
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 26, No. 5, pp. 953–979, October 2022

DOI: 10.11650/tjm/220305

On Relaxed Greedy Randomized Iterative Methods for the Solution of

Factorized Linear Systems

Shi-Min Liu and Yong Liu*

Abstract. RK-RK and REK-RK methods are the two latest while very effective ran-

domized iteration solvers for factorized linear system UV β = y by interlacing random-

ized Kaczmarz (RK) and randomized extended Kaczmarz (REK) updates. This paper

considers two latest randomized iterative methods for solving large-scale linear sys-

tems and linear least-squares problems—greedy randomized Kaczmarz (GRK) method

and greedy randomized Gauss–Seidel (GRGS) method. By introducing a relaxation

parameter ω into the iterates of GRK and GRGS, we construct relaxed GRK and

GRGS methods, respectively. In addition, by interlacing their updates, we propose

relaxed GRK-GRK and GRGS-GRK methods to solve consistent and inconsistent fac-

torized linear systems, respectively. We prove the exponential convergence of these

two interlaced methods and show that relaxed GRK-GRK and GRGS-GRK can be

more efficient than RK-RK and REK-RK, respectively, if the relaxation parameters

are chosen appropriately.

1. Introduction

We consider an iterative solution of systems of linear equations of the form

(1.1) UV β = y with U ∈ Rm×k and V ∈ Rk×n,

where y ∈ Rm is an m-dimensional vector, β ∈ Rn is the n-dimensional unknown vector

and we refer to this system as factorized linear system. Such a factorization of large and

low-rank system arise naturally in many applications for some reasons, such as algorithmic

choices [7,17,18], systems infrastructure constraints [19,23,32], and statistical motivation

[11]. Recently, Ma, Needell and Ramdas [25] proposed two different stochastic iterative

methods to solve (1.1) without needing to solve the full system

(1.2) Xβ = y with X = UV ∈ Rm×n.

Received June 26, 2021; Accepted March 27, 2022.

Communicated by Eric Chung.

2020 Mathematics Subject Classification. 65F10, 65F20, 65K05, 90C25, 15A06.

Key words and phrases. factorized linear systems, greedy randomized Kaczmarz, greedy randomized

Gauss–Seidel, relaxation parameter.

The work is supported by National Natural Science Foundation (11371243).

*Corresponding author.

953

954 Shi-Min Liu and Yong Liu

Both the stochastic iterative methods proposed in [25] for solving (1.1) utilize iterates of

RK method [31] and (or) REK method [33]. More specifically, when the system (1.1) is

consistent, in [25] Ma, Needell and Ramdas proposed the so-called RK-RK method, which

uses an iterate of RK on the following subsystem

(1.3) Ux = y,

intertwined again with an iterate of RK to solve subsystem

(1.4) V b = x,

and converges to the unique least-norm solution to (1.1). When the system (1.1) is incon-

sistent, they proposed using REK to solve (1.3) followed by RK to solve (1.4), and then

obtained the so-called REK-RK method, which converges to the ordinary least-squares

solution to (1.1). Admittedly, with numerical experiments it was shown in [25] that the

RK-RK method and the REK-RK method can provide significant computational advan-

tages for factorized linear systems over applying the RK or the REK on the full system (1.2)

naively.

1.1. Motivation and contribution

Recently, Bai and Wu proposed the greedy randomized Kaczmarz (GRK) [3] and greedy

randomized Gauss–Seidel (GRGS) [5] methods for solving large-scale consistent linear

systems and linear least-squares problems. Both the GRK and GRGS converge faster

than the RK and RGS (i.e., randomized coordinate descent [20, 30]) in both theory and

experiments, respectively, because these two greedy methods introduce a practical and

appropriate probability criterion used to select the working rows (or columns) from the

coefficient matrix. Therefore, we can use GRK (or GRGS) instead of RK (or REK) to

accelerate the convergence of the RK-RK and REK-RK methods.

The main contribution of our paper is to construct relaxed GRK (GRK(ω) for short)

and GRGS (GRGS(ω) for short) methods (because the convergence of the Kaczmarz

method can be accelerated by introducing relaxation [31] (see also [8,12])) by introducing

a relaxation parameter in their updates rather than in probability criterion discussed in [4]

for GRK method, respectively. Based on this, we interlace iterates of the GRK(ω) to solve

the subsystems (1.3) and (1.4) and find the least-norm solution of the system (1.1) when

it is consistent, and use GRGS(ω) to solve (1.3) intertwined with an iterate of GRK(ω) to

solve (1.4) and seek the least-squares solution of the system (1.1) when it is inconsistent.

In theory, we prove the convergence of both GRK(ω) and GRGS(ω) with ω ∈ (0, 2)

for consistent system and overdetermined system with full column rank, respectively. In

Randomized Methods for Factorized Linear Systems 955

addition, we also provide a proof that shows linear convergence in expectation to the (least-

squares or least-norm) solution of (inconsistent or consistent) factorized linear systems for

both intertwined methods (the central methods of this paper). And in computations we

show that our methods significantly outperform the methods proposed in [25] for factorized

systems in terms of both iteration counts and computing times.

1.2. Notations

Throughout this paper, for a matrix X = (xij) ∈ Rm×n, we use X(i), X(j), X
T , ‖X‖F =√∑m

i=1

∑n
j=1 |xij |2, σmin(X) and R(X) to represent its ith row, jth column, transpose,

Frobenius norm, smallest nonzero singular value and column space, respectively. For any

vector y ∈ Rm, y(i) and yT represent its ith entry and transpose, respectively. The inner

product in Rn is represented by 〈 · , · 〉, ‖ · ‖2 is used to denote the correspondingly induced

Euclidean norm of either a vector or a matrix.

In addition, we use Ek to denote the expected value conditional on the first k iterations,

i.e.,

Ek[·] = E[· | i0, i1, . . . , ik−1],

where it (t = 0, 1, . . . , k − 1) is the tth row chosen at the tth iterate. Then, from the law

of iterated expectations, we have E[Ek[·]] = E[·].

1.3. Paper outline

The organization of this paper is as follows. In Section 2 we describe the RK-RK and REK-

RK methods for factorized linear system (1.1). In Section 3 we propose our intertwined

methods for factorized linear system (1.1) by using the relaxed GRK and GRGS and

establish their convergence rates. The numerical results are reported in Section 4. Finally,

in Section 5, we end the paper with a few conclusions.

2. The RK-RK and REK-RK methods for factorized linear system (1.1)

In this section, we first introduce the randomized Kaczmarz method [31] and its extension,

i.e., randomized extended Kaczmarz method [33], and then briefly describe the RK-RK

and REK-RK methods [25] for solving factorized linear system (1.1).

2.1. RK and REK methods

In 2009, Strohmer and Vershynin [31] proposed the RK method for solving consistent

systems of linear equations Xβ = y, where X ∈ Rm×n (m ≥ n) is of full column rank and

y ∈ Rm, with expected exponential rate of convergence by using the rows of the coefficient

956 Shi-Min Liu and Yong Liu

matrix X randomly, which can greatly improve the convergence of the original Kaczmarz

method [15] sequentially cycling through the rows of X. Formally, the RK method for

linear system Xβ = y takes the following form

(2.1) βt+1 = βt +
y(it) −X(it)βt

‖X(it)‖22
(X(it))T , t = 0, 1, 2, . . . ,

where the target row numbered as it is selected according to the probability criterion

Pr(row = it) =
‖X(it)‖22
‖X‖2F

, and β0 ∈ R(XT).

The convergence of the RK method was first proved in [31] when m ≥ n and the

coefficient matrix X is of full column rank. Also when m < n, in [24], Ma, Needell

and Ramdas gave the same convergence rate of the RK method. Recently, Bai and Wu

proposed a more precise convergence rate for the RK method in [2]. In addition, from

the update (2.1), it can be seen that the RK method is especially suitable for parallel

computations and large-scale problems since each step only requires one row of the matrix

X and no matrix-vector products; see [1] for additional references.

For inconsistent systems, the RK method does not converge to the least-squares so-

lution as one might desire [26], and to remedy this, Zouzias and Freris [33] proposed the

REK method to solve linear systems in all settings. It can be thought of as a randomized

variant of Popa’s extended Kaczmarz method [28, 29]. More precisely, the REK update

rule takes the following form

βt+1 = βt +
y(it) − z(it)t −X(it)βt

‖X(it)‖22
(X(it))T , zt+1 = zt −

XT
(jt)
zt

‖X(jt)‖22
X(jt)

with initial guesses β0 = 0 and z0 = y. Here, row it ∈ {1, 2, . . . ,m} and column jt ∈
{1, 2, . . . , n} of X are selected at random with probability

Pr(row = it) =
‖X(it)‖22
‖X‖2F

and Pr(column = jt) =
‖X(jt)‖22
‖X‖2F

.

In the overdetermined inconsistent setting, zk approximates the component of y which

is orthogonal to the range of matrix X, allowing for the iterates βk to converge linearly in

expectation to the true least-squares solution to the system Xβ = y. Recently, Bai and

Wu proposed a partially REK (PREK) method in [6], showing that the estimated upper

bound for the expected solution error of the PREK method is much smaller than that of

the REK method when the coefficient matrix is tall (i.e., m ≥ n) and of full column rank

and all columns of the coefficient matrix are mutually orthonormal. For more studies on

the REK method, we refer to [9, 10,27] and the references therein.

2.2. RK-RK and REK-RK methods

The main idea of the RK-RK method [25] for solving the factorized linear system (1.1) is

first to apply the RK to the linear system (1.3), after obtaining an iterative solution xt

Randomized Methods for Factorized Linear Systems 957

at the tth iterate, then reuses an iterate of the RK on the linear system V b = xt. As a

result, an approximate solution bt to the factorized linear system (1.1) can be obtained.

We list the pseudo-code of the RK-RK method for factorized linear system (1.1) when it

is consistent in Method 2.1.

Method 2.1 The RK-RK Method for Factorized Linear System (1.1)

Input: U , V , y and x0 = 0.

Output: b`.

1: for t = 0, 1, 2, . . . , `− 1 do

2: Select it ∈ {1, 2, . . . ,m} with probability Pr(row = it) =
‖U(it)‖22
‖U‖2F

3: Set xt+1 = xt + y(it)−U(it)xt
‖U(it)‖22

(U (it))T

4: Select jt ∈ {1, 2, . . . , k} with probability Pr(row = jt) =
‖V (jt)‖22
‖V ‖2F

5: Set bt+1 = bt +
x
(jt)
t+1−V (jt)bt

‖V (jt)‖22
(V (jt))T

6: end for

Case k X, U , V Method [25] Our method

Case I k < min{m,n}
X = Under

RK-RK GRK(ω)-GRK(α)U = Over, Consis

V = Under

Case II k < min{m,n}
X = Over, Consis

RK-RK GRK(ω)-GRK(α)U = Over, Consis

V = Under

Case III min{m,n} < k < max{m,n}
X = Over, Consis

RK-RK GRK(ω)-GRK(α)U = Over, Consis

V = Over, Consis

Case IV k < min{m,n}
X = Over, Incon

REK-RK GRGS(ω)-GRK(α)U = Over, Incon

V = Under

Table 2.1: Summary of optimal methods proposed in [25] for solving system (1.1) for four

different types of matrices U and V for given m, n and k relations.

In fact, only when the system (1.3) is overdetermined consistent and the system (1.4)

is underdetermined or overdetermined consistent can the iteration sequence {bt}∞t=0 gener-

ated by the RK-RK method converges to the least-norm solution of the system (1.1) [25,

Section 3]. In [25, Section 3], the authors systematically discussed how the settings of

(1.3) and (1.4) are determined by X and when we can expect the RK-RK and REK-RK

methods will be able to solve the system (1.1) utilizing the subsystems (1.3) and (1.4).

958 Shi-Min Liu and Yong Liu

For the reader’s convenience, we list all four cases in which the RK-RK and REK-RK

methods have the potential to solve the system (1.1) in Table 2.1, and for simplicity, we

will refer to the matrix U of a linear system as consistent or inconsistent when the system

itself is consistent or inconsistent.

In Table 2.1, ‘Under’, ‘Over’, ‘Consis’ and ‘Incon’ are abbreviations of underdeter-

mined, overdetermined, consistent and inconsistent, respectively. From this table, we

know that when X is inconsistent, one can use REK to solve the subsystem (1.3) followed

by RK to solve the subsystem (1.4) and then obtain the so-called REK-RK method [25].

We omit the pseudo-code of REK-RK method. In [25], the authors gave the convergence

properties of these two methods, and this result is precisely restated below.

Theorem 2.1. Let X be low rank, X = UV such that U ∈ Rm×k and V ∈ Rk×n are full

rank, and the systems Xβ = y, Ux = y and V b = x have optimal solutions1 β∗, x∗ and b∗

respectively. Setting x0 = b0 = 0 and assuming k < m,n. If Xβ = y is consistent, then

b∗ = β∗ and RK-RK converges with expected error

E‖bt − β∗‖22 ≤
(

1− σ2min(V)

‖V ‖22

)t
‖b∗‖22 +

1

σ2min(V)

(
1− σ2min(U)

‖U‖22

)t
‖x∗‖22,

and if Xβ = y is inconsistent, then b∗ = β∗ and REK-RK converges with expected error

E‖bt − β∗‖22 ≤
(

1− σ2min(V)

‖V ‖22

)t
‖b∗‖22 +

1

σ2min(V)

(
1− σ2min(U)

‖U‖22

)bt/2c
(1 + 2κ2U)‖x∗‖22,

where κ2U denotes the squared condition number of matrix U .

3. The GRK(ω)-GRK(α) and GRGS(ω)-GRK(α) methods for factorized linear

system (1.1)

3.1. Relaxed GRK and GRGS methods

In this subsection, we further generalize the greedy randomized Kaczmarz (GRK) method

[3] and the greedy randomized Gauss–Seidel (GRGS) method [5] by introducing a relax-

ation parameter ω ∈ (0, 2) in their iterative updates, and obtain a class of relaxed GRK

(GRK(ω) for short) methods and GRGS (GRGS(ω) for short) methods. Let ω ∈ (0, 2) be

an arbitrary parameter and ` be a prescribed positive integer. Then the GRK(ω) method

for linear system Xβ = y can be algorithmically described in Method 3.1.

1The optimal solution to a system is either the least-norm, unique, or least-squares solution depending

on whether the system is underdetermined, overdetermined consistent, or overdetermined inconsistent,

respectively.

Randomized Methods for Factorized Linear Systems 959

Method 3.1 The GRK(ω) Method

Input: X, y, `, ω ∈ (0, 2) and β0.

Output: β`.

1: for t = 0, 1, 2, . . . , `− 1 do

2: Compute

εt =
1

2

(
1

‖y −Xβt‖22
max

1≤it≤m

{∣∣y(it) −X(it)βt
∣∣2

‖X(it)‖22

}
+

1

‖X‖2F

)

3: Determine the index set of positive integers

Ut =
{
it
∣∣ ∣∣y(it) −X(it)βt

∣∣2 ≥ εt‖y −Xβt‖22‖X(it)‖22
}

4: Compute the ith entry r̃
(i)
t of the vector r̃t according to

r̃
(i)
t =

y(i) −X(i)βt if i ∈ Ut,

0 otherwise

5: Select it ∈ Ut with probability Pr(row = it) =

∣∣r̃(it)t

∣∣2
‖r̃t‖22

6: Set βt+1 = βt + ω y
(it)−X(it)βt
‖X(it)‖22

(X(it))∗

7: end for

We remark that the GRK(ω) method is different from the relaxed greedy randomized

Kaczmarz (RGRK) method discussed by Bai and Wu in [4], which introduces a relaxation

parameter θ ∈ [0, 1] in the probability criterion of GRK as follows:

εt =
θ

‖y −Xβt‖22
max

1≤it≤m

{∣∣y(it) −X(it)βt
∣∣2

‖X(it)‖22

}
+

1− θ
‖X‖2F

.

In addition, it is easy to find that the main difference between GRK and GRK(ω) is

the introduction of a relaxation parameter ω ∈ (0, 2) in the iterative update in Step 6.

When ω = 1, the GRK(ω) method automatically reduces to the GRK method. Moreover,

whatever the parameter ω is chosen, both GRK and GRK(ω) have exactly the same

computational complexity at the tth iterate.

Inspired by the construction method of GRK, Bai and Wu [5] proposed the greedy

randomized Gauss–Seidel (GRGS) method by introducing an effective probability criterion

for selecting the working columns from the coefficient matrix of overdetermined linear

system Xβ = y, where X ∈ Rm×n is a rectangular matrix of full column rank. Therefore,

960 Shi-Min Liu and Yong Liu

let ej be the column vector with 1 in the jth position and 0 elsewhere, then we can give

the following GRGS(ω) method directly.

Method 3.2 The GRGS(ω) Method

Input: X, y, `, ω ∈ (0, 2) and β0.

Output: β`.

1: for t = 0, 1, 2, . . . , `− 1 do

2: Compute rt = y −Xβt and

δt =
1

2

 1

‖XT rt‖22
max

1≤jt≤n

∣∣XT

(jt)
rt
∣∣2

‖X(jt)‖22

+
1

‖X‖2F

3: Determine the index set of positive integers

Vt =
{
jt
∣∣ ∣∣XT

(jt)
rt
∣∣2 ≥ δt‖XT rt‖22‖X(jt)‖

2
2

}

4: Let st = XT rt and compute the jth entry s̃
(j)
t of the vector s̃t according to

s̃
(j)
t =

s
(j)
t if j ∈ Vt,

0 otherwise

5: Select jt ∈ Vt with probability Pr(column = jt) =

∣∣s̃(jt)t

∣∣2
‖s̃t‖22

6: Set βt+1 = βt + ω
s
(jt)
t

‖X(jt)
‖22
ejt

7: end for

For the convergence properties of the GRK(ω) and GRGS(ω) methods with ω being a

given positive constant in the interval (0, 2), we can establish the following theorem.

Theorem 3.1. Let the linear system Xβ = y, with the coefficient matrix X ∈ Rm×n and

the right-hand side y ∈ Rm, be consistent. Then the iteration sequence {βt}∞t=0, generated

by the GRK(ω) method with ω ∈ (0, 2) starting from any initial guess β0 ∈ R(XT),

converges to the unique least-norm solution β∗ of the system Xβ = y with expected error

(3.1) E‖βt+1 − β∗‖22 ≤ ξ(ω,X)t+1‖β0 − β∗‖22,

where ξ(ω,X) = 1−ω(2−ω)
σ2
min(X)

‖X‖2F
. If the coefficient matrix X is of full column rank and

overdetermined, then the iteration sequence {βt}∞t=0, generated by the GRGS(ω) method

with ω ∈ (0, 2) starting from any initial guess β0 ∈ Rn, converges to the unique least-

Randomized Methods for Factorized Linear Systems 961

squares solution β∗ of the system Xβ = y with expected error

(3.2) E‖βt+1 − β∗‖2XTX ≤ ξ(ω,X)t+1‖β0 − β∗‖2XTX ,

where ‖u‖2
XTX

= ‖Xu‖22 is the norm induced by Hermitian positive definite matrix XTX.

Proof. Let Pit = (X(it))TX(it)

‖X(it)‖22
, it ∈ {1, 2, . . . ,m}, and Qjt =

X(jt)
XT

(jt)

‖X(jt)
‖22

, jt ∈ {1, 2, . . . , n}.
Obviously, it holds that

(3.3) P Tit Pit =
(X(it))T

‖X(it)‖22
· X

(it)(X(it))T

‖X(it)‖22
·X(it) = Pit

and

(3.4) QTjtQjt =
X(jt)

‖X(jt)‖22
·
XT

(jt)
X(jt)

‖X(jt)‖22
·XT

(jt)
= Qjt .

We summarize the main procedures of this proof as follows:

GRK(ω) : Et
(
‖βt+1 − β∗‖22

)
= Et

(
‖βt − β∗ − ωPit(βt − β∗)‖22

)
(i)
= Et

(
‖βt − β∗‖22 − 2ω(βt − β∗)TPit(βt − β∗) + ω2(βt − β∗)TP Tit Pit(βt − β∗)

)
(ii)
= Et

(
‖βt − β∗‖22 − ω(2− ω)‖Pit(βt − β∗)‖22

)
= ‖βt − β∗‖22 − ω(2− ω)Et

(
‖Pit(βt − β∗)‖22

)
= ‖βt − β∗‖22 − ω(2− ω)Et

(
|X(it)(βt − β∗)|2

‖X(it)‖22

)

= ‖βt − β∗‖22 − ω(2− ω)
∑
it∈Ut

∣∣y(it) −X(it)βt
∣∣2∑

i∈Ut
∣∣y(i) −X(i)βt

∣∣2
(
|X(it)(βt − β∗)|2

‖X(it)‖22

)
(iii)

≤ ‖βt − β∗‖22 − ω(2− ω)εt‖X(βt − β∗)‖22
(iv)

≤
(

1− ω(2− ω)
σ2min(X)

‖X‖2F

)
‖βt − β∗‖22

and

GRGS(ω) : Et
(
‖βt+1 − β∗‖2XTX

)
= Et

(
‖X(βt − β∗)− ωQjtX(βt − β∗)‖22

)
(i′)
= Et

(
‖X(βt − β∗)‖22 − 2ω(βt − β∗)TXTQjtX(βt − β∗)

+ ω2(βt − β∗)TXTQTjtQjtX(βt − β∗)
)

(ii′)
= Et

(
‖X(βt − β∗)‖22 − ω(2− ω)‖QjtX(βt − β∗)‖22

)

962 Shi-Min Liu and Yong Liu

= ‖X(βt − β∗)‖22 − ω(2− ω)Et
(
‖QitX(βt − β∗)‖22

)
= ‖X(βt − β∗)‖22 − ω(2− ω)Et

(
|XT

(jt)
X(βt − β∗)|2

‖X(jt)‖22

)
= ‖X(βt − β∗)‖22

− ω(2− ω)
∑
jt∈Vt

∣∣XT
(jt)

(y −Xβt)
∣∣2∑

j∈Vt
∣∣XT

(j)(y −Xβt)
∣∣2
∣∣XT

(jt)
(y −Xβt)

∣∣2
‖X(jt)‖22

(iii′)
≤ ‖X(βt − β∗)‖22 − ω(2− ω)δt‖XTX(βt − β∗)‖22
(iv′)
≤
(

1− ω(2− ω)
σ2min(X)

‖X‖2F

)
‖βt − β∗‖2XTX .

Here, using the relation 〈u, u〉 = ‖u‖22, for any u ∈ Rn, then by straightforwardly

computations we have (i) and (i′), in addition, by making use of (3.3) and (3.4), we can

get (ii) and (ii′), respectively. The inequalities (iii) and (iii′) are achieved with the use of

the definitions of Ut and Vt, which lead to the following two inequalities∣∣y(it) −X(it)βt
∣∣2 ≥ εt‖y −Xβt‖22‖X(it)‖22 = εt‖X(βt − β∗)‖22‖X(it)‖22, ∀ it ∈ Ut

and ∣∣XT
(jt)

(y −Xβt)
∣∣2 ≥ δt‖XT (y −Xβt)‖22‖X(jt)‖

2
2

= δt‖XT (y −Xβ∗) +XT (Xβ∗ −Xβt)‖22‖X(jt)‖
2
2

= δt‖XTX(β∗ − βt)‖22‖X(jt)‖
2
2, ∀ jt ∈ Vt.

The last inequalities (iv) and (iv′) are achieved by using of the estimate

(3.5) ‖Xu‖22 ≥ σ2min(X)‖u‖22,

which holds true for any u ∈ Rn belonging to the column space of XT (see the work

of [5, 25]) and the following facts that

(3.6) εt =
max1≤it≤m

(
|y(it)−X(it)βt|2
‖X(it)‖22

)
2‖X‖2F

∑m
it=1

‖X(it)‖22
‖X‖2F

|y(it)−X(it)βt|2
‖X(it)‖22

+
1

2‖X‖2F
≥ 1

‖X‖2F
, t = 0, 1, 2, . . .

and

δt =

max1≤jt≤n

(
|XT

(jt)
(y−Xβt)|2

‖X(jt)
‖22

)
2‖X‖2F

∑n
jt=1

‖X(jt)
‖22

‖X‖2F

|XT
(jt)

(y−Xβt)|2

‖X(jt)
‖22

+
1

2‖X‖2F
≥ 1

‖X‖2F
, t = 0, 1, 2,

Randomized Methods for Factorized Linear Systems 963

Furthermore, by taking full expectation on both sides of (iv) and (iv′), respectively, from

E[Et[·]] = E[·] we see that

(3.7) E‖βt+1 − β∗‖22 ≤
(

1− ω(2− ω)
σ2min(X)

‖X‖2F

)
E‖βt − β∗‖22

and

(3.8) E‖βt+1 − β∗‖2XTX ≤
(

1− ω(2− ω)
σ2min(X)

‖X‖2F

)
E‖βt − β∗‖2XTX .

Then, applying both bounds (3.7) and (3.8) recursively, we obtain the theorem.

We finally remark that the GRK(ω) method can significantly outperform the GRK

method in experiments if an appropriate relaxation parameter ω is available, and this can

be verified experimentally in [22], in which Liu and Gu applied the GRK(ω) method to

ridge regression, and achieved significant computational advantages for this problem.

3.2. GRK(ω)-GRK(α) and GRGS(ω)-GRK(α) methods

Similar to the construction methods of RK-RK and REK-RK, in this section, we con-

struct our methods (the central algorithms of the paper) by intertwining two relaxed

iterative methods discussed in Section 3 to solve the subsystem (1.3) followed by the sub-

system (1.4). For the consistent setting, we propose Method 3.3, which uses an iterate of

GRK(ω) with ω ∈ (0, 2) on (1.3) intertwined with an iterate of GRK(α) with α ∈ [1, 3/2)

on (1.4). For the inconsistent setting, as shown in Method 3.4, we use GRGS(ω) with

ω ∈ (0, 2) to solve (1.3) followed by GRK(α) with α ∈ [1, 3/2) to solve (1.4).

Method 3.3 The GRK(ω)-GRK(α) Method for Factorized Linear System (1.1)

Input: U , V , y, ω ∈ (0, 2), α ∈ [1, 3/2) and x0 = b0 = 0.

Output: b`.

1: for k = 0, 1, 2, . . . , `− 1 do

2: Do Steps 2–5 of Method 3.1 by inputting variables U , y and initial guess x0 = 0

3: Set xt+1 = xt + ω y
(it)−U(it)xt
‖U(it)‖22

(U (it))T

4: Do Steps 2–5 of Method 3.1 by inputting variables V , xt+1 and initial guess b0 = 0

5: Set bt+1 = bt + α
x
(jt)
t+1−V (jt)bt

‖V (jt)‖22
(V (jt))T

6: end for

The main reason for selecting parameter α in the interval [1, 3/2) is to ensure that these

two methods can converge to the desired solution. For a detailed explanation, please refer

to the following proof of Theorem 3.2.

964 Shi-Min Liu and Yong Liu

Method 3.4 The GRGS(ω)-GRK(α) Method for Factorized Linear System (1.1)

Input: U , V , y, ω ∈ (0, 2), α ∈ [1, 3/2) and x0 = b0 = 0.

Output: b`.

1: for k = 0, 1, 2, . . . , `− 1 do

2: Do Steps 2–5 of Method 3.2 by inputting variables U , y and initial guess x0 = 0

3: Set xt+1 = xt + ω
s
(jt)
t

‖U(jt)
‖22
ejt

4: Do Steps 2–5 of Method 3.1 by inputting variables V , xt+1 and initial guess b0 = 0

5: Set bt+1 = bt + α
x
(jt)
t+1−V (jt)bt

‖V (jt)‖22
(V (jt))T

6: end for

Theorem 3.2. Let X be low rank, X = UV such that U ∈ Rm×k and V ∈ Rk×n are full

rank, and the systems Xβ = y, Ux = y and V b = x have optimal solutions β∗, x∗ and b∗

respectively. Setting x0 = b0 = 0 and assuming k < m,n. If Xβ = y is consistent, then

b∗ = β∗ and GRK(ω)-GRK(α) converges with expected error

E‖bt+1 − b∗‖22 ≤ ζ(α, V)t+1‖b∗‖22 +
2α− 1

3− 2α

‖V ‖2F
γσ2min(V)

ξ(ω,U)t+1‖x∗‖22,

if Xβ = y is inconsistent, then b∗ = β∗ and GRGS(ω)-GRK(α) converges with expected

error

E‖bt+1 − b∗‖22 ≤ ζ(α, V)t+1‖b∗‖22 +
2α− 1

3− 2α

‖V ‖2F
γσ2min(V)σ2min(U)

ξ(ω,U)t+1‖Ux∗‖22,

where

ζ(α, V) = 1− (3α− 2α2)
σ2min(V)

‖V ‖2F
, ξ(ω,U) = 1− ω(2− ω)

σ2min(U)

‖U‖2F
, γ = min

1≤i≤k

(
‖V (i)‖22

)
,

with ω ∈ (0, 2) and α ∈ [1, 3/2) being the given positive constants.

To prove this theorem, we need the following Lemmas 3.3 and 3.5. Let EV denote the

expected value taken over the choice of rows in V , EU the expected value taken over the

choice of rows in U and when necessary the choice of columns in U and the iterate b̃t, the

GRK(α) with α ∈ [1, 3/2) solving the linear system V b = x∗ rather than V b = xt at the

tth iteration.

Lemma 3.3. Let b̃t+1 = bt + αx
(it)
∗ −V (it)bt
‖V (it)‖22

(V (it))T . For any α ∈ [1, 3/2) and it ∈
{1, 2, . . . , k}, in Methods 3.3 and 3.4 we have that

(3.9) 〈̃bt+1 − b∗, bt+1 − b̃t+1〉 ≤
1

2
(α2 − α)

(∣∣V (it)(b∗ − bt)
∣∣2

‖V (it)‖22
+

∣∣x(it)t+1 − x
(it)
∗
∣∣2

‖V (it)‖22

)
and

(3.10) ‖b̃t+1 − b∗‖22 = ‖bt − b∗‖22 − α(2− α)

∣∣V (it)(b∗ − bt)
∣∣2

‖V (it)‖22
.

Randomized Methods for Factorized Linear Systems 965

Proof. We prove (3.9) by the following direct substitution and expansion:

〈̃bt+1 − b∗, bt+1 − b̃t+1〉 =

〈
bt − b∗ + α

x
(it)
∗ − V (it)bt

‖V (it)‖22

(
V (it)

)T
, α
x
(it)
t+1 − x

(it)
∗

‖V (it)‖22

(
V (it)

)T〉

= α2

〈
x
(it)
∗ − V (it)bt

‖V (it)‖22

(
V (it)

)T
,
x
(it)
t+1 − x

(it)
∗

‖V (it)‖22

(
V (it)

)T〉

+ α

〈
bt − b∗,

x
(it)
t+1 − x

(it)
∗

‖V (it)‖22

(
V (it)

)T〉

= α2V
(it)(b∗ − bt)(x(it)t+1 − x

(it)
∗)

‖V (it)‖22
− α

V (it)(b∗ − bt)(x(it)t+1 − x
(it)
∗)

‖V (it)‖22

= (α2 − α)
V (it)(b∗ − bt)
‖V (it)‖2

·
x
(it)
t+1 − x

(it)
∗

‖V (it)‖2

≤ 1

2
(α2 − α)

(∣∣V (it)(b∗ − bt)
∣∣2

‖V (it)‖22
+

∣∣x(it)t+1 − x
(it)
∗
∣∣2

‖V (it)‖22

)
,

here the third equality is achieved by using the fact that

V (it)b∗ = x∗ for any it ∈ {1, 2, . . . , k},

since V is underdetermined, in the last inequality we have used the following inequality

of arithmetic and geometric means

ab ≤ 1

2
(a2 + b2) for any a ∈ R and b ∈ R,

and the condition α ∈ [1, 3/2), which directly gives α2 − α ≥ 0.

Also, for (3.10), it follows from straightforward computations that

‖b̃t+1 − b∗‖22 =

∥∥∥∥∥bt − b∗ + α
x
(it)
∗ − V (it)bt

‖V (it)‖22
(V (it))T

∥∥∥∥∥
2

2

= ‖bt − b∗‖22 + α2 |V (it)(b∗ − bt)|2

‖V (it)‖22
− 2α

|V (it)(b∗ − bt)|2

‖V (it)‖22

= ‖bt − b∗‖22 − α(2− α)
|V (it)(b∗ − bt)|2

‖V (it)‖22
,

which completes the proof.

Remark 3.4. This lemma includes the case α = 1, i.e., Lemma 4.4 in [25], as the special

case.

966 Shi-Min Liu and Yong Liu

Lemma 3.5. In Methods 3.3 and 3.4 we can bound the expected norm squared error of

bt+1 − b∗ as

Et‖bt+1 − b∗‖22 ≤ ζ(α, V)‖bt − b∗‖22

+ (2α2 − α)EUt
‖xt+1 − x∗‖22

γ
for any α ∈ [1, 3/2),

(3.11)

where ζ(α, V) = 1− (3α− 2α2)
σ2
min(V)

‖V ‖2F
and γ = min1≤i≤k

(
‖V (i)‖22

)
.

Proof.

‖bt+1 − b∗‖22 = ‖bt+1 − b̃t+1 + b̃t+1 − b∗‖22
= ‖bt+1 − b̃t+1‖22 + ‖b̃t+1 − b∗‖22 + 2〈̃bt+1 − b∗, bt+1 − b̃t+1〉

= α2

∣∣x(it)t+1 − x
(it)
∗
∣∣2

‖V (it)‖22
+ ‖b̃t+1 − b∗‖22 + 2〈̃bt+1 − b∗, bt+1 − b̃t+1〉

≤ α2

∣∣x(it)t+1 − x
(it)
∗
∣∣2

‖V (it)‖22
+ ‖bt − b∗‖22 − α(2− α)

|V (it)(b∗ − bt)|2

‖V (it)‖22

+ (α2 − α)

(
|V (it)(b∗ − bt)|2

‖V (it)‖22
+

∣∣x(it)t+1 − x
(it)
∗
∣∣2

‖V (it)‖22

)

= ‖bt − b∗‖22 − (3α− 2α2)
|V (it)(b∗ − bt)|2

‖V (it)‖22
+ (2α2 − α)

∣∣x(it)t+1 − x
(it)
∗
∣∣2

‖V (it)‖22
,

here the fourth inequality is application of (3.9) and (3.10).

Based on this inequality, we have

EVt ‖bt+1 − b∗‖22

≤ ‖bt − b∗‖22 − (3α− 2α2)EVt
|V (it)(b∗ − bt)|2

‖V (it)‖22
+ (2α2 − α)EVt

∣∣x(it)t+1 − x
(it)
∗
∣∣2

‖V (it)‖22

= ‖bt − b∗‖22 − (3α− 2α2)
∑
it∈U ′t

|x(it)∗ − V (it)bt|2∑
i∈U ′t
|x(it)∗ − V (it)bt|2

· |V
(it)(b∗ − bt)|2

‖V (it)‖22

+ (2α2 − α)
∑
it∈U ′t

∣∣x(it)∗ − V (it)bt
∣∣2∑

i∈U ′t

∣∣x(it)∗ − V (it)bt
∣∣2 ·

∣∣x(it)t+1 − x
(it)
∗
∣∣2

‖V (it)‖22

≤ ‖bt − b∗‖22 − (3α− 2α2)ε′t‖x∗ − V bt‖22

+ (2α2 − α)
∑
it∈U ′t

∣∣x(it)∗ − V (it)bt
∣∣2∑

i∈U ′t

∣∣x(it)∗ − V (it)bt
∣∣2 ·

∣∣x(it)t+1 − x
(it)
∗
∣∣2

‖V (it)‖22

≤ ‖bt − b∗‖22 − (3α− 2α2)ε′t‖x∗ − V bt‖22

+ (2α2 − α)
∑
it∈U ′t

∣∣x(it)∗ − V (it)bt
∣∣2∑

i∈U ′t

∣∣x(it)∗ − V (it)bt
∣∣2 · ‖xt+1 − x∗‖22

γ

Randomized Methods for Factorized Linear Systems 967

= ‖bt − b∗‖22 − (3α− 2α2)ε′t‖V (b∗ − bt)‖22 + (2α2 − α)
‖xt+1 − x∗‖22

γ

≤
(

1− (3α− 2α2)
σ2min(V)

‖V ‖2F

)
‖bt − b∗‖22 + (2α2 − α)

‖xt+1 − x∗‖22
γ

,

where γ = min1≤i≤k
(
‖V (i)‖22

)
.

Here the second equality is obtained with the use of the following probability of row

it ∈ U ′t

Pr(row = it) =

∣∣x(it)∗ − V (it)bt
∣∣2∑

i∈U ′t

∣∣x(it)∗ − V (it)bt
∣∣2 ,

where

U ′t =
{
it
∣∣ ∣∣x(it)∗ − V (it)bt

∣∣2 ≥ ε′t‖x∗ − V bt‖22‖V (it)‖22
}

with

ε′t =
1

2

(
1

‖x∗ − V bt‖22
max

1≤it≤m

{∣∣x(it)∗ − V (it)bt
∣∣2

‖V (it)‖22

}
+

1

‖V ‖2F

)
.

U ′t and ε′t are generated in the process of solving V b = x∗ by GRK(α) with α ∈ [1, 3/2),

which lead to the inequality∣∣x(it)∗ − V (it)bt
∣∣2 ≥ ε′t‖x∗ − V bt‖22‖V (it)‖22 for any it ∈ U ′t.

From the above estimate and the condition 3α− 2α2 > 0 for any α ∈ [1, 3/2), we can get

the third inequality. The fourth inequality is achieved by using the following estimate∣∣x(it)t+1 − x
(it)
∗
∣∣2

‖V (it)‖22
≤ ‖xt+1 − x∗‖22

‖V (it)‖22
≤ ‖xt+1 − x∗‖22

γ
, ∀ it ∈ U ′t,

where γ = min1≤i≤k
(
‖V (i)‖22

)
. The last inequality is application of (3.5) and (3.6) by

simply replacing X and y with V and x∗, respectively.

Therefore, it holds that

Et‖bt+1 − b∗‖22 = EUt EVt ‖bt+1 − b∗‖22

≤
(

1− (3α− 2α2)
σ2min(V)

‖V ‖2F

)
‖bt − b∗‖22 + (2α2 − α)EUt

‖xt+1 − x∗‖22
γ

.

We then immediately achieve the desired bound that we were proving.

Now, we can give the proof of Theorem 3.2.

Proof of Theorem 3.2. Note that b∗ = β∗ is valid for k < m,n when X is underdetermined

or overdetermined (also for min{m,n} < k < max{m,n} when X is overdetermined and

consistent) [25, Section 3]. Therefore, we only need to bound the term EUt ‖xt+1 − x∗‖22 in

968 Shi-Min Liu and Yong Liu

(3.11) by using the bounds (3.1) or (3.2) depending on whether we are using Methods 3.3

or 3.4, respectively.

For Method 3.3, applying the bound (3.1) to the term EUt ‖xt+1 − x∗‖22 in (3.11), we

can immediately obtain

Et‖bt+1 − b∗‖22 ≤ ζ(α, V)‖bt − b∗‖22 + (2α2 − α)ξ(ω,U)t+1 ‖x∗‖22
γ

,

where ζ(α, V) = 1− (3α− 2α2)
σ2
min(V)

‖V ‖2F
.

Since 0 < 3α− 2α2 ≤ 1 for any α ∈ [1, 3/2), it holds that

0 < 1− (3α− 2α2)
σ2min(V)

‖V ‖2F
< 1.

Consequently, by taking expectations over the randomness from the first t iterations and

using the law of iterated expectation, we have

E‖bt+1 − b∗‖22 ≤ ζ(α, V)t+1‖b∗‖22 + (2α2 − α)ξ(ω,U)t+1 ‖x∗‖22
γ

t∑
h=0

ζ(α, V)h

≤ ζ(α, V)t+1‖b∗‖22 +
2α2 − α

γ
· 1

1− ζ(α, V)
ξ(ω,U)t+1‖x∗‖22

= ζ(α, V)t+1‖b∗‖22 +
2α− 1

3− 2α
·
‖V ‖2F

γσ2min(V)
ξ(ω,U)t+1‖x∗‖22.

For Method 3.4, with the substitution of estimate (3.5) into (3.11), we can further

obtain

Et‖bt+1 − b∗‖22 ≤ ζ(α, V)‖bt − b∗‖22 +
2α2 − α
γσ2min(U)

EUt ‖xt+1 − x∗‖2UTU ,

then, applying the bound (3.2) to the term EUt ‖xt+1 − x∗‖2UTU
, we have

Et‖bt+1 − b∗‖22 ≤ ζ(α, V)‖bt − b∗‖22 +
2α2 − α
γσ2min(U)

ξ(ω,U)t+1‖x∗‖2UTU ,

taking expectations over the remaining randomness, we have

E‖bt+1 − b∗‖22 ≤ ζ(α, V)t+1‖b∗‖22 +
2α2 − α
γσ2min(U)

ξ(ω,U)t+1‖x∗‖2UTU

t∑
h=0

ζ(α, V)h

≤ ζ(α, V)t+1‖b∗‖22 +
2α2 − α
γσ2min(U)

· 1

1− ζ(α, V)
ξ(ω,U)t+1‖x∗‖2UTU

= ζ(α, V)t+1‖b∗‖22 +
2α− 1

3− 2α
·

‖V ‖2F
γσ2min(V)σ2min(U)

ξ(ω,U)t+1‖Ux∗‖22.

This concludes the proof of the theorem.

Randomized Methods for Factorized Linear Systems 969

4. Numerical experiments

In this section, we implement the RK-RK, REK-RK, GRK(ω)-GRK(α) and GRGS(ω)-

GRK(α) methods with different parameters ω and α in different settings, and show the

numerical behaviors of these methods in terms of the number of iteration steps (denoted

as “IT”) and the computing time in seconds (denoted as “CPU”). Here, the CPU and IT

mean the arithmetical averages of the elapsed CPU times and the required iteration steps

with respect to 50 times repeated runs of the corresponding method. Besides, we report

the speed-up of GRK(ω)-GRK(α) against RK-RK, which is defined as

speed-up =
CPU of GRK(ω)-GRK(α)

CPU of RK-RK

when ω, α 6= 1. Naturally, for inconsistent systems, namely for Case IV in Table 2.1,

speed-up represents the CPU of GRGS(ω)-GRK(α) against the CPU of REK-RK.

We are going to solve the factorized linear system (1.1) with U ∈ Rm×k and V ∈ Rk×n

from two sources. One is randomly generated matrices using the MATLAB function randn

subject to the standard normal distribution N(0,1). The other is derived from the MAT-

LAB function nnmf, which factors the nonnegative matrix X ∈ Rm×n into nonnegative

matrices U ∈ Rm×k and V ∈ Rk×n for fixed positive integer k. The nonnegative matrices

X ∈ Rm×n are taken from the real world data sets on wine quality and bike rental data,

which can be download from the UCI Machine Learning Repository [21]. The wine quality

set is a sample of m = 1599 red wines with n = 11 physio-chemical properties of each

wine, and the Euclidean condition number of X is 2.46 × 103. The bike rental data sets

contains m = 17379 samples and n = 9 attributes per sample, the Euclidean condition

number of X is 94.27.

In our implementations, we divide the system (1.1) into consistent and inconsistent

to discuss the numerical efficiency of the aforementioned various methods. When the

system (1.1) is consistent, we set m,n, k ∈ {200, 150, 100}, which is in accordance with the

experiments in [25], and m,n, k ∈ {1500, 1000, 750} for the randomly generated matrices,

respectively. The specific sizes of U and V correspond to the first three cases in Table 2.1,

i.e., Case I, Case II and Case III. For example, for Case I, k < m,n and X = UV is

underdetermined, then k = 100, m = 150 and n = 200 or k = 750, m = 1000 and n = 1500.

When the system (1.1) is inconsistent, for randomized matrix, we set m = 1200, n = 750

and k = 500, which is also in accordance with the experiments in [25], for wine quality

and bike rental data, we set k = 5 and k = 8, respectively, and the Euclidean condition

numbers of the matrices U and V obtained by nnmf(X,k) are 23.9698, 4.1975 and 50.5527,

7.3502 (because this factorization is not unique, we cannot guarantee that U and V are

exactly the same as in [25]), respectively. The solution vector β∗ is generated randomly

by using the function randn such that its entries obey the independent standard normal

970 Shi-Min Liu and Yong Liu

distribution, and the right-hand side y ∈ Rm is taken to be Xβ∗ when X is consistent, and

y = Xβ∗ + r when X is inconsistent, where r ∈ null(XT), and null(XT) is generated

by making use of the MATLAB function null. All computations are started from the

initial vectors x0 = 0 and b0 = 0, and terminated once the solution error, ‖bt − β∗‖2,
at the current iterate bt, satisfies ‖bt − β∗‖2 < 10−6, or the number of iteration steps

exceeds 200, 000. The latter is given a label ‘−’ in the numerical tables. In addition,

all experiments are carried out using MATLAB (R2016b) on a personal computer with

2.67 GHz central processing unit (Intel(R) Core(TM) i5 CPU), 4.00 GB memory, and

Windows operating system (Windows 10).

Case I II III

(m,n, k) (150, 200, 100) (200, 150, 100) (200, 100, 150)

(ω, α) (1.7, 1.4) (1.6, 1.4) (1.8, 1.4)

RK-RK
IT 27286.4 33515.4 76730.4

CPU 6.1675 7.5170 17.8449

GRK-GRK
IT 9432.2 12302.6 28140.8

CPU 3.7520 4.9760 12.1450

GRK(ω)-GRK(α)
IT 4731.2 5867.2 13021.6

CPU 1.8906 2.3623 5.6964

speed-up 3.26 3.18 3.13

Table 4.1: IT and CPU of RK-RK, GRK-GRK and GRK(ω)-GRK(α) for the randomly

generated matrices with m,n, k ∈ {150, 200, 100}.

In Tables 4.1 and 4.2, we list the numbers of iteration steps and the computing times

for RK-RK, GRK-GRK (i.e., GRK(ω)-GRK(α) method with ω = α = 1) and GRK(ω)-

GRK(α) methods when X is consistent. The parameters ω and α are taken to be the

experimentally computed optimal ones that minimize the total number of iteration steps of

the GRK(ω)-GRK(α) method. The results in these two tables show that GRK(ω)-GRK(α)

with appropriate choices of the relaxation parameters ω and α can always successfully

compute an approximate solution to the factorized linear system (1.1), but RK-RK fails

for large-scale factorized linear system (1.1) with m,n, k ∈ {1500, 1000, 750} due to the

number of the iteration steps exceeding 200, 000. For all convergent cases, both GRK-

GRK and GRK(ω)-GRK(α) significantly outperform RK-RK in terms of iteration steps

and CPU times, and when compared with GRK-GRK, GRK(ω)-GRK(α) requires much

smaller iteration steps and costs much less CPU times than the GRK-GRK for appropriate

Randomized Methods for Factorized Linear Systems 971

parameters.

Case I II III

(m,n, k) (1000, 1500, 750) (1500, 1000, 750) (1500, 750, 1000)

(ω, α) (1.8, 1.4) (1.9, 1.4) (1.8, 1.4)

RK-RK
IT − − −

CPU − − −

GRK-GRK
IT 189048.3 197693.6 178632.2

CPU 1179.1540 1294.3189 1426.1928

GRK(ω)-GRK(α)
IT 87284.3 114011.0 112438.0

CPU 542.2718 717.5274 969.0418

speed-up − − −

Table 4.2: IT and CPU of RK-RK, GRK-GRK and GRK(ω)-GRK(α) for the randomly

generated matrices with m,n, k ∈ {1000, 1500, 750}.

0 0.5 1 1.5 2 2.5 3

IT 104

10-6

10-4

10-2

100

102

||b
k-

*|| 2

RK-RK
GRK-GRK
GRK(1.7)-GRK(1.4)

(a) m = 150, n = 200, k = 100

0 0.5 1 1.5 2 2.5 3 3.5

IT 104

10-6

10-4

10-2

100

102

||b
k-

*|| 2

RK-RK
GRK-GRK
GRK(1.6)-GRK(1.4)

(b) m = 200, n = 150, k = 100

0 1 2 3 4 5 6 7 8

IT 104

10-6

10-4

10-2

100

102
||b

k-
*|| 2

RK-RK
GRK-GRK
GRK(1.8)-GRK(1.4)

(c) m = 200, n = 100, k = 150

Figure 4.1: ‖bt − β∗‖2 versus IT for RK-RK, GRK-GRK and GRK(ω)-GRK(α) methods

for the randomly generated matrices.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

IT 105

10-6

10-4

10-2

100

102

||b
k-

*|| 2

RK-RK
GRK-GRK
GRK(1.8)-GRK(1.4)

(a) m = 1000, n = 1500, k =

750

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

IT 105

10-6

10-4

10-2

100

102

||b
k-

*|| 2

RK-RK
GRK-GRK
GRK(1.9)-GRK(1.4)

(b) m = 1500, n = 1000, k =

750

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

IT 105

10-6

10-4

10-2

100

102

||b
k-

*|| 2

RK-RK
GRK-GRK
GRK(1.8)-GRK(1.4)

(c) m = 1500, n = 750, k =

1000

Figure 4.2: ‖bt − β∗‖2 versus IT for RK-RK, GRK-GRK and GRK(ω)-GRK(α) methods

for the randomly generated matrices.

972 Shi-Min Liu and Yong Liu

Note that the speed-up of GRK(ω)-GRK(α) against RK-RK is at least 3.13, and the

biggest reaches 3.26. The above observations are intuitively shown in Figures 4.1 and 4.2,

in which we depict the curves of the solution error ‖bt−β∗‖2 versus the iteration step. We

observe that the solution error ‖bt−β∗‖2 of GRK(ω)-GRK(α) with appropriate parameters

is decaying more rapidly than that of RK-RK and GRK-GRK when the iteration step is

increasing.

Case IV wine quality bike rental data

(m,n, k) (1200, 750, 500) (1599, 11, 5) (17379, 9, 8)

(ω, α) (1.5, 1.4) (1.5, 1.4) (1.4, 1.4)

REK-RK
IT 194359.9 11008.7 50928.8

CPU 78.8764 4.2139 40.8345

GRGS-GRK
IT 56223.5 257.2 583.3

CPU 127.2329 0.0691 0.3080

GRGS(ω)-GRK(α)
IT 22921.3 231 497.3

CPU 47.6803 0.0618 0.2622

speed-up 1.65 68.18 155.74

Table 4.3: IT and CPU of REK-RK, GRGS-GRK and GRGS(ω)-GRK(α) for the randomly

generated matrix with m = 1200, n = 750, k = 500, wine quality and bike rental data.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

IT 105

10-6

10-4

10-2

100

102

||b
k-

*|| 2

REK-RK
GRGS-GRK
GRGS(1.5)-GRK(1.4)

(a) m = 1200, n = 750, k = 500

0 2000 4000 6000 8000 10000 12000

IT

10-6

10-5

10-4

10-3

10-2

10-1

100

101

||b
k-

*|| 2

REK-RK
GRGS-GRK
GRGS(1.5)-GRK(1.4)

(b) wine quality: m = 1599,

n = 11, k = 5

0 1 2 3 4 5 6

IT 104

10-6

10-5

10-4

10-3

10-2

10-1

100

101

||b
k-

*|| 2

REK-RK
GRGS-GRK
GRGS(1.4)-GRK(1.4)

(c) bike rental data: m =

17379, n = 9, k = 8

Figure 4.3: ‖bt−β∗‖2 versus IT for REK-RK, GRGS-GRK and GRGS(ω)-GRK(α) meth-

ods for the randomly generated matrix.

In Table 4.3, we report iteration counts and CPU times for REK-RK, GRGS-GRK

(i.e., GRGS(ω)-GRK(α) method with ω = α = 1) and GRGS(ω)-GRK(α) methods when

X is inconsistent. The parameters ω and α are also taken to be the experimentally

computed optimal ones that minimize the total number of iteration steps of GRGS(ω)-

Randomized Methods for Factorized Linear Systems 973

GRK(α) method. The results in this table show that GRGS(ω)-GRK(α) with appropriate

parameters performs much better in iteration counts and CPU times than REK-RK for

any inconsistent matrix for this example, especially for bike rental data, the speed-up even

attains 155.74. In addition, GRGS-GRK also takes many fewer iteration steps and much

less CPU times than REK-RK except for the randomized matrix (m = 1200, n = 750

and k = 500) in terms of CPU time. Figure 4.3 shows the performance of these three

methods on inconsistent systems. From this figure, we also find that for GRGS-GRK and

GRGS(ω)-GRK(α) methods the solution error ‖bt − β∗‖ is decaying much more quickly

than that of REK-RK with respect to the increase of the iteration step.

10 20 30 40 50 60 70 80 90 100

k

0

0.5

1

1.5

2

2.5

3

IT

104

RK-RK
GRK-GRK

(a) IT

10 20 30 40 50 60 70 80 90 100

k

0

1

2

3

4

5

6

7

C
PU

RK-RK
GRK-GRK

(b) CPU

Figure 4.4: IT and CPU versus k for RK-RK and GRK-GRK methods for consistent

factorized linear system (1.1) with random matrices U ∈ R150×k and V ∈ Rk×200 (k < 150).

10 20 30 40 50 60 70 80 90 100

k

0

0.5

1

1.5

2

2.5

3

3.5

4

IT

104

RK-RK
GRK-GRK

(a) IT

10 20 30 40 50 60 70 80 90 100

k

0

1

2

3

4

5

6

7

8

C
PU

RK-RK
GRK-GRK

(b) CPU

Figure 4.5: IT and CPU versus k for RK-RK and GRK-GRK methods for consistent

factorized linear system (1.1) with random matrices U ∈ R200×k and V ∈ Rk×150 (k < 150).

In Figures 4.4–4.7, we plot the curves of the iteration step and CPU time versus

the number of columns of the randomly generated matrix U ∈ Rm×k for RK-RK, GRK-

GRK, REK-RK and GRGS-GRK methods when the factorized linear system (1.1) is either

974 Shi-Min Liu and Yong Liu

consistent or inconsistent. For GRK(ω)-GRK(α) and GRGS(ω)-GRK(α) methods, there

may be different optimal parameters ω and α with respect to different k. Therefore, in

order to facilitate the comparison, we only report the results of GRK-GRK and GRGS-

GRK methods rather than the relaxed version. As the results in Figures 4.4–4.6 show, for

each tested value k the GRK-GRK method takes many fewer iteration steps and less CPU

times than the RK-RK method for consistent factorized linear system (1.1), especially

when k ≥ 60 with respect to m,n ∈ {150, 200} and k ∈ {115, 120, . . . , 170} with respect

to m = 200, n = 100. From Figure 4.7 we see that GRGS-GRK significantly outperforms

REK-RK in terms of IT for all tested values of k ∈ {100, 150, . . . , 500}, however, GRGS-

GRK costs slightly less CPU time than REK-RK when k < 300 and REK-RK performs

much better in CPU time than GRGS-GRK when k > 300.

115 120 125 130 135 140 145 150 155 160 165 170

k

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

IT

105

RK-RK
GRK-GRK

(a) IT

115 120 125 130 135 140 145 150 155 160 165 170

k

5

10

15

20

25

30

35

40

45

50

C
PU

RK-RK
GRK-GRK

(b) CPU

Figure 4.6: IT and CPU versus k for RK-RK and GRK-GRK methods for consistent

factorized linear system (1.1) with random matrices U ∈ R200×k and V ∈ Rk×100 (100 <

k < 200).

100 150 200 250 300 350 400 450 500

k

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

IT

105

REK-RK
GRGS-GRK

(a) IT

100 150 200 250 300 350 400 450 500

k

0

50

100

150

C
PU

REK-RK
GRGS-GRK

(b) CPU

Figure 4.7: IT and CPU versus k for REK-RK and GRGS-GRK methods for inconsistent

factorized linear system (1.1) with random matrices U ∈ R1200×k and V ∈ Rk×750 (k <

750).

Randomized Methods for Factorized Linear Systems 975

Last, we show the advantage of our algorithms on Phillips’s famous test problem [13].

Consider the following Fredholm integral equation of first kind on the square [−6, 6] ×
[−6, 6] ∫ 6

−6
K(s, t)φ(t) dt = f(s),

where the kernel function K(s, t) = φ(s− t) with

φ(t) =

1 + cos(πt/3), |t| < 3,

0, |t| ≥ 3,

and the right-hand side

f(s) = (6− |s|)
(

1 +
1

2
cos(sπ/3)

)
+

9

2π
sin(|s|π/3).

0 100 200 300 400 500 600
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

REK
REK-RK
GRGS-GRK
GRGS(1.5)-GRK(1.4)
Exact solution

(a)

0 200 400 600 800 1000
IT

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
lo

g 10
(R

SE
)

REK
REK-RK
GRGS-GRK
GRGS(1.5)-GRK(1.4)

(b)

Figure 4.8: (a) The solutions obtained by using REK, REK-RK, GRGS-GRK and

GRGS(1.5)-GRK(1.4) methods; and also the solution of the exact problem (black line).

(b) log10(RSE) versus IT for REK, REK-RK, GRGS-GRK and GRGS(1.5)-GRK(1.4)

methods.

We mainly consider the following perturbed linear system

Xβ = ỹ,

where ỹ = 1
K

∑K
r=1 ỹr, with ỹr = y+εr, εr is Gaussian noise with ‖y−ỹr‖2‖y‖2 = 0.1, ‖y− ỹ‖2 ≈

0.014 and K = 50 [16]. The coefficient matrix X ∈ Rn×n, the solution vector β∗ ∈ Rn

and the vector y can be constructed by MATLAB function phillips(n), which were

published by Ivanov in [14]. For this test problem, we set n = 512, k = 8 and compute U

and V using MATLAB’s nnmf(). The Euclidean condition numbers of X, U and V are

1.8174 × 109, 3.5433 and 3.5371 respectively. We plot the curves of the relative solution

error

RSE =
‖bt − β∗‖22
‖β∗‖22

976 Shi-Min Liu and Yong Liu

in base-10 logarithm versus the iteration step averaged over 50 runs for REK-RK, GRGS-

GRK, GRGS(1.5)-GRK(1.4) and REK alone in Figure 4.8. For each algorithm no more

than 1000 iterations were made. From this figure, we also see that both GRGS-GRK

and GRGS(1.5)-GRK(1.4) methods are significantly faster than REK-RK and REK. In

addition, GRGS(1.5)-GRK(1.4) requires smaller iteration steps than GRGS-GRK.

5. Conclusion

In this paper, we further introduce a relaxation parameter in iteration schemes of the GRK

and GRGS methods, respectively, and obtain a class of relaxed GRK and GRGS methods

for solving large sparse systems of linear equations. We have established the linear conver-

gence theories for the GRK(ω) and GRGS(ω) methods with ω ∈ (0, 2). In addition, based

on these two new methods, we have proposed two randomized iterative methods, i.e.,

GRK(ω)-GRK(α) and GRGS(ω)-GRK(α) with ω ∈ (0, 2) and α ∈ [1, 3/2), to solve fac-

torized linear system (1.1). As a solver, our methods also converge linearly in expectation

to the (least-squares or least-norm) solution of (overdetermined or underdetermined) fac-

torized linear systems. Numerical experiments have verified that both GRK(ω)-GRK(α)

and GRGS(ω)-GRK(α) (with appropriate parameters ω and α) significantly outperform

RK-RK and REK-RK in iteration counts and computing times for consistent and incon-

sistent systems, respectively. While we do not have a further analysis for suggestions for

the choice of the relaxation parameter. Finding more effective parameter selection criteria

(e.g., adaptive parameter selection criteria) for relaxed GRK or GRGS methods should be

important and valuable topics in the future study.

References

[1] Z.-Z. Bai and X.-G. Liu, On the Meany inequality with applications to convergence

analysis of several row-action iteration methods, Numer. Math. 124 (2013), no. 2,

215–236.

[2] Z.-Z. Bai and W.-T. Wu, On convergence rate of the randomized Kaczmarz method,

Linear Algebra Appl. 553 (2018), 252–269.

[3] , On greedy randomized Kaczmarz method for solving large sparse linear sys-

tems, SIAM J. Sci. Comput. 40 (2018), no. 1, A592–A606.

[4] , On relaxed greedy randomized Kaczmarz methods for solving large sparse

linear systems, Appl. Math. Lett. 83 (2018), 21–26.

Randomized Methods for Factorized Linear Systems 977

[5] , On greedy randomized coordinate descent methods for solving large linear

least-squares problems, Numer. Linear Algebra Appl. 26 (2019), no. 4, e2237, 15 pp.

[6] , On partially randomized extended Kaczmarz method for solving large sparse

overdetermined inconsistent linear systems, Linear Algebra Appl. 578 (2019), 225–

250.

[7] E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Found.

Comput. Math. 9 (2009), no. 6, 717–772.

[8] Y. Censor, P. P. B. Eggermont and D. Gordon, Strong underrelaxation in Kaczmarz’s

method for inconsistent systems, Numer. Math. 41 (1983), no. 1, 83–92.

[9] K. Du, Tight upper bounds for the convergence of the randomized extended Kaczmarz

and Gauss–Seidel algorithms, Numer. Linear Algebra Appl. 26 (2019), no. 3, e2233,

14 pp.

[10] B. Dumitrescu, On the relation between the randomized extended Kaczmarz algorithm

and coordinate descent, BIT 55 (2015), no. 4, 1005–1015.

[11] J. Goes, T. Zhang, R. Arora and G. Lerman, Robust stochastic principal component

analysis, in Proceedings of the 17th International Conference on Artificial Intelligence

and Statistics, J. Mach. Learn. Res. 2014, 266–274.

[12] M. Hanke and W. Niethammer, On the acceleration of Kaczmarz’s method for incon-

sistent linear systems, Linear Algebra Appl. 130 (1990), 83–98.

[13] P. C. Hansen, Regularization tools version 4.0 for Matlab 7.3, Numer. Algorithms 46

(2007), no. 2, 189–194.

[14] A. A. Ivanov, Regularization Kaczmarz Tools Version 1.4 for Matlab, MATLAB Cen-

tral File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/43791.

[15] S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bull. Int.

Acad. Pol. Sci. Lett. A 35 (1937), 355–357.

[16] A. K. Kaveev, G. I. Kropotov, E. V. Tsygankova, I. A. Tzibizov, S. D. Ganichev,

S. N. Danilov, P. Olbrich, C. Zoth, E. G. Kaveeva, A. I. Zhdanov, A. A. Ivanov,

R. Z. Deyanov and B. Redlich, Terahertz polarization conversion with quartz wave-

plate sets, Applied Optics 52 (2013), no. 4, B60–B69.

[17] R. H. Keshavan, A. Montanari and S. Oh, Matrix completion from noisy entries, J.

Mach. Learn. Res. 11 (2010), 2057–2078.

978 Shi-Min Liu and Yong Liu

[18] V. Koltchinskii, K. Lounici and A. B. Tsybakov, Nuclear-norm penalization and op-

timal rates for noisy low-rank matrix completion, Ann. Statist. 39 (2011), no. 5,

2302–2329.

[19] D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, in

Peoceedings of Advances in Neural Information Processing Systems 13 (2001), 556–

562.

[20] D. Leventhal and A. S. Lewis, Randomized methods for linear constraints: Conver-

gence rates and conditioning, Math. Oper. Res. 35 (2010), no. 3, 641–654.

[21] M. Lichman, UCI Machine Learning Repository, 2013, available at

http://archive.ics.uci.edu/ml/index.php.

[22] Y. Liu and C.-Q. Gu, Variant of greedy randomized Kaczmarz for ridge regression,

Appl. Numer. Math. 143 (2019), 223–246.

[23] A. Ma, A. Flenner, D. Needell and A. G. Percus, Improving image clustering us-

ing sparse text and the wisdom of the crowds, in Procedings of the 48th Asilomar

Conference on Signals, Systems and Computers, IEEE, 2014, 1555–1557.

[24] A. Ma, D. Needell and A. Ramdas, Convergence properties of the randomized extended

Gauss–Seidel and Kaczmarz methods, SIAM J. Matrix Anal. Appl. 36 (2015), no. 4,

1590–1604.

[25] , Iterative methods for solving factorized linear systems, SIAM J. Matrix Anal.

Appl. 39 (2018), no. 1, 104–122.

[26] D. Needell, Randomized Kaczmarz solver for noisy linear systems, BIT 50 (2010),

no. 2, 395–403.

[27] I. Pomparău and C. Popa, Supplementary projections for the acceleration of Kaczmarz

algorithm, Appl. Math. Comput. 232 (2014), 104–116.

[28] C. Popa, Least-squares solution of overdetermined inconsistent linear systems using

Kaczmarz’s relaxation, Int. J. Comput. Math. 55 (1995), no. 1-2, 79–89.

[29] , Extensions of block-projections methods with relaxation parameters to incon-

sistent and rank-deficient least-squares problems, BIT 38 (1998), no. 1, 151–176.

[30] P. Richtárik and M. Takáč, Iteration complexity of randomized block-coordinate de-

scent methods for minimizing a composite function, Math. Program. 144 (2014),

no. 1-2, Ser. A, 1–38.

Randomized Methods for Factorized Linear Systems 979

[31] T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm with exponential

convergence, J. Fourier Anal. Appl. 15 (2009), no. 2, 262–278.

[32] W. Xu, X. Liu and Y. Gong, Document clustering based on non-negative matrix fac-

torization, in Proceedings of the 26th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, ACM, 2003, 267–273.

[33] A. Zouzias and N. M. Freris, Randomized extended Kaczmarz for solving least-squares,

SIAM J. Matrix Anal. Appl. 34 (2013), no. 2, 773–793.

Shi-Min Liu

Department of Mathematics, Hefei University, Hefei 230601, China

E-mail address: liushimin12@126.com

Yong Liu

Department of Mathematics, Shanghai University, Shanghai 200444, China

E-mail address: liuyong@shu.edu.cn

	Introduction
	Motivation and contribution
	Notations
	Paper outline

	The RK-RK and REK-RK methods for factorized linear system (1.1)
	RK and REK methods
	RK-RK and REK-RK methods

	The GRK(omega)-GRK(alpha) and GRGS(omega)-GRK(alpha) methods for factorized linear system (1.1)
	Relaxed GRK and GRGS methods
	GRK(omega)-GRK(alpha) and GRGS(omega)-GRK(alpha) methods

	Numerical experiments
	Conclusion

