempotent of A. The canonical bimodule

associated to A is defined to be the A-bimodule

V := HomA(DHomeAe(eA,D(Ae)), A).

The following result collects some properties of the canonical bimodule.

Lemma 3.2. (i) HomA(V,D(eA)) ∼= D(eA) as a left A-module.

(ii) eV ∼= eA as a left eAe-module.

(iii) DHomeAe(eA,D(Ae))⊗A V ⊗A DHomeAe(eA,D(Ae)) ∼= DHomeAe(eA,D(Ae)) as

an A-bimodule.

(iv) There is the A-bimodule isomorphism V ∼= EndA(V ).
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(v) If F : A -mod → B -mod is a Morita equivalence between algebras A and B, then the

induced equivalence from A -bimod to B -bimod preserves the canonical bimodules.

Proof. (i) We have the isomorphisms of left A-modules

HomA(V,D(eA)) = HomA(HomA(DHomeAe(eA,D(Ae)), A), D(eA))

∼= HomA(HomA(Ae⊗eAe eA,A), D(eA))

∼= HomAop(eA,DHomA(Ae⊗eAe eA,A))

∼= D(eA⊗A HomA(Ae⊗eAe eA,A))

∼= DHomA(Ae,A) ∼= D(eA).

(ii) Note that as a left eAe-module,

eV = eHomA(DHomeAe(eA,D(Ae)), A) ∼= HomA(DHomeAe(eA,D(Ae))e,A)

∼= HomA(DHomeAe(eAe,D(Ae)), A) ∼= HomA(Ae,A) ∼= eA.

(iii) We have the following A-bimodule isomorphisms by (ii)

DHomeAe(eA,D(Ae))⊗A V ⊗A DHomeAe(eA,D(Ae))

∼= Ae⊗eAe eV ⊗A Ae⊗eAe eA ∼= Ae⊗eAe eA⊗A Ae⊗eAe eA ∼= Ae⊗eAe eA.

(iv) We have the following A-bimodule isomorphisms by (ii)

EndA(V ) ∼= HomA(DHomeAe(eA,D(Ae))⊗A V,A)

∼= HomA(Ae⊗eAe eA⊗A V,A)

∼= HomA(Ae⊗eAe eA,A) = V.

(v) By Lemma 2.7 we know that F : A -bimod → B -bimod is an equivalence given by

M 7→ HomA(P,A) ⊗A M ⊗A P , where B = EndopA (P ). It follows that F (Ae ⊗eAe eA) =

HomA(P,A) ⊗A Ae ⊗eAe eA ⊗A P = HomA(P,Ae) ⊗eAe eP . Let f be an idempotent of

B corresponding to B-module HomA(P,Ae). This implies that HomA(P,Ae) ⊗eAe eP =

Bf ⊗fBf fB. Thus the result follows from the isomorphisms

F (V (A)) ∼= HomB(F (Ae⊗eAe eA), B) = HomB(Bf ⊗fBf fB,B)

∼= HomB(DHomfBf (fB,D(Bf)), B) = V (B).

In the following, we give a bocs-theoretic characterisation of the double centraliser

property. Before doing this, we recall the notion of the bocs.

Definition 3.3. Let A be a finite dimensional algebra and W an A-bimodule. Then

the pair (A,W ) is called a bocs if there are A-bimodule maps µ : W → W ⊗A W (the

comultiplication) and ε : W → A (the counit) with the following properties: (1W ⊗A ε)µ =

1W , (ε⊗A 1W )µ = 1W and (1⊗A µ)µ = (µ⊗A 1)µ.
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Theorem 3.4. Let A be a finite-dimensional k-algebra and e an idempotent of A such

that HomeAe(eA, eAe) ∼= Ae. Then the following are equivalent.

(i) The (eAe,A)-bimodule eA has the double centraliser property.

(ii) There is a comultiplication and counit such that (A, V ) is a bocs.

Proof. If the (eAe,A)-bimodule eA has the double centraliser property, then from Lemma 2.1

that V ∼= A, and thus (A, V ) is a bocs.

Now assume that (A, V ) is a bocs with comultiplication µ and counit ε. By definition,

the comultiplication µ : V → V ⊗A V is injective. Since there is the A-bimodule isomor-

phism V ∼= EndA(V ) ∼= D(V ⊗A D(V )) by Lemma 3.2, comparing the dimension, we

obtain that µ is an isomorphism, and furthermore, V ∼= A. Thus the (eAe,A)-bimodule

eA has the double centraliser property.

Notice that Lemma 3.2 exhibits the use of the canonical bimodule V in characterising

the D(eA)-dominant dimension of A-modules.

Lemma 3.5. Let A be a finite-dimensional k-algebra over a field k and e an idempotent of

A. Let F and G be the endofunctors on A -mod such that F (M) = Hom(eAe)op(HomA(M,

D(eA)), D(eA)) and G(M) = HomeAe(eA, eM) for M ∈ A -mod. Then there exists a

natural equivalence η : F
≃−→ G on A -mod. In particular, if the (eAe,A)-bimodule eA has

the double centraliser property, then F (V ) ∼= A.

Proof. For each M ∈ A -mod, by the isomorphisms

F (M) = Hom(eAe)op(HomA(M,D(eA)), D(eA))

∼= Hom(eAe)op(D(eM), D(eA)) ∼= Hom(eAe)(eA, eM) = G(M),

we obtain a natural isomorphism η : F
≃−→ G.

If the (eAe,A)-bimodule eA has the double centraliser property, then by Lemma 3.2

F (V ) ∼= HomeAe(eA, eV ) ∼= HomeAe(eA) ∼= A.

Theorem 3.6. Let A and F be as in Lemma 3.5. Let M be a finitely generated A-module

and n ≥ 2 an integer. Then D(eA)-domdim M ≥ n if and only if F (M) ∼=M canonically

and RiF (M) = 0 for 1 ≤ i ≤ n − 1, where RiF denotes the i-th right derived functor of

F .

Proof. If D(eA)-domdim M ≥ n, then by definition, there is an exact sequence

0 →M → D(eA)1 → D(eA)2 → · · · → D(eA)n
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with all D(eA)i ∈ addD(eA). Since n ≥ 2, it follows from [1, Proposition 2.1] that

F (M) ∼=M canonically. Applying F to the exact sequence, we get from the isomorphism

F (D(eA)) ∼= D(eA) that RiF (M) = 0 for 1 ≤ i ≤ n− 1.

Conversely, F (M) ∼= M canonically implies that D(eA)-domdim M ≥ 2 again by [1,

Proposition 2.1]. Take a minimal injective resolution of M ,

0 →M → I1 → I2 → I3 → · · · → In−1 → In → · · · .

To show that D(eA)-domdim M ≥ n, we prove by induction that I1, . . . , In above are in

addD(eA). Assume that I1, . . . , It are in addD(eA) for t ≤ n− 1. Since RiF (M) = 0 for

1 ≤ i ≤ n− 1, it follows that 0 → F (M) → F (I1) → F (I2) → · · · → F (In) is exact. This

means that It+1 → F (It+1) is a split monomorphism.

On the other hand, the eAe-module HomA(I
t+1, D(eA)) is finitely generated. So we

have an eAe-projective presentation

HomA(D(eA)m, D(eA)) → HomA(D(eA)n, D(eA)) → HomA(I
t+1, D(eA)) → 0.

Applying the functor HomeAe(−, D(eA)) to this sequence, we get the following exact

sequence

0 → F (It+1) → D(eA)n → D(eA)m.

It follows that It+1 ∈ addD(eA).

Proposition 3.7. Let A be a finite-dimensional k-algebra over a field k and e an idempo-

tent of A. Let M be a finitely generated A-module and n ≥ 2 an integer. If D(eA)-domdim

M ≥ n, then we have the (restricted) first quadrant Grothendieck spectral sequence:

Ep,0
2 = ExtpeAe(eA, eM) =⇒ RpF (M), ∀ 0 ≤ p ≤ n− 1.

Proof. Since D(eA)-domdim M ≥ n, there is an exact sequence

0 →M → D(eA)1 → D(eA)2 → · · · → D(eA)n

with all D(eA)i ∈ addD(eA). Since eA⊗A D(eA) is an injective eAe-module, and more-

over, eA ⊗A D(eA) is HomeAe(eA,−)-acyclic for 1 ≤ i ≤ n − 1 by Theorem 3.6, we get

from [4, Lemma 4.3] and Lemma 3.5 the (restricted) first quadrant Grothendieck spectral

sequence:

Ep,q
2 = ExtpeAe(eA,Tor

q
A(eA,M)) =⇒ Rp+qF (M), ∀ 0 ≤ p+ q ≤ n− 1.

Since TorqA(eA,M) = 0 for all q ≥ 1, we get the (restricted) first quadrant Grothendieck

spectral sequence:

Ep,0
2 = ExtpeAe(eA, eM) =⇒ RpF (M), ∀ 0 ≤ p ≤ n− 1.
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