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On Periodic Solutions of the Incompressible Navier–Stokes Equations on

Non-compact Riemannian Manifolds

Thieu Huy Nguyen*, Truong Xuan Pham, Thi Van Nguyen and Thi Ngoc Ha Vu

Abstract. In this paper, we study the existence, uniqueness and stability of the time

periodic mild solutions to the incompressible Navier–Stokes equations on the non-

compact manifolds with negative Ricci curvature tensor. In our strategy, we combine

the dispersive and smoothing estimates for Stokes semigroups and Massera-type the-

orem to establish the existence and uniqueness of the time periodic mild solution to

Stokes equation on Riemannian manifolds. Then using fixed point arguments, we can

pass to semilinear equations to obtain the existence and uniqueness of the periodic

solution to the imcompressible Navier–Stokes equations under the action of a periodic

external force. The stability of the solution is also proved by using the cone inequality.

1. Introduction and statements of main results

1.1. Introduction

The problem of time-periodicity of solutions to Navier–Stokes equations has its long his-

tories. Early results can be traced back to Serrin [31] who proved that the exponential

stability of solutions to Navier–Stokes equations (NSE) implies the existence of time-

periodic solutions to NSE in bounded domains. The method of Serrin served as a starting

point for many researches on periodic solutions to NSE. This direction has been extended

further by Miyakawa and Teramoto [25], Kaniel and Shinbrot [17], and references therein.

Then, Maremonti has proved in [23] the stability and existence of periodic solutions to

NSE on the whole space. Kozono and Nakao [20] have introduced a new notion of mild

solutions and proved the existence of such a solution to NSE on the whole time-line R
in Rd for d ≥ 4. Taniuchi [32] has the proved the asymptotic stability of such periodic

solutions.

Other techniques known formally as “invading domains” have been introduced by Prodi

[29], Prouse [30], Yudovich [37], and Heywood [15] used to prove the existence of periodic

solutions to NSE on certain unbounded domains. The existence results of such solutions to
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NSE were shown by Maremonti and Padula [24] on certain exterior domain with symmetric

property and small complement. Then, extending further Serrin’s method, Galdi and

Sohr [10] have proved the existence of periodic solutions to NSE in any exterior domain

using the spaces featuring the decay of the solutions at spatial infinity. Yamazaki [36] used

interpolation spaces and the iteration scheme method [12, 18] to show the existence and

uniqueness of periodic mild solutions on exterior domains. For further results in exterior

domains, we refer to Taniuchi [33] and van Baalen and Wittwer [35], Galdi and Silvestre [9].

Moreover, Nguyen [26] used the mean-ergodic methods and Massera’s principle to show

the existence and polynomial stability of periodic solutions to the NSE around a rotating

obstacle. For recent results concerning periodic solutions to NSE in the whole space

or past moving cylinders, we refer the reader to Galdi [7, 8]. A general approach to

the problem of periodic solutions to fluid flow problems using interpolation spaces and

smoothness of corresponding linearized equations has been introduced by Geissert, Hieber

and Nguyen [11].

In the present paper we will study the existence and stability of periodic solutions to

incompressible Navier–Stokes equations (NSE) for vector fields in a non-compact Rieman-

nian manifold (M, g) with negative Ricci curvature tensor. Concretely, denoting Γ(TM)

the set of all vector fields on M, we consider NSE for a vector-field-valued mapping

u : R+ ×M→ Γ(TM)

(1.1)


∂tu+∇uu+∇π =

−→
∆u+ r(u) + f,

div u = 0,

u(0, x) = u0(x) ∈ Γ(TM) for all x ∈M,

where∇ denotes the Levi–Civita connection onM; π is the pressure; r(u) is Ricci operator

(see the definition in the next section); f is external force; and
−→
∆ is Bochner Laplace

operator. We refer the reader to [1, 2, 19, 21, 38] for the well-posedness and ill-posedness

results for NSE on non-compact Riemannian manifolds. For the case of Einstein manifolds

with negative curvature tensor, in [27] we obtained the existence and stability of periodic

solutions to Navier–Stokes equations. In the present paper we will extent such results to

the case of general noncompact Riemannian manifolds satisfying the hypotheses (H1)–(H4)

below.

We would like to note that on a non-compact Riemannian manifold with negative

curvature tensor, the study of the Stokes problem may be transformed to the case of the

vectorial heat equations. Based on this important fact, Pierfelice [28] has proved the dis-

persive and smoothing estimates for the vectorial heat and Stokes semigroup associated

with the Bochner Laplacian on non-compact Riemannian manifolds with negative curva-

ture. Actually, Pierfelice [28] obtained exponential decaying and Lp − L2 estimates for
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Stokes semigroups on Riemannian manifolds with negative curvatures. Using these esti-

mates and Kato-iteration methods, Pierfelice obtained the well-posedness of Navier–Stokes

equations for vector fields on non-compact Riemannian manifolds (see details in [28]).

However, since the energy inequalities are not valid for NSE on general non-compact

Riemannian manifolds (see [2, Theorems 3.2, 3.3]), the stability estimates for semilinear

equations using energy inequalities cannot directly be applied. Moreover, we are working

here with Lp-phase space with general p, then the usual estimates in L2 spaces using scalar

product cannot be used. Therefore, in the present paper, we use dispersive and smoothing

estimates of the corresponding linearized Stokes equation in combination with Massera-

type theorem to obtain the existence and uniqueness of a periodic solution to linearized

Stokes equation, and then we pass to the case of semilinear Navier–Stokes equations using

fixed-point arguments. Using cone inequality we prove the exponential stability of the

periodic solution to NSE.

1.2. Statements of the main results

Using the Kodaira–Hodge operator P = I+grad(−∆g)
−1 div we can get rid of the pressure

term π and then obtain from (1.1) that

(1.2)


∂tu− (

−→
∆u+ r(u) +G(u)) = P[−∇uu+ f ],

div u = 0,

u(0, x) = u0(x) ∈ Γ(TM) for all x ∈M; div u0 = 0,

where G(u) = 2 grad(−∆g)
−1 div(r(u)) with ∆g being the Laplace–Beltrami operator.

The corresponding inhomogeneous Stokes equation takes the form

(1.3)

∂tu = −Au+ P[−∇vv + f ],

u(0, x) = u0(x) ∈ Γ(TM) for all x ∈M

for given vector-field valued mappings v(t, · ) and f(t, · ) ∈ Γ(TM), where Au = −(
−→
∆u+

r(u)+G(u)), and e−tA is denoted the semigroup associated with the homogeneous Cauchy

problem

(1.4)

∂tu = −Au,

u(0, x) = u0(x) ∈ Γ(TM) for all x ∈M,

i.e., the unique solution of the above Cauchy problem is given by u(t) = e−tAu0. Here,

traditionally, we denote u(t) for u(t, · ). To state our main results we need the following

notion of mild solution.
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Definition 1.1. By a mild solution to (1.3) we mean a mapping u : R+ ×M→ Γ(TM)

which satisfies the integral equation

(1.5) u(t) = e−tAu0 +

∫ t

0
e−(t−τ)AP[−∇vv + f ](τ) dτ for t ≥ 0.

Moreover, for a given Banach space X we denote the following Banach space

Cb(R+, X) :=

{
h : R+ → X

∣∣∣ h is continuous and sup
t∈R+

‖h(t)‖X <∞

}
endowed with the norm ‖h‖∞,X = ‖h‖Cb(R+,X) := supt∈R+

‖h(t)‖X .

We consider the existence and stability of the periodic mild solutions of equations (1.2),

(1.3) on the following Banach space

X :=
{
u ∈ Cb(R+, L

p(Γ(TM)) ∩ L2(Γ(TM))),∇u ∈ Cb(R+, L
p̃(Γ(TM)) ∩ Ls(Γ(TM)))

∣∣
the function t 7→ ‖u(t)‖2 + ‖u(t)‖Lp + [cd(t)]

−
(

1
p
− 1
p̃

+ 1
d

)
‖∇u(t)‖Lp̃

+ [cd(t)]
−
(

1
p
− 1
s

+ 1
d

)
‖∇u(t)‖Ls belongs to L∞(R+)

}
endowed with the norm

‖u‖X := sup
t∈R+

(
‖u(t)‖L2 + ‖u(t)‖Lp + [cd(t)]

−
(

1
p
− 1
p̃

+ 1
d

)
‖∇u(t)‖Lp̃

+ [cd(t)]
−
(

1
p
− 1
s

+ 1
d

)
‖∇u(t)‖Ls

)
.

Here we assume that d < p < p̃ < s where 1
2 = 1

p + 1
p̃ , and denote ‖ · ‖Lp := ‖ · ‖Lp(Γ(TM)),

whereas cd(t) := C0 max
{

1

t
d
2
, 1
}

.

We now state our first main result on the existence of the periodic mild solution to

(1.3) in the following theorem.

Theorem 1.2. Let (M, g) be a d-dimensional non-compact manifold with negative Ricci

curvature tensor. Suppose that v ∈ X and the external force f ∈ Cb(R+, L
p(Γ(TM)) ∩

L2(Γ(TM))) (p > d) are T -periodic functions. Then, problem (1.3) has one and only one

T -periodic mild solution û ∈ X satisfying

‖û‖X ≤ (C̃ + 1)
(
C̃‖f‖Lp∩L2 + M̃‖v‖2X

)
.

Analogously to the case of linearized Stokes equations, by a mild solution to equa-

tion (1.2) we mean the vector-field-valued map u : R+ × M → Γ(TM) satisfying the

integral equation

(1.6) u(t) = e−tAu0 +

∫ t

0
e−(t−τ)AP[(−∇uu+ f)(τ)] dτ for t ≥ 0.

We then state our second main result on the existence and uniqueness of the periodic mild

solution to (1.2) in the following theorem.
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Theorem 1.3. Let (M, g) be a d-dimensional non-compact manifold with the negative

Ricci curvature tensor and let f ∈ Cb(R+, L
p(Γ(TM)) ∩ L2(Γ(TM))) (p > d) be T -

periodic with respect to t. Then, if ‖f‖Lp∩L2 is sufficiently small, the equation (1.2) has

one and only one T -periodic mild solution û on a small ball of X .

Lastly, our third main result on the exponential stability of the periodic mild solution

is stated as follows.

Theorem 1.4. The T -periodic mild solution û of equation (1.2) is exponentially stable in

the sense that for any other mild solution u ∈ X to (1.2) such that ‖u(0)− û(0)‖Lp∩L2 is

small enough, we have

|||u(t)− û(t)||| ≤ Cγe−γt‖u(0)− û(0)‖Lp∩L2 for all t > 0,

here we denote

|||u(t)||| := ‖u(t)‖2 + ‖u(t)‖Lp + [cd(t)]
−
(

1
p
− 1
p̃

+ 1
d

)
‖∇u(t)‖Lp̃

+ [cd(t)]
−
(

1
p
− 1
s

+ 1
d

)
‖∇u(t)‖Ls ;

whereas γ is a positive constant satisfying 0 < γ < β, and Cγ is a constant independent

of u and û.

We will give the proofs of our main results in Section 3.

2. Intermezzo on the incompressible Navier–Stokes equations on non-compact

Riemannian manifolds

For d ∈ N, d ≥ 2, we consider a d-dimensional non-compact Riemannian manifold (M, g)

whose the Ricci tensor Ric is a negative. We restrict ourselves to the case that the sectional

curvature of (M, g) is negative, so that the smoothing and dispersive estimates obtained

by Pierfelice [28] can be applied. We refer the reader to [13, 16] for notions and detail

discussions on Riemannian manifolds and related concepts of geometric analysis. For

details on Navier–Stokes equations on Riemannian manifolds we refer to [6, 28, 34] and

references therein. For the reader’s convenience, in what follows, we recall some notions

on differential operators on Riemannian manifolds. We denote the Levi–Civita connection

by ∇ and the set of all vector fields on M by Γ(TM). For X ∈ Γ(TM) we can extend

∇X to arbitrary (p, q) tensor by requiring

(i) ∇X(c(S)) = c(∇XS) for any contraction c,

(ii) ∇X(S ⊗ T ) = ∇XS ⊗ T + S ⊗∇XT ,
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where we take the convention that ∇Xf = X · f for a function f : M→ R.

In particular, for S ∈ Γ(⊗p(TM)⊗q (T ∗M)) we get

(∇XS)(X1, . . . , Xq) = ∇X(S(X1, . . . , Xq))− S(∇XX1, . . . , Xq)

− · · · − S(X1, . . . ,∇XXq).

Moreover, we define the covariant derivatives ∇ on tensor field S ∈ Γ(⊗p(TM)⊗q (T ∗M))

by

∇S(X,X1, . . . , Xq) = (∇XS)(X1, . . . , Xq),

hence ∇S ∈ Γ(⊗p(TM)⊗q+1 (T ∗M)). Next, we recall the “music notations” on Rieman-

nian manifolds. For a 1-form w, we define the vector field w] by

g(w], Y ) = w(Y ), ∀Y ∈ Γ(TM)

whereas, for a vector field X, we define the 1-form X[ by

X[(Y ) = g(X,Y ), ∀Y ∈ Γ(TM).

The metric on 1-forms can then be defined by setting g(w, η) := g(w], η]), ∀w, η ∈
Γ(T ∗M). The Riemannian gradient of a function is then defined as

grad p = (dp)].

More generally, for (p, q)-tensor field T ∈ Γ(⊗p(TM)⊗q (T ∗M)) we have

T ] = C2
1 (g−1 ⊗ T ) ∈ Γ(⊗p+1(TM)⊗q−1 (T ∗M)),

T [ = C1
2 (g ⊗ T ) ∈ Γ(⊗p−1(TM)⊗q+1 (T ∗M)),

div T = C1
1∇T ∈ Γ(⊗p−1(TM)⊗q (T ∗M)),

where Cij stands for the contraction of the i and j indices for tensors.

Next, the Laplace–Beltrami operator ∆g applying on functions is defined as

∆g(f) = div grad f =
1√
|g|

∂

∂xj

(√
|g|gij ∂f

∂xi

)
for a function f : M→ R, where |g| = det g.

Furthermore, the vectorial Laplacian L is defined by the stress tensor (see [6, 34]):

Lu = div(∇u+∇ut)].

Since div u = 0 we can express L in the following formula

Lu =
−→
∆u+ r(u),
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where
−→
∆ is the Bochner–Laplacian

−→
∆u = −∇∗∇u = Trg(∇2u)

and r(·) is the Ricci operator related to the Ricci curvature tensor by the formula

r(u) = (Ric(u, · ))] for all u ∈ Γ(TM),

where the Ricci curvature tensor is defined by

Ric(X,Y ) =
d∑
i=1

g(R(X, ei)Y, ei) for all X,Y ∈ Γ(TM)

for the standard basis
{
ei = ∂

∂xi

}d
i=1

and R being the curvature tensor on M defined by

R(X,Y )Z := −∇X(∇Y Z) +∇Y (∇XZ) +∇[X,Y ]Z for all X,Y, Z ∈ Γ(TM).

Moreover, the sectional curvature κ is defined as κ(X,Y ) := R(X,Y,X,Y )
g(X,X)g(Y,Y )−g(X,Y )2

for all

X,Y ∈ TxM.

Now, for a smooth, complete, non-compact, simply connected Riemannian manifold

(M, g) we state the following hypotheses which were introduced in [28]:

(H1) |R|+ |∇R|+ |∇2R| ≤ K,

(H2) − 1
c0
g ≤ Ric ≤ −c0g for some c0 positive,

(H3) κ < 0,

(H4) infx∈M rx > 0,

where rx is the injectivity radius for the exponential map at x.

There are several Riemannian manifolds satisfying the above hypotheses (H1)–(H4)

such as real hyperbolic manifolds, non-compact Einstein manifolds with negative Ricci

curvature tensors (see [14,16]), Damek–Ricci manifolds (see [4]) and symmetric manifolds

of non-compact types (see [5, 14]).

In this paper, we study the periodic solutions to the Cauchy problem for the incom-

pressible Navier–Stokes equations (1.1) on M.

Remark 2.1. We notice that the operator
−→
∆ +r+G does not commute with the Kodaira–

Hodge operator P = I + grad(−∆g)
−1 div on the generalized non-compact manifolds with

all the conditions (H1)–(H4).
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3. Proofs of main results

In this section, we will give the proofs of our three main results stated in the first section.

We first prove the existence of bounded mild solutions to linear inhomogeneous Stokes

equations (1.3) with bounded external forces. To that purpose we need the Lp − Lq-

dispersive and smoothing estimates of the semigroup e−tA. These estimates have been

proved for semigroups on noncompact manifolds satisfying (H1)–(H4) by Pierfelice in [28].

We now recall the results on the dispersive and smoothing estimates obtained in [28] for

the semigroup e−tA in the following lemma.

Lemma 3.1. [28, Corollary 4.13 and Theorem 4.15] Assuming (H1)–(H4), putting cd(t) =

C0 max
(

1
td/2

, 1
)
. There exist β ≥ C0 > 0 and some C > 0 such that the solution of (1.4)

satisfies the following dispersive and smoothing estimates:

(i) For 2 ≤ p ≤ r < +∞ and for all u0 ∈ Lp(Γ(TM)) ∩ L2(Γ(TM)),∥∥e−tAu(t)
∥∥
Lr
≤ C[cd(t)]

1
p
− 1
r e−βt

(
‖u0‖Lp + ‖u0‖L2

)
, ∀ t > 0,(3.1) ∥∥∇e−tAu(t)

∥∥
Lr
≤ C[cd(t)]

1
p
− 1
r

+ 1
d e−βt

(
‖u0‖Lp + ‖u0‖L2

)
, ∀ t > 0.

(ii) For 1 < p ≤ 2 ≤ r < +∞ and for all u0 ∈ Lp(Γ(TM)),∥∥e−tAu(t)
∥∥
Lr
≤ C[cd(t)]

1
p
− 1
r e−βt‖u0‖Lp , ∀ t > 0,∥∥∇e−tAu(t)

∥∥
Lr
≤ C[cd(t)]

1
p
− 1
r

+ 1
d e−βt‖u0‖Lp , ∀ t > 0.

The following lemma gives us the boundedness (in time) of mild solutions to (1.3) for

each bounded external force.

Lemma 3.2. Consider Stokes equation (1.3) on d-dimensional non-compact manifold

(M, g) with negative Ricci curvature tensor. Let u0 ∈ Lp(Γ(TM)) ∩ L2(Γ(TM)) (p > d)

and suppose that v ∈ X , f ∈ Cb(R+, L
p(Γ(TM))∩L2(Γ(TM))). Then, the problem (1.3)

has one and only one mild solution u ∈ X given by the formula (1.5) with u(0) = u0.

Furthermore, we have

(3.2) ‖u‖X ≤ C̃
(
‖u0‖Lp∩L2 + ‖f‖∞,Lp∩L2

)
+ M̃‖v‖2X

for some constants C̃ and M̃ independent of u0, u, v and f . Here we denote the norm

‖ · ‖Lp(Γ(TM))∩L2(Γ(TM)) by ‖ · ‖Lp∩L2 and the norm ‖ · ‖Cb(R+,Lp(Γ(TM))∩L2(Γ(TM))) by

‖ · ‖∞,Lp∩L2.

Proof. Consider the function u defined by the formula (1.5) with u(0) = u0. We now

estimate the norm ‖u‖X . For simplicity of writing, we denote ‖ · ‖p := ‖ · ‖Lp(Γ(TM)).
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On Riemannian non-compact manifold with negative curvature tensor we have the Lp-

boundedness of Riesz transform (see [22]), therefore the operator P is bounded. Using the

first inequality in assertion (i) of Lemma 3.1 we have

‖u(t)‖2 ≤
∥∥e−tAu0

∥∥
2

+

∫ t

0

∥∥e−(t−τ)AP[∇vv + f ](τ)
∥∥

2
dτ

≤ Ce−βt‖u0‖2 +

∫ t

0
e−β(t−τ)‖∇vv(τ) + f(τ)‖2 dτ

≤ C‖u0‖Lp∩L2 +

(∫ t

0
e−β(t−τ)

(
‖v(τ)‖p‖∇v(τ)‖p̃ + ‖f‖2

)
dτ

)
≤ C‖u0‖Lp∩L2 +

(∫ t

0
e−β(t−τ) dτ‖f‖∞,L2 +

∫ t

0
e−β(t−τ)[cd(τ)]

1
p
− 1
p̃

+ 1
d dτ‖v‖2X

)
≤ C‖u0‖Lp∩L2 +

N

β

(
1− e−βt

)
‖f‖∞,L2 +G1(t)‖v‖2X

≤ C1

(
‖u0‖Lp∩L2 + ‖f‖∞,Lp∩L2

)
+M1‖v‖2X ,

where C1 := max
{
C, Nβ

}
and

G1(t) =

∫ t

0
e−β(t−τ)[cd(τ)]

1
p
− 1
p̃

+ 1
d ≤M1 < +∞.

We can estimate G1(t) and determine M1 as follows:

G1(t) :=

∫ t

0
[cd(τ)]

1
p
− 1
p̃

+ 1
d e−β(t−τ) dτ =

∫ t

0
[max{τ−

d
2 , 1}]

1
p
− 1
p̃

+ 1
d e−β(t−τ) dτ

=


∫ 1

0 τ
− d

2

(
1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ +

∫ t
1 e
−β(t−τ) dτ if t ≥ 1,∫ 1

0 τ
− d

2

(
1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ if 0 < t < 1

≤
∫ 1

0
τ
− d

2

(
1
p
− 1
p̃

+ 1
d

)
dτ +

(
1

β
− 1

β
eβ(1−t)

)
=

1
1
2 −

d
2p + d

2p̃

+

(
1

β
− 1

β
eβ(1−t)

)
≤M1,

where M1 := 1
1
2
− d

2p
+ d

2p̃

+ 1
β . Note that since d < p < p̃, it follows that 1

2 −
d
2p + d

2p̃ > 0.

Putting 1
r = 1

p + 1
s and using again the first inequality in item (i) of Lemma 3.1, we

have

‖u(t)‖p ≤ Ce−βt‖u0‖Lp∩L2 +

∫ t

0
Ne−β(t−τ)‖f(τ)‖Lp∩L2 dτ

+

∫ t

0
[cn(t− τ)]

1
r
− 1
p e−β(t−τ)

(
‖∇vv(τ)‖r + ‖∇vv(τ)‖2

)
dτ

≤ C‖u0‖Lp∩L2 +N

∫ t

0
e−β(t−τ) dτ‖f‖∞,Lp∩L2

+

∫ t

0
[cd(t− τ)]

1
s e−β(t−τ)

(
‖v(τ)‖p‖∇v(τ)‖s + ‖v(τ)‖p‖∇v(τ)‖p̃

)
dτ



616 Thieu Huy Nguyen, Truong Xuan Pham, Thi Van Nguyen and Thi Ngoc Ha Vu

≤ C‖u0‖Lp∩L2 +
N

β
‖f‖∞,Lp∩L2

+

∫ t

0
[cd(t− τ)]

1
s

(
[cd(τ)]

1
p
− 1
s

+ 1
d + [cd(τ)]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ‖v‖2X

≤ C‖u0‖Lp∩L2 +
N

β
‖f‖∞,Lp∩L2 +G2(t)‖v‖2X

≤ C1

(
‖u0‖Lp∩L2 + ‖f‖∞,Lp∩L2

)
+M2‖v‖2X ,

where C1 := max
{
C, Nβ

}
and

G2(t) =

∫ t

0
[cd(t− τ)]

1
s

(
[cd(τ)]

1
p
− 1
s

+ 1
d + [cd(τ)]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ ≤M2 < +∞.

We can estimate G2(t) and give a explicit value of M2 as follows:

G2(t) :=

∫ t

0
[cd(t− τ)]

1
s

(
[cd(τ)]

1
p
− 1
s

+ 1
d + [cd(τ)]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ

=

∫ t

0
[max{(t− τ)−

d
2 , 1}]

1
s

(
[max{τ−

d
2 , 1}]

1
p
− 1
s

+ 1
d + [max{τ−

d
2 , 1}]

1
p
− 1
p̃

+ 1
d

)
× e−β(t−τ) dτ.

If 0 < t ≤ 1 then

G2(t) ≤
∫ t

0
(t− τ)−

d
2s

(
τ
− d

2

(
1
p
− 1
s

+ 1
d

)
+ τ
− d

2

(
1
p
− 1
p̃

+ 1
d

))
dτ

=

∫ t

0

(
1− τ

t

)− d
2s
(τ
t

)− d
2

(
1
p
− 1
s

+ 1
d

)
t
1
2
− d

2p d
(τ
t

)
+

∫ 1

0

(
1− τ

t

)− d
2s
(τ
t

)− d
2

(
1
p
− 1
p̃

+ 1
d

)
t
1
2
− d

2

(
1
p

+ 1
s
− 1
p̃

)
d
(τ
t

)
≤
∫ 1

0
(1− z)−

d
2s z
− d

2

(
1
p
− 1
s

+ 1
d

)
dz +

∫ 1

0
(1− z)−

d
2s z
− d

2

(
1
p
− 1
p̃

+ 1
d

)
dz

=

∫ 1/2

0
(1− z)−

d
2s z
− d

2

(
1
p
− 1
s

+ 1
d

)
dz +

∫ 1

1/2
(1− z)−

d
2s z
− d

2

(
1
p
− 1
s

+ 1
d

)
dz

+

∫ 1/2

0
(1− z)−

d
2s z
− d

2

(
1
p
− 1
p̃

+ 1
d

)
dz +

∫ 1

1/2
(1− z)−

d
2s z
− d

2

(
1
p
− 1
p̃

+ 1
d

)
dz

≤
∫ 1/2

0
2
d
2s z
− d

2

(
1
p
− 1
s

+ 1
d

)
dz +

∫ 1

1/2
(1− z)−

d
2s 2

d
2

(
1
p
− 1
s

+ 1
d

)
dz

+

∫ 1/2

0
2
d
2s z
− d

2

(
1
p
− 1
p̃

+ 1
d

)
dz +

∫ 1

1/2
(1− z)−

d
2s 2

d
2

(
1
p
− 1
p̃

+ 1
d

)
dz

=
2
d
2p
− 1

2

1
2 −

d
2p + d

2s

+
2
d
2p
− 1

2

1− d
2s

+
2
d
2s
− 1

2
+ d

2p
− d

2p̃

1
2 −

d
2p + d

2p̃

+
2
d
2s
− 1

2
+ d

2p
− d

2p̃

1− d
2s

:= M2a.
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If t > 1 then

G2(t)

=

∫ 1/2

0
[max{(t− τ)−

d
2 , 1}]

1
s

(
[max{τ−

d
2 , 1}]

1
p
− 1
s

+ 1
d + [max{τ−

d
2 , 1}]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ

+

∫ 1

1/2
[max{(t− τ)−

d
2 , 1}]

1
s

(
[max{τ−

d
2 , 1}]

1
p
− 1
s

+ 1
d + [max{τ−

d
2 , 1}]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ

+

∫ t

1
[max{(t− τ)−

d
2 , 1}]

1
s

(
[max{τ−

d
2 , 1}]

1
p
− 1
s

+ 1
d + [max{τ−

d
2 , 1}]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ

≤
∫ 1/2

0

(
(t− τ)−

d
2s + 1

)(
τ
− d

2

(
1
p
− 1
s

+ 1
d

)
+ τ
− d

2

(
1
p
− 1
p̃

+ 1
d

))
e−β(t−τ) dτ

+

∫ 1

1/2

(
(t− τ)−

d
2s + 1

)(
τ
− d

2

(
1
p
− 1
s

+ 1
d

)
+ τ
− d

2

(
1
p
− 1
p̃

+ 1
d

))
e−β(t−τ) dτ

+

∫ t

1

(
(t− τ)−

d
2s + 1

)
2e−β(t−τ) dτ

≤
∫ 1/2

0

(
2
d
2s + 1

)(
τ
− d

2

(
1
p
− 1
s

+ 1
d

)
+ τ
− d

2

(
1
p
− 1
p̃

+ 1
d

))
dτ

+

∫ 1

1/2

(
(t− τ)−

d
2s + 1

)(
2
d
2

(
1
p
− 1
s

+ 1
d

)
+ 2

d
2

(
1
p
− 1
p̃

+ 1
d

))
e−β(t−τ) dτ

+ 2

∫ t

1

(
(t− τ)−

d
2s + 1

)
e−β(t−τ) dτ

=
(
2
d
2s + 1

)( 2
− 1

2
+ d

2p
− d

2s

1
2 −

d
2p + d

2s

+
2
− 1

2
+ d

2p
− d

2p̃

1
2 −

d
2p + d

2p̃

)

+

(
2
d
2

(
1
p
− 1
s

+ 1
d

)
+ 2

d
2

(
1
p
− 1
p̃

+ 1
d

)
+ 2

)∫ t

−∞

(
(t− τ)−

d
2s + 1

)
e−β(t−τ) dτ

=
(
2
d
2s + 1

)( 2
− 1

2
+ d

2p
− d

2s

1
2 −

d
2p + d

2s

+
2
− 1

2
+ d

2p
− d

2p̃

1
2 −

d
2p + d

2p̃

)

+

(
2
d
2

(
1
p
− 1
s

+ 1
d

)
+ 2

d
2

(
1
p
− 1
p̃

+ 1
d

)
+ 2

)[
β(θ1−1)Γ(1− θ1) +

1

β

]
:= M2b,

where 0 < θ1 := d
2s < 1. Therefore

G2(t) ≤M2 := max{M2a,M2b}.

Using the second inequality of Lemma 3.1, we obtain the estimates for Lp̃-norm of the

covariant derivative ∇u(t) as follows:

[cd(t)]
−
(

1
p
− 1
p̃

+ 1
d

)
‖∇u(t)‖p̃
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≤ Ce−βt
(
‖u0‖p + ‖u0‖2

)
+

∫ t

0
[cd(t)]

−
(

1
p
− 1
p̃

+ 1
d

)
[cd(t− τ)]

1
p
− 1
p̃

+ 1
d e−β(t−τ)

(
‖f(τ)‖2 + ‖f(τ)‖p

)
dτ

+

∫ t

0
[cd(t)]

−
(

1
p
− 1
p̃

+ 1
d

)
[cd(t− τ)]

1
r
− 1
p̃

+ 1
d e−β(t−τ)

(
‖∇vv(τ)‖r + ‖∇vv(τ)‖2

)
dτ

≤ C‖u0‖Lp∩L2 +G31(t)‖f‖X

+

∫ t

0
[cd(t)]

−
(

1
p
− 1
p̃

+ 1
d

)
[cd(t− τ)]

1
r
− 1
p̃

+ 1
d e−β(t−τ)

(
‖v(τ)‖p‖∇v(τ)‖s + ‖v(τ)‖p‖∇v(τ)‖p̃

)
dτ

≤ C‖u0‖Lp∩L2 +G31(t)‖f‖X

+

∫ t

0
[cd(t)]

−
(

1
p
− 1
p̃

+ 1
d

)
[cd(t− τ)]

1
r
− 1
p̃

+ 1
d e−β(t−τ)

(
[cd(τ)]

1
p
− 1
s

+ 1
d + [cd(τ)]

1
p
− 1
p̃

+ 1
d

)
dτ‖v‖2X

≤ C‖u0‖Lp∩L2 +G31(t)‖f‖X +G32(t)‖v‖2X ≤ C‖u0‖Lp∩L2 +M31‖f‖X +M32‖v‖2X
≤ C2

(
‖u0‖Lp∩L2 + ‖f‖X

)
+M32‖v‖2X ,

where C2 := max{C,M31} and

G31 =

∫ t

0
[cd(t)]

−
(

1
p
− 1
p̃

+ 1
d

)
[cd(t− τ)]

1
p
− 1
p̃

+ 1
d e−β(t−τ) dτ ≤M31 < +∞,

G32 =

∫ t

0
[cd(t)]

−
(

1
p
− 1
p̃

+ 1
d

)
[cd(t− τ)]

1
r
− 1
p̃

+ 1
d e−β(t−τ)

(
[cd(τ)]

1
p
− 1
s

+ 1
d + [cd(τ)]

1
p
− 1
p̃

+ 1
d

)
dτ

≤M32 < +∞.

We now estimate the integrals G31, G32 and give the corresponding precise values of M31

and M32 as follows:

G31(t) :=

∫ t

0
[cd(t)]

−
(

1
p
− 1
p̃

+ 1
d

)
[cd(t− τ)]

1
p
− 1
p̃

+ 1
d e−β(t−τ) dτ

=

∫ t

0
[max{t−

d
2 , 1}]−

(
1
p
− 1
p̃

+ 1
d

)
[max{(t− τ)−

d
2 , 1}]

1
p
− 1
p̃

+ 1
d e−β(t−τ) dτ.

If 0 < t ≤ 1 then

G31(t) ≤
∫ t

0
t
d
2

(
1
p
− 1
p̃

+ 1
d

)
(t− τ)

− d
2

(
1
p
− 1
p̃

+ 1
d

)
dτ =

t
1
2 −

d
2p + d

2p̃

≤ 1
1
2 −

d
2p + d

2p̃

.

If t > 1 then

G31(t) ≤
∫ t

0

[
(t− τ)

− d
2

(
1
p
− 1
p̃

+ 1
d

)
+ 1

]
e−β(t−τ) dτ ≤ β(θ31−1)Γ(1− θ31) +

1

β
,

where 0 < θ31 := d
2

(
1
p −

1
p̃ + 1

d

)
< 1 and M31 := max

{
1

1
2
− d

2p
+ d

2p̃

, β(θ31−1)Γ(1 − θ31) + 1
β

}
.
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We continue to estimate the function G32(t):

G32(t) =

∫ t

0
[cd(t)]

−
(

1
p
− 1
p̃

+ 1
d

)
[cd(t− τ)]

1
r
− 1
p̃

+ 1
d e−β(t−τ)

(
[cd(τ)]

1
p
− 1
s

+ 1
d + [cd(τ)]

1
p
− 1
p̃

+ 1
d
)
dτ

=

∫ t

0
[max{t−

d
2 , 1}]−

(
1
p
− 1
p̃

+ 1
d

)
[max{(t− τ)−

d
2 , 1}]

1
r
− 1
p̃

+ 1
d

×
(

[max{τ−
d
2 , 1}]

1
p
− 1
s

+ 1
d + [max{τ−

d
2 , 1}]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ.

If 0 < t ≤ 1 then

G32(t) ≤
∫ t

0
t
d
2

(
1
p
− 1
p̃

+ 1
d

)
(t− τ)

− d
2

(
1
r
− 1
p̃

+ 1
d

) (
τ
− d

2

(
1
p
− 1
s

+ 1
d

)
+ τ
− d

2

(
1
p
− 1
p̃

+ 1
d

))
dτ

=

∫ t

0

(
1− τ

t

)− d
2

(
1
r
− 1
p̃

+ 1
d

) (τ
t

)− d
2

(
1
p
− 1
s

+ 1
d

)
t
1
2
− d

2p d
(τ
t

)
+

∫ t

0

(
1− τ

t

)− d
2

(
1
r
− 1
p̃

+ 1
d

) (τ
t

)− d
2

(
1
p
− 1
p̃

+ 1
d

)
t
1
2
− d

2

(
1
r
− 1
p̃

)
d
(τ
t

)
=

∫ 1

0
(1− z)−

d
2

(
1
r
− 1
p̃

+ 1
d

)
z
− d

2

(
1
p
− 1
s

+ 1
d

)
t
1
2
− d

2p dz

+

∫ 1

0
(1− z)−

d
2

(
1
r
− 1
p̃

+ 1
d

)
z
− d

2

(
1
p
− 1
p̃

+ 1
d

)
t
1
2
− d

2

(
1
r
− 1
p̃

)
dz

≤
∫ 1/2

0
2
d
2

(
1
r
− 1
p̃

+ 1
d

)
z
− d

2

(
1
p
− 1
s

+ 1
d

)
dz +

∫ 1/2

0
2
d
2

(
1
r
− 1
p̃

+ 1
d

)
z
− d

2

(
1
p
− 1
p̃

+ 1
d

)
dz

+

∫ 1

1/2
(1− z)−

d
2

(
1
r
− 1
p̃

+ 1
d

)
2
d
2

(
1
p
− 1
s

+ 1
d

)
dz +

∫ 1

1/2
(1− z)−

d
2

(
1
r
− 1
p̃

+ 1
d

)
2
d
2

(
1
p
− 1
p̃

+ 1
d

)
dz

=
2
d
p
− d

2p̃

1
2 −

d
2p + d

2s

+
2
d
2r

+ d
2p
− d
p̃

1
2 −

d
2p + d

2p̃

+
2
d
p
− d

2p̃

1
2 + d

2p̃ −
d
2r

+
2
d
2r

+ d
2p
− d
p̃

1
2 + d

2p̃ −
d
2r

:= M32a.

If t > 1 then

G32(t) =

∫ 1/2

0
[max{t−

d
2 , 1}]−

(
1
p
− 1
p̃

+ 1
d

)
[max{(t− τ)−

d
2 , 1}]

1
r
− 1
p̃

+ 1
d

×
(

[max{τ−
d
2 , 1}]

1
p
− 1
s

+ 1
d + [max{τ−

d
2 , 1}]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ

+

∫ 1

1/2
[max{t−

d
2 , 1}]−

(
1
p
− 1
p̃

+ 1
d

)
[max{(t− τ)−

d
2 , 1}]

1
r
− 1
p̃

+ 1
d

×
(

[max{τ−
d
2 , 1}]

1
p
− 1
s

+ 1
d + [max{τ−

d
2 , 1}]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ

+

∫ t

1
[max{t−

d
2 , 1}]−

(
1
p
− 1
p̃

+ 1
d

)
[max{(t− τ)−

d
2 , 1}]

1
r
− 1
p̃

+ 1
d

×
(

[max{τ−
d
2 , 1}]

1
p
− 1
s

+ 1
d + [max{τ−

d
2 , 1}]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ
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≤
∫ 1/2

0

[
(t− τ)

− d
2

(
1
r
− 1
p̃

+ 1
d

)
+ 1

](
τ
− d

2

(
1
p
− 1
s

+ 1
d

)
+ τ
− d

2

(
1
p
− 1
p̃

+ 1
d

))
e−β(t−τ) dτ

+

∫ 1

1/2

[
(t− τ)

− d
2

(
1
r
− 1
p̃

+ 1
d

)
+ 1

](
τ
− d

2

(
1
p
− 1
s

+ 1
d

)
+ τ
− d

2

(
1
p
− 1
p̃

+ 1
d

))
e−β(t−τ) dτ

+

∫ t

1

[
(t− τ)

− d
2

(
1
r
− 1
p̃

+ 1
d

)
+ 1

]
2e−β(t−τ) dτ

≤
∫ 1/2

0

[
2
d
2

(
1
r
− 1
p̃

+ 1
d

)
+ 1

](
τ
− d

2

(
1
p
− 1
s

+ 1
d

)
+ τ
− d

2

(
1
p
− 1
p̃

+ 1
d

))
e−β(t−τ) dτ

+

∫ 1

1/2

[
(t− τ)

− d
2

(
1
r
− 1
p̃

+ 1
d

)
+ 1

](
2
d
2

(
1
p
− 1
s

+ 1
d

)
+ 2

d
2

(
1
p
− 1
p̃

+ 1
d

))
e−β(t−τ) dτ

+

∫ t

1

[
(t− τ)

− d
2

(
1
r
− 1
p̃

+ 1
d

)
+ 1

]
2e−β(t−τ) dτ

≤
∫ 1/2

0

[
2
d
2

(
1
r
− 1
p̃

+ 1
d

)
+ 1

](
τ
− d

2

(
1
p
− 1
s

+ 1
d

)
+ τ
− d

2

(
1
p
− 1
p̃

+ 1
d

))
dτ

+

∫ t

−∞
(t− τ)

− d
2

(
1
r
− 1
p̃

+ 1
d

) (
2
d
2

(
1
p
− 1
s

+ 1
d

)
+ 2

d
2

(
1
p
− 1
p̃

+ 1
d

)
+ 2

)
e−β(t−τ) dτ

+

∫ t

−∞

(
2
d
2

(
1
p
− 1
s

+ 1
d

)
+ 2

d
2

(
1
p
− 1
p̃

+ 1
d

)
+ 2

)
e−β(t−τ) dτ

≤
[
2
d
2

(
1
r
− 1
p̃

+ 1
d

)
+ 1

] [
2
− 1

2
+ d

2p
− d

2s

1
2 −

d
2p + d

2s

+
2
− 1

2
+ d

2p
− d

2p̃

1
2 −

d
2p + d

2p̃

]

+

(
2
d
2

(
1
p
− 1
s

+ 1
d

)
+ 2

d
2

(
1
p
− 1
p̃

+ 1
d

)
+ 2

)(
βθ32−1Γ(1− θ32) +

1

β

)
:= M32b,

where 0 < θ32 := d
2

(
1
r −

1
p̃ + 1

d

)
< 1. Therefore G32(t) ≤M32 := max{M32a,M32b}.

Using again the second inequality in Lemma 3.1, we obtain the estimates for Ls-norm

of the covariant derivative ∇u(t) as follows:

[cd(t)]
−
(

1
p
− 1
s

+ 1
d

)
‖∇u(t)‖s

≤ Ce−βt
(
‖u0‖p + ‖u0‖2

)
+

∫ t

0
[cd(t)]

−
(

1
p
− 1
s

+ 1
d

)
[cd(t− τ)]

−
(

1
p
− 1
s

+ 1
d

)
e−β(t−τ)

(
‖f(τ)‖2 + ‖f(τ)‖p

)
dτ

+

∫ t

0
[cd(t)]

−
(

1
p
− 1
s

+ 1
d

)
[cd(t− τ)]

1
r
− 1
s

+ 1
d e−β(t−τ)

(
‖∇vv(τ)‖r + ‖∇vv(τ)‖2

)
dτ

≤ C‖u0‖Lp∩L2 +G41(t)‖f‖X

+

∫ t

0
[cd(t)]

−
(

1
p
− 1
s

+ 1
d

)
[cd(t− τ)]

1
s

+ 1
d e−β(t−τ)

(
‖v(τ)‖p‖∇v(τ)‖s + ‖v(τ)‖p‖∇v(τ)‖p̃

)
dτ

≤ C‖u0‖Lp∩L2 +G41(t)‖f‖X
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+

∫ t

0
[cd(t)]

−
(

1
p
− 1
s

+ 1
d

)
[cd(t− τ)]

1
s

+ 1
d

(
[cd(τ)]

1
p
− 1
s

+ 1
d + [cd(τ)]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ‖v‖2X

≤ C‖u0‖Lp∩L2 +G41(t)‖f‖X +G42(t)‖v‖2X
≤ C‖u0‖Lp∩L2 +M41‖f‖X +M42‖v‖2X
≤ C3

(
‖u0‖Lp∩L2 + ‖f‖X

)
+M42‖v‖2X ,

where C3 := max{C,M41} and

G41 =

∫ t

0
[cd(t)]

−
(

1
p
− 1
s

+ 1
d

)
[cd(t− τ)]

−
(

1
p
− 1
s

+ 1
d

)
e−β(t−τ) dτ ≤M41 <∞,

G42 =

∫ t

0
[cd(t)]

−
(

1
p
− 1
s

+ 1
d

)
[cd(t− τ)]

1
s

+ 1
d

(
[cd(τ)]

1
p
− 1
s

+ 1
d + [cd(τ)]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ

≤M42 <∞.

We then estimate the integrals G41, G42 and give the precise values of M41, M42 as follows:

G41(t) :=

∫ t

0
[cd(t)]

−
(

1
p
− 1
s

+ 1
d

)
[cd(t− τ)]

1
p
− 1
s

+ 1
d e−β(t−τ) dτ

=

∫ t

0
[max{t−

d
2 , 1}]−

(
1
p
− 1
s

+ 1
d

)
[max{(t− τ)−

d
2 , 1}]

(
1
p
− 1
s

+ 1
d

)
e−β(t−τ) dτ.

If 0 < t ≤ 1 then

G41(t) ≤
∫ t

0
t
d
2

(
1
p
− 1
s

+ 1
d

)
(t− τ)

− d
2

(
1
p
− 1
s

+ 1
d

)
dτ =

t
1
2 −

d
2p + d

2s

≤ 1
1
2 −

d
2p + d

2s

.

If t > 1 then

G41(t) ≤
∫ t

0

[
(t− τ)

− d
2

(
1
p
− 1
s

+ 1
d

)
+ 1

]
e−β(t−τ) dτ ≤ β(θ41−1)Γ(1− θ41) +

1

β
≤M41,

where 0 < θ41 := d
2

(
1
p −

1
s + 1

d

)
< 1 and

M41 := max

{
1

1
2 −

d
2p + d

2s

, β(θ41−1)Γ(1− θ41) +
1

β

}
.

Next, we have

G42(t) =

∫ t

0
[cd(t)]

−
(

1
p
− 1
s

+ 1
d

)
[cd(t− τ)]

1
s

+ 1
d e−β(t−τ)

(
[cd(τ)]

1
p
− 1
s

+ 1
d + [cd(τ)]

1
p
− 1
p̃

+ 1
d

)
dτ

=

∫ t

0
[max{t−

d
2 , 1}]−

(
1
p
− 1
s

+ 1
d

)
[max{(t− τ)−

d
2 , 1}]

1
s

+ 1
d

×
(

[max{τ−
d
2 , 1}]

1
p
− 1
s

+ 1
d + [max{τ−

d
2 , 1}]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ.
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If 0 < t ≤ 1 then

G42(t) ≤
∫ t

0
t
d
2

(
1
p
− 1
s

+ 1
d

)
(t− τ)−

d
2

(
1
s

+ 1
d

) (
τ
− d

2

(
1
p
− 1
s

+ 1
d

)
+ τ
− d

2

(
1
p
− 1
p̃

+ 1
d

))
dτ

=

∫ t

0

(
1− τ

t

)− d
2

(
1
s

+ 1
d

) (τ
t

)− d
2

(
1
p
− 1
s

+ 1
d

)
t
1
2
− d

2s d
(τ
t

)
+

∫ t

0

(
1− τ

t

)− d
2

(
1
s

+ 1
d

) (τ
t

)− d
2

(
1
p
− 1
p̃

+ 1
d

)
t
1
2

+ d
2p̃
− d

2s d
(τ
t

)
=

∫ 1

0
(1− z)−

d
2

(
1
s

+ 1
d

)
z
− d

2

(
1
p
− 1
s

+ 1
d

)
t
1
2
− d

2s dz

+

∫ 1

0
(1− z)−

d
2

(
1
s

+ 1
d

)
z
− d

2

(
1
p
− 1
p̃

+ 1
d

)
t
1
2

+ d
2p̃
− d

2s dz

≤
∫ 1/2

0
2
d
2

(
1
s

+ 1
d

)
z
− d

2

(
1
p
− 1
s

+ 1
d

)
dz +

∫ 1/2

0
2
d
2

(
1
s

+ 1
d

)
z
− d

2

(
1
p
− 1
p̃

+ 1
d

)
dz

+

∫ 1

1/2
(1− z)−

d
2

(
1
s

+ 1
d

)
2
d
2

(
1
p
− 1
s

+ 1
d

)
dz +

∫ 1

1/2
(1− z)−

d
2

(
1
s

+ 1
d

)
2
d
2

(
1
p
− 1
p̃

+ 1
d

)
dz

=
2
d
2p

1
2 −

d
2p + d

2s

+
2
d
2r
− d

2p̃

1
2 −

d
2p + d

2p̃

+
2
d
2p

1
2 −

d
2s

+
2
d
2r
− d

2p̃

1
2 −

d
2s

:= M42a.

If t > 1 then

G42(t) =

∫ 1/2

0
[max{t−

d
2 , 1}]−

(
1
p
− 1
s

+ 1
d

)
[max{(t− τ)−

d
2 , 1}]

1
s

+ 1
d

×
(

[max{τ−
d
2 , 1}]

1
p
− 1
s

+ 1
d + [max{τ−

d
2 , 1}]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ

+

∫ 1

1/2
[max{t−

d
2 , 1}]−

(
1
p
− 1
s

+ 1
d

)
[max{(t− τ)−

d
2 , 1}]

1
s

+ 1
d

×
(

[max{τ−
d
2 , 1}]

1
p
− 1
s

+ 1
d + [max{τ−

d
2 , 1}]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ

+

∫ t

1
[max{t−

d
2 , 1}]−

(
1
p
− 1
s

+ 1
d

)
[max{(t− τ)−

d
2 , 1}]

1
s

+ 1
d

×
(

[max{τ−
d
2 , 1}]

1
p
− 1
s

+ 1
d + [max{τ−

d
2 , 1}]

1
p
− 1
p̃

+ 1
d

)
e−β(t−τ) dτ

≤
∫ 1/2

0

[
(t− τ)−

d
2

(
1
s

+ 1
d

)
+ 1

](
τ
− d

2

(
1
p
− 1
s

+ 1
d

)
+ τ
− d

2

(
1
p
− 1
p̃

+ 1
d

))
e−β(t−τ) dτ

+

∫ 1

1/2

[
(t− τ)−

d
2

(
1
s

+ 1
d

)
+ 1

](
τ
− d

2

(
1
p
− 1
s

+ 1
d

)
+ τ
− d

2

(
1
p
− 1
p̃

+ 1
d

))
e−β(t−τ) dτ

+

∫ t

1

[
(t− τ)−

d
2

(
1
s

+ 1
d

)
+ 1

]
2e−β(t−τ) dτ

≤
∫ 1/2

0

(
2
d
2

(
1
s

+ 1
d

)
+ 1

)(
τ
− d

2

(
1
p
− 1
s

+ 1
d

)
+ τ
− d

2

(
1
p
− 1
p̃

+ 1
d

))
e−β(t−τ) dτ
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+

∫ 1

1/2

[
(t− τ)−

d
2

(
1
s

+ 1
d

)
+ 1

](
2
d
2

(
1
p
− 1
s

+ 1
d

)
+ 2

d
2

(
1
p
− 1
p̃

+ 1
d

))
e−β(t−τ) dτ

+

∫ t

1

[
(t− τ)−

d
2

(
1
s

+ 1
d

)
+ 1

]
2e−β(t−τ) dτ

≤
∫ 1/2

0

(
2
d
2

(
1
s

+ 1
d

)
+ 1

)(
τ
− d

2

(
1
p
− 1
s

+ 1
d

)
+ τ
− d

2

(
1
p
− 1
p̃

+ 1
d

))
dτ

+

∫ t

−∞
(t− τ)−

d
2

(
1
s

+ 1
d

) (
2
d
2

(
1
p
− 1
s

+ 1
d

)
+ 2

d
2

(
1
p
− 1
p̃

+ 1
d

)
+ 2

)
e−β(t−τ) dτ

+

∫ t

−∞

(
2
d
2

(
1
p
− 1
s

+ 1
d

)
+ 2

d
2

(
1
p
− 1
p̃

+ 1
d

)
+ 2

)
e−β(t−τ) dτ

≤
(

2
d
2

(
1
s

+ 1
d

)
+ 1

)(
2
− 1

2
+ d

2p
− d

2s

1
2 −

d
2p + d

2s

+
2
− 1

2
+ d

2p
− d

2p̃

1
2 −

d
2p + d

2p̃

)

+

(
2
d
2

(
1
p
− 1
s

+ 1
d

)
+ 2

d
2

(
1
p
− 1
p̃

+ 1
d

)
+ 2

)(
βθ42−1Γ(1− θ42) +

1

β

)
:= M42b.

Putting 0 < θ42 := d
2

(
1
s + 1

d

)
< 1 and M42 := max{M42a,M42b}, we obtain G42(t) ≤M42.

Finally, the inequality (3.2) holds if we take

C̃ = max{C1, C2, C3} and M̃ = max{M1,M2,M32,M42}.

We now invoke the Massera principle to prove Theorem 1.2 on the existence and

uniqueness of a mild T -periodic solution to the Stokes equations (1.3).

Proof of Theorem 1.2. For each initial data x ∈ Lp(Γ(TM))∩L2(Γ(TM)) from Lemma 3.2,

there exists a unique mild solution u ∈ X to (1.3) with u(0) = x. This fact allows to define

the Poincaré map P : Lp(Γ(TM)) ∩ L2(Γ(TM))→ Lp(Γ(TM)) ∩ L2(Γ(TM)) as follows:

For each x ∈ Lp(Γ(TM)) ∩ L2(Γ(TM)) we set

(3.3) P(x) := u(T ) where u ∈ X is the unique mild solution of (1.3) with u(0) = x.

Note that using the formula (1.5) of the solutions we have

(3.4) P(x) = u(T ) = e−TAx+

∫ T

0
e−(T−τ)AP[∇vv(τ) + f(τ)] dτ

with u as in (3.3). Next, from T -periodicity of v and f , we obtain

u((k + 1)T ) = e−(k+1)TAu(0) +

∫ (k+1)T

0
e−((k+1)T−τ)AP[∇vv(τ) + f(τ)] dτ

= e−(k+1)TAu(0) +

∫ kT

0
e−((k+1)T−τ)AP[∇vv(τ) + f(τ)] dτ
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+

∫ (k+1)T

kT
e−((k+1)T−τ)AP[∇vv(τ) + f(τ)] dτ

= e−TAe−kTAu(0) +

∫ kT

0
e−TAe−(kT−s)AP[∇vv(τ) + f(τ)] dτ

+

∫ T

0
e−(T−τ)AP[∇vv(τ) + f(τ)] dτ

= e−TAe−kTAu(0) +

∫ kT

0
e−TAe−(kT−τ)AP[∇vv(τ) + f(τ)] dτ

+

∫ T

0
e−(T−τ)AP[∇vv(τ) + f(τ)] dτ

= e−TAu(kT ) +

∫ T

0
e−(T−τ)AP[∇vv(τ) + f(τ)] dτ for all k ∈ N.

It follows that Pk(x) = u(kT ) for all k ∈ N. Since F ∈ X , {Pk(x)}k∈N is a bounded

sequence in Lp(Γ(TM)) ∩ L2(Γ(TM)).

Next, as usual in the ergodic theory, for each n ∈ N we define the Cesàro sume Pn by

(3.5) Pn :=
1

n

n∑
k=1

Pk : Lp(Γ(TM)) ∩ L2(Γ(TM))→ Lp(Γ(TM)) ∩ L2(Γ(TM)).

Starting from x = 0 and using the inequality (3.2) we get

(3.6) sup
k∈N
‖Pk(0)‖Lp∩L2 ≤ C̃‖f‖Lp∩L2 + M̃‖v‖2X .

The boundedness of {Pk(0)}k∈N in X implies that the sequence {Pn(0)}n∈N =
{

1
n

∑n
k=1

Pk(0)
}
n∈N is clearly a bounded sequence in X. By (3.6) we obtain

sup
n∈N
‖Pn(0)‖Lp∩L2 ≤ C̃‖f‖Lp∩L2 + M̃‖v‖2X .

Since Lp(Γ(TM))∩L2(Γ(TM)) has a separable pre-dual L
p
p−1 (Γ(TM))+L2(Γ(TM)),

from Banach–Alaoglu’s Theorem there exists a subsequence {Pnk(0)} of {Pn(0)} such that

{Pnk(0)} weak-∗−−−−→ x̂ ∈ Lp(Γ(TM)) ∩ L2(Γ(TM))

with ‖x̂‖Lp∩L2 ≤ C̃‖f‖Lp∩L2 + M̃‖v‖2X .
(3.7)

By simple computations using formula (3.5) we obtain PPn(0) − Pn(0) = 1
n(Pn+1(0) −

P(0)). Since the sequence {Pn+1(0)}n∈N is bounded in Lp(Γ(TM))∩L2(Γ(TM)), we get

lim
n→∞

(PPn(0)−Pn(0)) = lim
n→∞

1

n
(Pn+1(0)− P(0)) = 0

strongly in Lp(Γ(TM))∩L2(Γ(TM)). Therefore, for the subsequence {Pnk(0)} from (3.7)

we have PPnk(0)−Pnk(0)
weak-∗−−−−→ 0. This limit, together with (3.7), implies that

(3.8) PPnk(0)
weak-∗−−−−→ x̂ ∈ Lp(Γ(TM)) ∩ L2(Γ(TM)).
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We now show that P(x̂) = x̂. To do this, using the formula (3.4) and denoting by 〈 · , · 〉
the dual pair between Lp(Γ(TM))∩L2(Γ(TM)) and L

p
p−1 (Γ(TM))+L2(Γ(TM)). Then,

since e−TA
′

leaves L
p
p−1 (Γ(TM)) + L2(Γ(TM)) invariant, for all h ∈ L

p
p−1 (Γ(TM)) +

L2(Γ(TM)) we have

〈PPnk(0), h〉 =
〈
e−TAPnk(0), h

〉
+

〈∫ T

0
e−(T−τ)AP[∇vv(τ) + f(τ)] dτ, h

〉
=
〈
Pnk(0), e−TA

′
h
〉

+

〈∫ T

0
e−(T−τ)AP[∇vv(τ) + f(τ)] dτ, h

〉
nk→∞−−−−→

〈
x̂, e−TA

′
h
〉

+

〈∫ T

0
e−(T−τ)AP[∇vv(τ) + f(τ)] dτ, h

〉
=
〈
e−TAx̂, h

〉
+

〈∫ T

0
e−(T−τ)AP[∇vv(τ) + f(τ)] dτ, h

〉
= 〈P(x̂), h〉.

This yields that

(3.9) PPnk(0)
weak-∗−−−−→ Px̂ ∈ Lp(Γ(TM)) ∩ L2(Γ(TM)).

It now follows from (3.8) and (3.9) that

P(x̂) = x̂.

Taking now the element x̂ ∈ Lp(Γ(TM))∩L2(Γ(TM)) as an initial condition, by Lemma 3.2

there exists a unique mild solution û(·) ∈ X satisfying û(0) = x̂. From the definition of

Poincaré map P we arrive at û(0) = û(T ). Therefore, the solution û(t) is periodic with

the period T . The inequality (1.1) now follows from the inequalities (3.2) and (3.7).

We now prove the uniqueness of the periodic mild solution. Let û1 and û2 be two

T -periodic mild solutions to equation (1.3) which belong to X . Then, putting v = û1− û2

we have that v is T -periodic and, by the formula (1.5),

v(t) = e−tA(û1(0)− û2(0)) for t > 0.

The smoothing property (see (3.1)) implies that

lim
t→∞
‖v(t)‖Lp∩L2 = 0.

This fact, together with the periodicity of v, gives that v(t) = 0 for all t ≥ 0. This yields

û1 = û2.

We now prove Theorem 1.3 on the existence, uniqueness and stability of periodic

solutions to Navier–Stokes equations (1.2) which was stated in Section 1. Actually, we

combine the fixed point argument and the results obtained in Theorem 1.2 to prove the

second main result which will be done as follows.
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Proof of Theorem 1.3. Let

BTρ := {v ∈ X : v is T -periodic and ‖v‖X ≤ ρ}.

Consider the equation

(3.10) ∂tu+Au = P[∇vv + f ].

Then, for v ∈ BTρ we set

Φ(v) := u where u ∈ X is the unique T -periodic mild solution to (3.10).

We will prove that if ρ and ‖F‖X are small enough, then the transformation Φ acts from

BTρ into itself and is a contraction. Indeed, taking any v ∈ BTρ , applying Theorem 1.2 for

the right-hand side ∇vv + f , we obtain that for v ∈ BTρ there exists a unique T -periodic

mild solution u to (3.10) satisfying

‖û‖X ≤ (C + 1)
(
C‖f‖Lp∩L2 +M‖v‖2X

)
.

Therefore, if ρ and ‖f‖Lp∩L2 are small enough, the map Φ acts from BTρ into itself. Then,

by (1.5), we have the following representation of Φ:

Φ(v)(t) = e−tAu(0) +

∫ t

0
e−(t−τ)AP[(∇vv + f)(τ)] dτ for Φ(v) = u.

Furthermore, for v1, v2 ∈ BTρ by the representation (1.1) we obtain that u := Φ(v1)−
Φ(v2) is the unique T -periodic mild solution to the equation

∂tu+Au = P[∇v1v1 −∇v2v2] = P[∇v1−v2v1 +∇v2(v1 − v2)].

Thus, again by Theorem 1.2 in the case f = 0 we arrive at

‖Φ(v1)− Φ(v2)‖X ≤ (C + 1)M
(
‖v1 − v2‖X ‖v1‖X + ‖v2‖X ‖v1 − v2‖X

)
≤ 2(C + 1)Mρ‖v1 − v2‖X .

We hence obtain that if ρ are sufficiently small, then Φ: BTρ → BTρ is a contraction.

Therefore, for these values of ρ and ‖f‖Lp∩L2 , there exists a unique fixed point û of

Φ, and by the definition of Φ, this function û is the unique T -periodic mild solution to

Navier–Stokes equation (1.2).

To prove the stability of such a periodic solution we need the cone inequality theorem

which we now recall. To this purpose, we first introduce the following notion of a cone in

a Banach space as follows: A closed subset K of a Banach space W is called a cone if
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(i) x0 ∈ K implies λx0 ∈ K for all λ ≥ 0;

(ii) x1, x2 ∈ K implies x1 + x2 ∈ K;

(iii) ±x0 ∈ K implies x0 = 0.

Then, let a cone K be given in the Banach space W . For x, y ∈W we then write x ≤ y if

y − x ∈ K.

If the cone K is invariant under a linear operator A, then it is easy to see that A

preserves the inequality, i.e., x ≤ y implies Ax ≤ Ay. Now, the following theorem of cone

inequality is taken from [3, Theorem I.9.3].

Theorem 3.3 (Cone inequality). Suppose that K is a cone in a Banach space W such that

K is invariant under a bounded linear operator A ∈ L(W ) having spectral radius rA < 1.

For a vector x ∈W satisfying

x ≤ Ax+ z for some given z ∈W

we have that it also satisfies the estimate x ≤ y, where y ∈W is a solution of the equation

y = Ay + z.

Lastly, we prove the third main result as follows.

Proof of Theorem 1.4. To prove the stability of the periodic solution û, we let u(t) be any

bounded solution of equation (1.6) corresponding to the initial value u0 := u(0) ∈ B ρ
2

:={
v ∈ Lp(Γ(TM)) ∩ L2(Γ(TM)) : ‖v‖Lp∩L2 ≤ ρ

2

}
. Then, we have

u(t)− û(t) = e−tA(u(0)− û(0)) +

∫ t

0
e−(t−τ)AP[∇uu(τ)−∇ûû(τ)] dτ, for t ≥ 0.

By the same way as in the proof of Lemma 3.2, we can prove that

|||u(t)− û(t)||| ≤ Ne−βt‖u(0)− û(0)‖Lp∩L2

+ 2ρ

∫ t

0

(
G1(τ) +G2(τ) +G32(τ) +G42(τ)

)
e−β(t−τ)|||(u− û)(τ)||| dτ,

where G1(τ), G2(τ), G32(τ) and G42(τ) are the functions determined as

G1(t) := [cd(τ)]
1
p
− 1
p̃

+ 1
d ,

G2(t) := [cd(t− τ)]
1
s

(
[cd(τ)]

1
p
− 1
s

+ 1
d + [cd(τ)]

1
p
− 1
p̃

+ 1
d

)
,

G3(t) := [cd(t)]
−
(

1
p
− 1
p̃

+ 1
d

)
[cd(t− τ)]

1
r
− 1
p̃

+ 1
d

(
[cd(τ)]

1
p
− 1
s

+ 1
d + [cd(τ)]

1
p
− 1
p̃

+ 1
d

)
,

G4(t) := [cd(t)]
−
(

1
p
− 1
s

+ 1
d

)
[cd(t− τ)]

1
s

+ 1
d

(
[cd(τ)]

1
p
− 1
s

+ 1
d + [cd(τ)]

1
p
− 1
p̃

+ 1
d

)
.
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Put φ(t) := |||u(t)− û(t)|||. Then supt≥0 φ(t) <∞, and for t > 0,

φ(t) ≤ Ne−βt‖u(0)− û(0)‖Lp∩L2

+ 2ρ

∫ t

0

(
G1(τ) +G2(τ) +G32(τ) +G42(τ)

)
e−β(t−τ)φ(τ) dτ.

(3.11)

We will use the Cone Inequality Theorem to Banach space W := L∞([0,∞)) which is the

space of real-valued functions defined and essentially bounded on [0,∞) (endowed with

the sup-norm denoted by ‖ · ‖∞) with the cone K being the set of all (a.e.) nonnegative

functions. We now consider the linear operator A defined for h ∈W by

(Ah)(t) := 2ρ

∫ t

0

(
G1(τ) +G2(τ) +G32(τ) +G42(τ)

)
e−β(t−τ)h(τ) dτ for t ≥ 0.

Since the boundedness of the integral∫ t

0

(
G1(τ) +G2(τ) +G32(τ) +G42(τ)

)
e−β(t−τ) dτ,

we have

sup
t≥0
|(Ah)(t)| = sup

t≥0
2ρ

∫ t

0

(
G1(τ) + · · ·+G42(τ)

)
e−β(t−τ)|h(τ)| dτ ≤ 2ρM‖h‖∞,

where M := M1 + M2 + M32 + M42 with the constants being defined as in Lemma 3.2.

Therefore, A ∈ L(L∞([0,∞))) and ‖A‖∞ ≤ 2ρM < 1 for ρ being small enough. Note that

if ‖u(0)− û(0)‖Lp∩L2 is small enough, by the same way as in the proof of (I) we can show

that the solution u(t) exists and unique in a small ball Bρ of X .

Obviously, A leaves the cone K invariant. The inequality (3.11) can now be rewritten

as

φ ≤ Aφ+ z for z(t) = Ne−βt‖u(0)− û(0)‖Lp∩L2 ; t ≥ 0.

Hence, by Theorem 3.3 we obtain that φ ≤ ψ, where ψ is a solution in L∞([0,∞)) of the

equation ψ = Aψ + z which can be rewritten as

ψ(t) = Ne−βt‖u(0)− û(0)‖Lp∩L2

+ 2ρ

∫ t

0

(
G1(τ) + · · ·+G42(τ)

)
e−β(t−τ)|ψ(τ)| dτ for t ≥ 0.

(3.12)

In order to estimate ψ, for 0 < γ < β we set w(t) := eγtψ(t), t ≥ 0. Then, by (3.12) we

obtain that

w(t) = Ne−(β−γ)t‖u(0)− û(0)‖Lp∩L2

+ 2ρ

∫ t

0

(
G1(τ) + · · ·+G42(τ)

)
e−(β−γ)(t−τ)w(τ) dτ for t ≥ 0.

(3.13)
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We next consider the linear operator D defined for ϕ ∈ L∞([0,∞)) by

(Dϕ)(t) = 2ρ

∫ t

0

(
G1(τ) + · · ·+G42(τ)

)
e−(β−γ)(t−τ)ϕ(τ) dτ for t ≥ 0.

Again, we can estimate

sup
t≥0
|(Dϕ)(t)| = sup

t≥0
2ρ

∫ t

0

(
G1(τ) + · · ·+G42(τ)

)
e−(β−γ)(t−τ)|ϕ(τ)| dτ ≤ 2ρMγ‖ϕ‖∞,

where Mγ is the function obtained by substituting β by β − γ in M .

Therefore, D ∈ L(L∞([0,∞))) and we choose 0 < γ < β such that 2ρMγ < 1 (the

existence of such a constant γ is explained at the end of proof) then ‖D‖ ≤ 2ρMγ < 1.

Equation (3.13) can now be rewritten as

w = Dw + z for z(t) = Ne−(β−γ)t‖u(0)− û(0)‖Lp∩L2 , t ≥ 0.

Therefore, the equation w = Dw + z is uniquely solvable in L∞([0,∞)), and its solution

is w = (I −D)−1z. Hence, we obtain that

‖w‖∞ = ‖(I −D)−1z‖∞ ≤ ‖(I −D)−1‖‖z‖∞

≤ N

1− ‖D‖
‖u(0)− û(0)‖Lp∩L2

≤ N

1− 2ρMγ

‖u(0)− û(0)‖Lp∩L2 := Cγ‖u(0)− û(0)‖Lp∩L2 ,

where Cγ = N
1−2ρMγ

. This yields that

w(t) ≤ Cγ‖u(0)− û(0)‖Lp∩L2 for t ≥ 0.

Hence, ψ(t) = e−γtw(t) ≤ Cγe−γt‖u(0)− û(0)‖Lp∩L2 . Since |||u(t)− û(t))||| = φ(t) ≤ ψ(t),

we obtain that

|||u(t)− û(t)||| ≤ Cγe−γt‖u(0)− û(0)‖Lp∩L2 for t ≥ 0.

Now, it remains to show the existence of γ. Indeed, we have Mγ := M1γ +M2γ +M32γ +

M42γ , where M1γ , M2γ , M32γ and M42γ are the functions obtained by substituting β by

β − γ in M1, M2, M3 and M42 respectively.

Setting E the maximum of the terms which are independent of β and γ, θ := max{θ1,

θ32, θ42}, and F := max{Γ(1 − θ1),Γ(1 − θ32),Γ(1 − θ42)}, we have E
(
7 + 3F

(β−γ)1−θ
+

3
β−γ

)
< 1

2ρ . It follows that 3(F+1)
(β−γ)1−θ

< 1−14Eρ
2Eρ . We obtain that γ satisfies 0 < γ <

β −
(6E(F+1)ρ

1−14Eρ

) 1
1−θ . The existence of γ is guaranteed if ρ is small enough due to the fact

that function
(6E(F+1)ρ

1−14Eρ

) 1
1−θ is increasing on ρ and it tends to zero as ρ decreases to zero.

Our proof is completed.
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[22] N. Lohoué, Estimation des projecteurs de de Rham Hodge de certaines variétés rie-

maniennes non compactes, Math. Nachr. 279 (2006), no. 3, 272–298.

[23] P. Maremonti, Existence and stability of time-periodic solutions to the Navier–Stokes

equations in the whole space, Nonlinearity 4 (1991), no. 2, 503–529.

[24] P. Maremonti and M. Padula, Existence, uniqueness and attainability of periodic

solutions of the Navier–Stokes equations in exterior domains, J. Math. Sci. (New

York) 93 (1999), no. 5, 719–746.



632 Thieu Huy Nguyen, Truong Xuan Pham, Thi Van Nguyen and Thi Ngoc Ha Vu

[25] T. Miyakawa and Y. Teramoto, Existence and periodicity of weak solutions of the

Navier–Stokes equations in a time dependent domain, Hiroshima Math. J. 12 (1982),

no. 3, 513–528.

[26] T. H. Nguyen, Periodic motions of Stokes and Navier–Stokes flows around a rotating

obstacle, Arch. Ration. Mech. Anal. 213 (2014), no. 2, 689–703.

[27] T. H. Nguyen, T. X. Pham, T. N. H. Vu and T. M. Vu, Periodic solutions to Navier–

Stokes equations on non-compact Einstein manifolds with negative curvature, Anal.

Math. Phys. 11 (2021), no. 2, Paper No. 60, 17 pp.

[28] V. Pierfelice, The incompressible Navier–Stokes equations on non-compact manifolds,

J. Geom. Anal. 27 (2017), no. 1, 577–617.

[29] G. Prodi, Qualche risultato riguardo alle equazioni di Navier–Stokes nel caso bidi-

mensionale, Rend. Sem. Mat. Univ. Padova 30 (1960), 1–15.

[30] G. Prouse, Soluzioni periodiche dell’equazione di Navier–Stokes, Atti Accad. Naz.

Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 35 (1963), 443–447.

[31] J. Serrin, A note on the existence of periodic solutions of the Navier–Stokes equations,

Arch. Rational Mech. Anal. 3 (1959), 120–122.

[32] Y. Taniuchi, On stability of periodic solutions of the Navier–Stokes equations in un-

bounded domains, Hokkaido Math. J. 28 (1999), no. 1, 147–173.

[33] , On the uniqueness of time-periodic solutions to the Navier–Stokes equations

in unbounded domains, Math. Z. 261 (2009), no. 3, 597–615.

[34] M. E. Taylor, Partial Differential Equations III: Nonlinear equations, Second edition,

Applied Mathematical Sciences 117, Springer, New York, 2011.

[35] G. Van Baalen and P. Wittwer, Time periodic solutions of the Navier–Stokes equa-

tions with nonzero constant boundary conditions at infinity, SIAM J. Math. Anal. 43

(2011), no. 4, 1787–1809.

[36] M. Yamazaki, The Navier–Stokes equations in the weak-Ln space with time-dependent

external force, Math. Ann. 317 (2000), no. 4, 635–675.

[37] V. I. Yudovich, Periodic motions of a viscous incompressible fluid, Soviet Math. Dokl.

1 (1960), 168–172.

[38] Q. S. Zhang, The ill-posed Navier–Stokes equation on connected sums of R3, Complex

Var. Elliptic Equ. 51 (2006), no. 8-11, 1059–1063.



Periodic Solution of NSE on Non-compact Manifolds 633

Thieu Huy Nguyen

School of Applied Mathematics and Informatics, Hanoi University of Science and

Technology, Vien Toan ung dung va Tin hoc, Dai hoc Bach khoa Hanoi, 1 Dai Co Viet,

Hanoi, Vietnam

E-mail address: huy.nguyenthieu@hust.edu.vn

Truong Xuan Pham and Thi Van Nguyen

Faculty of Information Technology, Department of Mathematics, Thuyloi University,

Khoa Cong nghe Thong tin, Bo mon Toan, Dai hoc Thuy loi, 175 Tay Son, Dong Da, Ha

Noi, Vietnam

E-mail addresses: xuanpt@tlu.edu.vn, van@tlu.edu.vn

Thi Ngoc Ha Vu

School of Applied Mathematics and Informatics, Hanoi University of Science and

Technology, Vien Toan ung dung va Tin hoc, Dai hoc Bach khoa Hanoi, 1 Dai Co Viet,

Hanoi, Vietnam

E-mail address: ha.vuthingoc@hust.edu.vn


	Introduction and statements of main results
	Introduction
	Statements of the main results

	Intermezzo on the incompressible Navier–Stokes equations on non-compact Riemannian manifolds
	Proofs of main results

