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On the Syzygies of Ample Line Bundles on Fake Projective Planes

Sui-Chung Ng* and Sai-Kee Yeung

Abstract. Our goal is to study the syzygies of the projective embeddings defined by

the ample line bundles on a fake projective plane S. The syzygies are studied in terms

of the property Np. For various kinds of ample line bundles, we give explicit lower

bounds for their powers above which the property Np is satisfied.

1. Introduction

Studying the very-ampleness, projective normality and syzygies of the ample line bundles

on a complex surface is natural and has a long history. The main purpose of this paper is

to give some detailed estimates for fake projective planes.

There are two natural questions for a projective algebraic manifold M of complex

dimension n equipped with an ample line bundle L. The first is to study the smallest

multiple of L that gives a projective embedding of the manifold, and the second is to study

the syzygy relative to such an embedding. For the first question, the Fujita Conjecture

states that KM ⊗ Lk is very ample if k ≥ n + 2. For the second question, there is the

Mukai Conjecture which states that KM ⊗Ln+2+p satisfies the Np property. For surfaces,

Fujita Conjecture is proved by Reider [16]. The Mukai Conjecture is mostly open.

Fake projective planes are interesting surfaces to study among smooth surfaces of

general type since they have the smallest Euler number (viz., 3) among all such surfaces

and have been classified in [3,13,14]. However, there is still no good way to describe such

surfaces directly from classical algebraic geometry in general. For a fake projective plane

S, K3
S is very ample from a well-known result of Bombieri and also Reider [16]. We also

know that KS has no sections. The natural question of whether K2
S is very ample or not

is not settled, even though there are some examples which are true. Hence one would

expect that sharp results for the syzygy of S may be difficult to achieve. The interest
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about syzygy is that it would provide information about the pluricanonical ring of S. As

a consequence of the current work, it turns out that we have pretty good information

about the syzygy, cf. Corollary 1.2, even though it is still short of Mukai Conjecture. The

results of this paper are close to the optimal ones with the currently available techniques.

The difficulty to achieve a sharper result is related to the difficulty regarding the existence

of exceptional collection of objects, cf. Conjecture 5.1. Sharper estimates are obtained for

some special fake projective planes as explained in Theorem 5.3 and Remark 5.4 following

it in §5.

The syzygy of a given projective embedding can be described using the so-called prop-

erty Np, where p is a non-negative integer. For the details of its definition, we refer

the reader to [4]. Here, we simply recall that the property N0 corresponds to projective

normality and the property N1 corresponds to projective normality together with the con-

dition that the homogeneous ideal of the embedded subvariety is generated by quadratic

polynomials. The present paper gives effective results for the lower bounds of the powers

of a given ample line bundle satisfying the property Np on a fake projective plane. The

reader may refer to [18,19] for basic geometric facts about fake projective planes.

For the general study of syzygies related to surfaces of general type, the reader can see,

for example, the works of Banagere–Hanumanthu [1], Gallego–Purnaprajna [6], Hwang–

To [8], Purnaprajna [15] and the very recent work of Niu [12]. Here we remark that

unlike the previous results found in the literature for surfaces of general type, which

are pertaining to base-point-free line bundles and are expressed in terms of some sort of

“regularity” related the relevant line bundles, we established in this paper explicit and

concrete numbers for a given arbitrary ample line bundle, which is not necessarily base-

point-free, and in particular, including the canonical bundle (which has no non-trivial

section).

Our first main result is regarding an arbitrary ample line bundle on a fake projective

plane.

Theorem 1.1. Let A and N be line bundles on a fake projective plane S such that A is

ample and N is nef. Then, A6(p+3) ⊗N satisfies the property Np, where p ≥ 0.

It follows easily from the definition that any fake projective plane S is of Picard

number 1. Moreover, it is known (see for example [19]) that the canonical line bundle can

be written as KS = G3 ⊗ τ , where G is an ample generator G of Pic(S) and τ is some

torsion line bundle. Thus, we have the following immediate corollary of Theorem 1.1.

Corollary 1.2. Let S be a fake projective plane. Then Km
S satisfies the property Np if

m ≥ 2p+ 6, where p ≥ 0. In particular, Km
S is projectively normal if m ≥ 6.
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Remark 1.3. We have also obtained results for smaller values of m, but those require

various additional efforts. In fact, we will see that K2p+2
S (resp. K2p+4

S ) also satisfies the

property Np for p ≥ 1 (resp. p ≥ 0), as a consequence of Theorem 3.6. In particular,

K4
S is also projectively normal. Furthermore, motivated by the existence problem for

exceptional collections for objects in the derived category of coherent sheaves on a fake

projective plane S, if we assume that for any ample generator G of Pic(S) and any torsion

line bundle δ, we have h0(S,G2 ⊗ δ) = 0, a vanishing statement which is a variant of a

conjecture mentioned in [5], then we will be able to show that that K2p+5
S also satisfies

the property Np for p ≥ 0 (Section 5). Such a conjecture is known to be true for fake

projective planes with more than three automorphisms. As an intermediate step of the

proof, we also obtained some vanishing or almost vanishing results concerning the torsion

line bundles of a fake projective plane, which are of some independent interests.

Proposition 1.4. Let δ be a torsion line bundle on a fake projective plane S and G an

ample generator of Pic(S). Then

(a) h1(S, δ) = 0;

(b) h0(S,G⊗ δ) ≤ 1, h0(S,G2 ⊗ δ) ≤ 2 and h0(S,G3 ⊗ δ) ≤ 1.

Finally, we mention the following theorem for an arbitrary base-point-free line bundle

on a fake projective plane, which will be established in Section 4.

Theorem 1.5. Let S be a fake projective plane and B be a base-point-free line bundle

on S. Then, Bm is projectively normal if m ≥ 2. Moreover, for p ≥ 1, Bm satisfies the

property Np if m ≥ p+ 1.

This follows from a vanishing result on the unramified cover of each fake projective

plane defined by the commutator subgroup of its fundamental group.

The results in this paper are established through the well known cohomology criterion

given by Green [7]. The details of Green’s criterion will be recalled in Section 2. To

show that the cohomology groups appearing in Green’s theorem vanish, our main tool is

the classical result of Castelnuovo–Mumford on the surjectivity of certain tensor product

maps on various spaces of global sections, which has been used already in the literature, in

particular in the work of Gallego–Purnaprajna [6] for surfaces under various assumptions

and for the property Np, p ≥ 1. Our goal is to provide as sharp an estimate as possible

for fake projective planes, especially for lower values of p. Careful analysis is needed to

make sure that there is no numerical gap in the range of possible powers of the line bundle

satisfying the theorems of this paper, (see Remark 3.4). We have also made an effort to

make the the presentation reasonably self-contained.
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2. Cohomological criterion for the property Np

We will first recall in this section the cohomological criterion for the property Np obtained

by Green [7].

Let X be a complex projective manifold and L be an ample and base-point-free line

bundle on X. Denote by H0(X,L) the trivial vector bundle on X whose fibers are

H0(X,L). Then we have the following exact sequence of vector bundles

0→ML → H0(X,L)→ L→ 0,

where the fiber of ML at x ∈ X is the subspace in H0(X,L) consisting of the sections

vanishing at x. Using the theory of Koszul cohomology, Green [7] obtained the following

Theorem 2.1 (Green). The line bundle L satisfies the property Np if

H1(X,∧rML ⊗ Ls) = 0

for 0 ≤ r ≤ p+ 1 and s ≥ 1.

Over a field of characteristic zero, ∧rML ⊂M⊗rL is a direct summand and therefore it

is a common practice to simply verify the vanishing of H1(X,M⊗rL ⊗Ls) for studying the

property Np. The main tool for us to achieve this is the following theorem, pertaining to

the so-called Castelnuovo–Mumford regularity (cf. [11]).

Theorem 2.2 (Castelnuovo–Mumford). Let E be a base-point-free line bundle on a pro-

jective variety M and F be a coherent sheaf on M . Suppose that H i(M,F ⊗E−i) = 0 for

i ≥ 1. Then the multiplication mapping

H0(M,F ⊗ Ej)⊗H0(M,E)→ H0(M,F ⊗ Ej+1)

is surjective for all j ≥ 0.

3. Vanishing theorems and proofs of the main theorems

In what follows, we let S be a fake projective plane. We recall some known facts about fake

projective planes, which can be found in the survey articles by Rémy [18] and Yeung [19].

First of all, the Picard number of S is 1 and we will fix an ample generator G of Pic(S). We

have then G ·G = 1. Moreover, if KS denotes the canonical line bundle, then KS = G3⊗τ ,

for some torsion line bundle τ .

Lemma 3.1. Let A be an ample line bundle and σ be a torsion line bunde on S. Then,

H1(S,Ak ⊗ σ) = H2(S,Ak ⊗ σ) = 0 for k ≥ 4.
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Proof. Since A is ample and the Picard number of S is 1, we can write A = Gm ⊗ ε for

some m ∈ N+ and some torsion line bundle ε. Then, for i = 1, 2 and k ≥ 4,

H i(S,Ak ⊗ σ) = H i(S,KS ⊗Gmk−3 ⊗ τ−1 ⊗ εk ⊗ σ) = 0

by Kodaira Vanishing Theorem as Gmk−3 is ample.

Proposition 3.2. Let B be an ample line bundle on S such that B ⊗ K−2S is nef, or

equivalently, B = Gm ⊗ σ for some m ≥ 6 and some torsion line bundle σ. Then Bk is

base-point-free for k ≥ 1 and H1(S,Bk) = H2(S,Bk) = 0 for k ≥ 0.

Proof. By hypotheses, we can write Bk = KS ⊗ L, where L = Gm
′ ⊗ σ′ for some m′ ≥ 3

and some torsion line bundle σ′. Since L · L = (m′)2 ≥ 9, using the classical results of

Reider [16], we see that Bk is base-point-free. For k ≥ 1, the vanishing of H1(S,Bk) and

H2(S,Bk) follows directly from Lemma 3.1, while for k = 0, it follows from the fact that

H1(S,OS) = 0 and H2(S,OS) ∼= H0(S,KS) = 0 for any fake projective plane.

In the rest of this section, we will establish two vanishing theorems for the cohomology

groups appearing in Green’s criterion for the property Np. As mentioned before, our main

tool is the theorem of Castelnuovo–Mumford (Theorem 2.2). The basic ideas behind our

methods are taken from the work of Gallego–Purnaprajna [6]. For base-point-free line

bundles on S, we streamline the arguments in [6] and adapt to the present context for

fake projective planes. Geometric properties of fake projective planes are utilized to make

sure that conditions for the Castelnuovo–Mumford theorem are satisfied.

From Proposition 3.2, if B is an ample line bundle such that B ⊗K−2S is nef, then Bk

is base-point-free for k ≥ 1. Thus, we have following exact sequence of vector bundles

0→MBk → H0(S,Bk)→ Bk → 0.

Tensoring with M
⊗(r−1)
Bk

⊗B` for r ≥ 1 and ` ≥ 0, we have

(3.1) 0→M⊗r
Bk
⊗B` → H0(S,Bk)⊗M⊗(r−1)

Bk
⊗B` →M

⊗(r−1)
Bk

⊗Bk+` → 0

for k, r ≥ 1 and ` ≥ 0.

Theorem 3.3. Let B be an ample line bundle on a fake projective plane S such that

B ⊗K−2S is nef. Let k ≥ 1 and ` ≥ 0. Then,

(i) H1(S,MBk ⊗B`) = 0 if k + ` ≥ 3;

(ii) H1(S,M⊗r
Bk
⊗B`) = 0 if k + ` ≥ r + 2 and ` ≥ r ≥ 2;

(iii) H2(S,M⊗r
Bk
⊗B`) = 0 if `+ 1 ≥ r ≥ 1.
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Proof. We first show that H1(S,MBk ⊗ B`) = 0 if k + ` ≥ 3. In order to simplify the

notations, in the proof we will skip the reference to S when writing the cohomology groups.

From the long exact sequence associated to (3.1), we get the exact sequence

· · · → H0(H0(S,Bk)⊗B`)→ H0(Bk+`)→ H1(MBk ⊗B`)→ H1(H0(S,Bk)⊗B`)→ · · · .

As H1(H0(S,Bk) ⊗ B`) ∼= H0(Bk) ⊗ H1(B`), it vanishes by Proposition 3.2. Thus,

H1(MBk ⊗B`) vanishes if the map H0(H0(S,Bk)⊗B`)→ H0(Bk+`) is surjective. Equiv-

alently, we need the surjectivity for the map

(3.2) H0(Bk)⊗H0(B`)→ H0(Bk+`)

since H0(H0(S,Bk)⊗B`) ∼= H0(Bk)⊗H0(B`). Consider the natural maps

H0(B)⊗ · · · ⊗H0(B)⊗H0(B`)
p−→ H0(Bk)⊗H0(B`)

q−→ H0(Bk+`).

We see that it suffices to have the surjectivity for q ◦ p, which is in turn implied by the

surjectivity of all the mappings

H0(B)⊗H0(Bm−1+`)→ H0(Bm+`)

for 1 ≤ m ≤ k. We now apply the result of Castelnuovo–Mumford (Theorem 2.2). Thus,

the above maps are surjective if

H1(B`−1) = H2(B`−2) = 0.

By Proposition 3.2, these are satisfied if ` ≥ 2. (Here we remark that all the higher

cohomology groups appeared in Castelnuovo–Mumford Theorem vanish because dim(S) =

2.) Thus, we see that for k ≥ 1, H1(S,MBk ⊗ B`) = 0 if ` ≥ 2. Since the roles of k

and ` are symmetric for the mapping in (3.2), it follows that for k ≥ 2, we also have

H1(S,MBk ⊗B`) = 0 for ` = 1. We hence deduce that H1(S,MBk ⊗B`) = 0 if k+ ` ≥ 3.

Note that we can also allow ` = 0 here as the map in (3.2) is surjective for ` = 0. We have

thus proven (i).

To prove (ii) and (iii), we will need to first establish H2(MBk ⊗B`) = 0 for ` ≥ 0 and

H2(M⊗2
Bk
⊗B`) = 0 for ` ≥ 1. We proceed further along the long exact sequence associated

to (3.1),

· · · → H1(M
⊗(r−1)
Bk

⊗Bk+`)→ H2(M⊗r
Bk
⊗B`)→ H2(H0(S,Bk)⊗M⊗(r−1)

Bk
⊗B`)→ · · · .

Here in the sequence, for r = 1, we see that the first term H1(Bk+`) is zero by

Proposition 3.2 and for the last term, we have H2(H0(S,Bk)⊗B`) ∼= H0(Bk)⊗H2(B`) =
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0. It now follows that H2(MBk ⊗B`) = 0 for ` ≥ 0. For r = 2, the first term H1(MBk ⊗
Bk+`) vanishes if 2k + ` ≥ 3 by (i). For the last term,

H2(H0(S,Bk)⊗MBk ⊗B`) ∼= H0(Bk)⊗H2(MBk ⊗B`) = 0

if ` ≥ 0. Therefore, we have H2(M⊗2
Bk
⊗B`) = 0 if ` ≥ 1.

Now we prove the (ii) and (iii) for r ≥ 2 by induction on r.

Consider now the case r = 2. From the long exact sequence associated to (3.1) above,

we have the exact sequence

· · · → H0(H0(S,Bk)⊗MBk ⊗B`)→ H0(MBk ⊗Bk+`)

→ H1(M⊗2
Bk
⊗B`)→ H1(H0(S,Bk)⊗MBk ⊗B`)→ · · · .

The last term

H1(H0(S,Bk)⊗MBk ⊗B`) ∼= H0(Bk)⊗H1(MBk ⊗B`)

vanishes when k+ ` ≥ 3. Hence, for k+ ` ≥ 3, the cohomology H1(M⊗2
Bk
⊗B`) vanishes if

H0(H0(S,Bk)⊗MBk ⊗B`)→ H0(MBk ⊗Bk+`)

is surjective, which is equivalent to the surjectivity of

H0(Bk)⊗H0(MBk ⊗B`)→ H0(MBk ⊗Bk+`)

since

H0(H0(S,Bk)⊗MBk ⊗B`) ∼= H0(Bk)⊗H0(MBk ⊗B`).

From the Castelnuovo–Mumford Theorem again, as in the case for r = 1, the above

map is surjective if we have

H1(MBk ⊗B`−1) = H2(MBk ⊗B`−2) = 0.

By what we have proven previously, these are satisfied if ` ≥ 2 and k + ` ≥ 4.

Suppose now r ≥ 3. From (3.1), we have the exact sequence

· · · → H0(H0(S,Bk)⊗M⊗(r−1)
Bk

⊗B`)→ H0(M
⊗(r−1)
Bk

⊗Bk+`)

→ H1(M⊗r
Bk
⊗B`)→ H1(H0(S,Bk)⊗M⊗(r−1)

Bk
⊗B`)→ · · · .

By the induction hypothesis, the last term

H1(H0(S,Bk)⊗M⊗(r−1)
Bk

⊗B`) ∼= H0(Bk)⊗H1(M
⊗(r−1)
Bk

⊗B`)
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vanishes when k + ` ≥ r and ` ≥ r. Hence, under the same conditions on k, `, r, the

cohomology H1(M⊗r
Bk
⊗B`) vanishes if

H0(H0(S,Bk)⊗M⊗(r−1)
Bk

⊗B`)→ H0(M
⊗(r−1)
Bk

⊗Bk+`)

is surjective, which is equivalent to the surjectivity of

H0(Bk)⊗H0(M
⊗(r−1)
Bk

⊗B`)→ H0(M
⊗(r−1)
Bk

⊗Bk+`)

since

H0(H0(S,Bk)⊗M⊗(r−1)
Bk

⊗B`) ∼= H0(Bk)⊗H0(M
⊗(r−1)
Bk

⊗B`).

We argue similarly with the Castelnuovo–Mumford Theorem. Thus, the above map is

surjective if we have

H1(M
⊗(r−1)
Bk

⊗B`−1) = H2(M
⊗(r−1)
Bk

⊗B`−2) = 0.

The induction hypothesis implies that these conditions are satisfied if k+(`−1) ≥ (r−1)+2

and `− 1 ≥ r − 1 and `− 2 ≥ (r − 1)− 1. In particular, it suffices to have k + ` ≥ r + 2

and ` ≥ r.
It remains to consider H2(M⊗r

Bk
⊗ B`). From the long exact sequence associated to

(3.1), we get the exact sequence

· · · → H1(M
⊗(r−1)
Bk

⊗Bk+`)→ H2(M⊗r
Bk
⊗B`)→ H2(H0(S,Bk)⊗M⊗(r−1)

Bk
⊗B`)→ · · · .

By the induction hypothesis, we have H1(M
⊗(r−1)
Bk

⊗ Bk+`) = 0 for 2k + ` ≥ r + 1 and

k + ` ≥ r − 1. Also by the induction hypothesis,

H2(H0(S,Bk)⊗M⊗(r−1)
Bk

⊗B`) ∼= H0(Bk)⊗H2(M
⊗(r−1)
Bk

⊗B`) = 0

if `+ 1 ≥ r − 1. Combining all these, it now follows that H2(M⊗r
Bk
⊗B`) = 0 if `+ 1 ≥ r.

The proof is now complete.

Remark 3.4. As in the proof of Proposition 3.2, by applying the result of Reider on a

fake projective plane S, it follows easily that for any ample line bundle A, its power Ak is

base-point-free for k ≥ 6 and hence the previous theorem will also imply certain vanishing

statements for A. However, if we just simply do the direct translation in this way, there

will be “gaps” between the powers of A in which we do not know whether the analogous

cohomology groups vanish or not.

In view of the remark above, for the purpose of obtaining a lower bound, above which

every power of an arbitrary ample line bundle on S satisfies the property Np, we improve

upon the proof of Theorem 3.3 and obtain the following
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Theorem 3.5. Let A be an ample line bundle and σ, τ be torsion line bundles on a

fake projective plane S. For r ≥ 1 and k ≥ 12, we have H1(S,M⊗r
Ak⊗σ ⊗ A

` ⊗ τ) = 0 if

` ≥ 6(r + 2), and H2(S,M⊗r
Ak⊗σ ⊗A

` ⊗ τ) = 0 if ` ≥ 6r − 2.

Proof. The structure of the proof will be similar to that of Theorem 3.3 and thus we will

be brief on certain arguments. We will again prove by induction on r.

Suppose r = 1. When ` ≥ 18, as H1(A`⊗τ) = 0, the cohomology H1(MAk⊗σ⊗A`⊗τ)

vanishes if the map

H0(Ak ⊗ σ)⊗H0(A` ⊗ τ)→ H0(Ak+` ⊗ σ ⊗ τ)

is surjective.

Since k ≥ 12, we can write Ak ⊗ σ = Ak1 ⊗ · · · ⊗ Akp ⊗ σ for some p ≥ 2 such that

6 ≤ k1 ≤ k2 ≤ · · · ≤ kp. When k = 12 or 13, such decomposition is unique. If 14 ≤ k ≤ 17,

we choose k1 = 7 and hence 7 ≤ k2 ≤ 10. If k ≥ 18, we can always choose our kj such

that 6 = k1 ≤ · · · ≤ kp ≤ 9 for some p ≥ 3. Hence, for any k ≥ 12, we can always choose

kj such that 6 ≤ k1 ≤ 7 and k1 ≤ · · · ≤ kp ≤ 10.

By considering the natural maps

H0(Ak1)⊗· · ·⊗H0(Akp⊗σ)⊗H0(A`⊗τ) −→ H0(Ak⊗σ)⊗H0(A`⊗τ) −→ H0(Ak+`⊗σ⊗τ),

we see that it suffices to have the surjectivity for the naturally defined mappings

ϕj : H0(Akj )⊗H0(Ak1+···+kj−1+` ⊗ τ)→ H0(Ak1+···+kj+` ⊗ τ)

for 1 ≤ j ≤ p− 1 and also

ϕp : H0(Akp ⊗ σ)⊗H0(Ak1+···+kp−1+` ⊗ τ)→ H0(Ak+` ⊗ σ ⊗ τ).

Since kj ≥ 6, every Akj and also Akp ⊗ σ are base-point-free as in the proof of Propo-

sition 3.2. Thus, we can apply the result of Castelnuovo–Mumford and it says that ϕ1 is

surjective if

H1(A`−k1 ⊗ τ) = H2(A`−2k1 ⊗ τ) = 0.

By Lemma 3.1, these are true if ` ≥ 18 since 6 ≤ k1 ≤ 7. Similarly, for 2 ≤ j ≤ p− 1, ϕj

is surjective if

H1(Ak1+···+kj−1+`−kj ⊗ τ) = H2(Ak1+···+kj−1+`−2kj ⊗ τ) = 0.

These hold true if ` ≥ 18 since k1 ≥ 6 and kj ≤ 10. The surjectivity for ϕp can be seen in

the same manner.
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For H2(MAk⊗σ ⊗A`⊗ τ), it vanishes for ` ≥ 4, which can be seen easily from the long

exact sequence associated to (3.1) for r = 1,

· · · → H1(Ak+` ⊗ σ ⊗ τ)→ H2(MAk⊗σ ⊗A` ⊗ τ)→ H2(H0(S,Ak ⊗ σ)⊗A` ⊗ τ)→ · · · .

The case for r = 1 is now settled.

Suppose now r ≥ 2. We first consider H1(M⊗r
Ak
⊗A`). We have the exact sequence

· · · → H0(H0(S,Ak ⊗ σ)⊗M⊗(r−1)
Ak⊗σ ⊗A

` ⊗ τ)→ H0(M
⊗(r−1)
Ak⊗σ ⊗A

k+` ⊗ σ ⊗ τ)

→ H1(M⊗r
Ak⊗σ ⊗A

` ⊗ τ)→ H1(H0(S,Ak ⊗ σ)⊗M⊗(r−1)
Ak⊗σ ⊗A

` ⊗ τ)→ · · · .

By the induction hypothesis, the last term

H1(H0(S,Ak ⊗ σ)⊗M⊗(r−1)
Ak⊗σ ⊗A

` ⊗ τ) ∼= H0(Ak ⊗ σ)⊗H1(M
⊗(r−1)
Ak⊗σ ⊗A

` ⊗ τ)

vanishes when ` ≥ 6(r + 1). Hence, for ` ≥ 6(r + 1), the cohomology group H1(M⊗r
Ak⊗σ ⊗

A` ⊗ τ) vanishes if

H0(Ak ⊗ σ)⊗H0(M
⊗(r−1)
Ak⊗σ ⊗A

` ⊗ τ)→ H0(M
⊗(r−1)
Ak⊗σ ⊗A

k+` ⊗ σ ⊗ τ)

is surjective. As in the case r = 1, we can write Ak ⊗ σ = Ak1 ⊗ · · · ⊗ Akp ⊗ σ for some

p ≥ 2 such that kj ≥ 6 for 1 ≤ j ≤ p. But for r ≥ 2, we choose our kj such that

6 = k1 ≤ k2 ≤ · · · ≤ kp ≤ 11.

As before, it suffices to have the surjectivity for

φj : H0(Akj )⊗H0(M
⊗(r−1)
Ak⊗σ ⊗A

k1+···+kj−1+` ⊗ τ)→ H0(M
⊗(r−1)
Ak⊗σ ⊗A

k1+···+kj+` ⊗ τ)

for 1 ≤ j ≤ p− 1 and also

φp : H0(Akp ⊗ σ)⊗H0(M
⊗(r−1)
Ak⊗σ ⊗A

k1+···+kp−1+` ⊗ τ)→ H0(M
⊗(r−1)
Ak⊗σ ⊗A

k+` ⊗ σ ⊗ τ).

By Castelnuovo–Mumford Theorem, φ1 is surjective if

H1(M
⊗(r−1)
Ak⊗σ ⊗A

`−k1 ⊗ τ) = H2(M
⊗(r−1)
Ak⊗σ ⊗A

`−2k1 ⊗ τ) = 0.

The induction hypothesis implies that these conditions are satisfied if `− k1 = `− 6 ≥
6(r + 1) and `− 2k1 = `− 12 ≥ 6(r − 1)− 2, which are both true if ` ≥ 6(r + 2).

For 2 ≤ j ≤ p− 1, φj is surjective if

H1(M
⊗(r−1)
Ak⊗σ ⊗A

k1+···+kj−1+`−kj ⊗ τ) = H2(M
⊗(r−1)
Ak⊗σ ⊗A

k1+···+kj−1+`−2kj ⊗ τ) = 0.

By simple arithmetic, together with the induction hypothesis, it follows that these are

satisfied if ` − 5 ≥ 6(r + 1) and ` − 16 ≥ 6(r − 1) − 2. In particular, it is more than

sufficient if we have ` ≥ 6(r + 2). The surjectivity for φp is checked similarly.
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It remains to check that H2(M⊗r
Ak⊗σ ⊗ A

` ⊗ τ) = 0 when ` ≥ 6r − 2. From the exact

sequence

· · · → H1(M
⊗(r−1)
Ak⊗σ ⊗A

k+` ⊗ σ ⊗ τ)

→ H2(M⊗r
Ak⊗σ ⊗A

` ⊗ τ)→ H2(H0(S,Ak ⊗ σ)⊗M⊗(r−1)
Ak⊗σ ⊗A

` ⊗ τ)→ · · · ,

we have, by the induction hypothesis, H1(M
⊗(r−1)
Ak⊗σ ⊗A

k+`⊗σ⊗τ) = 0 for if k+` ≥ 6(r+1).

Since k ≥ 12, the inequality is satisfied when ` ≥ 6r − 2. Similarly,

H2(H0(S,Ak ⊗ σ)⊗M⊗(r−1)
Ak⊗σ ⊗A

` ⊗ τ) ∼= H0(Ak ⊗ σ)⊗H2(M
⊗(r−1)
Ak⊗σ ⊗A

` ⊗ τ) = 0

if ` ≥ 6(r − 1)− 2. Thus, the second term H2(M⊗r
Ak
⊗ A`) in the exact sequence above is

zero when ` ≥ 6r − 2. The proof is now complete.

We are now ready to obtain the final result of this section and also give the proof of

Theorem 1.1.

Theorem 3.6. Let B be an ample line bundle on a fake projective plane S such that

B ⊗K−2S is nef, where KS is the canonical line bundle. Then, Bm is projectively normal

(i.e., satisfies the property N0) if m ≥ 2. More generally, for p ≥ 1, Bm satisfies the

property Np if m ≥ p+ 1.

Proof. As remark earlier, if B ⊗K−2S is nef, then Bm is base-point-free for m ≥ 1. Sup-

pose m ≥ 2. For Bm to satisfy the property N0, by Green’s criterion, it suffices to

have H1(S,Bms) = H1(S,MBm ⊗ Bms) = 0 for s ≥ 1. These follow respectively from

Proposition 3.2 and Theorem 3.3.

Suppose now p ≥ 1 and m ≥ p + 1. To see that Bm satisfies the property Np, we

just need to check H1(S,M⊗rBm ⊗ Bms) = 0 for 0 ≤ r ≤ p + 1 and s ≥ 1. When r = 0,

it again follows from Proposition 3.2. For r = 1, it follows from Theorem 3.3(i) since

m+ms ≥ 2m ≥ 2(p+ 1) ≥ 4. Finally, for 2 ≤ r ≤ p+ 1, we have

m+ms ≥ 2m ≥ 2(p+ 1) ≥ 2r ≥ r + 2,

and ms ≥ p+ 1 ≥ r ≥ 2 and hence the result follows from Theorem 3.3(ii).

Corollary 3.7. In addition to the results for pluricanonical bundles given by Corollary 1.2,

we also have K2p+2
S satisfies the property Np for p ≥ 1. In particular, K2p+4

S satisfies the

property Np for p ≥ 0.

Remark 3.8. For an ample and base-point-free line bundle B on a complex projective

surface of general type, Gallego–Purnaprajna [6] proved that Bm satisfies the property

N1 if m ≥ 3; and for p ≥ 2, Bm satisfies the property Np if m ≥ p + 1. The latter result

contains in particular our results for p ≥ 2 in Theorem 3.6 since the line bundles satisfying

the hypotheses of Theorem 3.6 are ample and base-point-free.
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Proof of Theorem 1.1. Let m be a positive integer such that m ≥ 6(p + 3). We fix an

ample generator G of Pic(S) and let A and N be an ample and a nef line bundle on S

respectively. To show that Am⊗N satisfies the property Np, we will verify for 0 ≤ r ≤ p+1

and s ≥ 1, H1(S,M⊗rAm⊗N ⊗ (Am ⊗N)s) = 0.

We have Am ⊗N = Gk ⊗ σ, for some positive integer k ≥ 6(p + 3) and some torsion

line bundle σ. Thus, H1(S, (Am ⊗N)s) = H1(S,Gks ⊗ σs) = 0 for s ≥ 1 by Lemma 3.1.

Next, for 1 ≤ r ≤ p+ 1 and s ≥ 1,

H1(S,M⊗rAm⊗N ⊗ (Am ⊗N)s) = H1(S,M⊗r
Gk⊗σ ⊗G

ks ⊗ σs) = 0

by Theorem 3.5 since k ≥ 18 and ks ≥ k ≥ 6(p+ 3) ≥ 6(r + 2).

4. Syzygies for base-point-free line bundles

Let S be a fake projective plane. There is a one-to-one correspondence between set of tor-

sion elements of H1(S,Z) and the set of torsion line bundles on S, as given by the Universal

Coefficient Theorem (cf. [10]). Moreover, a torsion line bundle δ corresponds to a surjec-

tive representation ρδ : π1(S)→ Z/dZ, where d ∈ N+ is the order of δ. The representation

ρδ necessarily descends to a representation ρ[δ : H1(S,Z) ∼= π1(S)/[π1(S), π1(S)]→ Z/dZ.

If we let Cδ := ker(ρ[δ), then H1(S,Z)/Cδ ∼= Z/dZ.

Lemma 4.1. Let M be a compact complex manifold with b1(M) = 0 and δ be a torsion

line bundle on M of order d. Let Mδ be the finite unramified covering of M defined by

the kernel of the representation ρδ : π1(M)→ Z/dZ associated to δ. Then h1(M, δ) = 0 if

b1(Mδ) = 0.

Proof. Let π : Mδ →M be the finite unramified covering map. Then π∗δ is the trivial line

bundle on Mδ and we have (see [2, p. 55])

π∗(OMδ
) =

d−1⊕
j=0

OM (δj).

Hence,

1

2
b1(Mδ) = h1(Mδ,OMδ

) = h1(M,π∗(OMδ
)) =

d−1∑
j=0

h1(M, δj).

The lemma now follows.

Let S be a fake projective plane and Π ⊂ PU(2, 1) be the lattice associated to S,

which is isomorphic to the fundamental group π1(S). By definition, b1(S) = 0 as S is

a fake projective plane and it follows that H1(S,Z) ∼= Π/[Π,Π] is a finite abelian group.

Let ρ : Π → Π/[Π,Π] be the canonical projection. Let C be a subgroup of Π/[Π,Π] and
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pC : Π/[Π,Π] → (Π/[Π,Π])/C be the natural projection and ρC = pC ◦ ρ. Let SC =

B2
C/ ker(ρC) be the finite unramified covering of S associated to ker(ρC), where B2

C ⊂ C2

is the unit ball.

Theorem 4.2. For every subgroup C of Π/[Π,Π], we have b1(SC) = 0.

Proof. Let S0 be the unramified covering of S corresponding to the lattice [Π,Π]. As

ker(ρ) = [Π,Π] and ker(ρ) ⊂ ker(ρC), it is clear that S0 is a finite unramified covering of

SC , which is also a holomorphic isometric covering with respect to the canonical metrics

induced from B2
C. In particular, any harmonic one form on B2

C/ ker(ρC) can be pulled

back to B2
C/ ker(ρ) and hence b1(S0) ≥ b1(SC) from Poincaré Duality. Hence it suffices to

check that b1(S0) = 0. Equivalently, we must check that the abelianization Π′/[Π′,Π′] of

Π′ = [Π,Π] is finite. This was kindly verified for us by Donald Cartwright using Magma,

as follows. There are (see [3]) exactly 50 groups Π’s which are fundamental groups of fake

projective planes S. Their names are listed in the file registerofgps.txt in the weblink

of [3]. Each is a subgroup of a maximal arithmetic subgroup Γ of PU(2, 1). Explicit

generators and relations for these Γ’s are given in various files of the weblink. For example,

see C20p2/gpc20p2generators reducesyntax.txt for the generators and relations for

the three Γ’s named (C20, p = 2, ∅), (C20, p = 2, {3+}) and (C20, p = 2, {3−}). Abstract

presentations of these groups Γ are given in the file barGammapresentations.txt of that

weblink, where for each of the fake projective planes S named in registerofgps.txt,

generators s1, s2, . . . are given for its fundamental group Π.

Using the data about generators and relations for the lattices involved from the file

finite-cover-b1.txt, for each of these 50 Π’s, we exhibit the subgroup Π′ = [Π,Π] of Π,

then verify that Π′/[Π′,Π′] is finite using Magma’s AbelianQuotientInvariants routine.

The subgroup Π′ was in each case found as follows. Using Magma’s Rewrite routine,

we first find a presentation of Π from that of Γ. Let n = |Π/[Π,Π]| = |H1(S,Z)|. Using

Magma’s LowIndexNormalSubgroups(Π, n) routine, we list the normal subgroups of Π of

index at most n. Then we find the unique subgroup in this (sometimes lengthy) list which

has index exactly n, and contains all commutators s−1i s−1j sisj .

As discussed at the beginning of this section, for each torsion line bundle δ of order

d on a fake projective plane S = B2
C/Π, there is a subgroup Cδ < H1(S,Z) such that

H1(S,Z)/Cδ ∼= Z/dZ and the representation of π1(S) associated to δ is just the com-

position π1(S) → H1(S,Z) → H1(S,Z)/Cδ. With the identifications π1(S) ∼= Π and

H1(S,Z) ∼= π1(S)/[π1(S), π1(S)] ∼= Π/[Π,Π], the finite unramified cover Mδ associated to

δ described in Lemma 4.1 is just SC in Theorem 4.2 when C = Cδ. Thus, by combining

Lemma 4.1 and Theorem 4.2, we have
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Corollary 4.3. Let S be a fake projective plane and δ be a torsion line bundle on S. Then

h1(S, δ) = 0.

The following lemma is a consequence of a well known theorem of Remmert–Van de

Ven [17, p. 155]. One may also see [9, 15.6.2].

Lemma 4.4. Let M be a complex projective manifold and L be a holomorphic line bundle

on M such that h0(M,L) ≥ 1. Then h0(M,L2) ≥ 2h0(M,L)− 1.

Proposition 4.5. Let S be a fake projective plane and G be an ample generator of

Pic(S). For any torsion line bundle δ on S, h0(S,G ⊗ δ) ≤ 1, h0(S,G2 ⊗ δ) ≤ 2 and

h0(S,G3 ⊗ δ) ≤ 1.

Proof. Since KS = G3 ⊗ τ for some torsion line bundle τ , using Riemann–Roch Formula

with Kodaira Vanishing Theorem, it is easy to get that h0(G4 ⊗ δ2) = 3 for any torsion

line bundle δ. It now follows from Lemma 4.4 that h0(S,G2⊗δ) ≤ 2, which in turn implies

h0(S,G⊗ δ) ≤ 1.

For h0(S,G3⊗δ), the result follows again from Riemann–Roch Formula, together with

Corollary 4.3 and the fact that KS = G3 ⊗ τ .

Proof of Proposition 1.4. This is now a consequence of Corollary 4.3 and Proposition 4.5.

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let G be an ample generator of Pic(S). As the Picard number of S

is 1, B must be ample, and we can write B = Gk⊗σ, for some k ≥ 1 and some torsion line

bundle σ. As B is base-point-free, it is clear from Proposition 4.5 that k 6= 1, 3. We claim

that k 6= 2 neither. Suppose otherwise that k = 2. Then by Proposition 4.5, h0(S,B) ≤ 2.

Since B is base-point-free, we have in fact h0(S,B) = 2. But S is of Picard number 1,

the zero divisors of two linearly independent sections of Γ(S,B) must have non-trivial

intersection, which contradicts base-point-freeness. Hence, k ≥ 4. Finally, as Lemma 3.1

is true whenever k ≥ 4, we conclude that Proposition 3.2, Theorems 3.3 and 3.6 are all

true for any base-point-free line bundle.

5. Refinement with a conjecture on vanishing cohomology

Motivated by the existence problem for exceptional collections for objects in the derived

category of coherent sheaves on a fake projective plane S, we formulate the following

conjecture, which is a variant of Conjecture 1.1 in [5] and Conjecture 2 in [10].
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Conjecture 5.1. Let S be a fake projective plane and G be an ample generator of Pic(S).

Then, H0(S,G2 ⊗ σ) = 0 for any torsion line bundle σ.

The conjecture above implies a stronger version of Lemma 3.1, as follows:

Proposition 5.2. If Conjecture 5.1 holds for a fake projective plane S, then for any

ample generator G and torsion σ of Pic(S), we have H1(S,Gk ⊗ σ) = 0 for k ≥ 1 and

H2(S,Gk ⊗ σ) = 0 for k = 1, 2, or k ≥ 4.

Proof. If H0(S,G2⊗σ) = 0 for any torsion σ, then we also have H0(S,G⊗σ) = 0 for any

torsion σ. Since KS = G3 ⊗ τ for some torsion τ , using Serre Duality, we get

H2(S,G⊗ σ) = H2(S,G2 ⊗ σ) = 0

for any torsion σ. Now, by Riemann–Roch formula, it follows that

H1(S,G⊗ σ) = H1(S,G2 ⊗ σ) = 0

for any torsion σ.

Finally, H1(S,G3⊗σ) = H1(S, τ⊗σ−1) = 0 by Serre Duality and Corollary 4.3. (Note

that H2(S,G3 ⊗ σ) = H0(S, τ ⊗ σ−1) is zero if and only if σ 6= τ .)

With the help of Proposition 5.2, we are now able to show that for a fake projective

plane S satisfying Conjecture 5.1, its pluricanonical line bundle K2p+5
S , which is missed in

Corollary 1.2, also satisfies the property Np. The essential case is the projective normality

(i.e., when p = 0), which we have singled out in the following theorem.

Theorem 5.3. Let S be a fake projective plane satisfying Conjecture 5.1. Then Km
S is

projectively normal for m ≥ 4.

Proof. By Corollary 1.2, it remains to prove that K5
S is projectively normal. Since KS =

G3 ⊗ τ , for some torsion τ , using Green’s criterion (for the property N0), we just need to

show that for any torsion line bundles σ, δ, H1(S,MG15⊗σ⊗G`⊗δ) = 0 for ` = 15s, where

s ∈ N+. As in the proof of Theorem 3.5, after decomposing as G15 ⊗ σ = G7 ⊗G8 ⊗ σ, it

suffices to verify that the tensor product maps

H0(G7)⊗H0(G` ⊗ δ)→ H0(G7+` ⊗ σ ⊗ δ),

H0(G8 ⊗ σ)⊗H0(G7+` ⊗ δ)→ H0(G15+` ⊗ σ ⊗ δ)

are surjective for ` = 15s, s ∈ N+. Using Castelnuovo–Mumford Theorem, it is sufficient

to have, respectively,

H1(G`−7 ⊗ δ) = H2(G`−14 ⊗ δ) = 0
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and

H1(G7+`−8 ⊗ σ ⊗ δ) = H2(G7+`−16 ⊗ σ ⊗ δ) = 0.

By Proposition 5.2, these conditions hold for ` = 15s, s ∈ N+.

Remark 5.4. The above argument implies that Km
S is projective normal for m ≥ 4 for

fake projective planes with cardinality of automorphism group |Aut(S)| > 3, using the

facts, cf. [10] and the references therein, that KS = G3 for some ample line bundle G with

H0(S,G2) = 0 and letting δ and σ be trivial in the above argument.

After settling projective normality, we can now prove that the general property Np

holds for K2p+5
S . We will see that for p ≥ 1, the argument does not require Conjecture 5.1.

The major step is the following vanishing theorem tailored for the purpose.

Proposition 5.5. Let S be a fake projective plane. Let G be an ample generator and σ,

δ be torsions in Pic(S). For k ≥ 18 and r ≥ 1, we have H1(S,M⊗r
Gk⊗σ ⊗ G

` ⊗ δ) = 0 if

` ≥ 6(r + 1).

Proof. We will prove by induction on r. The proof is similar to that of Theorem 3.5 and

will be brief.

Suppose r = 1. We observe that H1(MGk⊗σ ⊗ G` ⊗ δ) = 0 if k ≥ 18 and ` ≥ 12. To

see this, we just need to note that at the beginning of the proof in Theorem 3.5, the roles

of k and ` are symmetric and thus we can exchange k and ` in the vanishing statement

for r = 1 in Theorem 3.5. The case for r = 1 is now settled.

Suppose r = 2. Since k ≥ 18, we have a decomposition Gk ⊗ σ = Gk1 ⊗ · · · ⊗Gkp ⊗ σ
for some p ≥ 3 and 6 = k1 ≤ · · · ≤ kp ≤ 9.

To show that H1(M⊗r
Gk⊗σ⊗G

`⊗δ) = 0, it suffices to verify that H1(M
⊗(r−1)
Gk⊗σ ⊗G

`⊗δ) =

0 and the surjectivity for the following mappings:

ϕj : H0(Gkj )⊗H0(M
⊗(r−1)
Gk⊗σ ⊗G

k1+···+kj−1+` ⊗ δ)→ H0(M
⊗(r−1)
Gk⊗σ ⊗G

k1+···+kj+` ⊗ δ)

for 1 ≤ j ≤ p− 1 and

ϕp : H0(Gkp ⊗ σ)⊗H0(M
⊗(r−1)
Gk⊗σ ⊗G

k1+···+kp−1+` ⊗ δ)→ H0(M
⊗(r−1)
Gk⊗σ ⊗G

k+` ⊗ σ ⊗ δ).

Now, together with Castelnuovo–Mumford Theorem, we conclude that the cohomology

H1(S,M⊗r
Gk⊗σ ⊗G

` ⊗ δ) vanishes if we have

H1(M
⊗(r−1)
Gk⊗σ ⊗G

` ⊗ δ) = 0,

H1(M
⊗(r−1)
Gk⊗σ ⊗G

`−k1 ⊗ δ) = H2(M
⊗(r−1)
Gk⊗σ ⊗G

`−2k1 ⊗ δ) = 0,

H1(M
⊗(r−1)
Gk⊗σ ⊗G

k1+···+kj−1+`−kj ⊗ δ) = H2(M
⊗(r−1)
Gk⊗σ ⊗G

k1+···+kj−1+`−2kj ⊗ δ) = 0
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for 2 ≤ j ≤ p− 1 and

H1(M
⊗(r−1)
Gk⊗σ ⊗G

k+`−2kp ⊗ σ ⊗ δ) = H2(M
⊗(r−1)
Gk⊗σ ⊗G

k+`−3kp ⊗ σ ⊗ δ) = 0.

These all hold if k ≥ 18 and `− 6 ≥ 6r, by the induction hypothesis and Theorem 3.5 (for

the vanishing of H2). The proof is now complete.

Theorem 5.6. Let S be a fake projective plane satisfying Conjecture 5.1. Then Km
S

satisfies the property Np if m ≥ 2p+ 4.

Proof. By Corollary 1.2, it remains to check that K2p+5
S satisfies the property Np. We

have already shown that K5
S satisfies the property N0 in Theorem 5.3 and we now let

p ≥ 1. Let Lp = K2p+5
S . According to Green’s criterion, we just need to check that

H1(S,M⊗rLp ⊗ L
s
p) = 0

for 0 ≤ r ≤ p+ 1 and s ≥ 1.

Let G be an ample generator of Pic(S) and then we can write

Lp = K2p+5
S = G6p+15 ⊗ δ

for some torsion line bundle δ. For p ≥ 1, the desired vanishing statement follows from

Proposition 5.5 since 6p+ 15 > 18 and

(6p+ 15)s ≥ 6p+ 15 > 6(p+ 2) ≥ 6(r + 1).
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[18] R. Rémy, Covolume des groupes S-arithmétiques et faux plans projectifs, Astérisque
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