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Chaotic Points of Multifunctions

Ryszard J. Pawlak

Abstract. In this paper we will consider various kinds of chaotic points of multifunc-

tions and show their application to the theory of infinite topological games.

1. Introduction and preliminaries

The concept of chaos was introduced into the mathematical vocabulary in 1975 [16]. Since

then several different and not equivalent definitions of chaos have been proposed. Survey

of these concepts one can find, for example, in [15] or in the monograph [26] for functions

on the unit interval. In many cases, various notions of chaos were joined with positive

entropy (see e.g. [26]), which has been emphasised particularly in the paper [13, p. 80]:

It is commonly accepted that an evidence of chaos is positivity of topological entropy.

Some heuristic justification of this connection one can find in [4]. In the context of our

considerations, it is worth noting that there were also natural investigations regarding the

local aspects of chaos—chaotic and entropy points (e.g. [21,23]), and moreover, problems

related to hyperspaces were analyzed (e.g. [9, 13,25,29]).

The main goal of this paper is introducing various kinds of chaotic points for mul-

tifunctions and later on showing their applications to the theory of infinite topological

games. What makes the fundamental difference to the earlier cited papers is that the

notions of chaotic points introduced in Section 2 are defined in a way being specific for

multifunctions.

Taking into account the connection between entropy and chaos, which has been sig-

naled earlier, we will start our considerations with the notion of e-chaotic point (the prefix

“e” comes from the word entropy). Condition (2.1) in the definition of e-chaotic point

makes an important difference with respect to considerations form earlier cited papers.

The connection to the entropy is established by Theorem 2.4.

The next two notions of l- and u-chaotic points are specific for multifunctions (it is

impossible to create their analogues for functions), so that they are brand new. The

theorems in Section 2.2 justify the names l- and u-chaotic point.

Received October 20, 2021; Accepted April 10, 2022.

Communicated by Cheng-Hsiung Hsu.

2020 Mathematics Subject Classification. 37B55, 91A06, 54C60, 32A12, 54B20, 74H65.

Key words and phrases. dynamical system, chaos, entropy, multifunction, Hausdorff metric, m-DC1 func-

tion (multifunction), e-chaotic point, l- and u-chaotic point, distributionally chaotic point, topological

game, strategy.

799



800 Ryszard J. Pawlak

Contrary to the above mentioned considerations, DC1 points were defined in an anal-

ogous way as in the case of functions [23]. But also in this case we will extend our

considerations by introducing the new concept of m-DC1 point, which is unique for the

multifunctions. These definitions will be supplemented with the basic properties of the

defined notions which, among other things, explain why we relate them to the concept of

chaos.

Section 3 concerns the applications of introduced notions to the theory of infinite

topological games. A brief historical overview has been presented in the introduction of

Section 3. The most known Banach–Mazur game has been mentioned and supplementary

literature has been indicated. The essence of research in the theory of infinite topological

games was often concentrated on the problem of winning strategies existence (e.g. in the

case of the above mentioned Banach–Mazur game, see [20, 24]). We will follow this trend

in our considerations.

Throughout the paper we will use the standard notation. The set of all real numbers

and positive (nonnegative) integers will be denoted by R and N (N0), respectively. We

will use the classic notations of intervals, but additionally let Jm,nK = [m,n] ∩ N0. In

order to simplify the reasoning, when we write log x, we understand that the base of the

logarithm is always the number 2.

If A is a subset of some metric space X, then by Int(A), A and #(A), we will denote

the interior, closure and cardinality of a set A, respectively. In order to avoid complex

notations when using logarithms, we assume the notation #1(A) = #(A), if A 6= ∅ and

#1(A) = 1, if A = ∅. The open ball of radius r > 0 centered at x0 will be denoted by

B(x0, r).

Let {Kn} be a sequence of nonempty subsets of a metric space X. We shall say that

the sequence {Kn} has the extension property if for any i, j and any continuous function

f : A→ Kj , where A ⊂ Ki is a closed set, one can find a continuous function f? : Ki → Kj

which is an extension of f , i.e., f? � A = f .

The following assumption will be needed throughout the paper: the symbol X will

always stand for the topological manifold equipped with the metric % (including the unit

interval [0, 1] with the natural metric). An m-dimensional manifold with boundary [14] is

a nonempty compact metric space (X, %) such that every point q ∈ X has a neighborhood

U that is homeomorphic to an open subset of the m-dimensional upper half space Hm =

{(x1, . . . , xm) ∈ Rm : xm ≥ 0}. The dimension of a manifold X will be denoted by dim(X).

For our considerations, the issues related to the base of manifolds at point (cf. [21]) are

of particular importance. We will use the symbol B(X) to denote the set of all closed

submanifolds K of X such that dim(K) = dim(X). For x0 ∈ X, we consider a sequence

{Kn}∞n=0 ⊂ B(X) of connected submanifolds, called a base at the point x0 (we will denote
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it by B(x0)), satisfying the following properties:

(M1) x0 ∈ Kn for n ∈ N;

(M2) Kn+1 ⊂ Int(Kn) for n ∈ N;

(M3) limn→∞ diam(Kn) = 0;

(M4) the sequence {Kn}∞n=1 has the extension property.

Following the notation used in [13] by the symbol 2X , we denote the hyperspace of all

nonempty compact subsets of X. Let us denote by 2Xuc the family of all uncountable

compact subsets of X. We may endow 2X with the Hausdorff metric defined in the

following way:

%H(A,B) = max

(
sup
a∈A

%(a,B), sup
b∈B

%(b, A)

)
for A,B ∈ 2X ,

where %(x,C) = infc∈C %(x, c).

Let us note the lemma useful in further considerations.

Lemma 1.1. Let A = {x0} ∪ C, B = {y0} ∪ C, where x0, y0 and C are such that

%(x0, y0) < min(%(x0, C), %(y0, C)). Then %H(A,B) = %(x0, y0).

We will continue to consider 2X both as a family of compact subsets of X and as a

space equipped with the Hausdorff metric (the distinction will be clear from the context).

According to [13, Theorem 1], we may infer that (2X , %H) is a compact metric space. Let

us note, that subscript H always stands for an object in (2X , %H), especially BH(A, ε) will

denote an open ball of radius ε > 0 centered at A ∈ 2X .

Following the notation used in [22], if ∅ 6= A ⊂ X, then we will denote d(A) = {B ∈
2X \{∅} : B ⊂ A}. Obviously, if A is a closed set then d(A) is also a closed set in (2X , %H).

Our considerations will mainly concern multifunctions ζ : X ( X, and we will always

assume that the multifunctions values are nonempty and closed subsets of X.

A multifunction ζ : X ( X is upper semicontinuous at x0 ∈ X if for every open set

W ⊂ X such that ζ(x0) ⊂ W , there exists an open set U ⊂ X such that x0 ∈ U and

ζ(U) ⊂W . A multifunction ζ is upper semicontinuous (u.s.c.) if it is upper semicontinuous

at every point of X. It is commonly known (see for instance [11, Theorem 1.1.1]) that a

multifunction ζ is u.s.c. iff ζ−1
− (F ) is a closed set for every closed set F ⊂ Y .

A multifunction ζ : X ( X is lower semicontinuous at x0 ∈ X if for every open set

W ⊂ X such that ζ(x0) ∩W 6= ∅, there exists an open set U ⊂ X such that x0 ∈ U and

ζ(x) ∩W 6= ∅ for all x ∈ U . A multifunction ζ is lower semicontinuous (l.s.c.) if it is

lower semicontinuous at every point of X. A multifunction which is both upper and lower

semicontinuous is said to be continuous.
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Let ζ : X ( X be a multifunctions and let B ⊂ X. Of course, then one can consider

small preimage and complete preimage of a set B defined in the usual way ζ−1
+ (B) =

{x ∈ X : ζ(x) ⊂ B} and ζ−1
− (B) = {x ∈ X : ζ(x) ∩ B 6= ∅} (e.g. [11]). Moreover,

ζ(A) =
⋃
a∈A ζ(a) and if ζ1, ζ2 : X ( X, then ζ2 ◦ ζ1(x) = ζ2(ζ1(x)). Obviously, if

f : X → X and ζ : X ( X, then f ◦ ζ(x) = f(ζ(x)) and ζ ◦ f(x) = ζ(f(x)). We shall

say that multifunctions ζ1, ζ2 : X ( X are conjugate if there exists a homeomorphism

ϕ : X → X such that ϕ ◦ ζ1 = ζ2 ◦ ϕ. Let ζ1, ζ2 : X ( X. We say that ζ1 is inserted in ζ2

if ζ1(x) ⊂ ζ2(x) for each x ∈ X.

Let ζ : X → X be a function or ζ : X ( X be a multifunction. We will say that a set

A ζ-covers (essential ζ-covers) a set B, which we write as A −→
ζ
B (A

e−→
ζ
B), if B ⊂ ζ(A)

(B ( ζ(A)). A point x0 will be called a (strongly) fixed point of a multifunction ζ : X ( X

if x0 ∈ ζ(x0) (x0 ∈ Int(ζ(x0))), which we can write as x0 ∈ Fix(ζ) (x0 ∈ Fixs(ζ)).

In many papers, the authors have investigated the interrelationships between the dy-

namics of functions, multifunctions and mappings (e.g. [10, 17, 25]). We will relate some

issues to the following situations.

Let f : X → X. Then one can consider a multifunction ζf : X ( X defined in the

following way: ζf (x) = {f(x)}.
Now, let ζ : X ( X be a multifunction. Then

• if ζ(A) is a closed set for each closed set A, then we may consider a function ζ : 2X →
2X defined by the formula ζ(A) = ζ(A);

• one can consider a multifunction ζ̂ : 2X ( 2X such that ζ̂(A) = d(ζ(A)).

A function selζ : X → X is said to be a selection of ζ if selζ(x) ∈ ζ(x) for all x ∈ X.

A multifunction ζ : X ( X is s-continuous if ζ has a continuous selection selζ .

If f : X → R is a nonnegative function, then a multifunction Γf : X ( X, defined

by the formula Γf (x) = [0, f(x)], is called canonical multifunction associated with the

function f [3]. It is well known that if f is upper (resp. lower) semicontinuous, then Γf is

u.s.c. (resp. l.s.c.) (e.g. [3]).

Now, we will assume that ζ and ζi (i ∈ N) are either functions ζ : X → X and

ζi : X → X or multifunctions ζ : X ( X and ζi : X ( X. If ζ : X → X, then we put

ζ0(x) = x. If ζ : X ( X, then we put ζ0(x) = {x}. Moreover let

(ζ1,∞) = {ζi}∞i=1 and ζn1 = ζn ◦ · · · ◦ ζ1 for n ∈ N.

A pair (X, (ζ1,∞)) where ζi : X → X or ζi : X ( X (i = 1, 2, . . .) is called nonautonomous

dynamical system and it is denoted by (ζ1,∞). If ζi = ζ for i ∈ N, then the dynamical

system (ζ1,∞) is called autonomous and it is denoted by (ζ).
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A nonautonomous dynamical system of multifunctions Ω = (X, (ζ1,∞)) (where (ζ1,∞) =

{ζn}∞n=1) is called cone if ζn+1 is inserted in ζn for n ∈ N. A multifunction κ : X ( X is

said to be a vertex of a cone Ω if κ is inserted in ζn for n ∈ N. It is easily seen that, by

our assumption connected with X, each cone has a vertex. A finite sequence (ζ1, . . . , ζm)

of multifunctions is called frustum if ζn+1 is inserted in ζn for n = 1, 2, . . . ,m.

Our considerations connected with functions will be related, among others, with local

aspects of entropy. Let us recall the definitions useful for further consideration (including

the case of discontinuous functions following [6]).

Let f : X → X be a function, ε > 0, n ∈ N and Y ⊂ X. A set E ⊂ Y is an (n, ε)-

separated set in Y if for each different points x, y ∈ E, there is j ∈ J0, n − 1K such that

%(f j(x), f j(y)) > ε. Let S(f, n, ε) denote an (n, ε)-separated set with the maximal possible

number of points and sn(f, Y, ε) its cardinality. The topological entropy of a function f

(more precisely: of a dynamical system (f) generated by the function f) on the set Y is

a number

h(f, Y ) = lim
ε→0+

lim sup
n→∞

1

n
log sn(f, Y, ε).

If Y = X, then we will write briefly h(f).

Considering the local aspects of dynamical systems of functions, following [30], we

assume that x0 is an entropy point of f if h(f,B(x0, ε)) > 0 for any ε > 0.

In the literature on dynamical systems, various methods are considered to facilitate

the conclusion that a given function has a positive entropy. Similar notions of turbulent

functions (e.g. [6]) and functions having a horseshoe are used for this purpose. The

name horseshoe for interval maps was given by Misiurewicz [18] (earlier this concept was

considered by A. N. Sharkovsky under the name L-scheme). For our purposes, let us

assume that a horseshoe for the function f is a family of disjoint closed sets J1, . . . , Jn

(n ≥ 2) such that f(Ji) ⊃ J1 ∪ · · · ∪ Jn for all i ∈ J1, nK. It is commonly known that the

existence of a horseshoe implies that the topological entropy is positive.

In 1994, B. Schweizer and J. Smı́tal [27] introduced the notion: “distributional chaos”

for autonomous dynamical systems. The generalization of this definition into a nonau-

tonomous case was introduced by J. Dvořáková [8]. We will be based on this definition,

naturally transferring it to the case of multifunctions (using in this case the Hausdorff

metric), so it will be convenient to adopt the following agreement:

• if we consider (ζ1,∞) consisting of functions then we put σ = %;

• if we consider (ζ1,∞) consisting of multifunctions then we put σ = %H .

Let x, y ∈ X and (ζ1,∞) be a dynamical system consisting either of functions or multi-

functions and t > 0. Then

Φ
(ζ1,∞)
x,y (t) = lim inf

n→∞

1

n
#
(
{j ∈ J0, n− 1K : σ(ζj1(x), ζj1(y)) < t}

)
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is called lower distribution function of x, y for (ζ1,∞) and

Φ
∗(ζ1,∞)
x,y (t) = lim sup

n→∞

1

n
#
(
{j ∈ J0, n− 1K : σ(ζj1(x), ζj1(y)) < t}

)
is called upper distribution function of x, y for (ζ1,∞).

Let x, y ∈ X. We shall say that a pair (x, y) is distributionally chaotic of type 1 (D1

for short) for a dynamical system (ζ1,∞) if Φ
∗(ζ1,∞)
x,y (t) = 1 for any t > 0 and there exists

t0 > 0 such that Φ
(ζ1,∞)
x,y (t0) = 0. A set A ⊂ X is called distributionally scrambled set

of type 1 (DS-set for brevity) for a dynamical system (ζ1,∞) if #(A) > 1 and for each

x, y ∈ A such that x 6= y the pair (x, y) is D1 for this system. A dynamical system (ζ1,∞) is

distributionally chaotic (of type 1), DC1 for brevity, if there exists an uncountable DS-set

for this system.

We call an autonomous dynamical system (ζ) consisting of multifunctions m-distribu-

tionally chaotic (m-DC1 for brevity) if there exists an uncountable DS-set A such that

#(ζ(x)) > 1 for x ∈ A. For brevity, we will say that ζ is m-DC1 multifunction.

2. Various kinds of chaotic points

2.1. e-chaotic points

The entropy of multifunction can be considered in various approaches. For example, in

the paper [22], the concept of a generalized entropy was introduced, which presents a

common approach of the entropy for functions and multifunctions. This concept (relating

to generalized topological spaces) of entropy coincides with the one given in [1] and [2,

Part 4.4]. For our considerations, however, we will accept some natural simplifications

for research related to manifolds. Since we will focus on analysis of the local properties,

including the local aspects of chaos and entropy, we will only write it in relation to the

neighbourhoods of some point.

Let Y ⊂ X. We shall use the symbol S(ζ, Y ) to represent a family of all finite sequences

(L1, L2, . . . , Lm) such that Li ∈ 2Xuc, Li ⊂ Y , Li ∩ Lj = ∅ (i, j ∈ {1, 2, . . . ,m}, i 6= j) and

if i, j ∈ {1, 2, . . . ,m} and i 6= j, then there exist x ∈ Li and y ∈ Lj
such that ζ(x) 6= ζ(y).

(2.1)

Condition (2.1) was added to avoid “pathological” situations where e.g. ζ(x) = X. Then

the multifunction ζ would have a character similar to the constant function (all values are

the same), so the entropy values should be zero. It would be inconsistent with the further

considerations.

Let ζ : X → X be a function or ζ : X ( X be a multifunction. Let L = (L1, L2, . . . ,

Lm) ∈ S(ζ, Y ). A path (with the length k) of the form Lp1 −→
ζ
Lp2 −→

ζ
· · · −→

ζ
Lpk −→

ζ
Lp1 ,
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where pi ∈ {1, 2, . . . ,m} for i ∈ {1, . . . , k} will be denoted by P(ζ, Lp1 , . . . , Lpk). The

symbol Pk(L, ζ) (k = 1, 2, . . .) will stand for the set of all paths P(ζ, Lp1 , . . . , Lpk).

According to the considerations connected with focal entropy points (e.g. [12]) we will

accept the following notions and definitions. An entropy of a sequence L = (L1, . . . , Lm)

∈ S(ζ, Y ) with respect to ζ is the number

Hζ(L) = lim sup
k→∞

1

k
log(#1(Pk(L, ζ))).

If Y ⊂ X is an open set, then we will write Hζ(Y ) = sup{Hζ(L) : L ∈ S(ζ, Y )}.
The following notion is analogous to that used in [21] for functions. A density of

entropy of multifunction ζ at the point x0 is the number

h(ζ, x0) = inf{Hζ(Y ) : Y is an open neighbourhood of x0}.

Following remark contained in [13] (mentioned in the introduction) linking chaos with

positive entropy we assume the succeeding definition: A point x0 is (strong) e-chaotic

point of multifunction ζ if h(ζ, x0) > 0 (h(ζ, x0) = +∞). In this context, Theorem 2.4

will justify the use of the phrase “chaotic” in this definition.

The following theorem will show the simultaneous existence of (strong) e-chaotic point

for conjugate multifunctions (the classic proof for this type of theorems is omitted).

Theorem 2.1. If multifunctions ζ1, ζ2 : X ( X are conjugate (via homeomorphism ϕ),

then x0 is (strong) e-chaotic point of ζ1 if and only if ϕ(x0) is (strong) e-chaotic point of

ζ2.

As we have already mentioned in the introduction, in many papers the issues related to

multifunctions are confronted with the properties of the functions ζ and the multifunctions

ζ̂. In pursuit of this goal, we will first prove a useful lemma (the proof is immediate).

Lemma 2.2. For any x ∈ X, A,B ∈ 2X and ε > 0 the following implications take place

(a) if A ⊂ B(x, ε), then d(A) ⊂ BH({x}, 2ε);

(b) if d(A) ⊂ BH({x}, ε), then A ⊂ B(x, ε);

(c) if %(A,B) > ε, then %H(d(A),d(B)) ≥ ε.

The next theorem will describe the relationship between the possession of a (strong)

e-chaotic point of u.s.c. multifunction ζ and the associated multifunction ζ̂.

Theorem 2.3. Let multifunction ζ : X ( X be u.s.c. If x0 is a (strong) e-chaotic point

of ζ, then {x0} is a (strong) e-chaotic point of ζ̂.
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Proof. We will show that {x0} is an e-chaotic point of ζ̂. The consideration in the case of

a strong e-chaotic point is analogous.

Fix η > 0. Since x0 is an e-chaotic point of ζ, h(ζ, x0) = α > 0, so in particular

Hζ(B(x0, η/2)) ≥ α. This means that there exists Lη = (L1, . . . , Lm) ∈ S(ζ,B(x0, η/2))

such that

(2.2) Hζ(Lη) = lim sup
k→∞

1

k
log(#1(Pk(Lη, ζ))) >

α

2
.

Let us consider L̂η = (d(L1), . . . ,d(Lm)). First we shall show

(2.3) L̂η ∈ S(ζ̂, BH({x0}, η)).

Note that d(Li) are uncountable closed sets in 2X . Of course, d(Li)∩ d(Lj) = ∅ for i 6= j.

Since Lη ∈ S(ζ,B(x0, η/2)), then Li ⊂ B(x0, η/2), which by Lemma 2.2(a) allows to

conclude that d(Li) ⊂ BH({x0}, η).

The proof of (2.3) is completed by showing that

if i, j ∈ {1, 2, . . . ,m} and i 6= j, then there exist A ∈ d(Li) and B ∈ d(Lj)

such that ζ̂(A) 6= ζ̂(B).
(2.4)

Let i, j ∈ {1, . . . ,m} and i 6= j. Since Lη satisfies the condition (2.1), then there exist

x ∈ Li and y ∈ Lj such that ζ(x) 6= ζ(y). There is no loss of generality in assuming

t ∈ ζ(x)\ζ(y) and let us put A = {x} ∈ d(Li) and B = {y} ∈ d(Lj). Then ζ̂(A) = d(ζ(x))

and ζ̂(B) = d(ζ(y)). Obviously, {t} ∈ ζ̂(A) \ ζ̂(B). The implication (2.4) has been proved

and thus also the proof of (2.3) is finished.

Applying (2.2), we can assert that there exists a sequence {kn} of positive integers

such that

(2.5) lim
n→∞

1

kn
log(#1(Pkn(Lη, ζ))) >

α

2
.

We shall prove that

(2.6) #1(Pkn(Lη, ζ)) ≤ #1(Pkn(L̂η, ζ̂)).

Let us fix n ∈ N and a path P(ζ, Lp1 , . . . , Lpkn ), where pi ∈ {1, . . . ,m} for i = 1, . . . , kn.

We will now show

(2.7) d(Lp1) −→
ζ̂
· · · −→

ζ̂
d(Lpkn ) −→

ζ̂
d(Lp1).

For this purpose we prove that

(2.8) if Lpi −→
ζ
Lpj , then d(Lpi) −→

ζ̂
d(Lpj ) for i ∈ {1, . . . , kn} and j = (i mod kn) + 1.
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So, let A ∈ d(Lpj ). Then

(2.9) A ∈ d(ζ(Lpi)) = ζ̂(Lpi).

Let us consider a set TA = ζ−1
− (A) ∩ Lpi . According to the remark after the definition of

u.s.c., it follows that ζ−1
− (A) is a closed set, and consequently TA ∈ d(Lpi).

We shall now show that

(2.10) A ⊂ ζ(TA).

Let us fix a ∈ A. From (2.9), we obtain A ⊂ ζ(Lpi) and consequently there exists xa ∈ Lpi
such that a ∈ ζ(xa). From this we conclude that xa ∈ TA and so a ∈ ζ(TA).

According to our assumption that A ∈ d(Lpj ), it follows that A is a closed set which

means that A ∈ d(ζ(TA)). Arbitrariness of A ∈ d(Lpj ) gives d(Lpj ) ⊂
⋃
T∈d(Lpi )

d(ζ(T )) =⋃
T∈d(Lpi )

ζ̂(T ) = ζ̂(d(Lpi)). This finishes the proof of (2.8) and thus we have also proved

(2.7).

Applying (2.7), we may define a function ξ : Pkn(Lη, ζ) → Pkn(L̂η, ζ̂) in the following

way: ξ(P(ζ, Lp1 , . . . , Lpkn )) = P(ζ̂,d(Lp1), . . . ,d(Lpkn )), pi ∈ {1, . . . ,m}, i = 1, . . . , kn.

To the end of the proof of (2.6) it is sufficient to show that ξ is one-to-one. So, let

us suppose that P(ζ, Lp1 , . . . , Lpkn ),P(ζ, Lq1 , . . . , Lqkn ) ∈ Pkn(Lη, ζ) are different paths.

Then there exists i0 such that Lpi0 6= Lqi0 , which in fact means that Lpi0 ∩ Lqi0 = ∅. We

thus get d(Lpi0 ) 6= d(Lqi0 ), which proves ξ(P(ζ, Lp1 , . . . , Lpkn )) 6= ξ(P(ζ, Lq1 , . . . , Lqkn )).

Consequently (2.6) is proved.

On account of (2.6) and (2.5), we have

lim sup
n→∞

1

kn
log(#1(Pkn(L̂η, ζ̂))) >

α

2
.

Consequently H
ζ̂
(L̂η) > α/2 which (taking into account the arbitrariness of η) allows us

to conclude that h(ζ̂, {x0}) > 0.

Let us now return to the previously mentioned justification for the use of the term

“chaotic” in the name e-chaotic point (in the context of the quotation from paper [13]).

Theorem 2.4. Let f : X → X be a continuous function. If x0 is an e-chaotic point of

the multifunction ζf , then

(a) x0 is an entropy point of the function f (and thus h(f) > 0);

(b) {x0} is an entropy point of the function ζf (and thus h(ζf ) > 0).

Before going to the proof, it is worth noting that in view of the assumptions of the

above theorem, we can consider a function ζf because ζf (F ) is a closed set for any closed

set F .
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Proof of Theorem 2.4. Let σ > 0. Following [6] let us assume the notations

sf (ε, σ) = lim sup
k→∞

1

k
log(sk(f,B(x0, σ), ε)),

sζf
(ε, σ) = lim sup

k→∞

1

k
log(sk(ζf , BH({x0}, σ), ε)).

After accepting these notations, we should prove that

h(f,B(x0, σ)) = lim
ε→0+

sf (ε, σ) > 0,(2.11)

h(ζf , B({x0}, σ)) = lim
ε→0+

sζf
(ε, σ) > 0.(2.12)

In order to prove (2.11) and (2.12), we will show that

there exist β > 0 and ε0 > 0 such that sf (ε, σ) ≥ β and sζf
(ε, σ) ≥ β for each ε ∈ (0, ε0).

Since considerations related to many fragments of this proof are similar to the reasonings

contained in the previous proofs, these fragments will be written briefly.

Since x0 is an e-chaotic point of multifunction ζf , then there exists Lσ = (L1, . . . , Lm) ∈
S(ζf , B(x0, σ/2)) such that

Hζf (Lσ) = lim sup
k→∞

1

k
log(#1(Pk(Lσ, ζf ))) ≥ α.

Set ε0 = 1
2 min{%(Li, Lj) : i, j ∈ {1, . . . ,m}, i 6= j} and β = α/2. We deduce that there

exists {kn} ⊂ N such that

(2.13)
1

kn
log(#1(Pkn(Lσ, ζf ))) > β.

We now turn to the proof of (a). Note that if we have the path P(ζf , Lp1 , . . . , Lpkn ),

then P(f, Lp1 , . . . , Lpkn ) is also a path.

Now let ξζf : Pkn(Lσ, ζf ) → Pkn(Lσ, f) be a function defined in the following way:

ξζf (P(ζf , Lp1 , . . . , Lpkn )) = P(f, Lp1 , . . . , Lpkn ). It follows easily that ξζf is one-to-one,

and so #1(Pkn(Lσ, ζf )) ≤ #1(Pkn(Lσ, f)). In the next step of the proof we shall prove

(2.14) skn(f,B(x0, σ), ε) ≥ #1(Pkn(Lσ, f)).

Let us fix a path P(f, Lp1 , . . . , Lpkn ) ∈ Pkn(Lσ, f). Then one can find xp1,...,pkn ∈ Lp1
such that f j(xp1,...,pkn ) ∈ Lp(j mod kn)+1

for j ∈ {0, . . . , kn}. In this way one can define

a function ψ which each path P(f, L1, . . . , Lkn) assigns an element xp1,...,pkn having the

above-mentioned property.
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One should remark that if P(f, Lp1 , . . . , Lpkn ),P(f, Lq1 , . . . , Lqkn ) ∈ Pkn(Lσ, f) and

P(f, Lp1 , . . . , Lpkn ) 6= P(f, Lq1 , . . . , Lqkn ), then there exists j0 ∈ {1, . . . , kn} such that

Lpj0 ∩ Lqj0 6= ∅ and consequently

%(f j0−1(xp1,...,pkn ), f j0−1(xq1,...,qkn )) > ε0.

From these considerations it follows that {xp1,...,pkn : P(f, Lp1 , . . . , Lpkn ) ∈ Pkn(Lσ, ζf )} is

the (kn, ε)-separated set contained in B(x0, σ) for ε ∈ (0, ε0). We have thus proved (2.14).

From (2.14) and (2.13) it follows

1

kn
log(skn(f,B(x0, σ))) > β for ε ∈ (0, ε0)

and consequently sf (ε, σ) ≥ β, which proves (2.11) and thus proof (a) has been completed.

Now we will show item (b) of our theorem.

Since Lσ = (L1, . . . , Lm) ∈ S(ζf , B(x0, σ/2)), we have Li ⊂ B(x0, σ/2), i ∈ {1, . . . ,m}.
Consequently, by Lemma 2.2(a), we have d(Li) ⊂ BH({x0}, σ), i ∈ {1, . . . ,m}, and from

Lemma 2.2(c) it may be concluded that

if i, j ∈ {1, . . . ,m} and i 6= j, then %H(d(Li),d(Lj)) ≥ ε0.

Now, we will prove that if P(ζf , L1, . . . , Lpkn ) ∈ Pkn(Lσ, ζf ), then

(2.15) d(Lp1) −→
ζf

· · · −→
ζf

d(Lpkn ) −→
ζf

d(Lp1).

For this purpose we need to show

(2.16) d(Lpi) −→
ζf

d(Lpj ) for i ∈ {1, . . . , kn} and j = (i mod kn) + 1.

Let us fix i ∈ {1, . . . , kn}. Note that ζ−1
f−(K) = ζ−1

f+(K) for each K ⊂ X.

So let A ∈ d(Lpj ) and put ZA = ζ−1
f+(A) ∩ Lpi 6= ∅. Let us observe that

(2.17) ZA is a closed set.

For this, it is sufficient to show that ζ−1
f+(A) is a closed set. A short calculation shows

that ζ−1
f+(A) = {z ∈ X : ζf (z) ⊂ A} = {z ∈ X : f(z) ∈ A} = f−1(A). Obviously f−1(A)

is a closed set because A ∈ d(Lpj ) and f is a continuous function. This completes our

argument for (2.17).

From (2.17), closedness of Lpi and ∅ 6= ZA ⊂ Lpi , it follows that

(2.18) ZA ∈ d(Lpi).
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In order to prove (2.16) (and thus (2.15)), by virtue of (2.18) it is sufficient to show

that

(2.19) A = ζf (ZA).

As in the proof of (2.10), one can show that A ⊂ ζf (ZA). Conversely, let α ∈ ζf (ZA) =

ζf (ζ−1
f+(A) ∩ Lpi). So there exists x ∈ ζ−1

f+(A) ∩ Lpi such that α ∈ ζf (x). Of course,

ζf (x) ⊂ A, which means that α ∈ A and we have A ⊃ ζf (ZA). Consequently, A = ζf (ZA).

In order to complete the proof of (2.19) note that A = ζf (ZA) = ζf (ZA). According to

(2.18), we conclude that A ∈ ζf (d(Lpi)), which finishes the proof of (2.16), and thus also

(2.15). Moreover, note that the sequence (d(Lp1), . . . ,d(Lpkn )) fulfils the condition (2.1)

with respect ζf .

Therefore we now move on to the proof of (2.12). On account of (2.15), each path

P(ζf , Lp1 , . . . , Lpkn ) ∈ Pkn(Lσ, ζf ) can be assigned with a path P(ζf ,d(Lp1), . . . ,d(Lpkn ))

∈ Pkn(Lσ, ζf ), where Lσ = (d(Lp1), . . . ,d(Lpkn )). Of course, this assignment is one-to-one.

From this we conclude that #1(Pkn(Lσ, ζf )) ≤ #1(Pkn(Lσ, ζf )) and by (2.13) we have

1

kn
log(#1(Pkn(Lσ, ζf ))) > β.

The inequality skn(ζf , BH({x0}, ε)) ≥ #(PknLσ, ζf ) can be proved just as (2.14) and

completing the proof of (2.12) may be the same as in the case of (2.11) (obviously, e.g. we

choose Fp1,...,pkn ∈ d(Lp1) instead of xp1,...,pkn ∈ Lp1 , etc.).

2.2. l- and u-chaotic points

In Subsections 2.1 and 2.3, we consider the concepts of chaotic points of multifunctions that

are in some way analogous to some approaches regarding functions. In this subsection,

however, we will consider the approach characteristic only for multifunctions. We will

begin by adopting the following definition.

Let ζ : X ( X. A point x0 ∈ Fixs(ζ) is called l-chaotic point of ζ if there exists an

open neighbourhood U of x0 such that {x} e−→
ζ
ζ(x0) for x ∈ U \ {x0}.

Theorem 2.6 will explain the meaning of the prefix l and Theorem 2.5 will justify the

use of the name chaotic point (in the context of the results contained in Section 2.1 and

earlier-cited statement from [13]).

Theorem 2.5. Let ζ : X ( X. If x0 is an l-chaotic point of ζ, then x0 is an e-chaotic

point of ζ.

Proof. We have to show that h(ζ, x0) > 0. Let us fix an arbitrary neighbourhood Y of x0.

From the definition of l-chaotic point it follows that there exists an open neighbourhood

U of x0 such that {x} e−→
ζ
ζ(x0) for x ∈ U \ {x0} and, moreover, we have x0 ∈ Fixs(ζ).
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Put Z = Y ∩ U ∩ Int(ζ(x0)) and let F1, F2 ⊂ Z be uncountable closed sets such that

x0 ∈ F1 and F1 ∩ F2 = ∅. It is easily seen that L = (F1, F2) ∈ S(ζ, Z).

Fix k ∈ N and consider Pk(L, ζ). We shall show that

(2.20) #1(Pk(L, ζ)) = 2k.

An easy verification shows that ζ(Fi) ⊃ F1 ∪F2 for i = 1, 2. This means that Fi −→
ζ
Fj for

i, j ∈ {1, 2}. Hence we directly obtain (2.20).

Obviously, Hζ(L) = lim supk→∞
1
k log(#1(Pk(L, ζ))) = log 2 and consequentlyHζ(Y ) ≥

Hζ(Z) ≥ Hζ(L) = log 2, which according to the arbitrariness of Y gives h(ζ, x0) ≥ log 2 >

0.

As it has been already signaled in the introduction the following theorem explains the

meaning of the prefix l.

Theorem 2.6. Let ζ : X ( X be a multifunction. If x0 is an l-chaotic point of ζ, then

ζ is lower semicontinuous at x0.

Proof. When x0 is an isolated point the proof is trivial. So, we may assume that Int({x0}) =

∅. Let W be an open set such that ζ(x0)∩W 6= ∅. Since for some open neighbourhood V

of x0, we have {x} e−→
ζ
ζ(x0) for x ∈ V \ {x0}, then ζ(x) ∩W 6= ∅ for x ∈ V .

It is not difficult to verify that the above theorem cannot be strengthened by the de-

mand that x0 is a continuity point of the multifunction. Now, we consider the relationship

with the multifunction ζ̂.

Theorem 2.7. Let ζ : X ( X be a multifunction. If x0 is an l-chaotic point of ζ, then

{x0} is an l-chaotic point of ζ̂.

Proof. Our proof starts with the observation that

(2.21) ζ̂({x}) = d(ζ({x})) = d(ζ(x)) for an arbitrary x ∈ X.

First, we shall show that

(2.22) {x0} ∈ Fixs(ζ̂).

Since x0 ∈ Fixs(ζ), there exists δ > 0 such that B(x0, δ) ⊂ ζ(x0). In order to get

inclusion (2.22), it is convenient to show BH({x0}, δ) ⊂ ζ̂({x0}). So, let P ∈ BH({x0}, δ).
Then d(P ) ⊂ BH({x0}, δ) and next P ⊂ B(x0, δ) ⊂ ζ(x0) follows from Lemma 2.2(b).

Taking into account (2.21), we infer that P ∈ ζ̂({x0}). Arbitrariness of the choice of

P ∈ BH({x0}, δ) proves that BH({x0}, δ) ⊂ ζ̂({x0}) and consequently we have (2.22).
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Our assumptions guarantee the existence of ε > 0 such that {x} e−→
ζ
ζ(x0) for an

arbitrary x ∈ B(x0, ε) \ {x0}, and consequently

for any x ∈ B(x0, ε) \ {x0}, there exists an element y

such that {y} ∈ d(ζ(x)) \ d(ζ(x0)).
(2.23)

Now, we shall prove that

Q
e−→
ζ̂
ζ̂({x0}) for each nonempty Q ∈ BH({x0}, ε) \ {{x0}}.

Lemma 2.2(b) gives Q ⊂ B(x0, ε). Let xQ ∈ Q. From (2.21) it may be concluded that

ζ̂({x0}) = d(ζ(x0)) ⊂ d(ζ(xQ)) ⊂ d(ζ(Q)) = ζ̂(Q).

What is left is to show that ζ̂({x0}) 6= ζ̂(Q). It is easily seen that Q 6= {x0}, and so there

exists q ∈ Q \ {x0}. Obviously, q ∈ B(x0, ε) \ {x0}, which, on the basis of (2.23) allows

us to conclude that there exists q1 such that {q1} ∈ d(ζ(q)) \ d(ζ(x0)). From (2.21), we

obtain {q1} ∈ ζ̂({q}) \ ζ̂({x0}), thereby {q1} ∈ ζ̂(Q) \ ζ̂({x0}).

Following the definition of l-chaotic point, a dual definition of u-chaotic point can be

formulated.

Let ζ : X ( X. A point x0 ∈ Fixs(ζ) is called u-chaotic point of ζ if there exists an

open neighbourhood U of x0 such that {x0}
e−→
ζ
ζ(x) for x ∈ U \ {x0}. It is not difficult to

prove the theorem analogous to Theorem 2.6.

Theorem 2.8. Let ζ : X ( X be a multifunction. If x0 is an u-chaotic point of ζ, then

ζ is upper semicontinuous at x0.

Despite the analogy between definitions of l-chaotic point and u-chaotic point, both

concepts are significantly different. They are not only mutually independent (which is

easy to see), but they also have different properties. For example, for the u-chaotic

points the theorem analogous to Theorem 2.5 nor does theorem analogous to Theorem 2.7

hold. For a counterexample (in both cases), consider a canonical multifunction Γf , where

f : [0, 1] → [0, 1] is defined in the following way: f(x) = 0 for x ∈ [0, 1] \ {1/2} and

f(1/2) = 1.

Although there is no complete analogy to Theorem 2.5, in the case of canonical mul-

tifunction, some analogous theorem can be obtained.

Theorem 2.9. Let f : [0, 1] → [0, 1] be a continuous function and let x0 ∈ X be a u-

chaotic point of the canonical function Γf : X ( X associated with the function f , then

x0 is an e-chaotic point of Γf .
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Proof. We will carry out the proof assuming that x0 6= 1 (in the case x0 = 1 the reasoning

is analogous). We have to show that density of entropy of Γf at x0 is positive, i.e.,

h(Γf , x0) > 0.

Let us fix an arbitrary open neighbourhood Y of x0. Moreover, it follows easily that

there exists σ > 0 such that

(2.24) [x0, x0 + σ] ⊂ Γf (x0).

We shall show that there exists an open neighbourhood V of x0 such that

(2.25) (x0 − σ/2, x0 + σ/2) ∩ [0, 1] ⊂ Γf (x) for each x ∈ V .

According to the property of canonical function, it follows that Γf is l.s.c. at x0. Let

W = (x0 + σ/2, 1]. On account of (2.24), we have Γf (x0) ∩W 6= ∅, and so there exists

an open neighbourhood V of x0 such that Γf (x) ∩W 6= ∅ for each x ∈ V . Taking into

account the definition of Γf , we conclude that condition (2.25) is fulfilled.

Let us also consider an open neighbourhood U of x0 such that {x0}
e−→

Γf

Γf (x) for any

x ∈ U \{x0}. Finally, let us examine open neighbourhood Z = Y ∩U ∩V ∩ (x0−σ/2, x0 +

σ/2) ∩ [0, 1] of x0 and let F1, F2 ⊂ Z be uncountable closed sets such that x0 ∈ F1 and

F1 ∩ F2 = ∅. Considering L = (F1, F2) ∈ S(Γf , Z), by reasoning analogous to the proof of

Theorem 2.5, it can be proved that Γf (Fi) ⊃ F1∪F2 for i = 1, 2 and consequently we have

#1(Pk(L,Γf )) = 2k for any k ∈ N. Thus HΓf
(L) = lim supk→∞

1
k log(#1(Pk(L,Γf ))) =

log 2 and next HΓf
(Y ) ≥ HΓf

(Z) ≥ HΓf
(L) = log 2, which gives (according to arbitrari-

ness of Y ) h(Γf , x0) ≥ log 2 > 0.

Note also remark, important for further considerations.

Remark 2.10. Let ζ : X ( X. If x0 ∈ X be an isolated point, then x0 is an l-chaotic and

u-chaotic point of ζ if and only if x0 ∈ Fix(ζ).

2.3. Distributionally chaotic point

The analysis of the behaviour of some functions and multifunctions allows to notice that

there exist points around which “uncountable distributionally scrambled sets” are focused.

This observation leads us to analysing local aspects of “distibutional chaos”, which be-

come the aim of paper [23] (in the context of functions). Minor modifications (to the

concept of envelope) allow us to transfer the definitions from the paper [23] to the case of

multifunction.

Let ζ : X ( X be a multifunction. We shall say that x0 ∈ X is a DC1 point of the

dynamical system (ζ) if for any ε > 0, there exists an uncountable set S being a DS-set

for the dynamical system (ζ) such that there are n ∈ N and a closed set A ⊃ S fulfilling
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the condition ζi·n(A) ∩ B(x0, ε) 6= ∅ for i ∈ N0. The set A described above will be called

(n, ε)-envelope of the set S.

Deeper relations between DC1 points and e-chaotic or l-chaotic point can be inferred

from Theorem 2.11 and from the considerations contained in Section 3. Below we will

consider only an example of the multifunction ζ : [0, 1] ( [0, 1] for which x0 = 1/2 is an

l-chaotic point (thus, by Theorem 2.5 is also an e-chaotic point), which is not a DC1 point.

Let f : [0, 1]→ [0, 1] be a continuous function such that f(0) = 1 = f(1), f(1/2) = 3/4

and f is linear on each interval [0, 1/2] and [1/2, 1]. Let us consider canonical multifunction

Γf : [0, 1] ( [0, 1] associated with the function f . Set x0 = 1/2. It follows immediately

that x0 is an l-chaotic point of Γf . Note that Γ2
f (x) = [0, 1] for any x ∈ [0, 1]. Thus for

arbitrary x, y ∈ [0, 1] and j ≥ 2, we have %H(Γjf (x),Γjf (y)) = 0. Consequently there is no

DS-set for Γf .

In the context of the example above, the following statement seems to be interesting.

Theorem 2.11. Let ζ0 : [0, 1] ( [0, 1] and let x0 ∈ (0, 1) be an l-chaotic point of ζ0.

Then there exists an m-DC1 multifunction ζ1 : X ( X inserted in ζ0 and such that x0

is a DC1 point of ζ1 and it is not an e-chaotic point of ζ1 (so all the more, according to

Theorem 2.5, it is not an l-chaotic point).

Proof. According to our assumption there exists δ1 > 0 such that

(2.26) [x0 − δ, x0 + δ] ⊂ ζ0(x0) ∩ (0, 1) ⊂ ζ0(x) for x ∈ [x0 − δ, x0 + δ].

Let {an}, {bn} be sequences converging to x0 and such that

x0 < · · · < an < bn < · · · < a2 < b2 < a1 < b1 < x0 +
δ

3
.

Taking into account, for example, the considerations contained in [26] it is easy to check

that there exists a continuous DC1 function τn : [an, bn] → [an, bn] such that τ(an) = an,

τ(bn) = bn, n ∈ N. This means that

(2.27)

there exists an uncountable distributionally scrambled set Sn ⊂ [an, bn] of τn for n ∈ N.

Let us define τ0 : [x0, x0 + δ/3]→ [x0, x0 + δ/3] in the following way:

τ0(x) =

x if x ∈ [x0, x0 + δ/3] \
⋃∞
n=1[an, bn],

τn(x) if x ∈ [an, bn] for n ∈ N.

Let us finally define a multifunction ζ1 : [0, 1]( [0, 1] by the formula

ζ1(x) =


ζ0(x) if x /∈ [x0 − δ, x0 + δ/3] ∪ [x0 + 2δ/3, x0 + δ],

[x0 − δ, x0 − δ/2] if x ∈ [x0 − δ, x0),

{τ0(x) + 2δ/3} ∪ [x0 − δ, x0 − δ/2] if x ∈ [x0, x0 + δ/3],

{τ0(x− 2δ/3)} ∪ [x0 − δ, x0 − δ/2] if x ∈ [x0 + 2δ/3, x0 + δ].
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On account of (2.26), it is easy to see that ζ1 is inserted in ζ0.

Detailed calculations show that ζ2j−1
1 (x) = {τ2j−1

0 (x) + 2δ/3} ∪ [x0 − δ, x0 − δ/2] and

ζ2j
1 (x) = {τ2j

0 (x)}∪ [x0−δ, x0−δ/2] for j ∈ N and x ∈ [x0, x0 +δ/3]. Moreover, let us note

that τ2j−1
0 (x) + 2δ/3 ∈ [x0 + 2δ/3, x0 + δ] and τ2j

0 (x) ∈ [x0, x0 + δ/3] for x ∈ [x0, x0 + δ/3],

j ∈ N.

From the above observations and Lemma 1.1, it may be concluded that

(2.28) %H(ζk1 (x), ζk1 (y)) = |τk0 (x)− τk0 (y)| for x, y ∈ [x0, x0 + δ/3], k ∈ N.

We will now show that

(2.29) x0 is a DC1 point for ζ1.

So let ε > 0. Then there exists nε ∈ N such that [anε , bnε ] ⊂ (x0 − ε, x0 + ε) ∩ (0, 1). By

(2.27) there exists an uncountable distributionally scrambled set Snε ⊂ [anε , bnε ] of τnε ,

and thus for τ0. Then

(2.30) Snε is an uncountable distributionally scrambled set of ζ1.

Let x, y ∈ Snε , x 6= y and t > 0. Then, taking into account (2.28), we obtain

Φ∗(ζ1)
x,y (t) = lim sup

n→∞

1

n
#({k ∈ J0, n− 1K : ρH(ζk1 (x), ζk1 (y)) < t})

= lim sup
n→∞

1

n
#({k ∈ J0, n− 1K : |τk0 (x)− τk0 (y)| < t}) = 1.

Since Snε is an uncountable distributionally scrambled set of τ0, there exists t0 > 0

such that

Φ(τ0)
x,y (t0) = lim sup

n→∞

1

n
#({k ∈ J0, n− 1K : |τk0 (x)− τk0 (y)| < t0}) = 0.

And again, taking into account (2.28), we have

Φ(ζ1)
x,y (t) = lim sup

n→∞

1

n
#({k ∈ J0, n− 1K : ρH(ζk1 (x), ζk1 (y)) < t0})

= lim sup
n→∞

1

n
#({k ∈ J0, n− 1K : |τk0 (x)− τk0 (y)| < t0}) = 0,

which ends the proof of (2.30).

Now note that [anε , bnε ] is an (nε, ε)-envelope of ζ1. Obviously Snε ⊂ [anε , bnε ]. Let

n = 2, i ∈ N0 and p ∈ Snε ⊂ [anε , bnε ]. Then ζ2·i
1 (p) 3 τ2·i

0 (p), which means that

ζ2·i
1 ([anε , bnε ]) ∩ (x0 − ε, x0 + ε) ∩ (0, 1) 6= ∅, which finishes the proof that [anε , bnε ] is a

(nε, ε)-envelope of ζ1. The proof of (2.29) is complete.

Moreover, the set ζ1(x) is uncountable for an arbitrary x ∈ Snε , which allows to

conclude that ζ1 is an m-DC1 multifunction.
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Note that ζ1([x0 − δ, x0 + δ/3]) ⊂ [x0 − δ, x0 − δ/2] ∪ [x0 + 2δ/3, x0 + δ], and so if

Y ⊂ (x0− δ/4, x0 + δ/4), then for an arbitrary L ∈ S(ζ1, Y ), we have Pk(L) = ∅ for k ≥ 2.

Thus Hζ1(L) = 0, and by arbitrariness of L ∈ S(ζ1, Y ), it follows that Hζ1(Y ) = 0 and

consequently h(ζ1, x0) = 0.

3. Let us play chaos

In many scientific studies, one can find combinations and applications of various ap-

proaches of dynamical systems and games, not only in relation to purely mathematical

issues (e.g. [7]). In this paper, however, we will combine the issues of infinite topological

games and the various kinds of chaotic points of multifunction.

The notion of a finite positional game (with perfect information) was introduced in

the monograph [19] (note that combinatorial game was described in the 17th century).

However, infinite positional games were considered earlier. This was connected to the

famous Banach–Mazur Game which appeared for the first time in the famous Scottish

Book (Problem No. 43, S. Mazur entry). A number of outstanding mathematicians can be

associated with the problems of this game. For some historical overview, see e.g. [24,28]. Of

course, considerations about infinite topological games are also applied to multifunctions

(e.g. survey [5]).

The main goal of this chapter is to show the application of the various notions of

chaotic points to infinite topological games.

We begin by describing the two types of games l-MG (lower multifunctions game) and

u-MG (upper multifunctions game). A finite (but greater than 1) number of players par-

ticipate in the game. We will assume in this section that there are k players: π1, π2, . . . , πk,

k ∈ N \ {1}. The starting point for all games is a multifunction ζ0(x) = X for x ∈ X.

In the game l-MG (u-MG), the players choose s-continuous, m-DC1 multifunction

having l-chaotic point (u-chaotic point) in such a way that all the functions selected so

far form a frustum. Players choose in order: π1, π2, . . . , πk, π1, π2, . . . , πk, π1, etc. Since

this is an infinite game, we will get a nonautonomous dynamical system being a cone and

thus the set of vertices of created cone is nonempty.

To each player πi (i ∈ J1, kK), there is assigned a sentence s(πi) describing the properties

of a certain vertex of created cone, determining his winnings. Obviously, we can take care

of some elegance related to the description of our game by adopting an assumption: “if

there is a vertex for which s(πi0) is true then there is no vertex with the properties s(πi)

for i ∈ J1, kK \ {i0}”. The acceptance or omission of the above assumption means that

there may be one or more winners in the game. It will depend on the fact whether s(πi) for

different players are mutually exclusive (e.g. s(π1) contradicts s(π2) in the game for two

players), or the sentenced may be simultaneously fulfilled for two (or more) players (e.g. if
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s(π1) means that during the game a cone with vertex having e-chaotic point is created and

s(π2) means the existence of a vertex with l-chaotic point, see Theorem 2.5). Clearly, one

can create also a game with no winner. However, as it was indicated in the introduction,

we will pay our attention only to the problem of the existence of winning strategy for

a fixed player, whose sentence will be connected with the existence of earlier presented

chaotic points. Thus, we will only formulate s(πi0) for a fixed player πi0 (i0 ∈ J1, kK),
assuming by default that certain s(πi) sentences are also defined for the other players.

Let us denote by Ml (Mu) the set of all s-continuous, m-DC1 multifunctions ζ : X ( X

having l-chaotic point (u-chaotic point). For i ∈ J1, kK, let Cil (Ciu) denote the set of all

frustums of the form (ζ0, . . . , ζω·k+i−1) for ω ∈ N0, consisting of functions belonging to

Ml (Mu). In other words, Cil (Ciu) consists of sequences of multifunctions selected in the

game l-MG (u-MG) preceding the next choice of πi, i ∈ J1, kK.
The strategy in l-MG (u-MG) for the player πi (i ∈ J1, kK) is a function τ li : Cil → Ml

(τui : Ciu → Mu). We will say that player πi (i ∈ J1, kK) follows strategy τ li (τui ) if at any

step of his play his choice is the value of the function τ li (τui ) for a frustrum consisting of

previously selected functions.

Strategy τ li (τui ), for i ∈ J1, kK, is called a winning strategy for player πi if player

πi, following strategy τ li (τui ), regardless of the choices of other players and, obviously,

irrespective to the defined winning sentences for other players, will lead to the creation of

a cone for which s(πi) is true (i.e., player πi wins the game regardless of the actions of

other players).

Before making the main considerations, let us note some useful lemmas.

Lemma 3.1. (e.g. [21, 26]) A function f : P → P , where P is a non-degenerate compact

interval, has a positive entropy iff the dynamical system (f) is distributionally chaotic of

type 1.

Lemma 3.2. (cf. [23, 27]) Let L ⊂ X be an arc, φ : [0, 1] → L be a homeomorphism,

f : [0, 1] → [0, 1] be a continuous function and g = φ ◦ f ◦ φ−1. If S ⊂ [0, 1] is an

uncountable DS-set for the dynamical system (f), then φ(S) is an uncountable DS-set for

the dynamical system (g).

Lemma 3.3. Let ζ : X ( X be an s-continuous multifunction and let x0 be an l-chaotic

point of ζ. Then for an arbitrary base B(x0) = {Kn}∞n=1, there exist n0 ∈ N and continuous

selection selζ of ζ such that selζ(x) = x for x ∈ Kn0.

Proof. Since x0 is an l-chaotic point of ζ, we have x0 ∈ Fix(ζ) and there exists an open

neighbourhood U of x0 such that

(3.1) x0 ∈ Int(ζ(x0)) ⊂ ζ(x) for each x ∈ U.
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Fix Ks0 ∈ B(x0) such that

(3.2) Ks0 ⊂ U ∩ Int(ζ(x0)).

Let us denote by sζ an arbitrary continuous selection of ζ. Then, by (M2), there is m0 ∈ N
such that m0 > s0, (and so Km0 ⊂ Int(Ks0)) and sζ(Km0) ⊂ Ks0 ⊂ U . On account of

(M2) and (M3), one can find n0 ∈ N such that Kn0 ⊂ Int(Km0).

Consider the function s?ζ : Kn0 ∪ Fr(Km0)→ Ks0 given by

s?ζ(x) =

x if x ∈ Kn0 ,

sζ(x) if x ∈ Fr(Km0).

Using (M4) one can find a continuous extension s′ζ : Km0 → Ks0 of s?ζ . From (3.1) and

(3.2), it follows that Ks0 ⊂ ζ(x) for each x ∈ Ks0 , and so s′ζ(x) ∈ ζ(x) for each x ∈ Km0 .

Now, we are able to define a function selζ : X → X in the following way:

selζ(x) =

s′ζ(x) if x ∈ Km0 ,

sζ(x) if x /∈ Km0 .

Taking into account the equality s′ζ � Fr(Km0) = sζ � Fr(Km0), we conclude that selζ is a

continuous function. Obviously selζ is a selection of ζ and selζ(x) = x for x ∈ Kn0 .

Remark 3.4. Let us assume the notations as in Lemma 3.3. When analyzing the proof,

we notice at once that if n ≥ n0, then selζ(x) = x for x ∈ Kn.

Before we go on to the basic considerations, let us note some observations that precede

the further results. Theorem 3.5 will show that we cannot have a winning strategy when

we demand a cone with a vertex of l-chaotic point (the same result can be shown for a

u-chaotic point). For this reason, we will weaken our demands limiting our considerations

to the closure of the set defined below. Let us denote by Ol(ζ) (Ou(ζ)) the set of all

l-chaotic points (u-chaotic points) of ζ. If we have a dynamical system (ζ1,∞) = {ζi}i∈N,

then we put Λl =
⋃∞
n=1Ol(ζn) (Λu =

⋃∞
n=1Ou(ζn)).

Let us now consider the situation when we have players πe and πl in the game l-MG

(not necessarily participating in the same game) and to whom the following sentences are

assigned:

s(πe) - as a result of the game there will be created a cone such that there

exist a point x0 ∈ Λl and a vertex κ such that x0 is a DC1 point and a strong

e-chaotic point of κ.

s(πl) - as a result of the game will be created a cone with the vertex having

l-chaotic point.
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Theorem 3.5. Let us assume that dim(X) ≥ 2. Then

(l-MG1) player πe has a winning strategy in the game l-MG.

(l-MG2) player πl has no winning strategy in the game l-MG.

Proof. The method of the proof was selected in such a way that it was possible to shorten

the considerations of both this reasoning and the proof of Theorem 3.6 by referring to

some parts of the already presented proof.

To simplify, we will carry out the proof with the additional assumption that πe makes

the second choice (i.e., πe = π2). If πe = πi for i > 2 the proof is analogous (with an

obvious change of indexes). If πe = π1, the proof is also similar. The only exception is

that in the first step of choosing, the player πe chooses an arbitrary multifunction fulfilling

the rules of l-MG game and at the second step of choosing he starts building a strategy

according to the scheme shown below.

In order to define the winning strategy τ l2 for πe (let us recall that we assume: πe = π2),

we must assign to each frustum (ζ0, . . . , ζω·k+1) (ω ∈ N0) a multifunction ζω·k+2 fulfilling

the rules of the game, so that as the game result we obtain a cone for which s(πe) is true.

So let us assume that for some ω ∈ N0, we have frustum (ζ0, . . . , ζω·k+1) ∈ C2
l , i.e.,

we have sequence of multifunctions selected in the game l-MG (ζ0, . . . , ζω·k+1) ∈ C2
l that

precede the next choice of πe. Now we have to define the multifunction ζωk+2 being the

value of the function τ l2 at (ζ0, . . . , ζω·k+1).

According to the rules of our game, the player π1 chooses (in the previous step) s-

continuous, m-DC1 multifunction ζωk+1 having l-chaotic point xωk+1. Using the property

of ζωk+1 (corresponding to the rules of this game), we can conclude that there exists an

open set Uωk+2 such that

(3.3) xωk+1 ∈ Uωk+2 ⊂ ζωk+1(xωk+1) ⊂ ζωk+1(x) for each x ∈ Uωk+2.

Obviously, Uωk+2 is not a singleton. Fix B(xωk+1) = {Kn}∞n=1 fulfilling the condi-

tions (M1)–(M4) and let Knωk+2
∈ B(xωk+1) be such that

(3.4) Knωk+2
⊂ Uωk+2 and diam(Knωk+2

) ≤ 1

2ωk+2
.

On account of Lemma 3.3 and Remark 3.4, one can assume that Knωk+2
has the

property: there is a continuous selection selζωk+1
of ζωk+1 such that selζωk+1

(x) = x for

x ∈ Knωk+2
.

So let zωk+2 ∈ Int(Knωk+2
) \ {xωk+1}. Note that zωk+2 ∈ ζωk+1(xωk+1). Since Knωk+2

is an arcwise connected set, there exists an arc Lωk+2 = L(xωk+1, zωk+2) ⊂ Knωk+2
. From

(M2) and (M3), one can deduce that there is Kmωk+2
∈ B(xωk+1) such that

Kmωk+2
⊂ IntKnωk+2

⊂ Uωk+2 and zωk+2 /∈ Kmωk+2
.
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Let Lωk+2 ⊂ Lωk+2 be an arc satisfying the following conditions

diam(Lωk+2) < %(zωk+2, L
ωk+2);

there exist an open set Uωk+2 ⊂ Int(Knωk+2
) \Kmωk+2

such that Lωk+2 ⊂ Uωk+2

and a homeomorhism ϕωk+2 : Uωk+2 onto−−→ B(αωk+2, rωk+2) ⊂ Hdim(X).

(3.5)

Next, we distinguish 2ωk+2 arcs contained in Lωk+2:

Lωk+2
i ⊂ Lωk+2 such that Lωk+2

i1
∩ Lωk+2

i2
= ∅ for i1, i2 ∈ {1, . . . , 2ωk+2}, i1 6= i2.

Of course, zωk+2 /∈
⋃2ωk+2

i=1 Lωk+2
i . Let hωk+2

i : Lωk+2
i

onto−−→ Lωk+2 be a homeomorphism

for i ∈ {1, . . . , 2ωk+2} and let µωk+2 : Lωk+2 → Lωk+2 be a continuous function such that

µωk+2 � L
ωk+2
i = hωk+2

i , i ∈ {1, . . . , 2ωk+2}. Now, we define auxiliary continuous function

g′ωk+2 : Fr(Kmωk+2
) ∪ Lωk+2 ∪ Fr(Knωk+2

) ∪ {zωk+2} → Knωk+2
in the following way:

g′ωk+2 =

x if x ∈ Fr(Kmωk+2
) ∪ {zωk+2},

µωk+2(x) if x ∈ Lωk+2.

Using (M4), one can infer that there exists continuous function gωk+2 : Knωk+2
→ Knωk+2

being continuous extension of g′ωk+2.

Before starting the definition of ζωk+2, we consider sequence of points {tωk+2
i }∞i=1 ⊂

Int(Knωk+2
) \Kmωk+2

converging to some point tωk+2
0 ∈ Fr(Kmωk+2

).

Let Nωk+2 = {n ∈ N : n ≥ mωk+2}. Now we are able to define a multifunction

ζωk+2 : X ( X as follows:

ζωk+2(x) =



ζωk+1(x) ∩B(selζωk+1
(x), 1

2ωk+2 ) if x /∈ Knωk+2
,

{gωk+2(x)} if x ∈ Knωk+2
\ (Int(Kmωk+2

) ∪ Lωk+2),

{gωk+2(x)} ∪ {zωk+2} if x ∈ Lωk+2,

Kmωk+2
∪ {tωk+2

i : i ≥ n} if x ∈ Int(Kn) \ Int(Kn+1) for n ∈ Nωk+2,

Kmωk+2
if x = xωk+1.

First, let us note that from (3.4) we have

(3.6) diam(ζωk+2(x)) ≤ 1

2ωk+2
for each x ∈ X.

We will show that ζωk+2 meets the requirements for this game. Note that by (3.3)

and (3.4), we have that ζωk+2 is inserted in ζωk+1. Now, we shall show that ζωk+2 is an

s-continuous multifunction. For this purpose let us define a function selζωk+2
: X → X in

the following way:

selζωk+2
(x) =


x if x ∈ Kmωk+2

,

gωk+2(x) if x ∈ Knωk+2
\Kmωk+2

,

selζωk+1
(x) if x /∈ Knωk+2

.
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It follows immediately that selζωk+2
is a continuous selection of ζωk+2.

We will now show that

(3.7) xωk+1 is an l-chaotic point of ζωk+2.

Let us first note that

(3.8) xωk+1 ∈ Fixs(ζωk+2).

In fact, according to (M1) we infer xωk+1 ∈ Int(Kmωk+2
) ⊂ ζωk+2(xωk+1), which gives

(3.8).

Now, we shall prove that there exists a neighbourhood V of xωk+1 such that

(3.9) x
e−−−→

ζωk+2

ζωk+2(xωk+1) for x ∈ V \ {xωk+1}.

Put V = Int(Kmωk+2
) and let x ∈ V \ {xωk+1}. Then there exists nx ∈ Nωk+2 such that

x ∈ Int(Knx) \ Int(Knx+1). Let us observe that ζωk+2(xωk+1) = Kmωk+2
$ Kmωk+2

∪ {tn :

n ≥ nx} = ζωk+2(x). The proof of (3.9) is complete. Obviously, (3.8) and (3.9) prove

(3.7).

In the next step of the proof, we will show that

(3.10) ζωk+2 is an m-DC1 multifunction.

Let ϕ : [0, 1] → Lωk+2 be a homeomorphism. Put f = ϕ−1 ◦ µωk+2 ◦ ϕ : [0, 1] → [0, 1].

Note that ϕ−1(Lωk+2
1 ), ϕ−1(Lωk+2

2 ) are disjoint, closed sets, and moreover, f(ϕ−1(Lωk+2
i ))

= ϕ−1(µωk+2(Lωk+2
i )) = ϕ−1(Lωk+2) = [0, 1], i ∈ {1, 2}, and so ϕ−1(Lωk+2

1 ), ϕ−1(Lωk+2
2 )

form a horseshoe for f and consequently h(f) > 0. Taking into account Lemma 3.1, we

conclude that dynamical system (f) is distributionally chaotic, and so it has uncountable

DS set Mωk+2. By Lemma 3.2, ϕ(Mωk+2) is an uncountable DS set for the dynamical

system (µωk+2), and so for each x, y ∈ ϕ(Mωk+2) (x 6= y) and t > 0, we have

(3.11) Φ
∗(µωk+2)
x,y (t) = lim sup

n→∞

1

n
#({j ∈ J0, n− 1K : ρ(µjωk+2(x), µjωk+2(y)) < t}) = 1

and for each x, y ∈ ϕ(Mωk+2) (x 6= y) there exists t0 > 0 such that

(3.12) Φ
(µωk+2)
x,y (t0) = lim inf

n→∞

1

n
#({j ∈ J0, n− 1K : ρ(µjωk+2(x), µjωk+2(y)) < t0}) = 0.

Of course, ϕ(Mωk+2) ⊂ Lωk+2. Moreover, we have ζjωk+2(x) = {µjωk+2(x)} ∪ {zωk+2}
for x ∈ Lωk+2 and j ∈ N.

From (3.5) it may be concluded that

%H(ζjωk+2(x), ζjωk+2(y)) = %(µjωk+2(x), µjωk+2(x)) for x, y ∈ Lωk+2 and j ∈ N0.
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Taking into account (3.11) and (3.12), we have Φ
∗(ζωk+2)
x,y (t) = 1 and Φ

(ζωk+2)
x,y (t0) = 0.

We also know that #(ζωk+2(x)) > 1 for each x ∈ ϕ(Mωk+2) ⊂ Lωk+2. Fact (3.10) has

been thus proven. We have shown that ζωk+2 meets all the conditions for multifunction

in the l-MG game.

We will now prove that

if selζωk+2+j
is a continuous selection ζωk+2+j , then

selζωk+2+j
(x) = gωk+2(x) and ζωk+2+j(x) ⊂ {gω·k+2(x)} ∪ {zωk+2}

for x ∈ Lωk+2 and ω, j ∈ N.

(3.13)

Let us fix x ∈ Lωk+2 and ω, j ∈ N. Moreover, let δ be a positive number such that

zωk+2 /∈ B(x, δ) ⊂ Int(Knωk+2
) \Kmωk+2

. Since ζωk+2+j is inserted in ζωk+2, we have

(3.14) selζωk+2+j
(x) = gωk+2(x) for x ∈ Knωk+2

\ (Int(Kmωk+2
) ∪ Lωk+2).

Let us assume such notations as in (3.5). Then ϕωk+2(Lωk+2) is an arc contained in

B(αωk+2, rωk+2) and ϕωk+2(x) ∈ ϕωk+2(Lωk+2). So, taking into account that dim(X) ≥
2, one can find a sequence {αn} ⊂ B(αωk+2, rωk+2) \ ϕωk+2(Lωk+2) such that αn →
ϕωk+2(x). Set xw,n = ϕ−1

ωk+2(αn) ∈ Uωk+2. In this way we have determined the sequence

{xw,n}∞n=1 ⊂ Int(Knωk+2
) \ (Kmωk+2

∪ Lωk+2) such that limn→∞ xw,n = x. Obviously,

{selζωk+2+j
(xw,n)}∞n=1 tends to selζωk+2+j

(x). From (3.14), we conclude that

selζωk+2+j
(x) = lim

n→∞
(selζωk+2+j

(xw,n)) = lim
n→∞

gωk+2(xw,n) = gωk+2(x).

Consequently (3.13) is proved.

Note further that since ζωk+2 is inserted in any multifunctions ζj for j < ωk + 2

(ω ∈ N), taking into account (3.13) we have

(3.15) gωk+2(x) ∈ ζj(x) for x ∈ Lωk+2, j ∈ N.

Putting τ l2(ζ0, . . . , ζω·k+1) = ζωk+2 for ω ∈ N0 (in the case πe = π1, we would consider

ω ∈ N), we define the strategy for player πe. Let us show that this is a winning strategy

in the game l-MG.

The construction (in subsequent stages) of multifunctions connected with player πe was

based on points x1, xk+1, . . . , xωk+1, . . . being l-chaotic points of multifunctions preceding

choices of player πe. In this way one can consider a sequence {xωk+1}∞ω=0. According to

the compactness of X, there exists an accumulation point x0 of this sequence. Without

restriction of generality, one can assume that

(3.16) lim
ω→∞

xωk+1 = x0.
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Obviously, x0 ∈ Λl. As a result of the game, a cone was created. Let us define its vertex

κ in the following way:

κ(x) =
∞⋂
n=1

ζn(x) for x ∈ X.

Now, we shall prove

(3.17) x0 is a strong e-chaotic point of κ.

We should therefore show that h(κ, x0) = +∞. Fix β > 0 and let Y0 be an arbitrary

open neighbourhood of x0. For this purpose, it suffices to find L∗ ∈ S(κ, Y0) such that

Hκ(L∗) ≥ β.

From (3.16) and the methods of defining multifunctions ζωk+2 (ω ∈ N0), one can

deduce that there exists ω0 ∈ N such that xω0k+1 ∈ Knω0·k+1
⊂ Y0 and ω0k + 1 > β. We

see at once that there exists L∗ = (Lω0·k+2
1 , . . . , Lω0·k+2

2ω0·k+2) such that Lω0·k+2
i ⊂ Lω0·k+2 ⊂ Y0

for i ∈ {1, . . . , 2ω0·k+2}.
From (3.15), we conclude that

(3.18) gω0·k+2(x) ∈ ζi(x) for x ∈ Lω0·k+2 and i ∈ N,

and so ζi(L
ω0·k+2
i ) ⊃ Lω0·k+2 for i ∈ N, and consequently κ(Lω0·k+2

i ) ⊃ Lω0·k+2. Obviously,

for each i 6= j (i, j ∈ {1, . . . , 2ω0·k+2}), one can find xq ∈ Lω0·k+2
i , yq ∈ Lω0·k+2

j such that

gω0·k+2(xq) 6= gω0·k+2(yq). From (3.13), we also know that ζi(x) ⊂ {gω0·k+2(x)}∪{zω0·k+2}
for x ∈ Lω0·k+2 and i ≥ ω0 · k + 2. Consequently, κ(x) ⊂ {gω0·k+2(x)} ∪ {zω0·k+2} for

x ∈ Lω0·k+2. Note that by virtue of the above and (3.18), we have κ(xq) 6= κ(yq). This

gives L∗ = (Lω0·k+2
1 , . . . , Lω0·k+2

2ω0·k+2) ∈ S(κ, Y0).

Let t ∈ N. Then #1(Pt(L∗, κ)) = (2ω0·k+2)t, and consequently Hκ(L∗) = ω0 ·k+2 > β.

This finishes the proof of (3.17).

We will now prove that

(3.19) x0 is a DC1 point of κ.

For these considerations it will be convenient to state beforehand

(3.20) {gω·k+2(x)} = κ(x) for x ∈ Lω·k+2 and ω ∈ N.

Fix ω ∈ N and x̂ ∈ Lω·k+2. (3.13) and (3.15) allow to note that

(3.21) gω·k+2(x̂) ∈ κ(x̂) ⊂ {gω·k+2(x̂)} ∪ {zω·k+2}.

So, let ω̂ > ω be a positive integer such that 1
2ω̂·k+2 < %(zωk+2, L

ωk+2) and Knω̂·k+2
⊂

Kmωk+2
. Then, in view of the construction of multifunctions in building the strategy of
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player πe, we have ζω̂·k+2(x̂) = ζω̂·k+1(x̂)∩B(selζω̂·k+2
, 1

2ω̂·k+2 ). Taking into account (3.13),

(3.21) and 1
2ω̂·k+2 < %(zωk+2, L

ωk+2), we obtain ζω̂k+2(x̂) = {gω·k+2(x̂)} and thus the proof

of (3.20) is complete.

Let ε > 0. Taking into account (3.16) and (M1), (M3), there exists ω1 ∈ N such that

xω1·k+1 ∈ Knω1·k+2
⊂ B(x0, ε). This means that Lω1·k+2 ⊂ B(x0, ε).

Similar to the proof of (3.10), one can consider homeomorphism ϕ̂ : [0, 1] → Lω1·k+2

and a set Mω1·k+2 such that ϕ̂(Mω1·k+2) is an uncountable DS set for the dynamical

system (µω1·k+2). This allows us to write equations analogous to (3.11) and (3.12) for

each x, y ∈ ϕ̂(Mω1k+2) (x 6= y) and t > 0, we have

(3.22) Φ
∗(µω1k+2)
x,y (t) = lim sup

n→∞

1

n
#({j ∈ J0, n− 1K : ρ(µjω1k+2(x), µjω1k+2(y)) < t}) = 1

and for each x, y ∈ ϕ̂(Mω1k+2) (x 6= y), there exists t0 > 0 such that

(3.23) Φ
(µω1k+2)
x,y (t0) = lim inf

n→∞

1

n
#({j ∈ J0, n− 1K : ρ(µjω1k+2(x), µjω1k+2(y)) < t0}) = 0.

By (3.20), we have

(3.24) κ(z) = {µω1k+2(z)} for each z ∈ Lω1·k+2,

and consequently

%H(ζω1k+2(x), ζω1k+2(y)) = %(µω1k+2(x), µω1k+2(x)) for x, y ∈ Lω1k+2.

Now note that

(3.25) κj(x) = {µjω1k+2(x)} for x ∈ Lω1·k+2.

Of course, ϕ(Mω1k+2) ⊂ Lωk+2. From (3.22), (3.23), (3.24) and (3.25), we obtain

Φ
∗(ζω1k+2)
x,y (t) = 1 and Φ

(ζω1k+2)
x,y (t0) = 0.

The proof of (3.19) is completed by showing that Knω1·k+2
is an (1, ε)-envelope of

ϕ̂(Mω1k+2). By the rules of building a strategy for player πe, we have ζω1·k+2(Knω1·k+2
) ⊂

Knω1·k+2
. Since κ is inserted in ζω1·k+2, so also κ(Knω1·k+2

) ⊂ Knω1·k+2
and consequently

κi(Knω1·k+2
) ⊂ Knω1·k+2

for i ∈ N.

We have completed the proof of part (l-MG1) of our theorem.

Now let us consider the part (l-MG2) of the theorem. For the proof, it is sufficient to

note that the use of the strategy for πe by any of the other players will create a situation

where the sentence s(πl) with respect to the created cone will not be true. Suppose,

contrary to our claim, that there exists a vertex κ? of the cone that was created as a result

of the game such that κ? has l-chaotic point x?. Then x? ∈ Int(κ?(x?)). Let y? ∈ κ?(x?)
be such a point that x? 6= y?. Denote ε? = %(x?, y?) > 0. On the other hand, according
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to the strategy for πe one can conclude that there exists ω∗ ∈ N such that 1
2ω∗k+2 < ε?.

Then, by (3.6), diam(ζω∗k+2(x∗)) < ε?, and so diam(κ∗(x∗)) < ε?, which contradicts the

fact that %(x∗, y∗) = ε?.

Now, let us go to the game u-MG and player πu to whom the following statement is

assigned.

s(πu) - as a result of the game there will be created a cone such that there

exist a point x0 ∈ Λu and a vertex κ such that x0 is DC1 point and a strong

e-chaotic point of κ.

Theorem 3.6. Let us assume that dim(X) ≥ 2. Then player πu has a winning strategy

in the game u-MG if and only if πu chooses first.

Proof. Necessity. Suppose, contrary to our claim, that πu does not choose first. Let us fix

an element x1 ∈ X and the base B(x1) = {Kn}∞n=1 fulfilling the conditions (M1)–(M4).

Consider z1 ∈ Int(K1) \K2 6= ∅ and an arc L1 = L(x1, z1) ⊂ K1. Let L1 be a subarc of

the arc L1 such that

diam(L1) < %(z1, L
1);

there exist an open set U1 such that L1 ⊂ U1 ⊂ Int(K1) \K2

and a homeomorhism ϕ : U1 onto−−→ B(α1, r1) ⊂ Hdim(X).

As in the proof of item (l-MG1) of Theorem 3.5, one can distinguish two subarcs of the

arc L1:

L1
1, L

1
2 ⊂ L1 such that L1

1 ∩ L1
2 = ∅.

Continuing the analogy with the proof of Theorem 3.5, we observe that z1 /∈ L1
1 ∪ L1

2

and there exist homeomorphisms hi : L
1
i

onto−−→ L1 (i ∈ {1, 2}). Let µ1 : L1 → L1 be a

continuous function such that µ1 � Li = hi, i ∈ {1, 2}. Next one can define continuous

function g′ : K2 ∪ L1 ∪ Fr(K1) ∪ {z1} → K1 as follows:

g′(x) =

x if x ∈ K2 ∪ Fr(K1) ∪ {z1},

µ1(x) if x ∈ L1.

Obviously, there exists a continuous function g : K1 → K1 such that g � K2∪L1∪Fr(K1)∪
{z1} = g′. Finally, we define a multifunction ζ1 : X ( X in the following way:

ζ1(x) =



{g(x)} if x ∈ K1 \ (L1 ∪ {x1}),

{g(x)} ∪ {z1} if x ∈ L1,

{x} if x /∈ K1,

K1 if x = x1.
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The simple considerations lead us to the conclusion that ζ1 meets all the requirements

connected with multifunctions in this game.

Obviously x1 is the only one u-chaotic point of ζ1. Consequently, all multifunctions in

this game will only have one u-chaotic point and it is x1.

As the result of this game, there will be created a cone such that Λu = {x1}. Moreover,

it is easily seen that ζi(x) = {x} for each x ∈ K2\{x1} and i ∈ N. Thus, if κ is an arbitrary

vertex of created cone, then κ(x) = {x} for any x ∈ Int(K2) \ {x1}, and consequently x1

is neither a strong e-chaotic point of κ nor a DC1 point of κ.

Sufficiency. Let us assume that πu = π1. To show that πu has a winning strategy we

define a multifunction ζ1 = τu1 ((ζ0)) and we will describe further choices of the player πe

in such a way, that regardless of the choices of other players we obtain a cone such that

s(πu) is true.

Let us fix x1 ∈ X and let B(x1) = {Kn}∞n=1 fulfill conditions (M1)–(M4). Next we

choose zn ∈ Int(Kn) \ Kn+1 for each n ∈ N and consider an arc Ln = L(x1, zn) ⊂ Kn,

n ∈ N. Let us further distinguish subarcs Ln of Ln such that

diam(Ln) < %(zn, L
n);

there exist an open set Un such that Ln ⊂ Un ⊂ Int(Kn) \Kn+1

and a homeomorhism ϕn : Un
onto−−→ B(αn, rn) ⊂ Hdim(X).

Continuing this procedure, one can distinguish 2n subarcs Lni ⊂ Ln (i ∈ {1, 2, . . . , 2n}) in

such a way that

Lni1 ∩ L
n
i2 = ∅ for i1 6= i2, i1, i2 ∈ {1, 2, . . . , 2n}.

Obviously, zn /∈
⋃2n

i=1 L
n
i for n ∈ N. Now again as in the proof of Theorem 3.5, let

hni : Lni
onto−−→ Ln be a homeomorphism (i ∈ {1, 2, . . . , 2n}, n ∈ N) and let µn : Ln → Ln

be a continuous function such that µn � Lni = hni . In a similar way as in the proof of

Theorem 3.5, one can introduce a continuous function gn : Kn → Kn such that for each

n ∈ N,

gn � Kn+1 ∪ Ln ∪ Fr(Kn) ∪ {zn}(x) =

x if x ∈ Kn+1 ∪ Fr(Kn) ∪ {zn},

µn(x) if x ∈ Ln.

Finally, we define a multifunction ζ1 : X ( X in the following way:

ζ1(x) =



{gn(x)} if x ∈ Kn \ (Kn+1 ∪ Ln), n ∈ N,

{gn(x)} ∪ {zn} if x ∈ Ln, n ∈ N,

{x} if x /∈ K1,

K1 if x = x1.
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We will show that ζ1 meets the conditions for multifunction in the game u-MG.

It is clear that ζ1 is inserted in ζ0. Moreover, we see at once that

selζ1(x) =

x if x ∈ {x1} ∪ (X \K1),

gn(x) if x ∈ Kn \Kn+1, n ∈ N

is a continuous selection of ζ1 and x1 is the only u-chaotic point of ζ1.

As in the case of reasoning carried out in the proof of (3.10), we may prove (ζ1) is an

m-DC1 multifunction.

Now players will choose in order: π2, . . . , πk, πu = πk+1, πk+2, . . .. Let us denote the

selected multifunctions ζ2, . . . , ζk, ζk+1, ζk+2, . . .. Of course, they meet the conditions of

the game u-MG. Note that in this case

(3.26) ζi(x) =

{x} if x /∈ K1,

{gn(x)} if x ∈ Kn \ (Kn+1 ∪ Ln) and i, n ∈ N.

On account of (3.26), in a similar way to (3.13) one can show that

(3.27) if selζi is a continuous selection ζi, then selζi(x) = gn(x) for x ∈ Ln and i ∈ N.

So let us assume that in the step k + 1, player πu chose the multifunction ζk+1 : X ( X

defined by the formula

ζk+1(x) =

ζk(x) if x /∈ L1,

{g1(x)} if x ∈ L1.

It follows easily that ζk+1 meets the requirements for this game.

In general, for ω ∈ N, we have τu1 ((ζ0, ζ1, . . . , ζωk)) = ζωk+1, where

ζωk+1(x) =

ζωk(x) if x /∈ Lω,

{gω(x)} if x ∈ Lω.

We shall show that τu1 is a winning strategy in game for the player πe in the game u-MG.

As a result of the game some cone was created. Let us define its vertex κ in the

following way:

κ(x) =
∞⋂
n=1

ζn(x).

First note that the form of ζ1 and the rules of the game u-MG cause that x1 is the only

one u-chaotic point of ζn for n ∈ N. Thus x1 ∈ Λu. Now, we will prove that

(3.28) x1 is a strong e-chaotic point of κ.
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We should therefore show that h(κ, x1) = +∞. Fix σ > 0 and let Z be an arbitrary

neighbourhood of x1. Let us choose n1 ∈ N such that Kn1 ⊂ Z and n1 > σ. From

(3.27), one can infer that gn1(x) ∈ κ(x) for x ∈ Ln1 , and hence κ(Ln1
i ) ⊃ Ln1 for i ∈

{1, 2, . . . , 2n1}. Obviously, for each i1 6= i2, i1, i2 ∈ {1, 2, . . . , 2n1}, one can find y1 ∈ Ln1
i1

,

y2 ∈ Ln1
i2

such that gn1(y1) 6= gn1(y2) and gn1(y1) ∈ ζi(y1) ⊂ {gn1(y1)} ∪ {zn1} and

gn1(y2) ∈ ζi(y2) ⊂ {gn1(y2)} ∪ {zn1} for i ∈ N, which means that κ(y1) 6= κ(y2). So, we

have Lu = (Ln1
1 , . . . , Ln1

2n1 ) ∈ S(κ, Z).

Let d ∈ N. Then #1(Pd(Lu, κ)) = (2n1)d and consequently Hκ(Lu) = 2n1 > σ. From

the above inequality, the claim (3.28) easily follows.

It will thus be sufficient to prove that

x1 is a DC1 point of κ.

For this, let us first note that the construction of multifunction ζωk+1 = τu1 ((ζ0, . . . , ζωk))

shows that

κ(x) = {gω(x)} = {g′ω(x)} = {µω(x)} for x ∈ Lω and ω ∈ N.

Similar to (3.19), excluding (3.20) from consideration, it can be shown that there is

DS-set Mn ⊂ Ln (n ∈ N) for dynamical system (κ) and hence Ln is a suitable envelope of

Mn.
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