Planar Graphs Without Pairwise Adjacent 3-, 4-, 5-, and 6-cycle are 4-choosable

Kittikorn Nakprasit and Pongpat Sittitrai*

Abstract

Xu and Wu proved that if every 5 -cycle of a planar graph G is not simultaneously adjacent to 3 -cycles and 4 -cycles, then G is 4 -choosable. In this paper, we improve this result as follows. If G is a planar graph without pairwise adjacent 3-, 4-, 5 -, and 6 -cycle, then G is 4 -choosable.

1. Introduction

Every graph in this paper is finite, simple, and undirected. The concept of choosability was introduced by Vizing in 1976 [12] and by Erdős, Rubin, and Taylor in 1979 [5], independently. A k-assignment L of a graph G assigns a list $L(v)$ (a set of colors) with $|L(v)|=k$ to each vertex v. A graph G is L-colorable if there is a proper coloring f where $f(v) \in L(v)$. If G is L-colorable for any k-assignment L, then we say G is k-choosable.

It is known that every planar graphs is 4 -colorable [1,2]. Thomassen [11] proved that every planar graph is 5 -choosable. Meanwhile, Voight 13 presented an example of non 4-choosable planar graph. Additionally, Gutner [8] showed that determining whether a given planar graph 4 -choosable is NP-hard. Since every planar graph without 3 -cycle always has a vertex of degree at most 3 , it is 4 -choosable. More conditions for a planar graph to be 4 -choosable are investigated. It is shown that a planar graph is 4 -choosable if it has no 4 -cycles [10, 5 -cycles [14, 6 -cycles [7, 7 -cycles [6], intersecting 3 -cycles [15], intersecting 5 -cycles [9], or 3 -cycles adjacent to 4 -cycles [3, 4]. Xu and Wu [16] proved that if every 5 -cycle of a planar graph G is not simultaneously adjacent to 3 -cycles and 4 -cycles, then G is 4 -choosable. In this paper, we improve this result as follows.

Theorem 1.1. If G is a planar graph without pairwise adjacent 3-, 4-, 5-, and 6-cycle, then G is 4 -choosable.

[^0]
2. Preliminaries

First, we introduce some definitions and notation.
Let G be a plane graph. We use $V(G), E(G)$, and $F(G)$ for the vertex set, the edge set, and the face set respectively. We use $B(f)$ to denote a boundary of a face f. A wheel W_{n} is an n-vertex graph formed by connecting a single vertex (hub) to all vertices (external vertices) of an ($n-1$)-cycle. A k-vertex (k^{+}-vertex, k^{-}-vertex, respectively) is a vertex of degree k (at least k, at most k, respectively). The same notations are applied to faces.

A $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$-face f is a face of degree k where vertices on f have degree d_{1}, d_{2}, \ldots, d_{k} in a cyclic order. A $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$-vertex v is a vertex of degree k where faces incident to v have degree $d_{1}, d_{2}, \ldots, d_{k}$ in a cyclic order. Note that some face may appear more than one time in the order.

An extreme face is a bounded face that shares a vertex with the unbounded face. An inner face is a bounded face that is not an extreme face. A $\left(3,5,3,5^{+}\right)$-vertex v is called a flaw 4-vertex if v is incident to a poor inner 5 -face and two inner 3 -faces. A (3,5,3,5+)vertex v is called a pseudo flaw 4-vertex if v is incident to a poor inner 5 -face and at least one extreme 3 -face.

We say $x y$ is a chord in an embedding cycle C if $x, y \in V(C)$ but $x y \in E(G)-E(C)$. An internal chord is a chord inside C while external chord is a chord outside C. A triangular chord is a chord e such that two edges in C and e form a 3-cycle. A graph $C(m, n)$ is obtained from a cycle $x_{1} x_{2} \ldots x_{m+n-2}$ with an internal chord $x_{1} x_{m}$.

A graph $C(l, m, n)$ is obtained from a cycle $x_{1} x_{2} \ldots x_{l+m+n-4}$ with internal chords $x_{1} x_{l}$ and $x_{1} x_{l+m-2}$. A graph $C(m, n, p, q)$ can be defined similarly. We use int (C) and $\operatorname{ext}(C)$ to denote the graphs induced by vertices inside and outside a cycle C, respectively. A cycle C is a separating cycle if $\operatorname{int}(C)$ and $\operatorname{ext}(C)$ are not empty.

Let L be a list assignment of G and let H be an induced subgraph of G. Suppose $G-H$ has an L-coloring ϕ on $G-H$ where L is restricted to $G-H$. For a vertex $v \in H$, let $L^{\prime \prime}(v)$ be a set of colors used on the neighbors of v by ϕ. We define the residual list assignment L^{\prime} of H by $L^{\prime}(v)=L(v)-L^{\prime \prime}(v)$. One can see that if $G-H$ has an L-coloring ϕ and H has an L^{\prime}-coloring, then G has an L-coloring.

The following is a fact on list colorings that we use later.

Lemma 2.1. [5] Let L be a 2-assignment. A cycle C_{n} is L-colorable if and only if n is even or L does not assign the same list to all vertices.

Let \mathcal{A} denote the family of planar graphs without pairwise adjacent 3-, 4-, 5-, and 6-cycle.

Next, we explore some properties of graphs in \mathcal{A} which are helpful in a proof of the main results.

Lemma 2.2. Every graph G in \mathcal{A} does not contain each of the followings:
(1) $C(3,3,4)$,
(2) $C(3,3,5)$,
(3) $C\left(3,4,4^{-}\right)$,
(4) $C(4,3,5)$,
(5) W_{5} that shares exactly one edge with a 6^{-}-cycle.

Proof. Let $C(l, m, n)$ be obtained from a cycle $x_{1} x_{2} \ldots x_{l+m+n-4}$ with internal chords $x_{1} x_{l}$ and $x_{1} x_{l+m-2}$.
(1) Suppose G contains $C(3,3,4)$. Then we have four pairwise adjacent cycles $x_{1} x_{2} x_{3}$, $x_{1} x_{2} x_{3} x_{4}, x_{1} x_{3} x_{4} x_{5} x_{6}$, and $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}$, contrary to $G \in \mathcal{A}$.
(2) Suppose G contains $C(3,3,5)$. Then we have four pairwise adjacent cycles $x_{1} x_{3} x_{4}$, $x_{1} x_{2} x_{3} x_{4}, x_{1} x_{4} x_{5} x_{6} x_{7}$, and $x_{1} x_{3} x_{4} x_{5} x_{6} x_{7}$, contrary to $G \in \mathcal{A}$.
(3) Suppose G contains $C(3,4,3)$. Then we have four pairwise adjacent cycles $x_{1} x_{2} x_{3}$, $x_{1} x_{3} x_{4} x_{5}, x_{1} x_{2} x_{3} x_{4} x_{5}$, and $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}$, contrary to $G \in \mathcal{A}$. Suppose G contains $C(3,4,4)$. Then we have four pairwise adjacent cycles $x_{1} x_{2} x_{3}, x_{1} x_{3} x_{4} x_{5}, x_{1} x_{2} x_{3} x_{4} x_{5}$, and $x_{1} x_{3} x_{4} x_{5} x_{6} x_{7}$, contrary to $G \in \mathcal{A}$.
(4) Suppose G contains $C(4,3,5)$. Then we have four pairwise adjacent cycles $x_{1} x_{4} x_{5}$, $x_{1} x_{2} x_{3} x_{4}, x_{1} x_{2} x_{3} x_{4} x_{5}$, and $x_{1} x_{4} x_{5} x_{6} x_{7} x_{8}$, contrary to $G \in \mathcal{A}$.
(5) Let the hub of W_{5} be q and let external vertices be r, s, u, and v in a cyclic order. Suppose there is a cycle uvw. Then we have four pairwise adjacent cycles $v w u$, $v w u q$, $v w u s q$, and vwusqr, contrary to $G \in \mathcal{A}$. Suppose there is a cycle $u v w x$. Then we have four pairwise adjacent cycles $u s q$, usqv, usqrv, and usqvwx, contrary to $G \in \mathcal{A}$. Suppose there is a cycle uvwxy. Then we have four pairwise adjacent cycles uqv, uqrv, uqsrv, and uqvwxy, contrary to $G \in \mathcal{A}$. Suppose there is a cycle uvwxyz. Then we have four pairwise adjacent cycles $u v q, u v q s, u v q r s$, and $u v w x y z$, contrary to $G \in \mathcal{A}$.

Lemma 2.3. If C is a 6 -cycle with a triangular chord, then C has exactly one chord.
Proof. Let $C=t u v x y z$ with a chord $t v$. Suppose to the contrary that C has another chord e. By symmetry, it suffices to assume that $e=u x, u y, t x, t y$, or $x z$. If $e=u x$, then we have four pairwise adjacent cycles tuv, tuxv, tvxyz, and tuvxyz, contrary to $G \in \mathcal{A}$. If $e=u y$, then we have four pairwise adjacent cycles tuv, uvxy, tvxyz, and tuvxyz, contrary to $G \in \mathcal{A}$. If $e=t x$, then we have four pairwise adjacent cycles tuv, tuvx, tvxyz, and tuvxyz, contrary to $G \in \mathcal{A}$. If $e=t y$, then we have four pairwise adjacent cycles tuv, $t v x y$, tvxyz, and tuvxyz, contrary to $G \in \mathcal{A}$. If $e=x z$, then we have four pairwise adjacent cycles $t u v, t v x z, t v x y z$, and tuvxyz, contrary to $G \in \mathcal{A}$. Thus C has exactly one chord.

3. Structure

To prove Theorem 1.1, we prove a stronger result as follows.
Theorem 3.1. If $G \in \mathcal{A}$ with a 4-assignment L, then each precoloring of a 3-cycle in G can be extended to an L-coloring of G.

We consider (G, C_{0}) and a 4 -assignment L where C_{0} is a precolored 3 -cycle as a minimal counterexample to Theorem 3.1. Embed G in the plane.

Lemma 3.2. G has no separating 3-cycles.
Proof. Suppose to the contrary that there exists a separating 3-cycle C in G. By symmetry, we assume $V\left(C_{0}\right) \subseteq V(C) \cup \operatorname{int}(C)$. By the minimality of G, a precoloring of C_{0} can be extended to $V(C) \cup \operatorname{int}(C)$. After C is colored, then again the coloring of C can be extended to $\operatorname{ext}(C)$. Thus we have an L-coloring of G, a contradiction.

So we may assume that a minimal counterexample (G, C_{0}) has no separating 3-cycles, and C_{0} is the boundary of the unbounded face D of G in the rest of this paper.

Lemma 3.3. Each vertex in $\operatorname{int}\left(C_{0}\right)$ has degree at least four.
Proof. Suppose otherwise that there exists a 3^{-}-vertex v in $\operatorname{int}\left(C_{0}\right)$. By the minimality of $\left(G, C_{0}\right),\left(G-v, C_{0}\right)$ has an L-coloring. One can see that the residual list $L^{\prime}(v)$ is not empty. Thus we can color v and thus extend a coloring to G, a contradiction.

Lemma 3.4. For faces in G, each of the followings holds.
(1) The boundary of a bounded 6^{-}-face is a cycle.
(2) If a bounded k_{1}-face f and a bounded k_{2}-face g are adjacent where $k_{1}+k_{2} \leq 8$, then $B(f) \cup B(g)=C\left(k_{1}, k_{2}\right)$.
(3) If a bounded 4-face f and a bounded 5-face g are adjacent, then $B(f) \cup B(g)$ is $C(4,5)$ or a configuration as in Figure 3.1 where tuy is C_{0}.
(4) If bounded 5-faces f and g are adjacent, then $B(f) \cup B(g)$ is $C(5,5)$ or a configuration as in Figure 3.2.

Proof. (1) One can observe that a boundary of a 5^{-}-face is always a cycle. Consider a bounded 6 -face f. If $B(f)$ is not a cycle, then a boundary closed walk is in a form of uvwxywu. By Lemma 3.3, u or x has degree at least 4. Consequently, uvw or $x y w$ is a separating 3-cycle, contrary to Lemma 3.2.
(2) It suffices to show that such f and g share exactly two vertices. Let $B(f)=u v w$ and $B(g)=v w x$. If $u=x$, then f or g is the unbounded face, a contradiction.

Let $B(f)=u v w$ and $B(g)=v w x y$. If $u=x$ or y, then $d(w)=2$ or $d(v)=2$, contrary to Lemma 3.3.

Let $B(f)=u v w$ and $B(g)=v w x y z$. If $u=x$ or z, then $d(w)=2$ or $d(v)=2$, contrary to Lemma 3.3. If $u=y$, then $v y z$ or $w x y$ is a separating 3 -cycle, contrary to Lemma 3.2.

Let $B(f)=$ stuv and $B(g)=u v w x$. If $s=w$, then $d(v)=2$, contrary to Lemma 3.3. If $s=x$, then $u t x$ or $v w x$ is a separating 3 -cycle, contrary to Lemma 3.2. The remaining cases are similar.
(3) Let $B(f)=$ stuv and $B(g)=u v w x y$. It suffices to show that $V(B(f)) \cap V(B(g))=$ $\{u, v\}$ or $\{u, v, x\}$ where $x=s$ or t. If $t=w$, then $u v w$ is a separating 3 -cycle, contrary to Lemma 3.2. If $t=x$, then tuy is C_{0}, otherwise tuy is a separating cycle, contrary to Lemma 3.2. If $t=y$, then $d(u)=2$, contrary to Lemma 3.3. The remaining cases are similar.

Figure 3.1: A graph F is formed by a 4 -face and a 5 -face with $t u y=C_{0}$.

Figure 3.2: A graph H is formed by two adjacent 5 -faces with but is not $C(5,5)$.
(4) Let $B(f)=r$ stuv and $B(g)=u v w x y$. It suffices to show that $V(B(f)) \cap V(B(g))=$ $\{u, v\}$ or $\{u, v, x=s\}$. If $r=w$, then $d(v)=2$, contrary to Lemma 3.3. If $B(f) \cap B(g)=$ $\{u, v, r=x\}$, then $v w x$, uvxy, uvwxy, and stuvwx are four pairwise adjacent cycles, contrary to $G \in \mathcal{A}$. If $B(f) \cap B(g)=\{u, v, r=x, s=y\}$, then rvs, rvus, rvuts, and rstuvw are four pairwise adjacent cycles, contrary to $G \in \mathcal{A}$, then uts or $v w x$ is a separating 3-cycle, contrary to Lemma 3.2. If $B(f) \cap B(g)=\{u, v, r=y\}$, then ruv is a separating 3 -cycle, contrary to Lemma 3.2. If $B(f) \cap B(g)=\{u, v, s=w\}$, then $r v w$, tuvw, uvwxy, and rwxyuv are four pairwise adjacent cycles, contrary to $G \in \mathcal{A}$. The remaining cases are similar.

Lemma 3.5. If a k-vertex v is incident to bounded faces f_{1}, \ldots, f_{k} in a cyclic order and d_{i} is a degree of a face f_{i} for each $i \in\{1, \ldots, k\}$, then each of the followings holds.
(1) $\left(d_{1}, d_{2}, d_{3}\right) \neq(3,3,4)$,
(2) $\left(d_{1}, d_{2}, d_{3}\right) \neq(3,3,5)$,
(3) $\left(d_{1}, d_{2}, d_{3}\right) \neq\left(3,4,4^{-}\right)$,
(4) $\left(d_{1}, d_{2}, d_{3}\right) \neq(4,3,5)$,
(5) Let H be W_{5} such that a hub and each two vertices of consecutive external vertices form a boundary of an inner 3-face. Then H is not adjacent to a boundary of a 6^{-}-face other than these 3 -faces.

Proof. Let $F=B_{1} \cup B_{2} \cup B_{3}$ where B_{i} denote $B\left(f_{i}\right)$.
(1) Suppose $\left(d_{1}, d_{2}, d_{3}\right)=(3,3,4)$. Let $B_{1}=r s v, B_{2}=v s t$, and $B_{3}=v t x y$. It follows from Lemma 3.4(2) that $V\left(B_{1}\right) \cap V\left(B_{2}\right)=\{s, v\}$ and $V\left(B_{2}\right) \cap V\left(B_{3}\right)=\{t, v\}$. If $r=x$, then $s t x$ or $v x y$ is a separating 3 -cycle, contrary to Lemma 3.2. If $r=y$, then $d(v)=3$, contrary to Lemma 3.3. Thus $V\left(B_{1}\right) \cap V\left(B_{3}\right)=\{v\}$. Altogether we have $F=C(3,3,4)$, contrary to Lemma 2.2(1).
(2) Suppose $\left(d_{1}, d_{2}, d_{3}\right)=(3,3,5)$. Let $B_{1}=r s v, B_{2}=v s t$, and $B_{3}=v t x y z$. It follows from Lemma 3.4(2) that $V\left(B_{1}\right) \cap V\left(B_{2}\right)=\{s, v\}$ and $V\left(B_{2}\right) \cap V\left(B_{3}\right)=\{t, v\}$. We have $C=s t x y z v$ is a 6 -cycle with a triangular chord $t v$. If $r \in\{x, y, z\}$, then C has another chord, contrary to Lemma 2.3. Thus $V\left(B_{1}\right) \cap V\left(B_{3}\right)=\{v\}$. Altogether we have $F=C(3,3,5)$, contrary to Lemma 2.2(2).
(3) Suppose $\left(d_{1}, d_{2}, d_{3}\right)=(3,4,3)$. Let $B_{1}=r s v, B_{2}=v s t u$, and $B_{3}=v u w$. It follows from Lemma 3.4(2) that $V\left(B_{1}\right) \cap V\left(B_{2}\right)=\{s, v\}$ and $V\left(B_{2}\right) \cap V\left(B_{3}\right)=\{u, v\}$. If $r=w$, then $d(v)=3$, contrary to Lemma 3.3. Thus $V\left(B_{1}\right) \cap V\left(B_{3}\right)=\{v\}$. Altogether we have $F=C(3,4,3)$, contrary to Lemma 2.2(3).

Suppose $\left(d_{1}, d_{2}, d_{3}\right)=(3,4,4)$. Let $B_{1}=r s v, B_{2}=v s t u$, and $B_{3}=u v x y$. It follows from Lemma 3.4(2) that $V\left(B_{1}\right) \cap V\left(B_{2}\right)=\{s, v\}$ and $V\left(B_{2}\right) \cap V\left(B_{3}\right)=\{u, v\}$. If $r=x$, then $d(v)=3$, contrary to Lemma 3.3. If $r=y$, then $v u y$ is a separating 3-cycle, contrary to Lemma 3.2. Thus $V\left(B_{1}\right) \cap V\left(B_{3}\right)=\{v\}$. Altogether we have $F=C(3,4,4)$, contrary to Lemma 2.2 (3).
(4) Suppose $\left(d_{1}, d_{2}, d_{3}\right)=(4,3,5)$. Let $B_{1}=q r s v, B_{2}=v s t$, and $B_{3}=v t x y z$. It follows from Lemma 3.4(2) that $V\left(B_{1}\right) \cap V\left(B_{2}\right)=\{s, v\}$ and $V\left(B_{2}\right) \cap V\left(B_{3}\right)=\{t, v\}$. We have $C=s t x y z v$ is a 6 -cycle with a triangular chord $t v$. If $\{q, r\}$ and $\{x, y, z\}$ are not disjoint, then C has another chord or $q=z$. The former contradicts Lemma 2.3 and the latter yields $d(v)=3$, contrary to Lemma 3.3. Thus $V\left(B_{1}\right) \cap V\left(B_{3}\right)=\{v\}$. Altogether we have $F=C(4,3,5)$, contrary to Lemma 2.2(2).
(5) Let v be a hub and let w, x, y, z be external vertices of H in the cyclic order. Suppose to the contrary that H is adjacent to a face f with $B(f)=w x q$, wxqr, wxqrs, or wxqrst. Now we have $\{w, x\} \subseteq V(H) \cap V(B(f))$. By Lemma $2.2(5), V(H) \cap V(B(f)) \neq$ $\{w, x\}$. If $q=y$, then $d(x)=3$, contrary to Lemma 3.3. If $r=y$, then $v w x q y z$ is a 6 -cycle with four triangular chords, contrary to Lemma 2.3. If $s=y$, then $v x w, v x w z$,
$v x w z y$, and $v x q r y z$ are four pairwise adjacent cycles, contrary to $G \in \mathcal{A}$. If $t=y$, then $v x w, v x w z, v x w z y$, and $v x q r s y$ are four pairwise adjacent cycles, contrary to $G \in \mathcal{A}$. The remaining cases lead to similar contradictions. Thus f is not a 6^{-}-face.

Lemma 3.6. Let $C(m, n)$ in $\operatorname{int}\left(C_{0}\right)$ be obtained from a cycle $C=x_{1} \ldots x_{m+n-2}$ with a chord $x_{1} x_{m}$ and $d\left(x_{1}\right) \leq 5$. If C has at most one additional chord e and e is not $x_{m-1} x_{m+1}$ or $x_{1} x_{k}$ where $k \neq m$, then there exists $i \in\{2, \ldots, m+n-2\}$ with $d\left(x_{i}\right) \geq 5$.

Proof. Suppose to the contrary that G has such C with $d\left(x_{i}\right) \leq 4$ for each $i \in\{2, \ldots, m+$ $n-2\}$. By minimality, there exists an L-coloring for $G-C$. Considering the residual list $L^{\prime}\left(x_{i}\right)$ for each $x_{i} \in V(C)$, we have $\left|L^{\prime}\left(x_{m}\right)\right| \geq 3$ and $\left|L^{\prime}\left(x_{i}\right)\right| \geq 2$ for each $x_{i} \in V(C)$.

Case 1. C has exactly one chord. Assume that $\{1,2\} \subseteq L^{\prime}\left(x_{1}\right)$.
Case 1.1. Assume $\{1,2\} \subseteq L^{\prime}\left(x_{i}\right)$ for each x_{i} where $i \neq m$. We can color vertices in a path $C-x_{m}$ with colors 1 and 2 . Finally, we assign an available to x_{m} to complete a coloring.

Case 1.2. Assume that there are adjacent vertices x_{k} and x_{k+1} in $C-x_{m}$ such that $\{1,2\} \subseteq L^{\prime}\left(x_{k}\right)$ but $\{1,2\} \nsubseteq L\left(x_{k+1}\right)$ where $k \leq m$. Assign a color in $L^{\prime}\left(x_{k}\right)$ to x_{k} such that $\left|L^{\prime}\left(x_{k+1}\right)\right| \geq 2$. Apply L^{\prime}-coloring to $x_{k-1}, x_{k-2}, \ldots, x_{1}, x_{m+n-2}, x_{m+n-3}, \ldots, x_{k+2}$ in this order. Consequently, $\left|L^{\prime}\left(x_{k+1}\right)\right| \geq 1$ and thus we can complete an L-coloring.

Case 2. C has exactly one more chord e such that e is not $x_{m-1} x_{m+1}$ or $x_{1} x_{k}$ where $k \neq m$. Let $e=x_{s} x_{t}$. By symmetry, we may assume that $s<t$ and $s<m-1$. Since $\left|L^{\prime}\left(x_{s}\right)\right| \geq 3$, we can apply an L^{\prime}-coloring to x_{s} such that $\left|L^{\prime}\left(x_{s+1}\right)\right| \geq 2$. Apply L^{\prime}-coloring to $x_{s-1}, x_{s-2}, \ldots, x_{1}, x_{m+n-2}, x_{m+n-3}, \ldots, x_{s+2}$ in this order. Consequently, $\left|L^{\prime}\left(x_{s+1}\right)\right| \geq 1$ and thus we can complete an L-coloring.

Corollary 3.7. If v is a flaw vertex, then we have the followings.
(1) v is incident to exactly one poor 5-face.
(2) Each 3-face that is incident to v is a semi-rich face.

Proof. Let v be incident to inner faces $f_{1}, f_{2}, f_{3}, f_{4}$ in a cyclic order where f_{1} and f_{3} are inner 3 -faces, f_{2} is an inner poor 5 -face, and f_{4} is a 5^{+}-face. By Lemma 3.4 $B\left(f_{1}\right) \cup B\left(f_{2}\right)$ and $B\left(f_{2}\right) \cup B\left(f_{3}\right)$ are $C(3,5)$. It follows from Lemmas 3.2 and 3.3 that a 6 -cycle C in such $C(3,5)$ has at most one external chord and such chord (if it exists) is not a triangular chord. By Lemma 3.6, some vertex in $B\left(f_{1}\right) \cup B\left(f_{2}\right)$ and in $B\left(f_{2}\right) \cup B\left(f_{3}\right)$ has degree at least 5 . Since f_{2} is a poor face, some vertex in $B\left(f_{1}\right)$ and in $B\left(f_{3}\right)$ has degree at least 5
(1) If f_{4} is also a poor 5 -face, then f_{1} is a poor face, contrary to the observation above.
(2) By observation above, f_{1} and f_{3} are not poor 3 -faces. Since f_{2} is a poor face, we obtain that f_{1} and f_{3} are not rich faces.

Lemma 3.8. If H in Figure 3.2 is in $\operatorname{int}\left(C_{0}\right)$ and contains a 5^{-}-vertex v, then there is another vertex of H with degree at least 5 in G.

Proof. First, we show that H is an induced subgraph. Suppose to the contrary that there is an edge e joining vertices in $V(H)$ such that $e \notin E(H)$. If $e=t y$, then tuy is a separating 3 -cycle. If $e=u x$, then $s t u$ is a separating 3 -cycle. If $e=s v$, then $r s v$ is a separating 3 -cycle. If $e=r w$, then $r v w$ is a separating 3 -cycle. All consequences contradicts Lemma 3.2. Thus H is an induced subgraph.

Suppose to the contrary that $d(v) \leq 5$ but each of remaining vertices has degree at most 4. By minimality, $G-H$ has an L-coloring where L is restricted to $G-H$. Consider a residual list assignment L^{\prime} on H. Since L is a 4 -assignment, we have $\left|L^{\prime}(s)\right|=4$, $\left|L^{\prime}(u)\right| \geq 3$, and $\left|L^{\prime}(v)\right|,\left|L^{\prime}(r)\right|,\left|L^{\prime}(t)\right|,\left|L^{\prime}(y)\right|,\left|L^{\prime}(w)\right| \geq 2$. We begin by choosing a color c from $L^{\prime}(u)$ such that $\left|L^{\prime}(y)-c\right| \geq 2$. Then we choose colors of v, r, w, t, s, and y in this order, we obtain an L^{\prime}-coloring on H. Thus we can extend an L-coloring to G, a contradiction.

Corollary 3.9. Let v be a k-vertex in $\operatorname{int}\left(C_{0}\right)$ with consecutive incident faces f_{1}, \ldots, f_{k} where $k \leq 5$. If f_{1} and f_{2} are inner 5^{-}-faces, then there exists $w \in B\left(f_{1}\right) \cup B\left(f_{2}\right)$ such that $w \neq v$ and $d(w) \geq 5$.

Proof. It follows from Lemmas 3.2 and 3.4 that that $B\left(f_{1}\right) \cup B\left(f_{2}\right)$ is a graph H as in Figure 3.2 or $C(s, t)$ where $s=d\left(f_{1}\right)$ and $t=d\left(f_{2}\right)$. The former case is proved by Lemma 3.8. Assume $B\left(f_{1}\right) \cup B\left(f_{2}\right)=C(s, t)$. It follows from Lemmas 3.2 and 3.3 that a cycle C in the above $C(s, t)$ has at most one external chord and such chord (if it exists) is not a triangular chord. Use Lemma 3.6 to complete the proof.

Corollary 3.10. If v is a 5 -vertex in which each incident face is $a 5^{-}$-face, then v is incident to at least three faces that are rich or extreme.

Proof. Suppose to the contrary that v is incident to three faces that are neither rich nor extreme. Consequently, v is incident to consecutive inner faces 5^{-}-faces f and g such that each vertex in $B(f) \cup B(g)$ except v have degree 4 . This contradicts Corollary 3.9.

Lemma 3.11. Let $C\left(l_{1}, \ldots, l_{k}\right)$ in $\operatorname{int}\left(C_{0}\right)$ be obtained from a cycle $C=x_{1} \ldots x_{m}$ with $k-1$ internal chords sharing a common endpoint x_{1}. Suppose x_{1} is not incident to other chords while x_{2} or x_{m} is not incident to any chord. If $d\left(x_{1}\right) \leq k+2$, then there exists $i \in\{2,3, \ldots, m\}$ such that $d\left(x_{i}\right) \geq 5$.

Proof. By symmetry, we assume x_{m} is not an endpoint of any chord in C. Suppose to the contrary that $d\left(x_{i}\right) \leq 4$ for each $i=2,3, \ldots, m$. By the minimality of G, the subgraph $G-\left\{x_{1}, \ldots, x_{m}\right\}$ has an L-coloring where L is restricted to $G-\left\{x_{1}, \ldots, x_{m}\right\}$. Consider a
residual list assignment L^{\prime} on x_{1}, \ldots, x_{m}. Since L is a 4 -assignment, we have $\left|L^{\prime}\left(x_{1}\right)\right| \geq 3$ and $\left|L^{\prime}(v)\right| \geq 3$ for each $v \in V(C)$ with an edge $x_{1} v$ and $\left|L^{\prime}\left(x_{i}\right)\right| \geq 2$ for each of the remaining vertices x_{i} in $V(C)$. Since x_{m} is not an endpoint of a chord in C, we can choose a color c from $L^{\prime}\left(x_{1}\right)$ such that $\left|L^{\prime}\left(x_{m}\right)-c\right| \geq 2$. By choosing colors of $x_{2}, x_{3}, \ldots, x_{m}$ in this order, we obtain an L^{\prime}-coloring on G^{\prime}. Thus we can extend an L-coloring to G, a contradiction.

Corollary 3.12. Let v be a 6-vertex with consecutive inner incident faces f_{1}, \ldots, f_{6} and let $F=B_{1} \cup B_{2} \cup B_{3} \cup B_{4}$ where B_{i} denote $B\left(f_{i}\right)$. If $f_{1} \ldots f_{4}$ are inner faces and $\left(d\left(f_{1}\right), d\left(f_{2}\right), d\left(f_{3}\right), d\left(f_{4}\right)\right)=(5,3,5,3)$, then there exists $w \in V(F)-\{v\}$ with $d(w) \geq 5$.

Proof. By Lemma 3.11, it suffices to show that $F=C(5,3,5,3)$. Let cycles $B_{1}=v q r s t$, $B_{2}=v t u, B_{3}=v u w x y$, and $B_{4}=v y z$. Using Lemma 3.4, we have that $V\left(B_{1}\right) \cap V\left(B_{2}\right)=$ $\{v, t\}, V\left(B_{2}\right) \cap V\left(B_{3}\right)=\{v, u\}$, and $V\left(B_{3}\right) \cap V\left(B_{4}\right)=\{v, y\}$. It suffices to show that $V\left(B_{1}\right) \cap V\left(B_{3}\right)=\{v\}=V\left(B_{4}\right) \cap\left(V\left(B_{1}\right) \cup V\left(B_{2}\right)\right)$.

Suppose to the contrary that $V\left(B_{1}\right) \cap V\left(B_{3}\right) \neq\{v\}$. Consider a 6 -cycle vtuwxy with a triangular chord $u v$. If $s=u, w, x$, or y, then $v t u w x y$ has another chord, contrary to Lemma 2.3. Thus $s \notin V\left(B_{1}\right) \cap V\left(B_{3}\right)$. Similarly each of q, w, and y is not in $V\left(B_{1}\right) \cap V\left(B_{3}\right)$. The only remaining possibility is that $r=x$. Suppose this holds. Then $v y z, v y x q, v y x w u$, and vyrstu are four pairwise adjacent cycles, contrary to $G \in \mathcal{A}$. Thus $V\left(B_{1}\right) \cap V\left(B_{3}\right)=$ $\{v\}$ which implies $B_{1} \cup B_{2} \cup B_{3}=C(5,3,5)$. As a consequence, we have $v q r s t u$ and $v t u w x y$ are 6 -cycles with a triangular chord.

If there is a vertex $b \in V\left(B_{4}\right) \cap\left(V\left(B_{1}\right) \cup V\left(B_{2}\right)\right)$ such that $b \neq v$, then vqrstu or vtuwxy has another chord, contrary to Lemma 2.3. This completes the proof.

Corollary 3.13. Let v be a 4-vertex incident to four inner 3 -faces. If all four neighbors of v are 5^{-}-vertices, then at least three of them are 5 -vertices.

Proof. Let w, x, y, z be neighbor of v in a cyclic order. Let cycles $B_{1}=v w x$ and $B_{2}=v x y$. Note that w and y are not adjacent, otherwise $v w y$ is a separating 3 -cycle, contrary to Lemma 3.2. Similarly, x and z are not adjacent.

Suppose to the contrary that there are at least two 4 -vertices among w, x, y, and z. If those two 4 -vertices are not adjacent, say w and y, then $B_{1} \cup B_{2}$ contradicts Lemma 3.6. Thus we assume that w and x are 4 -vertices.

Let H be the graph induced by v and its neighbors. By minimality of G, the graph $G-H$ has an L-coloring where L is restricted to $G-H$. Consider a residual list assignment L^{\prime} on H. Since L is a 4-assignment, we have $\left|L^{\prime}(y)\right|,\left|L^{\prime}(z)\right| \geq 2,\left|L^{\prime}(w)\right|,\left|L^{\prime}(x)\right| \geq 3$, and $\left|L^{\prime}(v)\right|=4$. It suffices to assume that equalities holds for these list sizes. We aim to show that H has an L^{\prime}-coloring, and thus an L-coloring can be extended to G, a contradiction.

Case 1. There is a color t in $L^{\prime}(v)-\left(L^{\prime}(y) \cup L^{\prime}(z)\right)$. We begin by choosing t for v. Each of the residual lists of w, x, y, z now has sizes at least 2. By Lemma 2.1, an even cycle is 2 -choosable, thus H has an L^{\prime}-coloring.

Case 2. $L^{\prime}(v)-\left(L^{\prime}(y) \cup L^{\prime}(z)\right)=\emptyset$. This implies $L^{\prime}(y) \cap L^{\prime}(z)=\emptyset$. Choose $t \in$ $L^{\prime}(v)-L^{\prime}(w)$ for v. If $t \in L^{\prime}(y)$, then $t \notin L^{\prime}(z)$ and we can color y, x, z, and w in this order, otherwise we can color z, y, x, and w in this order. Thus H has an L^{\prime}-coloring. This contradiction completes the proof.

4. Proof of Theorem 3.1

Let the initial charge of a vertex u in G be $\mu(u)=2 d(u)-6$, let the initial charge of a bounded face f in G be $\mu(f)=d(f)-6$, and let the initial charge of the unbounded face D be $\mu(D)=d(D)+6$. Then by Euler's formula $|V(G)|-|E(G)|+|F(G)|=2$ and by the Handshaking lemma, we have

$$
\sum_{u \in V(G)} \mu(u)+\sum_{f \in F(G)} \mu(f)=0
$$

Now we design the discharging rule transferring charge from one element to another to provide a new charge $\mu^{*}(x)$ for all $x \in V(G) \cup F(G)$. The total of new charges remains 0 . If the final charge $\mu^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$ and $\mu^{*}(D)>0$, then we get a contradiction and complete the proof.

Before we establish a discharging rule, some definitions are required.
A 4 -vertex is a special 4-vertex if it is incident to two consecutive inner 3 -faces. A graph $C(3,3,3)$ in $\operatorname{int}\left(C_{0}\right)$ is called a trio. A vertex that is not in any trio is called a good vertex. We call a vertex v incident to a face f in a trio T a bad (worse, worst, respectively) vertex of f if v is incident to exactly one (two, three, respectively) 3-face(s) in T. We call a face f in a trio T a bad (worse, worst, respectively) face of a vertex v if v is a bad (worse, worst, respectively) vertex of f in T. A good face f of a vertex v is a 3-face incident to v such that f is not in a trio. For our purpose, we regard an external vertex of W_{5} as a worse vertex of its incident 3 -faces in W_{5}.

Let $w(v \rightarrow f)$ be the charge transferred from a vertex v to an incident face f. From now on, a vertex v is in $\operatorname{int}\left(C_{0}\right)$ unless stated otherwise. The discharging rules are as follows.
(R1) Let f be an inner 3-face that is not adjacent to another 3-face.
(R1.1) For a 4 -vertex v,

$$
w(v \rightarrow f)= \begin{cases}\frac{9}{10} & \text { if } v \text { is flaw } \\ 1 & \text { otherwise }\end{cases}
$$

(R1.2) For a 5^{+}-vertex v,

$$
w(v \rightarrow f)= \begin{cases}\frac{6}{5} & \text { if } f \text { is a }\left(4,4,5^{+}\right) \text {-face } \\ 1 & \text { otherwise }\end{cases}
$$

(R2) Let f be an inner 3-face that is adjacent to another 3-face.
(R2.1) For a 4 -vertex v,

$$
w(v \rightarrow f)= \begin{cases}\frac{1}{2} & \text { if } v \text { is incident to four internal 3-faces, } \\ 1 & \text { if } f \text { is a good, bad, or worse face of } v, \\ \frac{2}{3} & \text { if } f \text { is a worst face of } v .\end{cases}
$$

(R2.2) For a 5 -vertex v,

$$
w(v \rightarrow f)= \begin{cases}1 & \text { if } f \text { is a good or worst face of } v \\ \frac{5}{4} & \text { if } f \text { is a worse face of } v \\ \frac{3}{2} & \text { if } f \text { is a bad face of } v\end{cases}
$$

(R2.3) For a 6^{+}-vertex v,

$$
w(v \rightarrow f)= \begin{cases}1 & \text { if } f \text { is a good or worst face of } v \\ \frac{3}{2} & \text { if } f \text { is a bad or worse face of } v\end{cases}
$$

(R3) Let f be an inner 4-face.
(R3.1) For a 4 -vertex v, let $w(v \rightarrow f)=\frac{1}{3}$.
(R3.2) For a 5^{+}-vertex v,

$$
w(v \rightarrow f)= \begin{cases}1 & \text { if } f \text { is a }\left(4,4,4,5^{+}\right) \text {-face } \\ \frac{2}{3} & \text { if } f \text { is rich }\end{cases}
$$

(R4) Let f be an inner 5 -face.
(R4.1) For a 4 -vertex v,

$$
w(v \rightarrow f)= \begin{cases}\frac{1}{5} & \text { if } v \text { is flaw and } f \text { is a poor } 5 \text {-face, } \\ \frac{1}{4} & \text { if } v \text { is pseudo flaw and } f \text { is a poor } 5 \text {-face, } \\ \frac{1}{3} & \text { if } v \text { is incident to at most one } 3 \text {-face, } \\ 0 & \text { otherwise. }\end{cases}
$$

(R4.2) For a 5^{+}-vertex v,

$$
w(v \rightarrow f)= \begin{cases}1 & \text { if } f \text { is a }\left(4,4,4,4,5^{+}\right) \text {-face adjacent to five } 3 \text {-faces, } \\ \frac{2}{3} & \text { if } f \text { is a }\left(4,4,4,4,5^{+}\right) \text {-face adjacent to at least one } 4^{+} \text {-face } \\ & \text { other than } f, \\ \frac{1}{t} & \text { if } f \text { is a rich face with } t \text { incident } 5^{+} \text {-vertices. }\end{cases}
$$

(R5) Let f be an inner 3-face. If f is adjacent to a 7^{+}-face g, we let $w(g \rightarrow f)=\frac{1}{8}$.
(R6) The unbounded face D gets $\mu(v)$ from each incident vertex.
(R7) Let f be an extreme face.

$$
w(x \rightarrow f)= \begin{cases}3 & \text { if } f \text { is a } 3 \text {-face incident to a special } 4 \text {-vertex and } x=D, \\ \frac{5}{2} & \text { if } f \text { is a } 3 \text {-face not incident to a special } 4 \text {-vertex } \\ \text { such that } B(f) \text { shares an edge with } C_{0} \text { and } x=D, \\ 2 & \text { if } f \text { is a } 4 \text { - or } 5 \text {-face and } x=D, \\ \text { if } f \text { is a } 3 \text {-face not incident to a special } 4 \text {-vertex } \\ \text { such that } B(f) \text { shares exactly one vertex with } C_{0} \text { and } x=D, \\ \frac{1}{2} & \text { if } f \text { is a } 3 \text {-face incident to a vertex } x \operatorname{in} \operatorname{int}\left(C_{0}\right) \\ & \text { but } x \text { is not a special } 4 \text {-vertex } \\ 0 & \text { otherwise. }\end{cases}
$$

(R8) After (R1) to (R7), redistribute the total of charges of 3-faces in the same cluster of at least three adjacent inner 3 -faces (trio or W_{5}) equally among its 3 -faces.

It remains to show that resulting $\mu^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$. Let v be a k-vertex incident to faces f_{1}, \ldots, f_{k} in a cyclic order. By (R6), we only consider v in $\operatorname{int}\left(C_{0}\right)$. Consider the following cases.
(1) v is a 4-vertex.
(1.1) A vertex v is incident to a 3 -face that is adjacent to another 3 -face.
(1.1.1) v is incident to at least two consecutive 3 -faces.

Assume v is incident to four 3-faces. If v is not adjacent to a vertex in $V\left(C_{0}\right)$, then v is incident to four inner 3 -faces. Thus $\mu^{*}(v) \geq \mu(v)-4 \times \frac{1}{2}=$ 0 by (R2.1). If v is adjacent to exactly one vertex in $V\left(C_{0}\right)$, then v is incident to exactly two inner 3 -faces which are good faces of v. Thus
$\mu^{*}(v) \geq \mu(v)-2 \times 1=0$ by (R2.1) and (R7). Observe that two endpoints of an edge in the boundary of an incident 3 -face of v cannot be both in $V\left(C_{0}\right)$ by Lemma 2.2(5). If v is adjacent to at least two vertices in $V\left(C_{0}\right)$, then each incident face of v is an extreme 3-face by the observation above. Thus $\mu^{*}(v) \geq \mu(v)-4 \times \frac{1}{2}=0$ by (R7).
Assume v is incident to exactly three 3 -faces, say f_{1}, f_{2}, and f_{3}, then f_{4} is a 6^{+}-face by Lemma 3.5 (1), (2). If v is incident to three inner 3 -faces, then $\mu^{*}(v) \geq \mu(v)-3 \times \frac{2}{3}=0$ by (R2.1). If v is incident to exactly two inner 3 -faces and those two are consecutive, then v is a special 4 -vertex, and thus $\mu^{*}(v) \geq \mu(v)-2 \times 1=0$ by (R 2.1). If v is incident to exactly two inner 3 -faces but they are not consecutive, then $\mu^{*}(v) \geq \mu(v)-\frac{1}{2}>0$ by (R7). If v is incident to at most one inner 3 -face, then $\mu^{*}(v) \geq \mu(v)-1-2 \times \frac{1}{2}=0$ by (R2.1) and (R7).
Assume v is incident to exactly two 3 -faces, say f_{1} and f_{2}, then f_{3} and f_{4} are 6^{+}-faces by Lemma $3.5(1)$, (2). Thus $\mu^{*}(v) \geq \mu(v)-2 \times 1=0$ by (R2.1) and (R7).
(1.1.2) v has no adjacent incident 3-faces.

Let f_{1} be a 3 -face adjacent to another 3 -cycle. It follows from Lemma 3.5(1) and (2) that f_{2} and f_{4} are 6^{+}-faces. Then $w\left(v \rightarrow f_{1}\right) \leq 1$ by (R 2.1) and (R7), and $w\left(v \rightarrow f_{3}\right) \leq 1$ by (R2.1), (R3.1), (R4.1), and (R7). Thus $\mu^{*}(v) \geq \mu(v)-2 \times 1=0$.
(1.2) v is not incident to a 3 -face that is adjacent to another 3 -face and v is adjacent to at most one 3 -face.

Using the fact that $w\left(v \rightarrow f_{i}\right) \leq 1$ for a 3 -face f_{i} by (R1.1) and (R7), and $w\left(v \rightarrow f_{i}\right) \leq \frac{1}{3}$ for each 4^{+}-face f_{i} by (R3.1), (R4.1), and (R7), we obtain that $\mu^{*}(v) \geq \mu(v)-1-3 \times \frac{1}{3}=0$.
(1.3) v is not incident to a 3 -face that is adjacent to another 3 -face and v is adjacent to two 3 -faces.

Consequently, v is incident to exactly two 3 -faces, say f_{1} and f_{3}. It follows from Lemma 3.5 (3) that f_{2} and f_{4} are 5^{+}-faces. Assume v is flaw. Consequently, v is incident to exactly one poor 5 -face, say f_{2} by Corollary 3.7(1), and f_{1} and f_{3} are semi-rich 3-faces by Corollary 3.7(2). It follows that $w\left(v \rightarrow f_{i}\right)=\frac{9}{10}$ for $i=1$ and 3 by (R1.1), $w\left(v \rightarrow f_{2}\right) \leq \frac{1}{5}$ and $w\left(v \rightarrow f_{4}\right)=0$ by (R4.1) and (R7). Thus $\mu^{*}(v) \geq \mu(v)-2 \times \frac{9}{10}-\frac{1}{5}=0$.
Assume v is not flaw. If f_{1} and f_{3} are inner faces, then each of f_{2} and f_{4} is an extreme 5 -face or a 6^{+}-face by the definition. Thus $\mu^{*}(v)=\mu(v)-2 \times 1=0$ by (R1.1). If at least one of f_{1} and f_{3} is an extreme 3 -face, then $\mu^{*}(v)=$

$$
\mu(v)-1-\frac{1}{2}-2 \times \frac{1}{4}=0 \text { by (R1.1), (R4.1), and (R7). }
$$

(2) A 5 -vertex v is incident to a 3 -face that is adjacent to another 3 -face.
(2.1) v has at least two consecutive incident 3 -faces.

If v is incident to four 3 -faces say f_{1}, f_{2}, f_{3}, and f_{4}, then one can see that $B\left(f_{1}\right) \cup B\left(f_{2}\right) \cup B\left(f_{3}\right) \cup B\left(f_{4}\right)=C(3,3,3,3)$. But $C(3,3,3,3)$ contains four pairwise adjacent cycles that contradict $G \in \mathcal{A}$. Thus v is incident to at most three consecutive 3 -faces.

If v incident to consecutive three 3 -faces say f_{1}, f_{2}, and f_{3}, then f_{4} and f_{5} are 6^{+}-faces by Lemma $3.5(1)$ and (2). Thus $\mu^{*}(v)=\mu(v)-3 \times 1>0$ by (R2.2) and (R7).
If v incident to exactly two consecutive 3 -faces say f_{1} and f_{2}, then f_{3} and f_{5} are 6^{+}-faces by Lemma 3.5 (1) and (2). Consequently, $w\left(v \rightarrow f_{i}\right) \leq \frac{5}{4}$ for $i=1$ and 2 , and $w\left(v \rightarrow f_{4}\right) \leq \frac{3}{2}$ by (R2.2), (R3.2), (R4.2), and (R7). Thus $\mu^{*}(v) \geq \mu(v)-2 \times \frac{5}{4}-\frac{3}{2}=0$.
(2.2) v is not incident to consecutive 3 -faces.

Let f_{1} be a 3 -face adjacent to another 3 -face. It follows from Lemma 3.5(1) and (2) that f_{2} and f_{5} are 6^{+}-faces. By (R 2.2) and (R 7), $w\left(v \rightarrow f_{1}\right) \leq \frac{3}{2}$. If neither f_{3} nor f_{4} are 3-faces, then $w\left(v \rightarrow f_{i}\right) \leq 1$ for $i=3$ and 4 by (R3.2), (R4.2), and (R7). Thus $\mu^{*}(v) \geq \mu(v)-\frac{3}{2}-2 \times 1>0$.
Now assume that f_{3} is a 3 -face. By the condition of $(2.2), f_{4}$ is a 4^{+}-face which implies $w\left(v \rightarrow f_{4}\right) \leq 1$ by (R3.2), (R4.2), and (R7). If f_{3} is adjacent to another 3 -face, then f_{4} is a 6^{+}-face by Lemma 3.5(1) and (2). Moreover, $w\left(v \rightarrow f_{3}\right) \leq \frac{3}{2}$ by (R 2.2) and (R7). Thus $\mu^{*}(v) \geq \mu(v)-2 \times \frac{3}{2}>0$. If f_{3} is not adjacent to another 3 -face, then $w\left(v \rightarrow f_{3}\right) \leq \frac{6}{5}$ by (R2.2) and (R7). Thus $\mu^{*}(v) \geq \mu(v)-\frac{3}{2}-\frac{6}{5}>0$.
(3) A 5 -vertex v is not incident to a 3 -face that is adjacent to another 3 -face and v is incident to at least one 6^{+}-face. Consequently, v is incident to at most two 3 -faces.
(3.1) v is incident to at least two 6^{+}-faces.

Recall that $w\left(v \rightarrow f_{i}\right) \leq \frac{6}{5}$ for each 3-face f_{i} by (R1.2) and (R7), and w(v) $\left.f_{i}\right) \leq 1$ for each k-face f_{i} where $k=4,5$ by (R3.2), (R4.2), and (R7). If v is incident to $t 3$-faces, then there are at most $3-t$ faces f with $d(f)=4$ or 5 . Thus $\mu^{*}(v) \geq \mu(v)-t \times \frac{6}{5}-(3-t) \times 1>0$ by $t \leq 3$.
(3.2) v is incident to exactly one 6^{+}-face and incident to at most one 3 -face.

If v has no incident 3 -faces, then v has all incident faces f except one 6^{+}-face has $d(f)=4$ or 5 . Thus $\mu^{*}(v) \geq \mu(v)-4 \times 1=0$ by (R3.2), (R4.2), and (R7).

Assume v is incident to exactly one 3 -face, say f_{1}. By Lemma 3.5(3), v is not a $\left(3,4,4,4,6^{+}\right)$- or a $\left(3,4,4,6^{+}, 4\right)$-face. Consequently, v has at least one incident 5 -face f_{j}. Moreover, f_{j} is adjacent to at least one 4^{+}-face. We have $w\left(v \rightarrow f_{1}\right) \leq \frac{6}{5}$ by (R1.2) and (R7), w($\left.v \rightarrow f_{j}\right) \leq \frac{2}{3}$ by (R4.2) and (R7), and $w\left(v \rightarrow f_{i}\right) \leq 1$ for each remaining k-face f_{i} where $k=4,5$ by (R3.2), (R4.2), and (R7). Thus $\mu^{*}(v) \geq \mu(v)-\frac{6}{5}-\frac{2}{3}-2 \times 1>0$.
(3.3) v is incident to exactly one 6^{+}-face and incident to exactly two 3 -faces.

By symmetry and using Lemma 3.5 (3) and (4), we have that v is either a $\left(3,5,3,5,6^{+}\right)$-, $\left(3,5,5,3,6^{+}\right)$- or $\left(3,5,4,3,6^{+}\right)$-vertex.
Assume v is a $\left(3,5,3,5,6^{+}\right)$- or $\left(3,5,5,3,6^{+}\right)$-vertex. Applying Corollary 3.9 to $B\left(f_{2}\right) \cup B\left(f_{3}\right), v$ has an incident 5 -face f_{j} which is rich or extreme. Recall that $w\left(v \rightarrow f_{i}\right) \leq \frac{6}{5}$ for each 3-face f_{i} by (R1.2) and (R7), $w\left(v \rightarrow f_{j}\right) \leq \frac{1}{2}$ by (R4.2) and (R7), and $w\left(v \rightarrow f_{i}\right) \leq 1$ for the remaining 5 -face f_{i} by (R4.2) and (R7). Thus $\mu^{*}(v) \geq \mu(v)-2 \times \frac{6}{5}-\frac{1}{2}-1>0$.
Assume v is a $\left(3,5,4,3,6^{+}\right)$-vertex. Applying Corollary 3.9 to $B\left(f_{1}\right) \cup B\left(f_{2}\right)$, we obtain that f_{1} or f_{2} is rich or extreme. In the former case, $w\left(v \rightarrow f_{1}\right) \leq 1$ by (R1.2) and (R7), and $w\left(v \rightarrow f_{2}\right) \leq \frac{2}{3}$ by (R4.2) and (R7). In the latter case, $w\left(v \rightarrow f_{1}\right) \leq \frac{6}{5}$ by (R1.2) and (R7), and $w\left(v \rightarrow f_{2}\right) \leq \frac{1}{2}$ by (R4.2) and (R7). Combining with $w\left(v \rightarrow f_{3}\right) \leq 1$ by (R3.2) and (R7) and $w\left(v \rightarrow f_{4}\right) \leq \frac{6}{5}$ by (R1.2) and (R7), we have $\mu^{*}(v) \geq \mu(v)-2 \times 1-\frac{2}{3}-\frac{6}{5}>0$ or $\mu^{*}(v) \geq$ $\mu(v)-2 \times \frac{6}{5}-\frac{1}{2}-1>0$.
(4) A 5 -vertex v is not incident to a 3 -face that is adjacent to another 3 -face and v is not incident to a 6^{+}-face. Consequently, v is incident to at most two 3 -faces. Using Corollary 3.10, we have that v has at least three incident faces that are rich or extreme.
(4.1) v has no incident 3 -faces.

If f has an extreme face f_{i}, then $w\left(v \rightarrow f_{i}\right)=0$ by (R7) and $w\left(v \rightarrow f_{i}\right) \leq 1$ for each remaining f_{i} by (R3.2), (R4.2), and (R7). Thus $\mu^{*}(v) \geq \mu(v)-4 \times 1=0$. If f has t rich faces, then $\mu^{*}(v) \geq \mu(v)-t \times \frac{2}{3}-(5-t) \times 1 \geq 0$ by (R3.2), (R4.2), (R7), and $t \geq 3$.
(4.2) v is incident to exactly one 3 -face, say f_{1}. It follows from Lemma 3.5(3) that v has at most two incident 4 -faces.
(4.2.1) v has no incident 4-faces.

We have that $w\left(v \rightarrow f_{1}\right) \leq \frac{6}{5}$ by (R1.2) and (R7) and $w\left(v \rightarrow f_{i}\right) \leq \frac{2}{3}$ for each 5 -face f_{i} by (R4.2) and (R7). Thus $\mu^{*}(v) \geq \mu(v)-\frac{6}{5}-4 \times \frac{2}{3}>0$.
(4.2.2) v has exactly one incident 4 -face.

It follows from Lemma 3.5 (4) that v is a $(3,5,4,5,5)$-face. Recall that $w\left(v \rightarrow f_{1}\right) \leq \frac{6}{5}$ by (R1.2) and (R7), $w\left(v \rightarrow f_{3}\right) \leq 1$ by (R3.2) and (R7), and $w\left(v \rightarrow f_{i}\right) \leq \frac{2}{3}$ for each remaining f_{i} by (R4.2) and (R7). If f_{3} is rich or extreme, then $w\left(v \rightarrow f_{3}\right) \leq \frac{2}{3}$ by (R3.2) and (R7). Thus $\mu^{*}(v) \geq$ $\mu(v)-\frac{6}{5}-4 \times \frac{2}{3}>0$. If f_{3} is neither rich nor extreme, then f_{2} and f_{4} are rich or extreme by Corollary 3.9. Consequently, $w\left(v \rightarrow f_{i}\right) \leq \frac{1}{2}$ for $i=2$ or 4 by (R4.2) and (R7). Thus $\mu^{*}(v) \geq \mu(v)-\frac{6}{5}-1-2 \times \frac{1}{2}-\frac{2}{3}>0$.
(4.2.3) v has exactly two incident 4 -faces.

It follows from Lemma $3.5(3)$ and (4) that v is a $(3,4,5,5,4)$ - or a $(3,5,4,4$, 5)-face. Moreover, v has at least three incident faces that are rich or extreme by Corollary 3.10. Consequently, we have (i) f_{1} and at least one 4 -face f_{i} are rich or extreme, (ii) f_{1} and two 5^{+}-faces are rich or extreme, (iii) a 4 -face and two 5 -faces are rich or extreme, or (iv) two 4 -faces and a 5 -face are rich or extreme.
Recall that $w\left(v \rightarrow f_{1}\right) \leq \frac{6}{5}$ by (R1.2) and (R7), $w\left(v \rightarrow f_{i}\right) \leq 1$ for each 4 -face f_{i} by (R3.2) and (R7), and $w\left(v \rightarrow f_{i}\right) \leq \frac{2}{3}$ for each 5 -face f_{i} by (R4.2) and (R7). Additionally, $w\left(v \rightarrow f_{1}\right) \leq 1$ if f_{1} is rich or extreme by (R1.2) and (R7), $w\left(v \rightarrow f_{i}\right) \leq \frac{2}{3}$ for each rich or extreme 4 -face f_{i} by (R3.2) and (R7), and $w\left(v \rightarrow f_{i}\right) \leq \frac{1}{2}$ for each rich or extreme 5 -face f_{i} by (R4.2) and (R7).
If f_{1} and a 4 -face f_{i} are rich or extreme, then $\mu^{*}(v) \geq \mu(v)-2 \times 1-3 \times \frac{2}{3}=0$. If f_{1} and two 5^{+}-faces are rich or extreme, then $\mu^{*}(v) \geq \mu(v)-1-2 \times$ $1-2 \times \frac{1}{2}=0$. If a 4 -face and two 5^{+}-faces are rich or extreme, then $\mu^{*}(v) \geq \mu(v)-\frac{6}{5}-1-\frac{2}{3}-2 \times \frac{1}{2}>0$. If two 4 -faces and a 5 -face are rich or extreme, then $\mu^{*}(v) \geq \mu(v)-\frac{6}{5}-3 \times \frac{2}{3}-\frac{1}{2}>0$.
(4.3) v is incident to exactly two 3 -faces, say f_{1} and f_{3}.

It follows from Lemma 3.5(3) and (4) that v has no incident 4 -faces. This implies v is a $(3,5,3,5,5)$-vertex. Recall that $w\left(v \rightarrow f_{i}\right) \leq \frac{6}{5}$ for each 3-face f_{i} by (R1.2) and (R7), and $w\left(v \rightarrow f_{i}\right) \leq 1$ for each 5 -face f_{i} by (R4.2) and (R7). Furthermore, $w\left(v \rightarrow f_{i}\right) \leq 1$ for each rich 3-face f_{i} by (R1.2) and (R7), and $w\left(v \rightarrow f_{i}\right) \leq \frac{1}{2}$ for each rich 5 -face f_{i} by (R4.2) and (R7). Furthermore, $w\left(v \rightarrow f_{i}\right)=\frac{1}{2}$ for each extreme 3 -face $\left(f_{i}\right)$ by (R7), and $w\left(v \rightarrow f_{i}\right)=0$ for each extreme 5 -face f_{i} by (R7).
If f_{1} or f_{3} is an extreme 3-face, then $\mu^{*}(v) \geq \mu(v)-\frac{6}{5}-\frac{1}{2}-3 \times \frac{2}{3}>0$. If f_{2}, f_{4}, or f_{5} is an extreme 3 -face, then $\mu^{*}(v) \geq \mu(v)-2 \times \frac{6}{5}-2 \times \frac{2}{3}>0$. Thus we assume that all incident faces of v are inner faces.

If each incident 5 -face is rich, then $\mu^{*}(v) \geq \mu(v)-2 \times \frac{6}{5}-3 \times \frac{1}{2}>0$. If f_{2} is not rich, then f_{1} and f_{3} are rich by Corollary 3.9. Consequently, f_{4} and f_{5} are also rich. Thus $\mu^{*}(v) \geq \mu(v)-3 \times 1-2 \times \frac{1}{2}=0$. If f_{4} is not rich, then f_{3} and f_{5} are rich by Corollary 3.9. Consequently, f_{2} is also rich. Thus $\mu^{*}(v) \geq \mu(v)-\frac{6}{5}-1-\frac{2}{3}-2 \times \frac{1}{2}>0$. The case that f_{5} is not rich is similar.
(5) A 6-vertex v is incident to a 3 -face that is adjacent to another 3 -face.
(5.1) v is incident to at least two consecutive 3 -faces.

Let f_{1}, \ldots, f_{k} be consecutive 3 -faces. Similar to Case (2.1), we have $k \leq$ 3. It follows from Lemma $3.5(1)$ and (2) that v is a $\left(3,3,6^{+}, k_{4}, k_{5}, 6^{+}\right)$- or $\left(3,3,3,6^{+}, k_{5}, 6^{+}\right)$-face. Since $w\left(v \rightarrow f_{i}\right) \leq \frac{3}{2}$ for each 5^{-}-face f_{i} by (R2.3), (R3.2), (R4.2), and (R7), Thus $\mu^{*}(v) \geq \mu(v)-4 \times \frac{3}{2}=0$.
(5.2) v has no adjacent incident 3 -faces.

Let f_{1} be a 3 -face adjacent to another 3 -face. It follows from Lemma 3.5(1) and (2) that f_{2} and f_{6} are 6^{+}-faces. Similar to Case (5.1), we obtain that $\mu^{*}(v) \geq \mu(v)-4 \times \frac{3}{2}=0$.
(6) A 6 -vertex v is not incident to a 3 -face that is adjacent to another 3 -face. Consequently, v is incident to at most three 3 -faces.
(6.1) v is incident to at least one 6^{+}-face.

Recall that $w\left(v \rightarrow f_{i}\right) \leq \frac{6}{5}$ for each 3 -face f_{i} by (R1.2) and (R7), and $w(v \rightarrow$ $\left.f_{i}\right) \leq \frac{3}{2}$ for each k-face f_{i} where $k=4$ or 5 by (R3.2) and (R4.2). Thus $\mu^{*}(v) \geq \mu(v)-t \times \frac{6}{5}-(5-t) \times 1>0$ where $t \leq 3$ is the number of incident 3 -faces.
(6.2) v has no incident 6^{+}-face.
(6.2.1) v has no incident 3-faces.

By (R3.2), (R4.2), and (R7), we have $\mu^{*}(v) \geq \mu(v)-6 \times 1=0$.
(6.2.2) v has exactly one incident 3 -face, say f_{1}.

It follows from Lemma 3.5 (3) that v is not a (3, 4, 4, 4, 4, 4)-vertex. Consequently, v has $s 5$-faces where $t \geq 1$. Note that each incident face of v is adjacent to another 4^{+}-face. It follows that $w\left(v \rightarrow f_{i}\right) \leq \frac{2}{3}$ for each 5 -face f_{i} by (R4.2) and (R7). Recall that $w\left(v \rightarrow f_{1}\right) \leq \frac{6}{5}$ by (R1.2) and (R7), and $w\left(v \rightarrow f_{i}\right) \leq 1$ for each 4-face f. Thus $\mu^{*}(v) \geq \mu(v)-\frac{6}{5}-s \times \frac{2}{3}-(5-s) \times 1>$ 0.
(6.2.3) v has exactly two incident 3 -faces. Consequently, v is a $\left(3, k_{2}, 3, k_{4}, k_{5}, k_{6}\right)$ or ($3, k_{2}, k_{3}, 3, k_{5}, k_{6}$)-vertex.

Assume v is a $\left(3, k_{2}, 3, k_{4}, k_{5}, k_{6}\right)$-face. Then $k_{2}=5$ by Lemma 3.5(3). This implies $k_{4}=k_{6}=5$ by Lemma 3.5(4). Since v is a (3, 5, 3, 5, $\left.4^{+}, 5\right)$-vertex, we have $w\left(v \rightarrow f_{i}\right) \leq \frac{6}{5}$ for $i=1$ and 3 by (R1.2) and (R7), $w\left(v \rightarrow f_{i}\right) \leq 1$ for $i=2$ and 5 by (R3.2),(R4.2) and (R7), and $w\left(v \rightarrow f_{i}\right) \leq \frac{2}{3}$ for $i=4$ and 6 by (R4.2) and (R7). Thus $\mu^{*}(v) \geq \mu(v)-2 \times \frac{6}{5}-2 \times 1-2 \times \frac{2}{3}>0$. Assume v is a $\left(3, k_{2}, k_{3}, 3, k_{5}, k_{6}\right)$-vertex. It follows from Lemma 3.5(4) that $\left\{k_{2}, k_{6}\right\} \neq\{4,5\}$. If $k_{2}=k_{6}=4$, then $k_{3}=k_{5}=5$ by Lemma 3.5(3). Consequently, we may assume that v is a $(3,4,5,3,5,4)$ - and $(3,5,5,3,5,5)$ vertex. Recall that $w\left(v \rightarrow f_{i}\right) \leq \frac{6}{5}$ for $i=1$ and 4 by (R1.2) and (R7), $w\left(v \rightarrow f_{i}\right) \leq 1$ for each 4-face f_{i} by (R3.2) and (R7), and $w\left(v \rightarrow f_{i}\right) \leq \frac{2}{3}$ for each 5 -face f_{i} by (R4.2) and (R7). Thus a (3, 4, 5, 3, 5, 4)-vertex has $\mu^{*}(v) \geq \mu(v)-2 \times \frac{6}{5}-2 \times 1-2 \times \frac{2}{3}>0$, and a $(3,5,5,3,5,5)$-vertex has $\mu^{*}(v) \geq \mu(v)-2 \times \frac{6}{5}-4 \times \frac{2}{3}>0$.
(6.2.4) v has exactly three incident 3 -faces. Consequently, v is a $(3,5,3,5,3,5)$ vertex by Lemma 3.5(3).
Assume v is incident to at least one extreme 5 -face. Consequently, $\mu^{*}(v) \geq$ $\mu(v)-3 \times \frac{6}{5}-2 \times 1>0$ by (R1.2), (R4.2), and (R7).
Assume v is not incident to an extreme 5-face. Consequently, each incident face of v is an inner face. It follows from Corollary 3.12 that each union of the boundaries of four consecutive incident faces has a 5^{+}-vertex other than v. Consequently, two incident 5 -faces of v has at least two incident $5^{+}-$ vertices, or v has one incident 5 -face with at least three incident 5^{+}-vertices. Thus $\mu^{*}(v) \geq \mu(v)-3 \times \frac{6}{5}-2 \times \frac{1}{2}-1>0$, or $\mu^{*}(v) \geq \mu(v)-3 \times \frac{6}{5}-2 \times 1-\frac{1}{3}>0$ by (R1.2), (R4.2), and (R7).
(7) v is a k-vertex where $k \geq 7$.
(7.1) A vertex v is incident to a 3 -face that is adjacent to another 3 -face. Then v is incident to at least two 6^{+}-faces by Lemma 3.5 (1) and (2). Thus $\mu^{*}(v) \geq$ $\mu(v)-(k-2) \times \frac{3}{2}>0$ by (R2.3), (R3.2), (R4.2), and (R7).
(7.2) A vertex v is not incident to a 3 -face that is adjacent to another 3-face. Consequently v is incident to $t 3$-faces where $t \leq k / 2$. Thus $\mu^{*}(v) \geq \mu(v)-t \times \frac{6}{5}-$ $(k-t) \times 1>0$ by (R1.2), (R3.2), (R4.2), and (R7).
(8) An inner 3 -face f is not adjacent to another 3 -face.

If f has no incident flaw 4 -vertices, then $\mu^{*}(f) \geq \mu(f)+3 \times 1=0$ by (R1.1) and (R1.2). If f has an incident flaw vertex, then f is a $\left(4,4,5^{+}\right)$-face by Corollary 3.7(2). Recall that $w(v \rightarrow f) \geq \frac{9}{10}$ for an incident 4-vertex v by (R1.1), and $w(v \rightarrow f) \geq \frac{6}{5}$ for an incident 5^{+}-vertex v by (R1.2). Thus $\mu^{*}(f) \geq \mu(f)+2 \times \frac{9}{10}+\frac{6}{5}=0$.
(9) An inner 3 -face f is adjacent to another 3 -face. Note that we use only (R2) to calculate a new charge.
(9.1) A face f is not in a trio. Then $\mu^{*}(f) \geq \mu(f)+3 \times 1=0$.
(9.2) A face f is in a trio T but not in W_{5} formed by four inner 3 -faces.

Let f_{1}, f_{2}, and f_{3} be 3 -faces in the same trio T. Define $\mu(T):=\mu\left(f_{1}\right)+\mu\left(f_{2}\right)+$ $\mu\left(f_{3}\right)=-9$ and $\mu^{*}(T):=\mu^{*}\left(f_{1}\right)+\mu^{*}\left(f_{2}\right)+\mu^{*}\left(f_{3}\right)$. By (R8), it suffices to prove that $\mu^{*}(T) \geq 0$.
(9.2.1) A worst vertex is a 5^{+}-vertex. Then $\mu^{*}(T) \geq \mu(T)+9 \times 1=0$.
(9.2.2) A worst vertex is a 4 -vertex and each worse vertex is a 4 -vertex. Then two bad vertices are 5^{+}-vertices by Corollary 3.9. Thus $\mu^{*}(T) \geq \mu(T)+3 \times$ $\frac{2}{3}+2 \times \frac{3}{2}+4 \times 1=0$.
(9.2.3) A worst vertex is a 4 -vertex and one of worse vertices is a 5 -vertex. Then Corollary 3.9 yields that the other worse vertex or at least one bad vertex is a 5^{+}-vertex. Thus $\mu^{*}(T) \geq \mu(T)+3 \times \frac{2}{3}+4 \times \frac{5}{4}+2 \times 1=0$ or $\mu^{*}(T) \geq \mu(T)+3 \times \frac{2}{3}+2 \times \frac{5}{4}+\frac{3}{2}+3 \times 1=0$, respectively.
(9.2.4) A worst vertex is a 4 -vertex and one of worse vertices is a 6^{+}-vertex. Then $\mu^{*}(T) \geq \mu(T)+3 \times \frac{2}{3}+2 \times \frac{3}{2}+4 \times 1=0$.
(9.3) A face f is in W_{5} formed by four inner 3-faces incident to v.

Let f_{1}, f_{2}, f_{3}, and f_{4} be 3 -faces in the same W_{5}. Define $\mu\left(W_{5}\right):=\mu\left(f_{1}\right)+$ $\mu\left(f_{2}\right)+\mu\left(f_{3}\right)+\mu\left(f_{4}\right)=-12$ and $\mu^{*}\left(W_{5}\right):=\mu^{*}\left(f_{1}\right)+\mu^{*}\left(f_{2}\right)+\mu^{*}\left(f_{3}\right)+\mu^{*}\left(f_{4}\right)$. By (R8), it suffices to prove that $\mu^{*}\left(W_{5}\right) \geq 0$. Note that each 3 -face in W_{5} is adjacent to a 7^{+}-face by Lemma $3.5(5)$. Thus W_{5} always obtains $4 \times \frac{1}{8}$ from four 7^{+}-faces by (R5).
(9.3.1) Each vertex of W_{5} is a 5^{-}-vertex. Then at least three of them are 5 -vertices by Corollary 3.13. Thus $\mu^{*}\left(W_{5}\right) \geq \mu\left(W_{5}\right)+6 \times \frac{5}{4}+2 \times 1+4 \times \frac{1}{2}+4 \times \frac{1}{8}=0$.
(9.3.2) Exactly one vertex of W_{5} is a 6^{+}-vertex. Then one of the remaining vertices is a 5^{+}-vertex by Corollary 3.9. Thus $\mu^{*}\left(W_{5}\right)=\mu\left(W_{5}\right)+2 \times \frac{3}{2}+2 \times \frac{5}{4}+$ $4 \times 1+4 \times \frac{1}{2}+4 \times \frac{1}{8}=0$.
(9.3.3) At least two vertices of W_{5} are 6^{+}-vertices. Then $\mu^{*}\left(W_{5}\right) \geq \mu\left(W_{5}\right)+4 \times$ $\frac{3}{2}+4 \times 1+4 \times \frac{1}{2}+4 \times \frac{1}{8}>0$.
(10) f is an inner 4 -face.

We claim that f is a $\left(4^{+}, 4^{+}, 4^{+}, 5^{+}\right)$-face. Suppose to the contrary that f is a $(4,4,4,4)$-face. By the minimality of G, there is an L-coloring of $G-B(f)$ where L is restricted to $G-B(f)$. After the coloring, each vertex of $B(f)$ has at least two legal colors. By Lemma 2.1, we can extend an L-coloring to G, a contradiction.

If f is a $\left(4,4,4,5^{+}\right)$-face, then $\mu^{*}(f) \geq \mu(f)+3 \times \frac{1}{3}+1=0$ by (R3). If f is a $\left(4^{+}, 4^{+}, 5^{+}, 5^{+}\right)$- or $\left(4^{+}, 5^{+}, 4^{+}, 5^{+}\right)$-face, then f is a rich face and thus $\mu^{*}(f) \geq$ $\mu(f)+2 \times \frac{1}{3}+2 \times \frac{2}{3}=0$ by (R3).
(11) f is an inner 5 -face.
(11.1) f is a poor 5 -face, that is f is a $(4,4,4,4,4)$-face.

It follows from Lemma 3.5(2) that each incident 4 -vertex of f is incident to at most two 3 -faces. If an incident vertex v of f is incident to at most one 3 -face, then $w(v \rightarrow f)=\frac{1}{3}$ by (R4.1). If an incident vertex v of f is incident to two 3 -faces, then v is a flaw vertex or a pseudo flaw vertex, and thus $w(v \rightarrow f) \geq \frac{1}{5}$ by (R4.1). Thus $\mu^{*}(f) \geq \mu(f)+5 \times \frac{1}{5}=0$.
(11.2) f is a $\left(4,4,4,4,5^{+}\right)$-face.
(11.2.1) f is adjacent to at least one 4^{+}-face g. It follows from (R4.2) that $w(v \rightarrow$ $f)=\frac{2}{3}$ for an incident 5^{+}-vertex v of f. Consider a 4 -vertex $u \in V(B(f)) \cap$ $V(B(g))$. It follows from Lemma 3.5(2) that u is incident to at most one 3face. Consequently, $w(u \rightarrow f)=\frac{1}{3}$ by (R4.1). Thus $\mu^{*}(f) \geq \mu(f)+\frac{2}{3}+\frac{1}{3}=$ 0.
(11.2.2) f is adjacent to five 3 -faces. Then $\mu^{*}(f)=\mu(f)+1=0$ by (R4.2).
(11.3) f is a rich face with t incident 5^{+}-vertices. Then $\mu^{*}(f) \geq \mu(f)+t \times \frac{1}{t}=0$ by (R4.2).
(12) f is an inner 6^{+}-face.

If f is a 6 -face, then $\mu^{*}(f)=\mu(f)=0$. If f is a k-face where $k \geq 7$, then $\mu^{*}(f) \geq$ $\mu(f)-k \times \frac{1}{8}>0$ by (R5).
(13) f is an extreme face.

It follows from (R7) that $w(D \rightarrow f)=3$ if a 3 -face f is adjacent to a special 4-vertex. Consequently $\mu^{*}(f)=\mu(f)+3=0$. Thus we assume f is a 3 -face not incident to a special 4 -vertex, a 4 -face, or a 5 -face.
(13.1) f is a 3 -face that shares exactly one vertex, say u, with C_{0}. It follows from (R7) that $w(D \rightarrow f)=2$ and $w(v \rightarrow f)=\frac{1}{2}$ for each incident vertex v in $\operatorname{int}\left(C_{0}\right)$. Thus $\mu^{*}(f)=\mu(f)+2+2 \times \frac{1}{2}=0$.
(13.2) f is a 3 -face that shares an edge with C_{0}. It follows from (R7) that $w(D \rightarrow$ $f)=\frac{5}{2}$ and $w(v \rightarrow f)=\frac{1}{2}$ for an incident vertex v in int $\left(C_{0}\right)$. Thus $\mu^{*}(f)=$ $\mu(f)+\frac{5}{2}+\frac{1}{2}=0$.
(13.3) f is a 4 - or 5 -face. Then $\mu^{*}(f) \geq \mu(f)+2 \geq 0$ by (R7).
(14) D is the unbounded face.

If a 3 -face is incident to a special 4 -vertex, then we call it a special 3 -face, otherwise we call it a non-special 3 -face.

Let $f_{3}^{*}, f_{3}^{\prime}, f^{\prime}$ be the number of special 3-faces sharing an incident vertex with D, nonspecial 3 -faces sharing exactly one incident edge with D, non-special 3 -faces sharing exactly one incident vertex with D or 4 - or 5 -faces sharing incident vertices with D, respectively. Let $E\left(C_{0}, V(G)-C_{0}\right)$ be the set of edges between C_{0} and $V(G)-C_{0}$, and let $e\left(C_{0}, V(G)-C_{0}\right)$ be its size. Let $E^{*}\left(C_{0}, V(G)-C_{0}\right)$ be the set of edges between C_{0} and $V(G)-C_{0}$ that are incident with special 3-faces, and let $e^{*}\left(C_{0}, V(G)-C_{0}\right)$ be its size. Let $E^{\prime}\left(C_{0}, V(G)-C_{0}\right)=E\left(C_{0}, V(G)-C_{0}\right)-E^{*}\left(C_{0}, V(G)-C_{0}\right)$, and let $e^{\prime}\left(C_{0}, V(G)-C_{0}\right)$ be its size.

Then by (R6) and (R7),

$$
\begin{aligned}
\mu^{*}(D)= & 3+6+\sum_{v \in C_{0}}(2 d(v)-6)-3 f_{3}^{*}-\frac{5}{2} f_{3}^{\prime}-2 f^{\prime} \\
= & 9+2 \sum_{v \in C_{0}}(d(v)-2)-2 \times 3-3 f_{3}^{*}-\frac{5}{2} f_{3}^{\prime}-2 f^{\prime} \\
= & 3-\frac{1}{2} f_{3}^{\prime}+2 e\left(C_{0}, V(G)-C_{0}\right)-3 f_{3}^{*}-2 f_{3}^{\prime}-2 f^{\prime} \\
= & 3-\frac{1}{2} f_{3}^{\prime}+\left(2 e^{*}\left(C_{0}, V(G)-C_{0}\right)-3 f_{3}^{*}\right) \\
& +\left(2 e^{\prime}\left(C_{0}, V(G)-C_{0}\right)-2 f_{3}^{\prime}-2 f^{\prime}\right) .
\end{aligned}
$$

So we may consider that each edge in $E\left(C_{0}, V(G)-C_{0}\right)$ gives a charge of 2 to D. It follows from Lemma 2.2(1),(2),(5) and Lemma 3.4(2) that an edge in $E^{*}\left(C_{0}, V(G)-\right.$ C_{0}) is not incident to an extreme non-special 3-face, and not incident to an extreme 4 - or 5 -face. Moreover, an extreme special 3 -face f share incident edges with at most one another extreme special 3 -face. Consider an extreme special 3 -face f that does not share incident edges with other extreme special 3 -faces. By the observation above, f contributes 2 to $e^{*}\left(C_{0}, V(G)-C_{0}\right)$ and 1 to f_{3}^{*}. Consider two extreme special 3 -faces f and g that share an incident edge. By the observation above, f and g contribute 3 to $e\left(C_{0}, V(G)-C_{0}\right)$ and 2 to f_{3}^{*}. Altogether, $2 e^{*}\left(C_{0}, V(G)-C_{0}\right)-3 f_{3}^{*} \geq$ 0 . Similarly, $2 e^{\prime}\left(C_{0}, V(G)-C_{0}\right)-2 f_{3}^{\prime}-2 f^{\prime} \geq 0$. Note that $f_{3}^{\prime} \leq 3$. Thus $\mu^{*}(D)>0$.

This completes the proof.

Acknowledgments

This work has received scholarship under the Post-Doctoral Training Program from Khon Kaen University, Thailand.

Kittikorn Nakprasit is supported by National Research Council of Thailand and Khon Kaen University under Mid-Career Research Grant (years 2021-2024) in the project of Graph Structural Analysis for Solving Graph Coloring Problems.

The authors would like to thank the referees for their careful reading and valuable suggestions. The authors also would like to express our gratitude to Tao Wang for many important comments pointing out arguments that required some improvement.

References

[1] K. Appel and W. Haken, Every planar map is four colorable I: Discharging, Illinois J. Math. 21 (1977), no. 3, 429-490.
[2] K. Appel, W. Haken and J. Koch, Every planar map is four colorable II: Reducibility, Illinois J. Math. 21 (1977), no. 3, 491-567.
[3] O. V. Borodin and A. O. Ivanova, Planar graphs without triangular 4-cycles are 4choosable, Sib. Èlektron. Mat. Izv. 5 (2008), 75-79.
[4] P. Cheng, M. Chen and Y. Wang, Planar graphs without 4-cycles adjacent to triangles are 4-choosable, Discrete Math. 339 (2016), no. 12, 3052-3057.
[5] P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs, in: Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979), 125-157, Congress. Numer. XXVI, Utilitas Math., Winnipeg, Man., 1980.
[6] B. Farzad, Planar graphs without 7-cycles are 4-choosable, SIAM J. Discrete Math. 23 (2009), no. 3, 1179-1199.
[7] G. Fijavž, M. Juvan, B. Mohar and R. Škrekovski, Planar graphs without cycles of specific lengths, European J. Combin. 23 (2002), no. 4, 377-388.
[8] S. Gutner, The complexity of planar graph choosability, Discrete Math. 159 (1996), no. 1-3, 119-130.
[9] D.-Q. Hu and J.-L. Wu, Planar graphs without intersecting 5-cycles are 4-choosable, Discrete Math. 340 (2017), no. 8, 1788-1792.
[10] P. C. B. Lam, B. Xu and J. Liu, The 4-choosability of plane graphs without 4-cycles, J. Combin. Theory Ser. B 76 (1999), no. 1, 117-126.
[11] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62 (1994), no. 1, 180-181.
[12] V. G. Vizing, Coloring the vertices of a graph in prescribed colors, Diskret. Analiz 1976 (1976), no. 29, Metody Diskret. Anal. v Teorii Kodov i Shem, 3-10, 101.
[13] M. Voigt, List colourings of planar graphs, Discrete Math. 120 (1993), no. 1-3, 215219.
[14] W. Wang and K.-W. Lih, Choosability and edge choosability of planar graphs without five cycles, Appl. Math. Lett. 15 (2002), no. 5, 561-565.
[15] \qquad , Choosability and edge choosability of planar graphs without intersecting triangles, SIAM J. Discrete Math. 15 (2002), no. 4, 538-545.
[16] R. Xu and J.-L. Wu, A sufficient condition for a planar graph to be 4-choosable, Discrete Appl. Math. 224 (2017), 120-122.

Kittikorn Nakprasit and Pongpat Sittitrai
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
E-mail addresses: kitnak@hotmail.com, pongpat.sittitrai@gmail.com

[^0]: Received July 29, 2020; Accepted July 4, 2021.
 Communicated by Daphne Der-Fen Liu.
 2020 Mathematics Subject Classification. 05C10, 05C15.
 Key words and phrases. list coloring, 4-choosable, planar graphs, discharging method.
 *Corresponding author.

