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On Some Properties of Dyadic Operators

Heng Gu, Qingying Xue* and Kôzô Yabuta

Abstract. In this paper, the objects of our investigation are some dyadic operators, in-

cluding dyadic shifts, multilinear paraproducts and multilinear Haar multipliers. We

mainly focus on the continuity and compactness of these operators. First, we con-

sider the continuity properties of these operators. Then, by the Fréchet–Kolmogorov–

Riesz–Tsuji theorem, the non-compactness properties of these dyadic operators will

be studied. Moreover, we show that their commutators are compact with CMO func-

tions, which is quite different from the non-compactness properties of these dyadic

operators. These results are similar to those for Calderón–Zygmund singular integral

operators.

1. Introduction

It is well known that the dyadic operators, such as paraproducts, Haar multipliers and

dyadic shifts, play very important roles in Harmonic Analysis. The study of paraprod-

ucts may be traced back to the famous work of Bony in [2]. Since then, many works

had been done in this field. Among those achievements is the celebrated work of David

and Journé [3]. Using the techniques of paraproducts, David and Journé established the

T (1) theorem and thus gave a boundedness criterion for generalized Calderón–Zygmund

operators. The investigation of Haar multipliers may be dated back to the A2 conjecture

for Haar multipliers consider by Wittwer in [18]. Subsequently, using the combination

of Bellman function technique and heat extension, Petermichl and Volberg extended the

same result to Beurling–Ahlfors transforms in [14]. As for the dyadic shifts, it is known

that an elementary dyadic shift with parameter (m,n) (m,n ∈ N) is an operator given by

Sf(x) =
∑
I∈D

1

|I|

∫
I
aI(x, y)f(y) dy =

∑
I∈D

∑
I′,I′′∈D, I′,I′′⊂I
l(I′)=2−ml(I)
l(I′′)=2−nl(I)

1

|I|
〈f, hI′〉hI′′
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where hI′ and hI′′ are Haar functions for the cubes I ′ and I ′′ respectively in Rd, subject

to normalization ‖hI′‖∞ · ‖hI′′‖∞ ≤ 1 and

aI =
∑

I′,I′′∈D, I′,I′′⊂I
l(I′)=2−ml(I), l(I′′)=2−nl(I)

hI′(y)hI′′(x).

The number r = max(m,n) is called the complexity of the dyadic shift. There are two

important works in the earlier stage of investigation. The first one is given in [12] which

concerned with the boundedness of dyadic shifts. The second one is given by Lacey,

Petermichl and Reguera [10] which demonstrates the A2 conjecture for general dyadic

shifts. A recent nice work [6] states that an arbitrary Calderón–Zygmund operator can be

presented as an average of random dyadic shifts and random dyadic paraproducts. This

demonstrates the importance of the dyadic shifts and people are beginning to pay more

attention to these operators.

Still more recently, the following multilinear dyadic paraproducts π~αb , Haar multipliers

P ~α and T ~αε have been introduced and studied by Kunwar [9]:

π~αb (~f)(x) =
∑
I∈D

〈b, hI〉
|I|

( m∏
j=1

〈fj , h
1+αj

I 〉
|I|

)
h

1+σ(~α)
I , ~α = (α1, . . . , αm) ∈ {0, 1}m,

P ~α(~f)(x) =
∑
I∈D

( m∏
j=1

〈fj , h
1+αj

I 〉
|I|

)
h
σ(~α)
I , ~α ∈ {0, 1}m \ {1, . . . , 1},

T ~αε (~f)(x) =
∑
I∈D

εI

( m∏
j=1

〈fj , h
1+αj

I 〉
|I|

)
h
σ(~α)
I , ~α ∈ {0, 1}m \ {1, . . . , 1},

where b ∈ BMOd, and ε = {εI}I∈D is bounded and σ(~α) is denoted to be the number of 0

components in ~α.

In [9], Kunwar investigated the strong and weak type boundedness properties of π~αb
and its commutators. Moreover, Kunwar [9] demonstrated that

f1 · · · fm =
∑

~α∈{0,1}m\{(1,...,1)}

P ~α(~f) for fj ∈ Lpj (R).

If 1 < p1, . . . , pm < ∞ with 1
p =

∑m
i=1

1
pi

and b ∈ BMOd, Kunwar [8] showed that the

Haar multipliers and their commutators enjoy the properties that

T ~αε : Lp1 × Lp2 × · · · × Lpm → Lp

and

[b, T ~αε ]j : Lp1 × Lp2 × · · · × Lpm → Lp for j = 1, . . . ,m,

where [b, T ~αε ]j is denoted to be the commutator of T ~αε in the j-th entry.
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This paper will be devoted to investigate the continuity and compactness of the above

dyadic type operators, including their commutators. First, we consider the continuity

properties of them and get the following result.

Theorem 1.1 (Continuity of dyadic operators). The following statements hold:

(i) Let |∇f | ∈ L∞(Rd). Then Sf(x) is almost everywhere continuous.

(ii) Let ~α ∈ {0, 1}m \ {(1, . . . , 1)} and ε = {εI} be a bounded sequence. Suppose that f ′j
is bounded when αj = 0 and fj is bounded when αj = 1 in R. Then π~αb (~f)(x) and

T ~αε (~f)(x) are almost everywhere continuous.

Remark 1.2. For dyadic paraproducts π~αb (~f)(x), when ~α = {(1, . . . , 1)}, then π~αb (~f)(x)

is also almost everywhere continuous if b′(x) is bounded and for all fj is bounded in R.

The square of the Littlewood–Paley square function Sf(x) =
(∑

I∈D
( 〈f,hI〉
|I|
)2
χI
)1/2

and

Haar multipliers P ~α(~f)(x) are special cases of T ~αε (~f)(x). Therefore, they are also almost

everywhere continuous.

There are many results about the compactness of the non-dyadic operators. For ex-

ample, [16, 17] are some nice works in the earlier stage. Recently, the authors in [1, 4]

studied the compactness of bilinear operators and their commutators. But there is no

compactness or non-compactness results for dyadic operators. Thus, it is quite natural to

ask whether these dyadic operators are compact or not. Below, we will give a negative

answer to this question.

Theorem 1.3 (Noncompactness of dyadic operators). (i) Let ε = {εI} be a bounded

sequence and suppose that there exists a constant A > 0 such that #{I ∈ D : |εI | ≥
A} =∞. Let 1

p = 1
p1

+ · · ·+ 1
pm

with 1 < p1, . . . , pm <∞. Then T ~αε is not a compact

operator from Lp1(R)× · · · × Lpm(R) to Lp(R) for ~α ∈ {0, 1}m \ {(1, . . . , 1)}.

(ii) Let m,n ∈ N and suppose that there exists a constant A > 0 such that

#
{
I ∈ D :A ≤ ‖hI′‖∞ · ‖hI′′‖∞ ≤ 1 for some I ′, I ′′ ∈ D, I ′, I ′′ ⊂ I,

l(I ′) = 2−ml(I), l(I ′′) = 2−nl(I)
}

=∞.

Then, dyadic shift with parameters (m,n) is not a compact operator.

There also exists b ∈ L∞ ⊂ BMO such that π~αb is not a compact operator. However,

for b ∈ CMO, it can be shown that π~αb is a compact operator. Consequently, we get

Theorem 1.4 (Compactness of π~αb ). Let b ∈ CMO and 1
p = 1

p1
+ · · · + 1

pm
with 1 <

p1, . . . , pm <∞. Then π~αb is a compact operator from Lp1(R)× · · · ×Lpm(R) to Lp(R) for

~α ∈ {0, 1}m.
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Nevertheless, like in [1,4] for many non-dyadic operators, they may be not compact but

their commutators and iterated commutators can be compact. Therefore, we try to figure

out whether the commutators and the iterated commutators of these dyadic operators

are compact or not. First, following the usual definition of commutators [b, T ](f) =

bT (f)− T (bf), we define the iterated commutators of Haar multipliers T ~αε,Πb by

T ~αε,Πb(~f) = [b1, [b2, . . . [bm−1[bm, T
~α
ε ]m]m−1 . . .]2]1(~f).

We formulate the results for the compactness of the commutators as follows:

Theorem 1.5 (Compactness of commutators). Let ε = {εI} be a bounded sequence and
1
p = 1

p1
+ · · ·+ 1

pm
with 1 < p1, . . . , pm <∞. The following statements hold:

(i) Let b ∈ CMO. Then [b, T ~αε ]i is a compact operator from Lp1(R) × · · · × Lpm(R) to

Lp(R) for all ~α ∈ {0, 1}m \ {(1, . . . , 1)} and 1 ≤ i ≤ m.

(ii) Let ~b = (b1, . . . , bm) ∈ CMOm. Then T ~αε,Πb is a compact operator from Lp1(R) ×
· · · × Lpm(R) to Lp(R) for ~α ∈ {0, 1}m \ {1, . . . , 1}.

(iii) Let b ∈ CMO. Then [b,S] is a compact operator from Lp(Rd) to Lp(Rd).

The rest of this article is organized as follows. Some preliminaries which will be used

later are given in Section 2. The proof of Theorem 1.1 will be given in Section 3. Section 4

will be devoted to demonstrate Theorems 1.3 and 1.4. The proof of Theorem 1.5 will be

presented in Section 5.

2. Preliminaries

2.1. Standard dyadic lattices and Haar system

The standard dyadic system in Rd is

D :=
⋃
k∈Z
Dk, Dk := {2k([0, 1)d +m) : m ∈ Zd}.

For I ∈ D, I(j) is denoted to be the j-th dyadic ancestor of I (2jl(I) = l(I(j)) and I ⊂ I(j)),

j ∈ Z+∪{0}. Given a cube I = x+[0, 1)d, let ch(I) := {x+ηl/2+[0, 1/2)d : η ∈ {0, 1}d}be

the collection of dyadic children of I. Thus Dk−1 =
⋃
{ch(I) : I ∈ Dk}. Associated to the

dyadic cube I there is a Haar function hI which is defined by

hI =
∑

J∈{ch(I)}

αJ1J ,
∑

J∈{ch(I)}

αJ |J | = 0.

When I is a dyadic interval and let I+ and I− be the right and left halves of I, then, the

Haar function hI is defined by hI = 1I+ − 1I− . It is well known that the collection of all

Haar functions
{

hI√
|I|

: I ∈ D
}

is an orthonormal basis of L2(R) and an unconditional

basis of Lp(R) for 1 < p <∞.
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2.2. Multilinear weights

Following the notation in [11], for m exponents p1, . . . , pm, we write p for the number

given by 1/p = 1/p1 + · · ·+ 1/pm and ~P for the vector ~P = (p1, . . . , pm).

Definition 2.1 (Multiple weights, [11]). For 1 ≤ p1, . . . , pm < ∞ and a multiple weight

~ω = (ω1, . . . , ωm), we say that ~ω satisfies the multilinear A~P condition if

sup
I

(
1

|I|

∫
I
ν~ω

)1/p m∏
j=1

(
1

|I|

∫
I
ω

1−p′j
j

)1/pj

<∞,

where ν~ω =
∏m
j=1 ω

p/pj
j . When pj = 1,

(
1
|I|
∫
I ω

1−p′j
j

)1/pj is understood as ‖ω−1
j ‖L∞(I).

By Hölder’s inequality, it is easy to see that

m∏
j=1

APj ⊂ A~P .

Moreover, if ~ω ∈ A~P , then we have ν~ω ∈ Amp. We will similarly denote the dyadic

multilinear A~P class by Ad~P
.

2.3. BMO space

For a locally integrable function b on R, set

‖b‖BMO = sup
I

1

|I|

∫
I
|b(x)− 〈b〉I | dx,

where the supremum is taken over all intervals I in R, and 〈b〉I = |I|−1
∫
I b(x) dx. The

function b is called of bounded mean oscillation if ‖b‖BMO < ∞ and BMO(R) is the set

of all locally integrable functions b on R with ‖b‖BMO < ∞. We define CMO to be the

closure of C∞c in the BMO norm.

If we take the supremum over all dyadic intervals in R, we get a larger space of dyadic

BMO functions which is denoted by BMOd. For 1 < r <∞, define

BMOr = {b ∈ Lploc : ‖b‖BMOr <∞},

where ‖b‖BMOr :=
(

supI
1
|I|
∫
I |b(x)−〈b〉I |r dx

) 1
r . For any 1 < r <∞, the norms ‖b‖BMOr

and ‖b‖BMO are equivalent (see [5, 7]). For r = 2, it follows from the orthogonality of the

Haar system that

‖b‖BMOd
2

=

(
sup
I

1

|I|
∑
J⊆I

〈b, hJ〉2

|J |

)1/2

.

On Rd, we may define BMO(Rd) and its dyadic version in a similar way.
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2.4. A key lemma

The following lemma is quite useful and it provides a foundation for our analysis in the

proof.

Lemma 2.2 (Fréchet–Kolmogorov–Riesz–Tsuji theorem, [15, 20]). Let 0 < r < ∞. A

closed subset K ⊆ Lr is compact if and only if the following three conditions are satisfied:

(a) K is bounded in Lr;

(b) limA→∞
∫
|x|>A |f(x)|r dx = 0 uniformly for f ∈ K;

(c) limt→0 ‖f(x+ t)− f(x)‖Lr = 0 uniformly for f ∈ K.

3. Proof of Theorem 1.1

Now, we begin to prove Theorem 1.1.

Proof. (i) Our first aim is to demonstrate the continuity of S(f). Let |∇f | be bounded in

Rd. For ε > 0, there exists k0 > 0 such that
∑∞

k=k0
1
2k
< ε. Then, it holds that

lim
t→0
|Sf(x+ t)− Sf(x)| ≤ I1 + I2

where

I1 = lim
t→0

∣∣∣∣ ∑
l(I)≤2−k0

1

|I|

∫
I
aI(x+ t, y)f(y) dy −

∑
l(I)≤2−k0

1

|I|

∫
I
aI(x, y)f(y) dy

∣∣∣∣,
I2 = lim

t→0

∣∣∣∣ ∑
l(I)>2−k0

1

|I|

∫
I
aI(x+ t, y)f(y) dy −

∑
l(I)>2−k0

1

|I|

∫
I
aI(x, y)f(y) dy

∣∣∣∣.
Therefore, we need to consider the contributions of I1 and I2, respectively.

(1) Estimates for I1. For any x ∈ I, there is only one cube I ′′ such that x ∈ I ′′. Hence,

noting that ‖hI′‖∞‖hI′′‖∞ ≤ 1, it yields that∣∣∣∣ 1

|I|

∫
I
aI(x, y)f(y) dy

∣∣∣∣ =

∣∣∣∣ 1

|I|
∑

I′,I′′∈D, I′,I′′⊂I
l(I′)=2−ml(I), l(I′′)=2−nl(I)

〈f, hI′〉hI′′
∣∣∣∣

=

∣∣∣∣ 1

|I|
∑
I′⊂I

l(I′)=2−ml(I)

∑
J∈{ch(I′)}

αJ

∫
J
f(y) dyhI′′

∣∣∣∣
≤

∑
I′⊂I

l(I′)=2−ml(I)

1

|I|

∣∣∣∣ ∑
J∈{ch(I′)}

αJ
‖hI′‖∞

∫
J
f(y) dy

∣∣∣∣.
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Let x0 ∈ I ′ be a fixed point. It is easy to see that
∑

J∈{ch(I′)} αJf(x0)|J | = 0. Then,

the mean value theorem gives that∣∣∣∣ ∑
J∈{ch(I′)}

αJ
‖hI′‖∞

∫
J
f(y) dy

∣∣∣∣ =

∣∣∣∣ ∑
J∈{ch(I′)}

αJ
‖hI′‖∞

∫
J
(f(y)− f(x0)) dy

∣∣∣∣
≤

∑
J∈{ch(I′)}

√
dl(I ′)‖∇f‖∞|J |

≤ 2d
√
d2−m(d+1)l(I)|I|.

Consequently, this leads to∣∣∣∣ 1

|I|

∫
I
aI(x, y)f(y) dy

∣∣∣∣ ≤ ∑
I′⊂I

l(I′)=2−ml(I)

1

|I|
2d
√
d2−m(d+1)l(I)|I|

≤ 2−m
√
d‖∇f‖∞l(I).

Therefore, it holds that

I1 ≤
∣∣∣∣ ∑
l(I)≤2−k0

1

|I|

∫
I
aI(x+ t, y)f(y) dy

∣∣∣∣+

∣∣∣∣ ∑
l(I)≤2−k0

1

|I|

∫
I
aI(x, y)f(y) dy

∣∣∣∣
≤ 2−m+1

√
d‖∇f‖∞

∑
l(I)≤2−k0

l(I)

. ε.

(2) Estimates for I2. Let D̃ consist of all the boundary points of the dyadic cubes I ∈ D.

Let x ∈ Rd \ D̃. Then there exists Ik0 ∈ D−k0−m such that x ∈ Ik0 . If I ∈
⋃∞
k=−k0+1Dk

contains x, then it follows that x ∈ Ik0 ⊂ I and I is an `-th ancestor of Ik0 for ` ≥ m.

Hence Ik0 is contained in one of ch(I), which implies that hI′′(x + t) = hI′′(x) for all

I ∈
⋃∞
k=−k0+1Dk. Thus, it follows that

I2 = lim
t→0

∣∣∣∣ ∑
l(I)>2−k0

1

|I|

∫
I
(aI(x+ t, y)− aI(x, y))f(y) dy

∣∣∣∣
≤ lim

t→0

∑
l(I)>2−k0

1

|I|

∣∣∣∣ ∑
I′,I′′∈D, I′,I′′⊂I

l(I′)=2−ml(I), l(I′′)=2−nl(I)

〈f, hI′〉(hI′′(x+ t)− hI′′(x))

∣∣∣∣
= lim

t→0

∑
l(I)>2−k0

1

|I|

∣∣∣∣ ∑
I′⊂I

l(I′)=2−ml(I)

〈f, hI′〉(hI′′(x+ t)− hI′′(x))

∣∣∣∣
= 0.

Therefore, Sf(x) is continuous almost everywhere.
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(ii) Now, we consider the continuity of π~αb (~f). The proof of continuity for T ~αε (~f) follows

similarly. Let ~α ∈ {0, 1}m \ {(1, . . . , 1)}. Suppose that f ′j is bounded when αj = 0 and

fj is bounded when αj = 1 in R. For ε > 0, there exists k0 > 0 such that
∑∞

k=k0
1
2k
< ε.

Then, it holds that

lim
t→0
|π~αb (~f)(x+ t)− π~αb (~f)(x)| ≤ II1 + II2

where

II1 = lim
t→0

∣∣∣∣ ∑
l(I)≤2−k0

〈b, hI〉
|I|

m∏
j=1

〈fj , h
1+αj

I 〉
|I|

h
1+σ(~α)
I (x+ t)

−
∑

l(I)≤2−k0

〈b, hI〉
|I|

m∏
j=1

〈fj , h
1+αj

I 〉
|I|

h
1+σ(~α)
I (x)

∣∣∣∣
and

II2 = lim
t→0

∣∣∣∣ ∑
l(I)>2−k0

〈b, hI〉
|I|

m∏
j=1

〈fj , h
1+αj

I 〉
|I|

h
1+σ(~α)
I (x+ t)

−
∑

l(I)>2−k0

〈b, hI〉
|I|

m∏
j=1

〈fj , h
1+αj

I 〉
|I|

h
1+σ(~α)
I (x)

∣∣∣∣.
Next, we will estimate II1 and II2, respectively.

(1) Estimates for II1. For any αj = 0, the mean value theorem yields that

|〈fj , hI〉|
|I|

=

∣∣ ∫
I+

(fj(x)− fj(xI)) dx−
∫
I−

(fj(x)− f(xI)) dx
∣∣

|I|
≤ |I| sup

x∈R
|f ′j(x)|,

where xI is the center of the interval I. By the definition of BMOd, we know that 〈b,hI〉|I|

is bounded. The boundedness of
〈fj ,h2I〉
|I| =

〈fj ,χI〉
|I| follows from the boundedness of fj in R.

These basic facts yield that

II1 ≤
∣∣∣∣ ∑
l(I)≤2−k0

〈b, hI〉
|I|

m∏
j=1

〈fj , h
1+αj

I 〉
|I|

h
1+σ(~α)
I (x+ t)

∣∣∣∣
+

∣∣∣∣ ∑
l(I)≤2−k0

〈b, hI〉
|I|

m∏
j=1

〈fj , h
1+αj

I 〉
|I|

h
1+σ(~α)
I (x)

∣∣∣∣
≤ 2

∑
l(I)≤2−k0

∣∣∣∣〈b, hI〉|I| ∏
αj=0

〈fj , hI〉
|I|

∏
αj=1

〈fj , χI〉
|I|

∣∣∣∣
. 2‖b‖BMO

∞∑
k=k0

(
1

2k

)σ(~α)

. ε.
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(2) Estimates for II2. Let D̃ consist of all end-points of the dyadic intervals I ∈ D.

Let x ∈ D̃c. Then there exists Ik0 ∈ D−k0 such that x ∈ Ik0 . If I ∈
⋃∞
k=−k0+1Dk

contains x, then Ik0 is contained in either I+ or I−, which implies hI(x + t) = hI(x) for

|t| < dist(x, Ick0). Therefore, for I ∈
⋃∞
k=−k0+1Dk and x ∈ I we get hI(x + t) = hI(x).

Then h
1+σ(~α)
I (x+ t)− h1+σ(~α)

I (x) = 0. Consequently, it holds that

II2 = lim
t→0

∣∣∣∣ ∑
l(I)>2−k0

〈b, hI〉
|I|

m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(
h

1+σ(~α)
I (x+ t)− h1+σ(~α)

I (x)
)∣∣∣∣ = 0.

Finally, for ~α ∈ {0, 1}m \ {(1, . . . , 1)}, we have showed that π~αb (~f)(x) is continuous almost

everywhere. When ~α = (1, 1, . . . , 1), let b′(x) be bounded, proceeding with similar argu-

ments as before, one may obtain that π~αb (~f)(x) is almost everywhere continuous for all

bounded fj in R.

4. Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Let T be any of these dyadic operators and K = {T (~f)(x) :

‖fj‖Lpj ≤ 1, j = 1, . . . ,m}. According to the definition of compact operator, we need

to show that K is precompact (K is compact). It is obvious that T
{0}
{εI=1} is the identity

operator on Lp(R) by the reason that
∑

I∈D〈f, hI〉hI = f(x) for f ∈ Lp(R) (1 < p <∞).

Moreover, T
{0}
{εI=1} is not a compact operator since the unit ball of Lp(R) is not a compact

set. Counter-examples will be given to illustrate that K doesn’t satisfy the condition (c)

for any Haar multipliers and dyadic shift, which implies the noncompactness of these

dyadic operators. (i) By the Fréchet–Kolmogorov–Riesz–Tsuji theorem, we need to show

that

K = {T ~αε (~f)(x) : ‖fj‖pj ≤ 1}

does’t meet at least one of the three conditions.

We first observe the following: For I ∈ D, we define ~fI = (fI,1, . . . , fI.m) by fI,j =

|I|−1/pjh
1+αj

I . Then we have

(4.1) ‖fI,j‖pj = 1, 〈fI,j , h
1+αj

I 〉 = |I|1−1/pj , 〈fI,j , hJ〉 = 0 for I 6= J ∈ D, αj = 0.

Hence, noting αj = 0 for at least one 1 ≤ j ≤ m, we get

T ~αε (~fI) = εI |I|−1/ph
σ(~α)
I ,

and so

(4.2) ‖T ~αε (~fI)‖p = |εI |.
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For |I| < t, we have (I + t) ∩ I = ∅, and hence

(4.3) ‖T ~αε (~fI)(x+ t)− T ~αε (~fI)(x)‖p = 2‖T ~αε (~fI)‖p = 2|εI |.

Next, suppose that there exists A > 0 such that #{I ∈ D : |εI | ≥ A} = ∞. We

consider the following two cases: (1) A1 := limk→∞ supI∈D, I⊂[2k,∞)∪(−∞,−2k) |εI | > 0, and

(2) limk→∞ supI∈D, I⊂[2k,∞)∪(−∞,−2k) |εI | = 0.

(1) In this case, by (4.1) and (4.2) we see that

lim sup
B→∞

sup
‖fI,j‖pj≤1, 1≤j≤m

(∫
|x|≥B

|T ~αε (~fI)(x)|p dx
)1/p

≥ A1 > 0,

which shows the condition (b) does not hold.

(2) In this case, there exists k0 ∈ N such that #{I ∈ D, I ∈ [−2k0 , 2k0 ] : |εI | ≥ A} =∞,

from which it follows that there exists Ik ∈ D such that |εIk | ≥ A, Ik ⊂ [−2k0 , 2k0 ] and

limk→∞ |Ik| = 0. Hence, by (4.1) and (4.3), it follows that

lim sup
t→0

sup
‖fI,j‖pj≤1,1≤j≤m

‖T ~αε (~fI)(x+ t)− T ~αε (~fI)(x)‖p ≥ 2A > 0.

This shows that condition (c) does not hold.

Hence, in any case, by the Fréchet–Kolmogorov–Riesz–Tsuji theorem, we know that

T ~αε (~f) is not compact, under our assumption.

(ii) Suppose that S is a dyadic shift with parameter (m,n). Then, we can show that

dyadic shift operator is not compact in the same way as in the case of T ~αε . We omit the

proof of it.

Proof of Theorem 1.4. Firstly, we recall the boundedness result of π~αb . Since

sup
I∈D

|〈b, hI〉|
|I|

≤
(

sup
I∈D

1

|I|
∑

J∈D,J⊂I

|〈b, hI〉|2

|I|

)1/2

= ‖b‖BMOd
2
≤ ‖b‖BMO

(as pointed out by Kunwar [8, Page 14]) by Theorem 3.7 in [9] π~αb is a bounded operator

from Lp1×· · ·×Lpm to Lp, provided b ∈ BMO, 1 < p1, . . . , pm <∞ and 1/p1+· · ·+1/pm =

1/p.

We now proceed to show the compactness of π~αb .

(i) The case b ∈ C∞c (R). By the boundedness of π~αb , it is trivial that π~αb satisfies the

condition (a). Now we verify the condition (b) and the condition (c) for its compactness.

We may assume b ∈ C∞c (R) with supp b ⊂ (−1, 1). For k ≥ 1, the supports of b and hI
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give that

∫
|x|≥2k

|π~αb (~f)(x)|p dx

=

∫
|x|≥2k

∣∣∣∣∑
I∈D

〈b, hI〉
|I|

m∏
j=1

〈fj , h
1+αj

I 〉
|I|

h
1+σ(~α)
I (x)

∣∣∣∣p dx
=

∫
|x|≥2k

∣∣∣∣ ∑
I=[0,2`),[−2`,0),`≥k

〈b, hI〉
|I|

m∏
j=1

〈fj , h
1+αj

I 〉
|I|

h
1+σ(~α)
I (x)

∣∣∣∣p dx
≤
∫
|x|≥2k

( ∑
I=[0,2`),[−2`,0),`≥k

‖b‖∞
2

|I|

m∏
j=1

‖fj‖pj
|I|1/p

′
j

|I|
χI(x)

)p
dx

≤ C
(
‖b‖∞

m∏
1

‖fj‖pj
)p ∫

|x|≥2k

( ∑
I=[0,2`),[−2`,0),`≥k

|I|−1/p−1χI(x)

)p
dx

≤ C
(
‖b‖∞

m∏
1

‖fj‖pj
)p ∫

|x|≥2k

(∑
`≥k

2−`(1/p+1)χ[−2`,2`)(x)

)p
dx

≤ C
(
‖b‖∞

m∏
1

‖fj‖pj
)p ∞∑

`=k

∫ 2`+1

2`

(
2−`(1/p+1)

)p
dx

= C

(
‖b‖∞

m∏
1

‖fj‖pj
)p ∞∑

`=k

2−p` = C

(
‖b‖∞

m∏
1

‖fj‖pj
)p

2−pk.

Hence we have

lim
A→∞

∫
|x|≥A

|π~αb (~f)(x)|p dx = 0

uniformly for ~f with ‖fj‖pj ≤ 1 (1 ≤ j ≤ m). Consequently, when b ∈ C∞c (R), π~αb satisfies

the condition (b) for its compactness.

Let 1 < p1, . . . , pm <∞ and 1/p = 1/p1 + · · ·+ 1/pm. Now, we only need to consider

dyadic intervals I with (−1, 1) ∩ I 6= ∅ in the following summation. Therefore, it holds

that

(∫ ∣∣∣∣〈b, hI〉|I|
m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
1+σ(~α)
I (x+ h)− h1+σ(~α)

I (x))

∣∣∣∣p dx)1/p

≤
(∫

‖b‖∞
m∏
j=1

‖fj‖pj |I|
1/p′j

|I|
|(h1+σ(~α)

I (x+ h)− h1+σ(~α)
I (x))|p dx

)1/p

≤ C‖b‖∞
m∏
j=1

‖fj‖pj
|h|1/p

|I|1/p
.
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Thus we get(∫ ∣∣∣∣ ∑
|I|≥1

〈b, hI〉
|I|

m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
1+σ(~α)
I (x+ h)− h1+σ(~α)

I (x))

∣∣∣∣p dx)1/p

≤
∑
|I|≥1

(∫ ∣∣∣∣〈b, hI〉|I|
m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
1+σ(~α)
I (x+ h)− h1+σ(~α)

I (x))

∣∣∣∣p dx)1/p

≤ C‖b‖∞
m∏
j=1

‖fj‖pj
∑

I=[0,2`),[−2`,0),`∈N

|h|1/p

|I|1/p
≤ C‖b‖∞

m∏
j=1

‖fj‖pj |h|1/p.

Next, for |h| ≤ |I|, noting that 1/p = 1/p1 + · · ·+ 1/pm and
∫
hI dx = 0, we have(∫ ∣∣∣∣〈b, hI〉|I|

m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
1+σ(~α)
I (x+ h)− h1+σ(~α)

I (x))

∣∣∣∣p dx)1/p

=

(∫ ∣∣∣∣〈b− b(xI), hI〉|I|

m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
1+σ(~α)
I (x+ h)− h1+σ(~α)

I (x))

∣∣∣∣p dx)1/p

≤ ‖b′‖∞|I|
m∏
j=1

|〈fj , h
1+αj

I 〉|
|I|

(∫
|h1+σ(~α)
I (x+ h)− h1+σ(~α)

I (x)|p dx
)1/p

≤ C‖b′‖∞
m∏
j=1

‖fjχI‖pj |h|1/p|I|1−1/p,

where xI is the center of the dyadic interval I.

Similarly, in the case |I| ≤ |h|, it holds that
( ∫
|(h1+σ(~α)

I (x+h)−h1+σ(~α)
I (x))|p dx

)1/p ≤
C|I|1/p. Then, we may also obtain(∫ ∣∣∣∣〈b, hI〉|I|

m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
1+σ(~α)
I (x+h)−h1+σ(~α)

I (x))

∣∣∣∣p dx)1/p

≤ C‖b′‖∞
m∏
j=1

‖fjχI‖pj |I|.

So, for any 0 < a < 1, we have(∫ ∣∣∣∣〈b, hI〉|I|
m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
1+σ(~α)
I (x+ h)− h1+σ(~α)

I (x))

∣∣∣∣p dx)1/p

≤ C‖b′‖∞
m∏
j=1

‖fjχI‖pj |h|a|I|1−a.

Thus, when p > 1, for every ` ∈ N, we get

∑
|I|=2−`

(∫ ∣∣∣∣〈b, hI〉|I|
m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
1+σ(~α)
I (x+ h)− h1+σ(~α)

I (x))

∣∣∣∣p dx)1/p

≤ C‖b′‖∞|h|1/p
∑
|I|=2−`

|I|1−1/p
m∏
j=1

‖fjχI‖pj
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≤ C‖b′‖∞|h|1/p2−(1−1/p)`
m∏
j=1

( ∑
|I|=2−`

‖fjχI‖
pj
pj

)1/pj

≤ C‖b′‖∞|h|1/p2−(1−1/p)`
m∏
j=1

‖fj‖pj .

This leads to the following estimate:(∫ ∣∣∣∣ ∑
|I|<1,I∩(−1,1) 6=∅

〈b, hI〉
|I|

m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
1+σ(~α)
I (x+ h)− h1+σ(~α)

I (x))

∣∣∣∣p dx)1/p

≤ C‖b′‖∞
m∏
j=1

‖fj‖pj |h|1/p.

When p ≤ 1 and |h| < |I|, it is easy to see that |h|1/p|I|1−1/p < |h|a|I|1−a for some

0 < a < 1. Therefore, when |h| < |I| < 1, for some 0 < a < 1, we have(∫ ∣∣∣∣〈b, hI〉|I|
m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
1+σ(~α)
I (x+ h)− h1+σ(~α)

I (x))

∣∣∣∣p dx)1/p

≤ C‖b′‖∞
m∏
j=1

‖fjχI‖pj |h|a|I|1−a.

Consequently, when p ≤ 1, by modifying a little bit, for some 0 < a < 1, we get(∫ ∣∣∣∣ ∑
|I|<1,I∩(−1,1) 6=∅

〈b, hI〉
|I|

m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
1+σ(~α)
I (x+ h)− h1+σ(~α)

I (x))

∣∣∣∣p dx)1/p

≤ C‖b′‖∞
m∏
j=1

‖fj‖pj |h|a.

Thus, we obtain

lim
h→0
‖π~αb (x+ h)− π~αb (x)‖p = 0

uniformly for ~f with ‖fj‖pj ≤ 1 (j = 1, . . . ,m). This shows that π~αb satisfies the condi-

tion (c).

Hence, by the Fréchet–Kolmogorov–Riesz–Tsuji theorem, it follows that π~αb is a com-

pact operator, provided b ∈ C∞c (R).

(ii) The general case b ∈ CMO(R). Since C∞c (R) is dense in CMO(R) in BMO norm, for

any b ∈ CMO we can approximate it by a sequence of C∞c (R) functions bj in BMO norm.

So, by the case (i) π~αb can be approximated arbitrarily near in operator norm by compact

operators π~αbj , and hence it follows that π~αb itself is a compact operator. This procedure is

used by many authors, but we can find no references we shall give a corresponding lemma

and its proof in the appendix, for the sake of completeness.
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Remark 4.1. The condition that b ∈ CMO is necessary by the reason that there exists

b ∈ L∞ ⊂ BMO such that π~αb is not a compact operator. To show this, we will construct

an example. Let k0 ∈ N and t ∈ [2−k0 , 3 · 2−k0+1). Suppose that

b =
∞∑
k=1

(−1)kχ[1−2/2k+1/2k+1,1−1/2k)

and

f(x) = fk0(x) =

−2k0 when x ∈ 1
2k0

(
[0, 1) + 2k0 − 2

)
,

0 otherwise.

We assume that 00 = 0 and fj = f1−αj . Then one can verify that

lim sup
t→0

sup
‖fj‖Lpj≤1

‖π~αb (~f)(x+ t)− π~αb (~f)(x)‖Lp & 1.

5. Proof of Theorem 1.5

To begin with, we need to consider the strong type boundedness of these commutators.

From [8], we know that the commutators in the j-th entry are bounded from Lp1 ×Lp2 ×
· · · × Lpm → Lp, if b ∈ BMO. Naturally, we ought to study the boundedness of iterated

commutators and we obtain the following lemmas.

Lemma 5.1 (Weighted strong bounds for T ~αε,Πb). Let ~p = (p1, . . . , pm) with 1
p = 1

p1
+ · · ·+

1
pm

and 1 < p1, . . . , pm < ∞. Let ~α ∈ {0, 1}m \ {1, . . . , 1} and ε = {εI}I∈D be bounded.

Suppose that ~b = (b1, . . . , bm) ∈ (BMOd)m, ~ω ∈ Ad~p and ν~ω =
∏m
j=1 ω

p/pj
j . Then there

exists a constant C such that∥∥T ~αε,Πb

∥∥
Lp(ν~ω)

≤ C
m∏
j=1

‖bj‖BMOd

m∏
i=1

‖fi‖Lpi (ωi).

Lemma 5.2 (Weighted end-point estimate for T ~αε,Πb). Let ~α ∈ {0, 1}m \ {1, . . . , 1} and

ε = {εI}I∈D be bounded. Suppose ~b = (b1, . . . , bm) ∈ BMOm
d , ~ω ∈ Ad(1,...,1) and ν~ω =∏m

j=1 ω
p/pj
j . Then there exists a constant C such that

ν~ω(x ∈ R : T ~αε,Πb(~f)(x) > tm) ≤ C
( m∏
j=1

Φ

(
|fj(x)|
t

)
ωj(x) dx

) 1
m

,

where Φ(t) = t(1 + log+ t) and Φ(m) =

m︷ ︸︸ ︷
Φ ◦ · · · ◦ Φ.

The ideas and main steps of proofs for Lemmas 5.1 and 5.2 are almost the same as

in [13, 19]. Moreover, Lemma 3.1 of [8] makes the proofs much easier. Here we omit the

proofs.

Now we return to the proof of Theorem 1.5.
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Proof of Theorem 1.5. (i) First, we shall prove the compactness of the commutator [b, T ~αε ]i.

By its boundedness, verification of condition (a) is trivial and we will only prove that

[b, T ~αε ]i satisfies conditions (b) and (c) for its compactness. Firstly, we may assume

b ∈ C∞c (R) with supp b ⊂ (−1, 1) and fj ∈ Lpj (R) (1 < pj < ∞). For k ≥ 1, by the

supports of b and hI , it holds that∫
|x|≥2k

|[b, T ~αε ]i(~f)(x)|p dx

=

∫
|x|≥2k

∣∣∣∣ ∑
I=[0,2`),[−2`,0),`≥1

εI
〈bfi, h1+αi

I 〉
|I|

∏
1≤j≤m,j 6=i

〈fj , h
1+αj

I 〉
|I|

h
σ(~α)
I (x)

∣∣∣∣p dx
≤ C

∫
|x|≥2k

( ∑
I=[0,2`),[−2`,0),`≥k

|εI |‖b‖∞
‖fiχ(−1,1)‖pi

|I|
∏

1≤j≤m,j 6=i
‖fj‖pj

|I|1/p
′
j

|I|
χI(x)

)p
dx

≤ C
(
‖ε‖∞‖b‖∞

m∏
j=1

‖fj‖pj
)p ∫

|x|≥2k

( ∑
I=[0,2`),[−2`,0),`≥k

|I|−1/p−1+1/piχI(x)

)p
dx

≤ C
(
‖ε‖∞‖b‖∞

m∏
j=1

‖fj‖pj
)p ∫

|x|≥2k

(∑
`≥k

2−`(1/p+1/p′i)χ[−2`,2`)(x)

)p
dx

≤ C
(
‖ε‖∞‖b‖∞

m∏
j=1

‖fj‖pj
)p ∞∑

`=k

∫ 2`+1

2`

(
2−`(1/p+1/p′i)

)p
dx

= C

(
‖ε‖∞‖b‖∞

m∏
j=1

‖fj‖pj
)p ∞∑

`=k

2−`p/p
′
i

= C

(
‖ε‖∞‖b‖∞

m∏
j=1

‖fj‖pj
)p

2−kp/p
′
i .

Hence we have

lim
A→∞

∫
|x|≥A

|[b, T ~αε ]i(~f)(x)|p dx = 0

uniformly for ~f with ‖fj‖pj ≤ 1 (1 ≤ j ≤ m). Consequently, when b ∈ CMO, [b, T ~αε ]i

satisfies the condition (b) for any 1 ≤ i ≤ m and ~α ∈ {0, 1}m \ {1, . . . , 1}.
Let |h| < 1. We can rewrite [b, T ~αε ]i(~f)(x+ h)− [b, T ~αε ]i(~f)(x) in the following way

[b, T ~αε ]i(~f)(x+ h)− [b, T ~αε ]i(~f)(x)

= b(x+ h)T ~αε (~f)(x+ h)− T ~αε (f1, . . . , bfi, fi+1, . . . , fm)(x+ h)

− b(x)T ~αε (~f)(x) + T ~αε (f1, . . . , bfi, fi+1, . . . , fm)(x)

= (b(x+ h)− b(x))T ~αε (~f)(x+ h)

+
∑
I∈D

εI(b(x)− b(xI))
m∏
j=1

〈fj , h
1+αj

I 〉
|I|

h
σ(~α)
I (x+ h)
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+
∑
I∈D

εI
〈(b(xI)− b)fi, h1+αi

I 〉
|I|

∏
1≤j≤m,j 6=i

〈fj , h
1+αj

I 〉
|I|

h
σ(~α)
I (x+ h)

−
∑
I∈D

εI(b(x)− b(xI))
m∏
j=1

〈fj , h
1+αj

I 〉
|I|

h
σ(~α)
I (x)

+
∑
I∈D

εI〈(b(xI)− b)fi, h1+αi
I 〉

|I|
∏

1≤j≤m,j 6=i

〈fj , h
1+αj

I 〉
|I|

h
σ(~α)
I (x)

=: I1 + I2 + I3 − I4 − I5,

where xI is the center of the dyadic interval I.

For p with 1/p = 1/p1 + · · ·+ 1/pm, by the boundedness of T ~αε , we obtain

‖I1‖p ≤ C‖b′‖∞|h|
m∏
j=1

‖fj‖pj .

Now, we estimate ‖I2 − I4‖p. Similar as in the proof of Theorem 1.4, we get(∫ ∣∣∣∣ ∑
|I|≥1,I∩(−1,1)6=∅

εI(b(x)− b(xI))
m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
σ(~α)
I (x+ h)− hσ(~α)

I (x))

∣∣∣∣p dx)1/p

≤
∑

|I|≥1,I∩(−1,1)6=∅

(∫ ∣∣∣∣εI(b(x)− b(xI))
m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
σ(~α)
I (x+ h)− hσ(~α)

I (x))

∣∣∣∣p dx)1/p

≤ C
∑

|I|≥1,I∩(−1,1) 6=∅

‖b‖∞‖{εI}‖∞
m∏
j=1

‖fj‖pj
|h|1/p

|I|1/p
≤ C‖b‖∞‖{εI}‖∞

m∏
j=1

‖fj‖pj |h|1/p.

If |h| < |I|, we take any a < min{1, 1/p} and have |h|1/p|I|1−1/p < |h|a|I|1−a. Then we

obtain (∫ ∣∣∣∣εI(b(x)− b(xI))
m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
σ(~α)
I (x+ h)− hσ(~α)

I (x))

∣∣∣∣p dx)1/p

≤ ‖b′‖∞‖{εI}‖∞|I|
m∏
j=1

∣∣∣∣〈fj , h1+αj

I 〉
|I|

∣∣∣∣( ∫ ∣∣hσ(~α)
I (x+ h)− hσ(~α)

I (x)
∣∣p dx)1/p

≤ C‖b′‖∞‖{εI}‖∞
m∏
j=1

‖fjχI‖pj |h|1/p|I|1−1/p

≤ C‖b′‖∞‖{εI}‖∞
m∏
j=1

‖fjχI‖pj |h|a|I|1−a.

When |h| ≥ |I|, as in proof of Theorem 1.4, we have(∫ ∣∣∣∣εI(b(x)− b(xI))
m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
σ(~α)
I (x+ h)− hσ(~α)

I (x))

∣∣∣∣p dx)1/p
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≤ C‖b′‖∞‖{εI}‖∞
m∏
j=1

‖fjχI‖pj |I| ≤ C‖b′‖∞‖{εI}‖∞
m∏
j=1

‖fjχI‖pj |h|a|I|1−a.

Thus, for every ` ∈ N, it holds that(∫ ∣∣∣∣ ∑
|I|=2−`

εI(b(x)− b(xI))
m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
σ(~α)
I (x+ h)− hσ(~α)

I (x))

∣∣∣∣p dx)1/p

≤ C‖b′‖∞‖{εI}‖∞|h|a
∑
|I|=2`

|I|1−a
m∏
j=1

‖fjχI‖pj

≤ C‖b′‖∞‖{εI}‖∞|h|a2−(1−a)`
m∏
j=1

‖fj‖pj .

This leads to(∫ ∣∣∣∣ ∑
|I|<1,I∩(−1,1)6=∅

εI(b(x)− b(xI))
m∏
j=1

〈fj , h
1+αj

I 〉
|I|

(h
σ(~α)
I (x+ h)− hσ(~α)

I (x))

∣∣∣∣p dx)1/p

≤ C‖b′‖∞‖{εI}‖∞
m∏
j=1

‖fj‖pj |h|a.

Then we have ‖I2 − I4‖p ≤ C‖b′‖∞‖{εI}‖∞
∏m
j=1 ‖fj‖pj |h|a. The estimate of ‖I3 − I5‖p is

similar and we omit the details.

Therefore, we have shown that

lim
h→0
‖[b, T ~αε ]i(~f)(x+ h)− [b, T ~αε ]i(~f)(x)‖p = 0

uniformly for ~f with ‖fj‖pj ≤ 1 (j = 1, . . . ,m).

(ii) Proof of compactness for iterated commutators. We will need the following lemma.

Lemma 5.3. Let T be a multilinear operator and b ∈ CMO. Suppose that T is a compact

operator from Lp1(R)× · · · × Lpm(R) to Lp(R). Then for any i with 1 ≤ i ≤ m, [b, T ]i is

a compact operator.

Proof. To illustrate [b, T ]i is a compact operator, we only need to verify conditions (a),

(b) and (c). Let K = {[b, T ]i(~f) : ‖f‖pj ≤ 1, j = 1, . . . ,m}. We can deduce that T is a

bounded operator because T is a compact operator. Therefore, we have

‖[b, T ]i(~f)‖p ≤ ‖b‖∞‖T (~f)‖p + ‖T (f1, . . . , bfi, . . . , fm)‖p

≤
(
‖b‖∞

m∏
j=1

‖fj‖pj +
∏
j 6=i
‖fj‖pj‖bfi‖pi

)

≤ 2‖b‖∞
m∏
j=1

‖fj‖pj ≤ 2‖b‖∞,
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which implies that the condition (a) holds. Therefore, we only need to check that the

conditions (b) and (c) hold. By the boundedness of [b, T ]i(~f), we may assume b ∈ C∞c (R).

Due to the compactness of T , by the Fréchet–Kolmogorov–Riesz–Tsuji theorem, we have

lim
A→∞

sup
‖fj‖pj≤1

∫
|x|≥A

|T (~f)(x)|p dx = 0,(5.1)

lim
h→0

sup
‖fj‖pj≤1

‖T (~f)(x+ h)− T (~f)(x)‖p = 0.(5.2)

We assume that M i
g(
~f) = (f1, . . . , gfi, . . . , fm). From (5.1), we see that

lim
A→∞

sup
‖fj‖pj≤1

∫
|x|≥A

|[b, T ]i(~f)(x)|p dx

. ‖b‖p∞ lim
A→∞

sup
‖fj‖pj≤1

(∫
|x|≥A

|T (~f)(x)|p dx+

∫
|x|≥A

|T (M i
b

‖b‖∞
(~f))(x)|p dx

)
= 0.

Obviously, it follows that

lim
h→0

sup
‖fj‖pj≤1

‖[b, T ]i(~f)(x+ h)− [b, T ]i(~f)(x)‖p

≤ lim
h→0

sup
‖fj‖pj≤1

(
‖b(x+ h)T (~f)(x+ h)− b(x)T (~f)(x+ h)‖p

+ ‖b(x)T (~f)(x+ h)− b(x)T (~f)(x)‖p + ‖T (M i
b(
~f))(x+ h)− T (M i

b(
~f))(x)‖p

)
.

By (5.2) and the boundedness of T , we deduce that

lim
h→0

sup
‖fj‖pj≤1

‖[b, T ]i(~f)(x+ h)− [b, T ]i(~f)(x)‖p

≤ ‖b′‖∞ lim
h→0

sup
‖fj‖pj≤1

|h|‖T (~f)(x+ h)‖p + ‖b‖∞ lim
h→0

sup
‖fj‖pj≤1

‖T (~f)(x+ h)− T (~f)(x)‖p

+ ‖b‖∞ lim
h→0

sup
‖fj‖pj≤1

‖T (M i
b

‖b‖∞
(~f))(x+ h)− T (M i

b
‖b‖∞

(~f))(x)‖p = 0.

Therefore, [b, T ]i is a compact operator for any i with 1 ≤ i ≤ m.

Now, by Lemma 5.3 and the compactness of commutator [b, T ~αε ]i, we can deduce that

iterated commutators T ~αε,Πb is a compact operator for all ~α ∈ {0, 1}m \ {1, . . . , 1}.
(iii) Proof of the compactness of [b,S]. We need the following lemma for [b,S].

Lemma 5.4. Let b ∈ BMO(Rd) and 1 < p < ∞. Then, for any 1 < p < ∞ there exists

C > 0 such that

‖[b,S](f)‖p ≤ C‖b‖BMO‖f‖p.
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Proof. Let x ∈ R and I0 ∈ D contain x. Let 1 < s < ∞ and In0 be the n-th ancestor of

I0. Then, it holds that

[b,S](f)(x) = (b(x)− bI0)Sf(x)− S((b− bI0)fχIn0 )(x)− S((b− bI0)fχ(In0 )c)(x).

It is easy to show that

1

|I0|

∫
I0

|(b(x)− bI0)Sf(z)| dz ≤ C‖b‖BMOM
d
s (S(f))(x)

and
1

|I0|

∫
I0

|S((b− bI0)fχIn0 )(z)| dz ≤ C‖b‖BMOM
d
s (f)(x).

As for S((b − bI0)fχ(In0 )c)(x), take any y ∈ I0 and denote xI0 to be the center of I0.

To estimate S((b− bI0)fχ(In0 )c)(x) on I0, we only need to treat dyadic cubes I, I ′ and I ′′

satisfying I ′, I ′′ ⊂ I, `(I ′) = 2−m`(I), `(I ′′) = 2−n`(I), I ′′ ∩ I0 6= ∅ and I ′ ∩ (In0 )c 6= ∅.
If I ′′ ⊂ I0, it follows that In0 ⊃ (I ′′)n = I, which contradicts I ′ ∩ (In0 )c 6= ∅. So, we have

I0 ( I ′′.

Since hI′′ is a constant on each child of I ′′, it is a constant on I0. Hence we get

S((b− bI0)fχ(In0 )c)(y) =
∑
I∈D

∑
I′,I′′∈D, I′,I′′⊂I

l(I′)=2−ml(I), l(I′′)=2−nl(I)

1

|I|
〈(b− bI0)χ(In0 )cf, hI′〉hI′′(y)

= S((b− bI0)fχ(In0 )c)(xI0).

Thus we have

(5.3) M#([b,S](f))(x) ≤ C‖b‖BMO

(
Md
s (S(f))(x) +Md

s (f)(x)
)
.

Let b ∈ L∞(Rd) and f ∈ Lp(Rd). Then, since [b,S](f)(x) = b(x)S(f)(x) − S(bf)(x), it

follows that [b,S](f) ∈ Lp(Rd). By inequality (5.3), we see that

‖[b,S](f)‖p ≤ C‖b‖BMO‖f‖p.

Now, letting

bj(x) =


j if b(x) > j,

b(x) if |b(x)| ≤ j,

−j if b(x) < −j,

and taking a subsequence (if necessary), we can deduce that (cf. [11]):

‖[b,S](f)‖p ≤ C‖b‖BMO‖f‖p.



540 Heng Gu, Qingying Xue and Kôzô Yabuta

Now we turn to the proof of (iii). We may assume b ∈ C∞c (Rd) with supp b ⊂ (−1, 1)d.

For the sake of simplicity, we only consider the integration on Ek := [0,∞)d \ [0, 2k)d.

Notice that∫
Ek

|[b,S](f)(x)|p dx

=

∫
Ek

∣∣∣∣ ∑
I=[0,2`)d,`≥k

∑
I′,I′′∈D, I′,I′′⊂I

l(I′)=2−ml(I), l(I′′)=2−nl(I)

1

|I|
〈bf, hI′〉hI′′(x)

∣∣∣∣p dx
≤ C

∫
Ek

( ∑
I=[0,2`)d,`≥k

∑
I′,I′′∈D, I′,I′′⊂I

l(I′)=2−ml(I), l(I′′)=2−nl(I)

‖b‖∞‖fχ[0,1)d‖1‖hI′‖∞‖hI′′‖∞
|I|

χI′′(x)

)p
dx

≤ C‖b‖p∞‖f‖pp
∫
Ek

( ∑
I=[0,2`)d,`≥k

|I|−1χI(x)

)p
dx ≤ C‖b‖p∞‖f‖pp × 2−(p−1)dk,

which yields that

lim
A→∞

∫
|x|≥A

|[b,S](f)(x)|p dx = 0

uniformly for f with ‖f‖p ≤ 1. This shows that condition (b) holds.

Now, we are ready to check condition (c). We rewrite [b,S](f)(x+ h)− [b,S](f)(x) in

the following way

[b,S](f)(x+ h)− [b,S](f)(x)

= (b(x+ h)− b(x))S(f)(x+ h)

+
∑
I∈D

∑
I′,I′′∈D, I′,I′′⊂I

l(I′)=2−ml(I), l(I′′)=2−nl(I)

1

|I|
(b(x)− b(xI′))〈f, hI′〉(hI′′(x+ h)− hI′′(x))

−
∑
I∈D

∑
I′,I′′∈D, I′,I′′⊂I

l(I′)=2−ml(I), l(I′′)=2−nl(I)

1

|I|
〈(b− b(xI′))f, hI′〉(hI′′(x+ h)− hI′′(x))

=: II1 + II2 + II3.

The Lp boundedness of S yields that

‖II1‖p ≤ C‖∇b‖∞‖f‖p|h|.

For I, I ′, I ′′ ∈ D satisfying |I| ≥ 1, I ∩ (−1, 1)d 6= ∅, and I ′, I ′′ ⊂ I, l(I ′) = 2−ml(I),

l(I ′′) = 2−nl(I), we have(∫ ∣∣∣∣ 1

|I|
(b(x)− b(xI′))〈f, hI′〉(hI′′(x+ h)− hI′′(x))

∣∣∣∣p dx)1/p

≤ C‖b‖∞|I|−1‖fχI′‖p|I ′|1/p
′‖hI′‖∞‖hI′′‖∞(|h||I|(d−1)/d)1/p

≤ C‖b‖∞‖f‖p|h|1/p|I|−1/(dp).
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Thus, noting that supp b ⊂ (−1, 1)d, we get(∫ ∣∣∣∣ ∑
I∈D, |I|≥1,

I∩(−1,1)d 6=∅

∑
I′,I′′∈D, I′,I′′⊂I

l(I′)=2−ml(I), l(I′′)=2−nl(I)

1

|I|
(b(x)− b(xI′))〈f, hI′〉

× (hI′′(x+ h)− hI′′(x))

∣∣∣∣p dx)1/p

≤ C‖b‖∞‖f‖p|h|1/p · 2(m+n)d
∑

I=[0,2`)d,`∈N

|I|−1/(dp) ≤ C‖b‖∞‖f‖p|h|1/p.

Next, we treat the case |h|d < |I| < 1. For every ` ∈ N, using the support of h
σ(~α)
I (x+

h)− hσ(~α)
I (x) and by Hölder’s inequality, we get(∫ ∣∣∣∣ ∑
I∈D, |h|d<|I|=2−d`,

I∩(−1,1)d 6=∅

∑
I′,I′′∈D, I′,I′′⊂I

l(I′)=2−ml(I), l(I′′)=2−nl(I)

1

|I|
(b(x)− b(xI′))

× 〈f, hI′〉(hI′′(x+ h)− hI′′(x))

∣∣∣∣p dx)1/p

≤ C‖∇b‖∞
(∫ ∣∣∣∣ ∑

I∈D, |h|d<|I|=2−d`,

I∩(−1,1)d 6=∅

∑
I′′∈D, I′′⊂I
l(I′′)=2−nl(I)

|I|
1
d
− 1

p ‖fχI‖p
|hI′′(x+ h)− hI′′(x)|

‖hI′′‖∞

∣∣∣∣p dx)1/p

≤ C‖∇b‖∞
( ∑
I∈D, |h|d<|I|=2−d`,

I∩(−1,1)d 6=∅

|I|
p
d
−1‖fχI‖pp|h||I|

d−1
d

)1/p

≤ C2−`(1−1/p)‖∇b‖∞‖f‖p|h|1/p.

Thirdly, noting that |I|1/d < |h| implies |h|/|I|1/d > 1, we get(∫ ∣∣∣∣ ∑
I∈D, |I|=2−d`≤|h|d<1,

I∩(−1,1)d 6=∅

∑
I′,I′′∈D, I′,I′′⊂I

l(I′)=2−ml(I), l(I′′)=2−nl(I)

1

|I|
(b(x)− b(xI′))

× 〈f, hI′〉(hI′′(x+ h)− hI′′(x))

∣∣∣∣p dx)1/p

≤ C‖∇b‖∞
( ∑
I∈D, |I|=2−d`≤|h|d<1,

I∩(−1,1)d 6=∅

|I|
p
d
|h|
|I|

1
d

‖fχI‖pp
)1/p

≤ C2−`(1−1/p)‖∇b‖∞|h|1/p
( ∑
I∈D, |I|=2d`≤|h|d<1,

I∩(−1,1)d 6=∅

‖fχI‖pp
)1/p

≤ C2−`(1−1/p)‖∇b‖∞‖f‖p|h|1/p.
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Hence (∫ ∣∣∣∣ ∑
I∈D, |I|<1,

I∩(−1,1)d 6=∅

∑
I′,I′′∈D, I′,I′′⊂I

l(I′)=2−ml(I), l(I′′)=2−nl(I)

1

|I|
(b(x)− b(xI′))

× 〈f, hI′〉(hI′′(x+ h)− hI′′(x))

∣∣∣∣p dx)1/p

≤
∞∑
`=1

C2−`(1−1/p)‖∇b‖∞‖f‖p|h|1/p

≤ C‖∇b‖∞‖f‖p|h|1/p.

Thus, we obtain that ‖II2‖p ≤ C‖∇b‖∞‖f‖p|h|1/p. Similarly we have the same estimate

for ‖II3‖p.
Therefore, we have shown that [b,S] satisfies conditions (a)–(c) and [b,S] is a compact

operator.

6. Appendix

In this section, we shall give a lemma, which was used in the proof of Theorem 1.4.

Lemma 6.1. Let X1, . . . , Xm be Banach spaces with norms ‖ · ‖Xj (j = 1, . . . ,m) and Y

be a complete quasi-normed vector space with quasi-norm ‖ · ‖Y . For every n ∈ N let Tn

be a bounded m-linear operator from X1 × · · · × Xm to Y , which is a compact operator,

and T be an m-linear operator from X1 × · · · ×Xm to Y satisfying

lim
n→∞

sup
06=~f∈X1×···×Xm

‖Tn(~f)− T (~f)‖Y∏m
`=1 ‖f`‖X`

= 0,

where ~f = (f1, . . . , fm). Then T is also a compact operator from X1 × · · · ×Xm to Y .

Proof. We borrow the proof idea from Yosida’s book [20, p. 278]. Let {~gj}∞j=1 be a bounded

sequence in X1×· · ·×Xm such ‖gj,l‖Xl
≤ 1 (l = 1, . . . ,m), where ~gj = (gj,1, . . . , gj,m). By

the compact property of each Tn, we can choose, by the diagonal method, a subsequence

{~fj}∞j=1 of {~gj}∞j=1 such that limj→∞ Tn(~fj) exists in Y for every fixed n ∈ N. Noting that

‖fj,`‖X`
≤ 1 (l = 1, . . . ,m) implies

∏m
`=1 ‖fj,`‖X`

≤ 1, we have for every n,

‖T (~fj)− T (~fl)‖Y ≤ C
(
‖T (~fj)− Tn(~fj)‖Y + ‖Tn(~fj)− Tn(~fl)‖Y + ‖Tn(~fl)− T (~fl)‖Y

)
≤ 2C sup

06=~f∈X1×···×Xm

‖Tn(~f)− T (~f)‖Y∏m
`=1 ‖f`‖X`

+ C‖Tn(~fj)− Tn(~fl)‖Y .

Hence

lim
j,l→∞

‖T (~fj)− T (~fl)‖Y ≤ 2C sup
06=~f∈X1×···×Xm

‖Tn(~f)− T (~f)‖Y∏m
`=1 ‖f`‖X`

,
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and so {T (~fj)}∞j=1 is a Cauchy sequence in Y . This shows that T is a compact operator

from X1 × · · · ×Xm to Y .
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