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Gamma-convergence of Generalized Gradient Flows with Conjugate Type

Mao-Sheng Chang* and Jian-Tong Liao

Abstract. In this paper we establish the Gamma-convergence of generalized gradient

flows with conjugate type. It provided a criteria for obtaining the convergence of

generalized gradient flows that correspond to a sort of C1-order Γ-convergence of

energy functionals and a kind of bounded symmetric positive definite linear operators.

1. Introduction

Γ-convergence theory [2, 8] was introduced by Ennio De Giorgi in 1970s. It provided a

useful criteria to obtain the convergence of global minimizers of energy functional Eε to

global minimizers of a limiting functional F .

The notion of Γ-convergence of gradient flows was introduced by E. Sandier and S. Ser-

faty in 2004. It’s a time-dependent notion of the Γ-convergence. It provided a useful

criteria to obtain the convergence of gradient flows that correspond to a sort of C1-order

Γ-convergence of energy functionals [18]. This abstract method was used successfully for

the dynamics of Ginzburg–Landau vortices [18], the Cahn–Hilliand equation [13,14], and

the Allen–Cahn equation [20]. A generalization of this notion to metric spaces was devel-

oped by Serfaty [20] and a discussion on a nonlinear system case is contained in [5]. This

give us a strong motivation for the study of Gamma-convergence of generalized gradient

flows (1.2) in the sense of Sandier and Serfaty [18].

Suppose that X is a real Hilbert space with inner product 〈 · , · 〉X and corresponding

norm ‖ · ‖X . Let E ∈ C1(X;R) and let γ : I ⊆ R 7→ X be a differentiable curve in X with

γ(t0) = x ∈ X. Then

d

dt

∣∣∣
t=t0

E(γ(t)) = 〈∇XE(γ(t0)), γ′(t0)〉X

= ‖∇XE(γ(t0))‖X · ‖γ′(t0)‖X · cos θ,

where θ is the angle between ∇XE(γ(t0)) and γ′(t0) in the sense of geometry. Assume

that u : I 7→ X is a solution of the gradient flow

(1.1) ∂tu(t) = −∇XE(u(t)) ∈ X, ∀ t ∈ I.
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Obviously, the direction of ∇XE(u(t)) and ∂tu(t) is opposite. Hence, the curve (solution)

u of (1.1) is the best path for decreasing the energy E with steepest descent. Evolution

equations with the corresponding gradient flow have been of special interest in analysis and

mathematical physics since 2001. Many problems in computer vision have been formulated

as gradient flows of various energies use an inner product to define the notion of gradient.

The idea of “optimization by gradient flows” is particularly useful in tracking applications.

In most application cases in computer vision, a common minimization procedure consists

in evolving an initial contour, positioned by the user, in the direction of steepest descent

of the energy. This approach, known in the literature as active contours or deformable

models, was pioneered by Kass, Witkin, and Terzopoulos in [10] for the purpose of image

segmentation.

We are interested in the following generalized gradient flows:

(1.2) ∂tu = −L(∇XE(u)),

where ∇XE(u) is the gradient of E relative to the inner product 〈 · , · 〉X at u, and L : X 7→
X is an invertible, symmetric, positive definite, and linear operator. Charpiat, Maurel,

Pons, Keriven, and Faugeras [6] devoted to the general gradient descent process and a

rewriting of the usual definition of the gradient shows how the choice of an inner product

can be seen as a way to introduce a priori on the deformation fields and forms a natural

extension of the notion of gradient to more general priors.

Following the pioneering work by Otto [16], many PDE problems have been translated

into gradient flow problems [1] and gradient flows has become a great strategy for the

study of dissipation evolution problems.

In this paper we establish the Gamma-convergence of generalized gradient flows with

conjugate type. It provided a criteria for obtaining the convergence of generalized gradient

flows that correspond to a sort of C1-order Γ-convergence of energy functionals and a kind

of bounded symmetric positive definite linear operators. The paper is organized as follows.

In Section 1, the background and main goal of our paper are introduced. Motivations and

related preliminary tools will be recalled in Section 2. Section 3 is devoted to the main

theorems and its proofs.

2. Motivations and some elementary results

Let (X, 〈 · , · 〉X) be a real Hilbert space (hence (X, ‖ · ‖X) is a Banach space with norm

‖u‖X ≡
√
〈u, u〉X). Let E : X 7→ R be a functional defined on X. We say that E

is Fréchet differentiable at u (∈ X) if there exists a (unique) bounded linear functional

DE(u) : X 7→ R (i.e., DE(u) ∈ X∗ ≡ L(X;R) = the space of all bounded linear functionals
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on X; X∗ is called the dual space of X.) such that

lim
‖h‖X 7→0

E(u+ h)− E(u)−DE(u)(h)

‖h‖X
= 0.

Suppose that E is Fréchet differentiable at u. Using the Riesz Representation theorem,

there exists a unique element û ∈ X such that

DE(u)(v)
(

= 〈DE(u), v〉X∗,X

)
= 〈û, v〉X , ∀ v ∈ X.

Let we write

∇XE(u) ≡ û.

∇XE(u) is called the gradient of E at u. (Note that ∇XE(u) ∈ X.)

Let u ∈ X and v ∈ X with v 6= 0. The first variation of E at u in the direction v,

δE(u, v), is defined by

δE(u, v) ≡ lim
t→0

E(u+ tv)− E(u)

t
=

d

dt
(E(u+ tv))

∣∣∣
t=0

.

Assume that E is Fréchet differentiable at u. Then δE(u, v) exists for each v ∈ X with

v 6= 0, and

δE(u, v) = DE(u)(v) = 〈∇XE(u), v〉X for all v ∈ X with v 6= 0.

Let γ : R 7→ X be a differentiable curve in X. Then

d

dt
(E(γ(t)))

∣∣∣
t=τ

= 〈∇XE(γ(τ)), γ′(τ)〉X , ∀ τ ∈ R.

Moreover, for any t0, t1 ∈ R, we have

E(γ(t1))− E(γ(t0)) =

∫ t1

t0

d

dt
(E(γ(t))) dt =

∫ t1

t0

〈∇XE(γ(t)), γ′(t)〉X dt.

Suppose that γ : [0, T ] 7→ X is a solution of the gradient flow

γ′(t) = −∇XE(γ(t)), ∀ t ∈ [0, T ].

Then we have

E(γ(t))− E(γ(0)) =

∫ t

0

d

dt
(E(γ(τ))) dτ =

∫ t

0
〈∇XE(γ(τ)),−∇XE(γ(τ))〉X dτ

= −
∫ t

0
‖∇XE(γ(τ))‖2X dτ = −

∫ t

0
‖γ′(τ)‖2X dτ ≤ 0, ∀ t ∈ [0, T ].

Suppose that f(x, u, p) : Rn × R1 × Rn 7→ R1 is a smooth function. Assume that Ω is

a bounded domain in Rn with smooth boundary. Let E : L2(Ω) 7→ R be defined by

E(u) ≡
∫

Ω
f

(
x, u(x),

∂u

∂x1
(x), . . . ,

∂u

∂xn
(x)

)
dx.
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For the given function u : Ω 7→ R, we define hu : Ω 7→ Rn × R1 × Rn by

hu(x) ≡ (x, u(x),∇u(x)) for all x = (x1, . . . , xn) ∈ Ω.

Then

E(u) =

∫
Ω

(f ◦ hu)(x) dx,

δE(u, v) =

∫
Ω

(
fu ◦ hu −

n∑
i=1

∂

∂xi
(fpi ◦ hu)

)
(x) · v(x) dx

=

〈
fu ◦ hu −

n∑
i=1

∂

∂xi
(fpi ◦ hu), v

〉
L2(Ω)

for all v ∈ L2(Ω).

Here, fu ≡ ∂f
∂u , fpi ≡

∂f
∂pi

(x1, . . . , xn, u, p1, . . . , pn). Therefore we have

∇L2(Ω)E(u) = fu ◦ hu −
n∑
i=1

∂

∂xi
(fpi ◦ hu) ∈ L2(Ω).

If δE(u, v) = 0 for all v ∈ L2(Ω), then u satisfies the Euler–Lagrange equation

n∑
i=1

∂

∂xi
(fpi ◦ hu)(x)− (fu ◦ hu)(x) = 0 for a.e. x ∈ Ω.

Let S be the Schwartz space of rapidly decaying C∞(Rn) functions. The fractional

Laplacian of u ∈ S, (−∆)su, is defined by

(−∆)su ≡ F−1(|ξ|2s(Fu)(ξ)),

where

(Fu)(ξ) ≡ 1

(2π)n/2

∫
Rn
e−iξ·xu(x) dx, ξ ∈ Rn

denotes the Fourier transform of u. See [9, 21] for the basic properties of the operator

(−∆)s. Let Hs(Rn) denote the fractional Sobolev space of the functions u in L2(Rn) such

that

the function (x, y) 7→ u(x)− u(y)

|x− y|n/2+s
is in L2(Rn × Rn, dxdy).

The nonlocal operator (−∆)s : S → L2(Rn) can also be expressed by

(−∆)su(x) ≡ C(n, s) lim
ε→0+

∫
Rn\B(x,ε)

u(x)− u(y)

|x− y|n+2s
dy

= C(n, s) P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy,
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where s ∈ (0, 1), B(x, ε) is the open ball centered at x ∈ Rn and radius ε, and C(n, s) is

the positive normalization constant

C(n, s) ≡
(∫

Rn

1− cos(ζ1)

|ζ|n+2s
dζ

)−1

.

Recalling the following formulas which is proved in [9, 17]:

(i) (−∆)su = F−1(|ξ|2s(Fu)(ξ)),

(ii) [u]2Hs(Rn) ≡
∫
Rn×Rn

|u(x)−u(y)|2
|x−y|n+2s dxdy = 2

C(n,s)

∫
Rn |ξ|

2s|Fu(ξ)|2 dξ,

(iii) [u]2Hs(Rn) = 2
C(n,s)‖(−∆)s/2u‖2L2(Rn),

(iv) (Sobolev trace equality)

‖(−∆)s/2u‖2L2(Rn) =

∫
Rn

((−∆)su(x))u(x) dx =

∫
Rn
|ξ|2s|Fu(ξ)|2 dξ

for each u ∈ Hs(Rn). Let we define the Hilbert space Ĥs(Rn) by means of the Fourier

transform as follows:

Ĥs(Rn) ≡
{
u ∈ L2(Rn)

∣∣∣∣ ∫
Rn

(1 + |ξ|2s)|Fu(ξ)|2 dξ < +∞
}
.

In this case, the inner product and the norm are given by

〈u, v〉
Ĥs(Rn)

≡
∫
Rn

(1 + |ξ|2s)Fu(ξ)Fv(ξ) dξ,

‖u‖
Ĥs(Rn)

≡
√
〈u, u〉

Ĥs(Rn)
=

(∫
Rn

(1 + |ξ|2s)|Fu(ξ)|2 dξ
)1/2

.

Let we define another inner product 〈 · , · 〉Hs(Rn) on Hs(Rn) by

〈u, v〉Hs(Rn) ≡ 〈u, v〉L2(Rn) + 〈(−∆)s/2u, (−∆)s/2v〉L2(Rn).

The norm ‖ · ‖Hs(Rn) of this Hilbert space Hs(Rn) is given by

‖u‖2Hs(Rn) = ‖u‖2L2(Rn) + ‖(−∆)s/2u‖2L2(Rn)

= ‖u‖2L2(Rn) +
C(n, s)

2
[u]2Hs(Rn)

= ‖u‖2L2(Rn) +

∫
Rn
|ξ|2s|Fu(ξ)|2 dξ.

Note that

〈(−∆)s/2u, (−∆)s/2v〉L2(Rn) =

∫
Rn

(−∆)s/2u(x)(−∆)s/2v(x) dx

=
C(n, s)

2

∫
Rn

∫
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy.
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Using the classical Plancherel’s theorem, we have

‖u‖2L2(Rn) = ‖Fu‖2L2(Rn) =

∫
Rn
|(Fu)(ξ)|2 dξ.

Suppose that the inner product ( · , · )Hs(Rn) on Hs(Rn) is defined by

(u, v)Hs(Rn) ≡ 〈u, v〉L2(Rn) +
C(n, s)

2

∫
Rn

∫
Rn

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy,

and the norm ‖ · ‖Hs(Rn) (induced by ( · , · )Hs(Rn)) is

‖u‖2Hs(Rn) = ‖u‖2L2(Rn) +
C(n, s)

2

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy.

Then the Hilbert space Hs(Rn) coincides with Ĥs(Rn) and the norms

‖u‖
Ĥs(Rn)

≡
(∫

Rn
(1 + |ξ|2s)|Fu(ξ)|2 dξ

)1/2

,

‖u‖Hs(Rn) ≡
(
‖u‖2L2(Rn) + ‖(−∆)s/2u‖2L2(Rn)

)1/2
,

‖u‖∗Hs(Rn) ≡
(
‖u‖2L2(Rn) +

C(n, s)

2

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy

)1/2

and

‖u‖∗∗Hs(Rn) ≡
(∫

Rn
|u(x)|2 dx+

∫
Rn
|ξ|2s|Fu(ξ)|2 dξ

)1/2

are equivalent.

Suppose that

Eε(u) =

∫
Ω

ε · |∇u|2

2
+

1

ε
W (u)

is the energy functional arising in the van der Waals–Cahn–Hilliard theory of phase

transitions. Here Ω is a bounded smooth domain in Rn (n ≥ 2), f(u) = W ′(u), and

W (u) = 1
2(1− u2)2. Let ( · , · ) denote the pairing between (H1(Ω))∗ and H1(Ω). Define

H−1(Ω) =

{
f ∈ (H1(Ω))∗

∣∣ there exists a unique ((−∆)−1f) ∈ H1(Ω) with

mean 0 over Ω such that

(f, v) =

∫
Ω
∇((−∆)−1f) · ∇v for all v ∈ H1(Ω)

}
.

Observe that H−1(Ω) is a real Hilbert space with inner product

〈u, v〉H−1(Ω) =

∫
Ω
∇((−∆)−1u) · ∇((−∆)−1v) dx for all u, v ∈ H−1(Ω),
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and the corresponding norm

‖u‖H−1(Ω) = ‖∇((−∆)−1u)‖L2(Ω) =

(∫
Ω
∇((−∆)−1u) · ∇((−∆)−1u) dx

)1/2

.

Let hu : Ω 7→ Rn × R1 × Rn be defined by

hu(x) ≡ (x, u(x),∇u(x)) for all x ∈ Ω,

and let f : Rn × R1 × Rn 7→ R be defined by

f(x, u, p) ≡ ε|p|2

2
+

1

ε
W (u), (x, u, p) ∈ Rn × R1 × Rn.

Suppose that the functional Eε is defined as

Eε(u) ≡
∫

Ω
(f ◦ hu)(x) dx.

Then

∇L2(Ω)Eε(u) = fu ◦ hu −
n∑
i=1

∂

∂xi
(fpi ◦ hu) ∈ L2(Ω),

where

fu(x, u, p) =
∂f

∂u
(x, u, p) =

1

ε
W ′(u),

fpi(x, u, p) =
∂f

∂pi
(x, u, p1, . . . , pn) = εpi, i = 1, 2, . . . , n,

(fpi ◦ hu)(x) = fpi(x, u(x),∇u(x)) = εuxi(x)

and

∂

∂xi
(fpi ◦ hu)(x) =

∂

∂xi
(εuxi)(x) = εuxixi(x).

Thus,

(
∇L2(Ω)Eε(u)

)
(x) = fu(x, u(x),∇u(x))−

n∑
i=1

εuxixi(x)

=
1

ε
W ′(u(x))− ε∆u(x) =

1

ε
(W ′ ◦ u)(x)− ε∆u(x)

=

(
1

ε
W ′ ◦ u− ε∆u

)
(x), ∀x ∈ Ω.

Owing to

d

dt
(Eε(u+ tv))

∣∣∣
t=0

= δEε(u, v) = 〈∇XEε(u), v〉X , ∀ v ∈ X with v 6= 0,
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we have

d

dt
(Eε(u+ tv))

∣∣∣
t=0

= 〈∇L2(Ω)Eε(u), v〉L2(Ω) = 〈∇H−1(Ω)Eε(u), v〉H−1(Ω)

= 〈∇Hs(Ω)Eε(u), v〉Hs(Ω) = 〈∇H1(Ω)Eε(u), v〉H1(Ω).

(2.1)

Since

〈u, v〉H1(Ω) =

∫
Ω

∑
|α|≤1

DαuDαv dx =

∫
Ω
uv dx+

∫
Ω

(
n∑
i=1

uxivxi

)
dx

= 〈u, v〉L2(Ω) +

∫
Ω
∇u · ∇v dx = 〈u, v〉L2(Ω) + 〈∇u,∇v〉L2(Ω)

= 〈u, v〉L2(Ω) + 〈−∆u, v〉L2(Ω) +

∫
∂Ω
v
∂u

∂ν
dS

= 〈(1 + (−∆))u, v〉L2(Ω) +

∫
∂Ω
v
∂u

∂ν
dS,

under the suitable boundary conditions (for example, v = 0 or ∂u
∂ν = 0 on ∂Ω), we have

(2.2) 〈u, v〉H1(Ω) = 〈(1 + (−∆))u, v〉L2(Ω).

The inner product of u and v in H−1(Ω) is

〈u, v〉H−1(Ω) = 〈∇((−∆)−1u),∇((−∆)−1v)〉L2(Ω)

=

∫
Ω
∇((−∆)−1u) · ∇((−∆)−1v) dx

= −
∫

Ω
((−∆)−1u) ·∆((−∆)−1v) dx+

∫
∂Ω

((−∆)−1u)
∂((−∆)−1v)

∂ν
dS

= 〈(−∆)−1u, v〉L2(Ω),

(2.3)

under the suitable boundary conditions (either (−∆)−1u = 0 or ∂((−∆)−1v)
∂ν = 0 on ∂Ω).

Next, we see that (for each s ∈ (0, 1))

〈u, v〉Hs(Rn) = 〈u, v〉L2(Rn) + 〈(−∆)s/2u, (−∆)s/2v〉L2(Rn)

= 〈u, v〉L2(Rn) + 〈(−∆)su, v〉L2(Rn) = 〈(1 + (−∆)s)u, v〉L2(Rn).
(2.4)

Using (2.1)–(2.4), we obtain

∇L2(Ω)Eε(u) = (1 + (−∆))(∇H1(Ω)Eε(u)),

∇L2(Ω)Eε(u) = ((−∆)−1)(∇H−1(Ω)Eε(u)),

∇L2(Ω)Eε(u) = (1 + (−∆)s)(∇Hs(Ω)Eε(u)).
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Therefore, we have

∇H1(Ω)Eε(u) = (1 + (−∆)1)−1(∇L2(Ω)Eε(u)),

∇H−1(Ω)Eε(u) = (−∆)(∇L2(Ω)Eε(u)),

∇Hs(Ω)Eε(u) = (1 + (−∆)s)−1(∇L2(Ω)Eε(u)),

where Hs(Ω) ≡ {u ∈ Hs(Rn) | u ≡ 0 on Rn \Ω}. Then the gradient of Eε with respect to

L2(Ω), H−1(Ω), H1(Ω), and Hs(Ω) are respectively

∇L2(Ω)Eε(u) = −ε∆u+
f(u)

ε
,

∇H−1(Ω)Eε(u) = (−∆)(∇L2(Ω)Eε(u)) = L(∇L2(Ω)Eε(u)),

∇H1(Ω)Eε(u) = (1 + (−∆)1)−1(∇L2(Ω)Eε(u)) = L1(∇L2(Ω)Eε(u)),

∇Hs(Ω)Eε(u) = (1 + (−∆)s)−1(∇L2(Ω)Eε(u)) = Ls(∇L2(Ω)Eε(u)),

where Lu = −∆u is an unbounded linear operator, Lsu = (1 + (−∆)s)−1 is a bounded

symmetric positive definite linear operator for each s ∈ (0, 1].

∂tu = −∇L2(Ω)Eε(u) is the Allen–Cahn equation,

∂tu = −∇H−1(Ω)Eε(u) is the Cahn–Hilliard equation,

∂tu = −∇H1(Ω)Eε(u) is the Cahn–Hilliard/Allen–Cahn equation, and

∂tu = −∇Hs(Ω)Eε(u) is called the Fractional Cahn–Hilliard/Allen–Cahn equation.

Our research is motivated by the above formulas and its fundamental properties. The

following lemmas (Lemmas 2.1–2.7) are useful in the study of our main results.

Lemma 2.1. Let X be a real Hilbert space with inner product 〈 · , · 〉X and corresponding

norm ‖ · ‖X . For any symmetric positive definite linear operator L : X 7→ X, define a

function 〈 · , · 〉L : X ×X 7→ R by

(2.5) 〈u, v〉L = 〈Lu, v〉X .

Then 〈 · , · 〉L is also an inner product on X.

Proof. Recalling that L is symmetric if

(2.6) 〈Lu, v〉X = 〈u, Lv〉X for all u, v ∈ X,

and L is positive definite if there exists positive constant M such that

(2.7) 〈Lu, u〉X ≥M‖u‖2X for all u ∈ X.

Following (2.6) and (2.7), 〈 · , · 〉L is an inner product on X.
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Lemma 2.2. [6, Proposition 2] If E ∈ C1(X,R) and if L is an invertible, symmetric,

positive definite, and linear operator on X, then the gradient of E relative to the inner

product 〈 · , · 〉L, ∇LE exists and we have

∇LE(u) = L−1(∇XE(u)) for all u ∈ X.

Proof. We note that the first variation of E at u in the direction v, δE(u, v), can be

expressed as

(2.8)
d

dt
(E(u+ tv))

∣∣∣
t=0

= δE(u, v) = DE(u)(v) = 〈∇XE(u), v〉X = 〈∇LE(u), v〉L,

where DE(u) is the Fréchet derivative of E at u. Owing to

(2.9) 〈∇XE(u), v〉X = 〈LL−1(∇XE(u)), v〉X = 〈L−1(∇XE(u)), v〉L,

by the definition of 〈 · , · 〉L. Moreover, by (2.8) and (2.9) we have

〈∇LE(u)− L−1(∇XE(u)), v〉L = 0 for all v ∈ X.

Hence, choosing v = ∇LE(u)− L−1(∇XE(u)), we find

‖∇LE(u)− L−1(∇XE(u))‖2L = 0,

the lemma is proved.

Lemma 2.3. Let X be a real Hilbert space with inner product 〈 · , · 〉X and corresponding

norm ‖ · ‖X , and let L : X 7→ X be a bounded symmetric positive definite linear operator.

Let 〈 · , · 〉L be an inner product on X defined by (2.5). Then (X, 〈 · , · 〉L) is a real Hilbert

space with the corresponding norm ‖ ·‖L. Moreover, ‖ ·‖L and ‖ ·‖X are equivalent norms.

Proof. By assumption of boundedness of L, there exists a constant K > 0 such that

(2.10) ‖Lu‖X ≤ K‖u‖X for all u in X.

Now, using the Cauchy–Schwarz inequality, (2.7), and (2.10), we have

(2.11) M‖u‖2X ≤ 〈Lu, u〉X ≤ |〈Lu, u〉X | ≤ ‖Lu‖X‖u‖X ≤ K‖u‖2X

for all u in X. Note that by (2.5), we have

(2.12) ‖u‖2L = 〈u, u〉L = 〈Lu, u〉X .

It follows from (2.11) and (2.12) that we have ‖ ·‖L and ‖ ·‖X are equivalent norms. Thus,

if {un}∞n=1 is a Cauchy sequence in (X, ‖ · ‖L), then it is a Cauchy sequence in (X, ‖ · ‖X)

and there exists u ∈ X such that

lim
n→∞

‖un − u‖X = 0.
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By the equivalence of ‖ · ‖X and ‖ · ‖L, we immediately have

lim
n→∞

‖un − u‖L = 0.

Hence, (X, ‖ · ‖L) is a complete normed space.

Lemma 2.4. Suppose that L : X 7→ X is a symmetric positive definite invertible linear

operator. Assume that L−1 : X 7→ X is positive definite. Let E ∈ C1(X,R), and let

u : [0, T ] 7→ X be any solution of the generalized gradient flow (1.2) on [0, T ]. Then we

have

(2.13) ‖∂tu(t)‖L−1 = ‖∇XE(u(t))‖L for all t ∈ [0, T ],

and
d

dt
(E(u(t))) = −‖∂tu(t)‖2L−1 = −‖∇XE(u(t))‖2L for all t ∈ [0, T ].

Proof. Indeed:

‖∂tu(t)‖2L−1 = 〈∂tu(t), ∂tu(t)〉L−1

= 〈L(∇XE(u)), L(∇XE(u))〉L−1 (By (1.2))

= 〈L−1L(∇XE(u)), L(∇XE(u))〉X (By (2.5))

= 〈∇XE(u), L(∇XE(u))〉X
= 〈L(∇XE(u)),∇XE(u)〉X
= 〈∇XE(u),∇XE(u)〉L (By (2.5))

= ‖∇XE(u)‖2L,

and

d

dt
(E(u(t))) = 〈∇XE(u(t)), ∂tu(t)〉X

= 〈∇XE(u(t)),−L(∇XE(u(t)))〉X (By (1.2))

= −〈L(∇XE(u(t))),∇XE(u(t))〉X
= −〈∇XE(u(t)),∇XE(u(t))〉L (By (2.5))

= −‖∇XE(u(t))‖2L
= −‖∂tu(t)‖2L−1 . (By (2.13))

Lemma 2.5. Let L : X 7→ X be a symmetric positive definite invertible linear operator

on a real Hilbert space X. Assume that L−1 : X 7→ X is positive definite. Then we have

‖v‖L = ‖Lv‖L−1 for all v in X,(2.14)

|〈u, v〉L| ≤ ‖u‖L · ‖v‖L = ‖u‖L · ‖Lv‖L−1 for all u, v in X,(2.15)
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and

‖Lu‖2X = 〈Lu, u〉L and ‖u‖2X = 〈Lu, u〉L−1 for all u ∈ X.

Proof. We have indeed, for any v ∈ X,

‖v‖2L = 〈v, v〉L = 〈Lv, v〉X (By (2.5))

= 〈v, Lv〉X
= 〈L−1Lv, Lv〉X
= 〈Lv, Lv〉L−1 (By (2.5))

= ‖Lv‖2L−1 .

Therefore we have (2.14).

Since (X, 〈 · , · 〉L) is an inner product space, the latter result (2.15) can be proved by

using the Cauchy–Schwarz inequality and (2.14). Finally we observe that

‖Lu‖2X = 〈Lu,Lu〉X = 〈u, Lu〉L = 〈Lu, u〉L,

‖u‖2X = 〈u, u〉X = 〈L−1Lu, u〉X = 〈Lu, u〉L−1 .

Lemma 2.6 (Young’s inequality). Let p > 1 and q satisfy

1

p
+

1

q
= 1.

Let a ≥ 0 and b ≥ 0. We have

(i) a · b ≤ ap

p + bq

q ,

(ii) a · b = ap

p + bq

q if and only if ap = bq.

Lemma 2.7 (Gronwall’s lemma). Let ϕ ∈ L1([0, T ]) be a nonnegative function which

satisfies for a.e. t ∈ [0, T ],

ϕ(t) ≤ c ·
∫ t

0
ϕ(τ) dτ

for some constants c ≥ 0. Then

ϕ(t) = 0 a.e. on [0, T ].

3. Main results

After being studied for a long long time in harmonic analysis and Laplacian operators,

fractional operators defined via singular integrals are riveting attention due to the pliant

use that can be made of their nonlocal nature and their applications to models of concrete

interest. In particular, equations involving the fractional Laplacian or similar nonlocal
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operators naturally surface in many applications. See [3, 4, 7, 12, 15, 19, 21, 22] for the

details. To the best of our knowledge, the following two main theorems (Theorems 3.1

and 3.3) are new, not appear to anywhere.

Theorem 3.1. Let Xε and X be real Hilbert spaces. Suppose that Eε ∈ C1(Xε,R) and

E ∈ C1(X,R). Assume that Lε : Xε 7→ Xε, L
−1
ε : Xε 7→ Xε, L : X 7→ X, and L−1 : X 7→ X

are bounded symmetric positive definite linear operators. Assume that

(i) Eε and E satisfy a Γ-liminf relation:

If uε
S
⇀ u, then lim inf

ε→0
Eε(uε) ≥ E(u).

(ii) If uε(t)
S
⇀ u(t) for all t ∈ [0, T ], then either

lim inf
ε→0

‖∂tuε(s)‖2L−1
ε
≥ ‖∂tu(s)‖2L−1 − C ·D(s), ∀ t ∈ [0, T )

or

lim inf
ε→0

∫ t

0
‖∂tuε(s)‖2L−1

ε
ds ≥

∫ t

0

(
‖∂tu(s)‖2L−1 − C ·D(s)

)
ds, ∀ t ∈ [0, T ).

(iii) If uε(t)
S
⇀ u(t), then lim infε→0 ‖∇XεEε(uε(t))‖2Lε ≥ ‖∇XE(u(t))‖2L − C̃D(t) for all

t ∈ [0, T ), where C > 0, C̃ > 0, D and Dε are defined as

D(t) := lim sup
ε→0

Dε(t), ∀ t ∈ [0, T ),(3.1)

Dε(t) := Eε(uε(t))− E(u(t)), ∀ t ∈ [0, T ).(3.2)

(iv) D(0) = 0 (or limε→0Eε(uε(0)) = E(u(0))).

Let uε be a solution of the generalized gradient flow

(3.3) ∂tuε = −Lε(∇XεEε(uε))

on [0, T ) with

uε(t)
S→ u(t) for all t ∈ [0, T )

such that for each t ∈ [0, T ),

(3.4) Eε(uε(0))− Eε(uε(t)) = −
∫ t

0

d

dt
(Eε(uε(τ))) dτ =

∫ t

0
‖∂tuε(τ)‖2

L−1
ε
dτ.
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Then we have

u ∈ H1([0, T ), X), (in particular, continuous in time)

u is a solution of the following generalized gradient flow ∂tu = −L(∇XE(u)) on [0, T ),

D(t) = 0 (i.e., lim
ε→0

Eε(uε(t)) = E(u(t))) for all t ∈ [0, T ),

lim
ε→0

∫ t

0
‖∂tuε(τ)‖2

L−1
ε
dτ =

∫ t

0
‖∂tu(τ)‖2L−1 dτ, ∀ t ∈ [0, T ),(3.5)

lim
ε→0

∫ t

0
‖∇XεEε(uε(τ))‖2Lε dτ =

∫ t

0
‖∇XE(u(τ))‖2L dτ, ∀ t ∈ [0, T ).(3.6)

Proof. Using (3.2), we have

(3.7) [Eε(uε(0))− Eε(uε(t))] = [E(u(0))− E(u(t))] + [Dε(0)−Dε(t)].

Passing liminf to (3.7), we get

[E(u(0))− E(u(t))] + lim inf
ε→0

[Dε(0)−Dε(t)]

= lim inf
ε→0

[Eε(uε(0))− Eε(uε(t))]

= lim inf
ε→0

∫ t

0
‖∂tuε(τ)‖2

L−1
ε
dτ (By (3.4))

= lim inf
ε→0

∫ t

0
‖∂tuε(τ)‖L−1

ε
· ‖∇XεEε(uε(τ))‖Lε dτ (By Lemma 2.4 and (3.3))

= lim inf
ε→0

∫ t

0

(
‖∂tuε(τ)‖2

L−1
ε

2
+
‖∇XεEε(uε(τ))‖2Lε

2

)
dτ

≥ 1

2

[
lim inf
ε→0

∫ t

0
‖∂tuε(τ)‖2

L−1
ε
dτ +

∫ t

0

(
lim inf
ε→0

‖∇XεEε(uε(τ))‖2Lε
)
dτ

]
(By Fatou’s Lemma)

≥
∫ t

0

(‖∂tu(τ)‖2L−1 + ‖∇XE(u(τ))‖2L
2

)
dτ −

∫ t

0

(
C + C̃

2

)
D(τ) dτ

(By assumptions (ii) and (iii))

≥
∫ t

0
‖∂tu(τ)‖L−1 · ‖∇XE(u(τ))‖L dτ −

∫ t

0

(
C + C̃

2

)
D(τ) dτ(3.8)

(By Young’s inequality)

=

∫ t

0
‖L−1(∂tu(τ))‖L · ‖∇XE(u(τ))‖L dτ −

∫ t

0

(
C + C̃

2

)
D(τ) dτ (By (2.14))

≥
∫ t

0

∣∣〈L−1(∂tu(τ)),∇XE(u(τ))〉L| dτ −
∫ t

0

(
C + C̃

2

)
D(τ) dτ
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(By the Cauchy–Schwarz inequality)

≥
∫ t

0
−〈L−1(∂tu(τ)),∇XE(u(τ))〉L dτ −

∫ t

0

(
C + C̃

2

)
D(τ) dτ

= −
∫ t

0
〈∂tu(τ),∇XE(u(τ))〉X dτ −

∫ t

0

(
C + C̃

2

)
D(τ) dτ

(By definition of 〈 · , · 〉L, (2.5))

= −
∫ t

0

d

dt
(E(u(τ))) dτ −

∫ t

0

(
C + C̃

2

)
D(τ) dτ

= E(u(0))− E(u(t))−
∫ t

0

(
C + C̃

2

)
D(τ) dτ.

Note that by assumption (i), we have

(3.9) D(t) ≥ 0 for all t ∈ [0, T ).

Thus, by assumption (iv), we have

lim
ε→0

Dε(0) = 0, i.e., lim
ε→0

[Eε(uε(0))− E(u(0))] = 0.

Moreover,

lim inf
ε→0

[Dε(0)−Dε(t)] = lim
ε→0

Dε(0) +
[
lim inf
ε→0

(−Dε(t))
]

= 0− lim sup
ε→0

Dε(t) = −D(t) for all t ∈ [0, T ).
(3.10)

Following (3.8), (3.9), and (3.10), we have

(3.11) 0 ≤ D(t) ≤

(
C + C̃

2

)∫ t

0
D(τ) dτ, ∀ t ∈ [0, T ).

By (3.11) and Gronwall’s lemma, we have

(3.12) D(t) = 0 for all t ∈ [0, T ).

From assumption (i) and (3.12) we have

lim sup
ε→0

[Eε(uε(t))− E(u(t))] = lim inf
ε→0

[Eε(uε(t))− E(u(t))] = 0 for all t ∈ [0, T ),

i.e., limε→0Dε(t) = 0 for all t ∈ [0, T ), and

(3.13) lim
ε→0

Eε(uε(t)) = E(u(t)) for all t ∈ [0, T ).
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Using (3.13) and (3.12) to (3.8), we observe that

E(u(0))− E(u(t))

= −
∫ t

0

d

dt
(E(u(τ))) dτ =

∫ t

0

‖∂tu‖2L−1

2
+
‖∇XE(u)‖2L

2
dτ

=

∫ t

0
‖∂tu‖L−1 · ‖∇XE(u)‖L dτ

=

∫ t

0
‖L−1(∂tu)‖L · ‖∇XE(u)‖L dτ (By (2.14))

=

∫ t

0

∣∣〈L−1(∂tu),∇XE(u)〉L
∣∣ dτ =

∫ t

0
−〈L−1(∂tu),∇XE(u)〉L dτ

(3.14)

for all t ∈ [0, T ).

Applying the Vanishing Theorem to (3.14), we obtain the following:

‖∂tu‖L−1 · ‖∇XE(u)‖L =
‖∂tu‖2L−1

2
+
‖∇XE(u)‖2L

2
for a.e. τ in [0, T ),

‖L−1(∂tu)‖L = ‖∂tu‖L−1 = ‖∇XE(u)‖L for a.e. τ in [0, T ),(3.15) ∣∣〈L−1(∂tu),∇XE(u)〉L
∣∣ = ‖L−1(∂tu)‖L · ‖∇XE(u)‖L a.e. in [0, T ),(3.16) ∣∣〈L−1(∂tu),∇XE(u)〉L
∣∣ = −〈L−1(∂tu),∇XE(u)〉L a.e. in [0, T ).(3.17)

Using (3.16), there exists a number λ ∈ R such that

(3.18) ∇XE(u(t)) = λL−1(∂tu(t)) for a.e. t in [0, T ).

It follows from (3.15)–(3.18) we find that

(3.19) λ = −1.

By (3.18) and (3.19), we have

∂tu(t) = −L(∇XE(u(t))) for a.e. t in [0, T ),(3.20) (
L−1(∂tu(t)) = −∇XE(u(t)) for a.e. t in [0, T ).

)
Taking into account (3.4) and Lemma 2.4 we have

(3.21) Eε(uε(0))− Eε(uε(t)) =

∫ t

0
‖∂tuε(τ)‖2

L−1
ε
dτ =

∫ t

0
‖∇XεEε(uε(τ))‖2Lε dτ

for all t ∈ [0, T ). Using (3.13) and (3.21) we find that for each t ∈ [0, T ),

lim
ε→0

∫ t

0
‖∂tuε(τ)‖2

L−1
ε
dτ = lim

ε→0

∫ t

0
‖∇XεEε(uε(τ))‖2Lε dτ

= lim
ε→0

[Eε(uε(0))− Eε(uε(t))] = E(u(0))− E(u(t))
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=

∫ t

0
− d

dt
(E(u(τ))) dτ =

∫ t

0
−〈∇XE(u(τ)), ∂tu(τ)〉X dτ

=

∫ t

0
〈L−1(∂tu(τ)), ∂tu(τ)〉X dτ (By (3.20))(3.22)

=

∫ t

0
〈∂tu(τ), ∂tu(τ)〉L−1 dτ (By (2.5))

=

∫ t

0
‖∂tu(τ)‖2L−1 dτ

=

∫ t

0
‖∇XE(u(τ))‖2L dτ (By Lemma 2.4)

so that (3.5) and (3.6) hold. By (3.22) we have

(3.23)

∫ T

0
‖∂tu(τ)‖2L−1 dτ = E(u(0))− E(u(T )) < +∞.

By Lemma 2.3 we have ‖ · ‖L−1 and ‖ · ‖X are equivalent norms. Using (3.23) we have

(3.24) ∂tu ∈ L2(0, T ;X).

Next, by using the Mean Value Theorem [11, Theorem A3.3, p. 255], we have for each t

in [0, T ],

‖u(t)− u(0)‖X ≤

(
sup
τ∈[0,t]

‖∂tu(τ)‖X

)
· |t| ≤

(
sup

τ∈[0,T ]
‖∂tu(τ)‖X

)
· |t|.

Let MT ≡ supτ∈[0,T ] ‖∂tu(τ)‖X < +∞ (By (3.24)). Here we get∫ T

0
‖u(t)‖2X dt ≤

∫ T

0

(
‖u(t)− u(0)‖X + ‖u(0)‖X

)2
dt

≤
∫ T

0

(
MT · |t|+ ‖u(0)‖X

)2
dt < +∞

so that u ∈ L2(0, T ;X). Therefore u ∈ H1(0, T ;X) and the theorem is proved.

Remark 3.2. In particular, if Lε = Iε and L = I, then Theorem 3.1 is the original theorem

(Γ-convergence of gradient flow) initiated by Sandier and Serfaty [18], where Iε and I are

identity linear operators on Xε and X respectively.

Next, we can generalize Theorem 3.1 to (p, q)-generalized gradient flows (cf. [20]) where

p and q are conjugate exponents in (1,+∞).

Theorem 3.3. Let Xε and X be real Hilbert spaces. Suppose that Eε ∈ C1(Xε,R) and

E ∈ C1(X,R). Let p and q be conjugate exponents in (1,+∞) (i.e., p > 1 and 1
p + 1

q = 1).

Assume that Lε : Xε 7→ Xε, the inverse operator L−1
ε : Xε 7→ Xε, L : X 7→ X, and the

inverse of L, L−1 : X 7→ X are bounded symmetric positive definite linear operators.

Assume that the following conditions hold:
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(i) Eε and E satisfy a Γ-liminf relation:

If uε
S
⇀ u, then lim inf

ε→0
Eε(uε) ≥ E(u).

(ii) If uε(t)
S
⇀ u(t) for all t ∈ [0, T ), then either

lim inf
ε→0

‖∂tuε(s)‖pL−1
ε
≥ ‖∂tu(s)‖p

L−1 − C ·D(s), ∀ s ∈ [0, T )

or

lim inf
ε→0

∫ t

0
‖∂tuε(s)‖pL−1

ε
ds ≥

∫ t

0

(
‖∂tu(s)‖p

L−1 − C ·D(s)
)
ds, ∀ t ∈ [0, T ).

(iii) If uε(t)
S
⇀ u(t), then

lim inf
ε→0

‖∇XεEε(uε(t))‖
q
Lε
≥ ‖∇XE(u(t))‖qL − C̃ ·D(t)

for each t ∈ [0, T ). Here C > 0, C̃ > 0, and D(t), Dε(t) are defined by (3.1), (3.2)

respectively.

(iv) D(0) = 0 (or limε→0Eε(uε(0)) = E(u(0))).

Let uε be a solution of the (p, q)-generalized gradient flow

(3.25) ‖∂tuε‖p−2

L−1
ε
· ∂tuε = −Lε(∇XεEε(uε))

on [0, T ) with uε(t)
S
⇀ u(t) for all t ∈ [0, T ) such that for each t ∈ [0, T ),

Eε(uε(0))− Eε(uε(t)) = −
∫ t

0

d

dt
(E(uε(τ))) dτ =

∫ t

0
‖∂tuε(τ)‖p

L−1
ε
dτ.

Then we have

∂tu ∈ Lp(0, T ;X) and u ∈ Lp(0, T ;X), (Hence u ∈W 1,p(0, T ;X).)

u is a solution of the (p, q)-generalized gradient flow

‖∂tu‖p−2
L−1 · ∂tu = −L(∇XE(u)) on [0, T ),

D(t) = 0 (so that lim
ε→0

Eε(uε(t)) = E(u(t)) for all t ∈ [0, T ),

lim
ε→0

∫ t

0
‖∂tuε(τ)‖p

L−1
ε
dτ =

∫ t

0
‖∂tu(τ)‖p

L−1 dτ for all t ∈ [0, T ),

and

lim
ε→0

∫ t

0
‖∇XεEε(uε(τ))‖qLε dτ =

∫ t

0
‖∇XE(u(τ))‖qL dτ

for all t ∈ [0, T ).
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Proof. If uε satisfies (3.25), then

‖∂tuε‖pL−1
ε

= ‖∂tuε‖p−2

L−1
ε
· 〈∂tuε, ∂tuε〉L−1

ε
= ‖∂tuε‖p−2

L−1
ε
· 〈L−1

ε (∂tuε), ∂tuε〉X

= 〈L−1
ε (‖∂tuε‖p−2

L−1
ε
· ∂tuε), ∂tuε〉X

= −〈∇XεEε(uε), ∂tuε〉X (By (3.25))

= − d

dt
(Eε(uε)).

(3.26)

By (3.25) again,

(3.27) ‖∂tuε‖p−1

L−1
ε

=
∥∥‖∂tuε‖p−2

L−1
ε
· ∂tuε

∥∥
L−1
ε

= ‖Lε(∇XεEε(uε))‖L−1
ε
.

By using the relation p = (p− 1) · q and (3.27) we have

(3.28) ‖∂tuε‖pL−1
ε

= ‖Lε(∇XεEε(uε))‖
q

L−1
ε
.

By using Young’s inequality and (3.28) we have

(3.29) ‖∂tuε‖L−1
ε
· ‖Lε(∇XεEε(uε))‖L−1

ε
=
‖∂tuε‖pL−1

ε

p
+
‖Lε(∇XεEε(uε))‖

q

L−1
ε

q
.

By Lemma 2.5 we have

(3.30) ‖Lε(∇XεEε(uε))‖
q

L−1
ε

= ‖∇XεEε(uε)‖
q
Lε
.

The proof of this theorem can be achieved step by step with the procedure in the proof

of Theorem 3.1 together with (3.26), (3.28), (3.29) and (3.30).

Remark 3.4. Theorem 3.1 is a special case of Theorem 3.3 with p = q = 2.
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