
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 25, No. 5, pp. 867–885, October 2021

DOI: 10.11650/tjm/210305

Sign-balances of Tableaux with at Most Three Rows

Tung-Shan Fu and Chien-Tai Ting*

Abstract. Let the sign of a standard Young tableau (SYT) be the sign of the per-

mutation obtained by reading the entries row by row from left to right, starting from

the top row. By a sign-reversing involution on the tableaux in terms of lattice paths,

we obtain the sign-balance of n-cell SYTs of all shapes with at most three rows. For

skew shapes, we obtain partial results on the sign-balance enumeration of 2n-cell skew

SYTs of all shapes with at most three rows, under a parity condition of the skew part.

1. Introduction

1.1. The sign of a tableau

The shape of an integer partition λ = (λ1, λ2, . . .) of n is a left-justified array of cells with

λi cells in the ith row. For a partition µ = (µ1, µ2, . . .) with λi ≥ µi for all i, the skew shape

of λ/µ is the array obtained by removing the cells of µ from λ. An n-cell skew standard

Young tableau T is a filling of a shape λ/µ with entries {1, 2, . . . , n}, increasing along

rows and columns. If the skew part µ is empty then T is called a standard Young tableau

(SYT). The sign of a tableau T , denoted by sign(T ), is defined to be (−1)inv(σ(T )), where

σ(T ) is the permutation obtained from T by reading the entries row by row from left to

right, starting from the top row. For example, the permutation obtained from the tableau

T shown below is σ(T ) = 1 3 6 2 5 7 4 8, which has 6 inversions, and hence sign(T ) = +1.

T =

1 3 6

2 5 7

4 8

←→ σ(T ) = 1 3 6 2 5 7 4 8.

Stanley conjectured that the sign-balance of all n-cell SYTs is 2bn/2c. This conjecture

was proved independently by Lam [3], Reifegerste [5] and Sjöstrand [7]. For skew shapes,

Sjöstrand [8] obtained analogous sign-balance identities by the skew Robinson–Schensted

correspondence invented by Sagan and Stanley [6]. Lam [4] gave an alternative proof of

Sjöstrand’s skew sign-balance results. In this paper, we study the sign-balance of n-cell

(skew) SYTs of all shapes with at most three rows.
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1.2. Main results

Let Tn denote the set of n-cell SYTs of all shapes with at most three rows. It is well

known that the cardinality of Tn is the nth Motzkin number mn. The Motzkin num-

bers {mn}n≥0 = {1, 1, 2, 4, 9, 21, 51, . . .} can be defined by m0 = 1 and mn = mn−1 +∑n
k=2mk−2mn−k for n ≥ 1 [9, A001006]. One of our main results is that the sign-balance

of the set T2n (T2n+1 , respectively) of SYTs can be expressed as a partial sum of the

sequence of Motzkin numbers.

Theorem 1.1. For n ≥ 0, the following results hold.

(i)
∑
T∈T2n

sign(T ) = 1 +m0 +m1 + · · ·+mn−1.

(ii)
∑

T∈T2n+1

sign(T ) = 1 +m0 +m1 + · · ·+mn−1.

The proof of Theorem 1.1 is accomplished by a sign-reversing involution on the tableaux,

on the basis of a previously established bijection between standard domino tableaux and

partial Motzkin paths by Cheng et al. in [2].

The generating polynomial for Motzkin numbers {mn}n≥0 is

M = M(x) =
∑
n≥0

mnx
n =

1− x−
√

1− 2x− 3x2

2x2
.

Notice that the sign-balance results in Theorem 1.1 can be expressed in the form of the

generating polynomial as

∑
n≥0

 ∑
T∈T2n

sign(T )

xn =
∑
n≥0

 ∑
T∈T2n+1

sign(T )

xn =
1 + xM

1− x
.

For skew shapes, let T (µ1,µ2)
n denote the set of n-cell skew SYTs of all shapes with at

most three rows and the skew part µ = (µ1, µ2). We consider the 2n-cell skew SYTs. The

enumerations of sign-balance of the initial sets T (µ1,µ2)
2n are listed below for several skew

shapes µ = (µ1, µ2).

We obtain partial results on the enumeration of sign-balance of T (µ1,µ2)
n , under a parity

condition of µ1 and µ2. We make use of the χ-notation that maps each statement P onto

{0, 1}, defined as χ(P ) = 1 if P is true, and 0 otherwise.
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µ n : 1 2 3 4 5 6 7 8 9

(0,0) 2 3 5 9 18 39 90 217 540

(1,1) 2 3 5 13 28 67 160 397 1002

(2,0) 3 6 12 25 55 127 305 755 1913

(3,1) 2 5 11 25 58 149 370 945 2472

(3,2) 2 5 11 25 58 139 342 861 2208

(3,3) 3 6 12 25 65 155 389 991 2555

(4,1) 2 4 9 21 51 127 323 835 2188

(4,2) 3 9 22 53 128 315 790 2017 5229

Table 1.1: The sign-balances of T (µ1,µ2)
2n .

Theorem 1.2. For e1 ≥ e2 ≥ 0, the following results hold.

(i) We have

∑
n≥0

 ∑
T∈T (2e1,2e2)

2n

sign(T )

xn =

e2∑
a=1

e1−e2∑
b=1

xe1−a−bM e1−a−b+1

+

e2∑
a=0

e1−e2∑
b=0

χ(ab = 0)xe1−a−bM e1−a−b (1 + xM)

1− x
.

(ii) We have

∑
n≥0

 ∑
T∈T (2e1+1,2e2)

2n

sign(T )

xn

=

e2∑
a=1

e1−e2∑
b=0

xe1−a−bM e1−a−b+1 +

e1−e2∑
b=0

xe1−bM e1−b (1 + xM)

1− x
.

(iii)
∑
n≥0

 ∑
T∈T (2e1+2,2e2+1)

2n

sign(T )

xn =

e2∑
a=0

e1−e2∑
b=0

xe1−a−bM e1−a−b+1.

For the skew part µ = (2e1 + 1, 2e2 + 1), since our approach does not apply in this

case, so far we have no solution. See the discussion in the concluding remarks.

Let Rn ⊂ Tn be the subset of n-cell SYTs of all shapes with at most two rows. It

is known that the cardinality of Rn is
(

n
bn/2c

)
[1, Corollary 3.4]. We obtain the following

sign-balance results.
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Theorem 1.3. For n ≥ 1, the following results hold.

(i)
∑

T∈R2n

sign(T ) = 2

(
n− 1

bn−12 c

)
.

(ii)
∑

T∈R2n+1

sign(T ) =

(
n

bn/2c

)
.

2. Preliminaries

2.1. Yamanouchi words

Given an n-cell tableau T , we associate T with a word ζ(T ) = u1 · · ·un on the alphabet

{1, 2, 3, . . .}, where ζ(T ) is obtained from T by letting the jth letter uj be the row index of

the cell of T containing the number j. The words ζ(T ) are known as Yamanouchi words.

For example,

T =

1 3 6

2 5 7

4 8

←→ ζ(T ) = 1 2 1 3 2 1 2 3.

Note that the ith row of T contains the indices of the letter i in ζ(T ).

The inversion number of ζ(T ), denoted by inv(ζ(T )), is defined to be the number of

pairs (ui, uj), 1 ≤ i < j ≤ n such that ui > uj .

Lemma 2.1. For any standard Young tableau T , we have sign(T ) = (−1)inv(ζ(T )).

Proof. Let σ(T ) = σ1σ2 · · ·σn be the permutation obtained from T by reading the entries

row by row, and let ζ(T ) = u1 · · ·un be the Yamanouchi word associated with T . For each

σj (1 ≤ j ≤ n), say σj = k, we observe that the entries to the left of σj and greater than

σj in σ(T ) are in one-to-one correspondence with the entries to the right of uk and less

than uk in ζ(T ). Hence inv(ζ(T )) = inv(σ(T )). The assertion follows.

2.2. Skew standard domino tableaux

A domino is a pair of cells that share an edge. It is called a horizontal (vertical, respec-

tively) domino if the two cells are in the same row (column, respectively). An n-domino

skew standard domino tableau T of shape λ/µ is a 2n-cell skew standard Young tableau

of the same shape in which the two cells with entries 2i − 1 and 2i form a domino for

1 ≤ i ≤ n. If the skew part µ is empty then T is called a standard domino tableau (SDT).

Let A(µ1,µ2)
n ⊂ T (µ1,µ2)

2n denote the set of n-domino skew SDTs of all shapes with at most

three rows and the skew part µ = (µ1, µ2).

Lemma 2.2. The following results hold.
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(i) For the skew SYTs with an even number of cells, we have∑
T∈T (µ1,µ2)

2n

sign(T ) =
∑

T∈A(µ1,µ2)
n

sign(T ).

(ii) In particular, for the SYTs with an odd number of cells we have∑
T∈T2n+1

sign(T ) =
∑

T∈A(1,0)
n

sign(T ).

Proof. (i) Given a tableau T ∈ T (µ1,µ2)
2n \ A(µ1,µ2)

n , find the least integer j such that the

two cells with entries 2j − 1 and 2j are not adjacent. Notice that they are in different

rows necessarily. Then interchanging the two entries becomes a sign-reversing involution

on the tableaux. The assertion follows.

(ii) There is an immediate bijection T 7→ T ′ of T2n+1 onto T (1,0)
2n such that T ′ is

obtained from T by removing the entry 1 and subtract the other entries by 1. By the

same argument as in (i), the assertion follows.

We say that a vertical domino in a skew SDT is a (1, 2)-domino ((2, 3)-domino, re-

spectively) if the two cells are in row 1 and row 2 (row 2 and row 3, respectively).

Lemma 2.3. For any tableau T ∈ A(µ1,µ2)
n , if µ1µ2 is odd then every (2, 3)-domino of T

is preceded by an odd number of (1, 2)-dominoes; otherwise, every (2, 3)-domino of T is

preceded by an even number of (1, 2)-dominoes.

Proof. Notice that if µ1 is even and µ2 is odd then T contains no vertical dominoes. So,

we consider the remaining cases regarding the parities of µ1 and µ2.

Let ζ(T ) = u1 · · ·u2n. Suppose T contains a (2, 3)-domino U , say U = (u2j−1, u2j) for

some j. Then the number of 2’s and the number of 3’s in the prefix u1 · · ·u2j−2 of ζ(T )

have the same (opposite, respectively) parity if µ2 is even (odd, respectively). Note that

each (1, 2)-domino contributes a letter 2 and no letter 3 to the word ζ(T ), and that each

(2, 3)-domino contributes a letter 2 and a letter 3. Hence if µ2 is even then there are an

even number of (1, 2)-dominoes preceding U . Moreover, if µ2 is odd then µ1 is odd and

there are an odd number of (1, 2)-dominoes preceding U .

We observe that the sign of a skew SDT in A(µ1,µ2)
n can be determined by the number

of vertical dominoes it contains.

Proposition 2.4. For any tableau T ∈ A(µ1,µ2)
n with d vertical dominoes, the following

properties hold.
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(i) If µ1µ2 is even then we have sign(T ) = +1 if d ≡ 0, 1 (mod 4), and sign(T ) = −1 if

d ≡ 2, 3 (mod 4).

(ii) If µ1µ2 is odd then we have sign(T ) = +1 if d−2b ≡ 0, 1 (mod 4), and sign(T ) = −1

if d− 2b ≡ 2, 3 (mod 4), where b is the number of (2, 3)-dominoes in T .

Proof. Let ζ(T ) = u1 · · ·u2n. For any two dominoes U, V , say U = (u2i−1, u2i) and

V = (u2j−1, u2j), i < j, we say that the number of inversions contributed by the or-

dered pair (U, V ), denoted by inv(U, V ), is the number of inversions of the subsequence

u2i−1u2iu2j−1u2j . Then inv(ζ(T )) is the total number of inversions of all pairs of dominoes.

We observe that if at least one of U , V is a horizontal domino then inv(U, V ) is even.

Moreover, if both of U , V are vertical dominoes then we have

inv(U, V ) =


0 if U = (1, 2) and V = (2, 3),

1 if U = V = (1, 2) or U = V = (2, 3),

3 if U = (2, 3) and V = (1, 2).

There are totally
(
d
2

)
pairs of vertical dominoes in T .

(i) If at least one of µ1, µ2 is even then by Lemma 2.3, there are an even number of pairs

(U, V ) such that U = (1, 2) and V = (2, 3), which contribute no inversions. Since each

of the remaining ordered pairs (U, V ) contributes an odd number of inversions, inv(ζ(T ))

has the same parity of d(d− 1)/2. By Lemma 2.1, the assertion (i) follows.

(ii) Otherwise, both of µ1, µ2 are odd. Let b be the number of (2, 3)-dominoes in T .

Suppose d is odd. We observe that the number b is always even if d is odd. Then there are

an even number of pairs (U, V ) such that U = (1, 2) and V = (2, 3), and hence inv(ζ(T ))

has the same parity of d(d− 1)/2.

Suppose d is even. Notice that the number of pairs (U, V ) such that U = (1, 2) and

V = (2, 3) has the same parity of b, and that inv(ζ(T )) has the same parity of d(d−1)/2−b.
Consider the following two cases.

• d ≡ 0 (mod 4). We observe that d − 2b ≡ 0 (mod 4) if b is even, and d − 2b ≡ 2

(mod 4) if b is odd. Since the total number d(d − 1)/2 of pairs (U, V ) is even, we

have sign(T ) = +1 if d− 2b ≡ 0 (mod 4), and sign(T ) = −1 if d− 2b ≡ 2 (mod 4).

• d ≡ 2 (mod 4). We observe that d − 2b ≡ 0 (mod 4) if b is odd, and d − 2b ≡ 2

(mod 4) if b is even. Since the total number d(d − 1)/2 of pairs (U, V ) is odd, we

have sign(T ) = +1 if d− 2b ≡ 0 (mod 4), and sign(T ) = −1 if d− 2b ≡ 2 (mod 4).

The assertion (ii) follows.
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2.3. Motzkin paths

A Motzkin path of length n is a lattice path from the origin to the point (n, 0) staying

weakly above the x-axis, using the up step (1, 1), down step (1,−1), and level step (1, 0).

Let U, D and L denote an up step, a down step, and a level step, respectively. A partial

Motzkin path of length n is a lattice path from the origin to the line x = n staying

weakly above the x-axis, using the set {U,D,L} of steps. Sometimes a segment of a

partial Motzkin path is itself a Motzkin path raised to a certain level. For convenience,

the horizontal line where a Motzkin path starts, stays weakly above and ends is called

the base line of the path. Let Mn be the set of partial Motzkin paths of length n. Our

approach relies on the following bijective results.

Theorem 2.5. (Cheng–Eu–Fu–Lee [2]) The following results hold.

(i) There is a bijection Φ: An → Mn such that a tableau T ∈ An with d vertical

dominoes is carried to a path Φ(T ) ∈Mn from (0, 0) to (n, d) for 0 ≤ d ≤ n.

(ii) There is a bijection Φ: A(1,0)
n → Mn such that a tableau T ∈ A(1,0)

n with d vertical

dominoes is carried to a path Φ(T ) ∈Mn from (0, 0) to (n, d) for 0 ≤ d ≤ n.

We refer the readers to [2, Section 2] for the construction of the bijection.

3. Proof of Theorem 1.1

We shall establish a sign-reversing involution Γ: An → An, making use of the bijective

result in Theorem 2.5(i).

First, we describe the set Fn ⊂ An of fixed points of the map Γ. The set Fn consists

of the tableaux T ∈ An such that the associated partial Motzkin Dyck path Φ(T ) is in

either one of the following forms:

(F1) Φ(T ) = Ln, consisting of n level steps.

(F2) Φ(T ) = LkUπ for some k, 0 ≤ k ≤ n − 1, where U is an up step, which goes from

the x-axis to the line y = 1, and π is a Motzkin path of length n− k − 1 (with the

base line y = 1).

Notice that sign(T ) = +1 since the former (latter, respectively) tableau T contains zero

(one, respectively) vertical domino. Moreover, by the conditions (F1) and (F2), the num-

ber of fixed points of the map Γ can be determined immediately.

Lemma 3.1. For n ≥ 1, we have

|Fn| = 1 +m0 +m1 + · · ·+mn−1.
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Now, we describe the construction of the map Γ.

Algorithm A. Given a tableau T ∈ An \ Fn with d vertical dominoes for some d ≥ 0,

construct the associated partial Motzkin path Φ(T ). There is a standard factorization of

the path Φ(T ) into Motzkin paths as

Φ(T ) = α0U1α1 · · ·Udαd,

where Uj is the last up step going from the line y = j − 1 to the line y = j, 1 ≤ j ≤ d,

and each segment αi is a Motzkin path of a certain length (possibly empty) with the base

line y = i, 0 ≤ i ≤ d. We create a path β from Φ(T ) according to the following cases.

Case 1. The segment α0 contains up steps and down steps. Then find the first down step

going from the line y = 1 to the x-axis, say za. Then the path β is obtained from

Φ(T ) by replacing za by an up step, which goes from the line y = 1 to the line

y = 2.

Case 2. The segment α0 consists of level steps (possibly empty). Since the tableau T is

not a fixed point, by (F1) and (F2), we have d ≥ 2. Then find the last up step

going from the line y = 1 to the line y = 2, say zb. Then the path β is obtained

from Φ(T ) by replacing zb by a down step, which goes from the line y = 1 to the

x-axis.

Then the requested tableau Γ(T ) is defined to be the tableau associated with β, i.e.,

Γ(T ) = Φ−1(β). By Proposition 2.4, we observe that T and Γ(T ) have the opposite signs

since the end point of β is at height either d+ 2 or d− 2.

Example 3.2. Given the tableau T ∈ A15 shown in Figure 3.1(a), the partial Motzkin

path Φ(T ) is shown in Figure 3.1(b). The path β constructed from Φ(T ) by Algorithm A

is shown in Figure 3.2(b), and the corresponding tableau Γ(T ) = Φ−1(β) is shown in

Figure 3.2(a).

(a)

(b)

1 4 5
2
3

6 7
8

9 10

11
12

14

13

15

Figure 3.1: A tableau in A15 and the associated path under the map Φ.
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(a)

(b)

1
4 5

2

3
6 7

8

9 10

11
12

14

13

15

Figure 3.2: The corresponding tableau of the tableau in Figure 3.1 under the map Γ.

Proof of Theorem 1.1. (i) By Lemmas 2.2 and 3.1, we have∑
T∈T2n

sign(T ) =
∑
T∈An

sign(T ) = |Fn| = 1 +m0 +m1 + · · ·+mn−1.

The assertion (ii) can be proved in the same manner, by establishing a sign-reversing

involution on the set A(1,0)
n by the construction in Algorithm A, making use of the bijective

result in Theorem 2.5(ii).

4. Proof of Theorem 1.2

In this section, we shall prove Theorem 1.2 by an extension of the approach used in the

previous section.

4.1. On tableaux with the skew part µ = (2e1, 2e2)

We describe a classification of the tableaux in A(2e1,2e2)
n according to the path converted

from the skew part µ = (2e1, 2e2), given by Cheng et al. [2, Scetion 3].

Given a skew SDT T ∈ A(2e1,2e2)
n , create a SDT T ∈ An+e1+e2 by tiling the skew part

with horizontal dominoes such that the dominoes in the first (second, respectively) row are

labeled by {1, 3, . . . , 2e2−1}∪{2e2 + 1, 2e2 + 2, . . . , e1 + e2} ({2, 4, . . . , 2e2}, respectively).

The original labels in T are then shifted from {1, . . . , n} to {e1 + e2 + 1, . . . , e1 + e2 + n}.
Construct the corresponding path Φ(T ) ∈ Mn+e1+e2 and factorize it into two parts with

lengths e1 + e2 and n, respectively, as

(4.1) Φ(T ) = νβ.

Note that the initial segment ν is converted from the domino-tiling of the skew part

µ = (2e1, 2e2). We classify the tableaux according to the form of ν as follows.
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The set A(2e1,2e2)
n can be partitioned into subsets A(2e1,2e2)

n;a,b for 0 ≤ a ≤ e2 and 0 ≤ b ≤
e1 − e2, where A(2e1,2e2)

n;a,b consists of the tableaux T such that the segment ν of Φ(T ) is of

the form

(4.2) ν = (UD)a (UL)e2−a Lb Ue1−e2−b.

Note that the path ν goes from the origin to the point (e1 + e2, e1 − a − b), and β goes

from the point (e1 + e2, e1 − a− b) to the line x = n+ e1 + e2. In particular, the subsets

with a > 0 and b > 0 in the classification have the following property.

Lemma 4.1. [2, Lemma 3.1] For a > 0 and b > 0, every tableau T in the set A(2e1,2e2)
n;a,b

contains no vertical domino.

We shall establish a sign-reversing involution Γ on each set A(2e1,2e2)
n;a,b . Consider the

factorization Φ(T ) = νβ in (4.1). For convenience, we remove the segment ν and view the

segment β as a lattice path from the point (0, e1− a− b) to the line x = n. Note that the

path β touches the x-axis necessarily [2, Section 3]. With respect to the first down step

returning to the x-axis, we further factorize β into two parts as

(4.3) β = β1β2,

where β1 goes from the point (0, e1 − a− b) to the x-axis (for the first time), say at (t, 0)

for some t (e1 − a− b ≤ t ≤ n), and β2 is a partial Motzkin path from the point (t, 0) to

the line x = n.

We describe the set F (2e1,2e2)
n;a,b ⊆ A(2e1,2e2)

n;a,b of fixed points of the map Γ in the following

two cases.

Case 1. If a > 0 and b > 0 then F (2e1,2e2)
n;a,b = A(2e1,2e2)

n;a,b , i.e., Γ(T ) = T for any

T ∈ A(2e1,2e2)
n;a,b . In this case, the end point of the segment β2 is (n, 0) since the tableau T

contains no vertical domino. Hence β2 is a Motzkin path.

Case 2. If a = 0 or b = 0 then the set F (2e1,2e2)
n;a,b consists of the skew SDTs T such that

the segment β2 is in either one of the following two forms:

(F1’) β2 = Ln−t.

(F2’) β2 = LkUπ for some k, 0 ≤ k ≤ n − t − 1, where U is an up step going from the

x-axis to the line y = 1 and π is a Motzkin path of length n− t− k − 1 (with the

base line y = 1).

The enumeration of the fixed points can be expressed in terms of Motzkin number.

Recall that by Proposition 2.4, the fixed points are positive since the tableaux in the

former (latter, respectively) case contain no (one, respectively) vertical domino.
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Lemma 4.2. The following results hold.

(i) If a > 0 and b > 0 then we have∑
n≥0
|F (2e1,2e2)
n;a,b |xn = xe1−a−bM e1−a−b+1.

(ii) If a = 0 or b = 0 then we have∑
n≥0
|F (2e1,2e2)
n;a,b |xn = xe1−a−bM e1−a−b (1 + xM)

1− x
.

Proof. We enumerate the tableaux T ∈ F (2e1,2e2)
n;a,b in terms of the segment β of the associ-

ated path Φ(T ).

By the factorization β = β1β2 in (4.3), there is a standard factorization of former part

β1 into Motzkin paths as β1 = πe1−a−bDe1−a−b · · ·π1D1, where Di is the last down step

going from the line y = i to the line y = i− 1 for 1 ≤ i ≤ e1 − a− b, and πi is a Motzkin

path with the base line y = i.

(i) If a > 0 and b > 0 then the latter part β2 is also a Motzkin path. We observe that

|F (2e1,2e2)
n;a,b | =

∑
k0+k1+···+ke1−a−b

=n−e1+a+b

mk0mk1 · · ·mke1−a−b
.

(ii) If a = 0 or b = 0 then β2 is in either one of the forms (F1’) and (F2’). We observe

that

|F (2e1,2e2)
n;a,b | =

n∑
t=e1−a−b

 ∑
k1+···+ke1−a−b
=t−e1+a+b

mk1 · · ·mke1−a−b
(1 +m0 +m1 + · · ·+mn−t−1)

 .

The assertions follow from multiplying the equation by xn and summing over n ≥ 0.

Next, we construct the map Γ on the set A(2e1,2e2)
n;a,b with a = 0 or b = 0, by the same

operations as in Algorithm A.

Algorithm B. Given a tableau T ∈ A(2e1,2e2)
n;a,b \ F (2e1,2e2)

n;a,b with d vertical dominoes for

some d ≥ 0, construct the associated path Φ(T ) = νβ. By the factorization β = β1β2

in (4.3), the latter part β2 goes from somewhere in the x-axis to the point (n, d). We

factorize β2 as

β2 = α0U1α1 · · ·Udαd,

where Uj is the last up step going from the line y = j − 1 to the line y = j, 1 ≤ j ≤ d,

and each segment αi is a Motzkin path of a certain length (possibly empty) with the base

line y = i, 0 ≤ i ≤ d. We create a path β′ from β according to the following cases.
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Case 1. The segment α0 contains up steps and down steps. Then find the first down step

going from the line y = 1 to the x-axis, say za. Then the path β′ is obtained

from β by replacing za by an up step, which goes from the line y = 1 to the line

y = 2.

Case 2. The segment α0 consists of level steps (possibly empty). Then d ≥ 2 and find

the last up step going from the line y = 1 to the line y = 2, say zb. Then the

path β′ is obtained from β by replacing zb by a down step, which goes from the

line y = 1 to the x-axis.

To find the corresponding tableau Γ(T ), we construction a SDT from the path νβ′ by Φ−1,

i.e., T
′

= Φ−1(νβ′). Then the requested tableau Γ(T ) is obtained from T
′

by removing

the skew part. By Proposition 2.4, we observe that T and Γ(T ) have the opposite signs

since the end point of β′ is at height either d+ 2 or d− 2.

Now, we prove Theorem 1.2(i).

Proof of Theorem 1.2(i). By Lemmas 2.2 and 4.2, we have

∑
n≥0

 ∑
T∈T (2e1,2e2)

2n

sign(T )

xn

=
∑
n≥0

 ∑
T∈A(2e1,2e2)

n

sign(T )

xn =

e2∑
a=0

e1−e2∑
b=0

∑
n≥0

 ∑
T∈A(2e1,2e2)

n;a,b

sign(T )

xn

=

e2∑
a=1

e1−e2∑
b=1

∑
n≥0
|F (2e1,2e2)
n;a,b |xn +

e2∑
a=0

e1−e2∑
b=0

χ(ab = 0)
∑
n≥0
|F (2e1,2e2)
n;a,b |xn

=

e2∑
a=1

e1−e2∑
b=1

xe1−a−bM e1−a−b+1 +

e2∑
a=0

e1−e2∑
b=0

χ(ab = 0)xe1−a−bM e1−a−b (1 + xM)

1− x
.

4.2. On tableaux with the skew part µ = (2e1 + 1, 2e2)

To prove Theorem 1.2(ii), we shall establish a sign-reversing involution on the setA(2e1+1,2e2)
n

in the same manner as above.

We make use of a classification of the tableaux given by Cheng et al. [2, Section 5].

Given a tableau T ∈ A(2e1+1,2e2)
n , create a skew SDT T ∈ A(1,0)

n+e1+e2 by tiling the shape

(2e1 + 1, 2e2)/(1, 0) with horizontal dominoes such that the dominoes in the first (sec-

ond, respectively) row are labeled by {1, 3, . . . , 2e2 − 1} ∪ {2e2 + 1, 2e2 + 2, . . . , e1 + e2}
({2, 4, . . . , 2e2}, respectively). The original labels in T are then shifted from {1, . . . , n} to

{e1 + e2 + 1, . . . , e1 + e2 + n}. Construct the corresponding path Φ(T ) ∈ Mn+e1+e2 and



Sign-balances of Tableaux 879

factorize it into two parts as Φ(T ) = νβ, where ν is converted from the domino-tiling of

the shape (2e1 + 1, 2e2)/(1, 0). The tableaux T in A(2e1+1,2e2)
n are classified as follows.

The set A(2e1+1,2e2)
n can be partitioned into subsets A(2e1+1,2e2)

n;a,b for 0 ≤ a ≤ e2 and

0 ≤ b ≤ e1 − e2, where A(2e1+1,2e2)
n;a,b consists of the tableaux T such that the segment ν of

Φ(T ) is of the form

ν = (UD)a (UL)e2−a Lb Ue1−e2−b.

In the classification, the subsets with a > 0 have the following property.

Lemma 4.3. [2, Lemma 5.1] For a > 0, every tableau T in the set A(2e1+1,2e2)
n;a,b contains

no vertical domino.

We describe the set F (2e1+1,2e2)
n;a,b ⊂ A(2e1+1,2e2)

n;a,b of fixed points of the map Γ. For a

tableau T ∈ A(2e1+1,2e2)
n;a,b , consider the factorization of the path Φ(T ) = νβ in (4.1). With

the segment ν removed, we further factorize the segment β into two parts β1β2 as in (4.3).

Consider the following two cases.

Case 1. If a > 0 then F (2e1+1,2e2)
n;a,b = A(2e1+1,2e2)

n;a,b . In this case, the segment β2 is a

Motzkin path.

Case 2. If a = 0 then the set F (2e1+1,2e2)
n;a,b consists of the skew SDTs T such that the

segment β2 is in either of the two forms given in (F1’) and (F2’).

By the same argument as in the proof of Lemma 4.2, we obtain the following enumer-

ation of the fixed points.

Lemma 4.4. The following results hold.

(i) If a > 0 then we have ∑
n≥0
|F (2e1+1,2e2)
n;a,b |xn = xe1−a−bM e1−a−b.

(ii) If a = 0 then we have∑
n≥0
|F (2e1+1,2e2)
n;a,b |xn = xe1−bM e1−b (1 + xM)

1− x
.

For the case a = 0, the requested map Γ: A(2e1+1,2e2)
n;a,b → A(2e1+1,2e2)

n;a,b can be established

by the construction described in Algorithm B. Now, we prove Theorem 1.2(ii).

Proof of Theorem 1.2(ii). By Lemmas 2.2 and 4.2, we have

∑
n≥0

 ∑
T∈T (2e1+1,2e2)

2n

sign(T )

xn
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=
∑
n≥0

 ∑
T∈A(2e1+1,2e2)

n

sign(T )

xn =

e2∑
a=0

e1−e2∑
b=0

∑
n≥0

 ∑
T∈A(2e1+1,2e2)

n;a,b

sign(T )

xn

=

e2∑
a=1

e1−e2∑
b=0

∑
n≥0
|F (2e1+1,2e2)
n;a,b |xn +

e1−e2∑
b=0

∑
n≥0
|F (2e1+1,2e2)
n;0,b |xn

=

e2∑
a=1

e1−e2∑
b=0

xe1−a−bM e1−a−b+1 +

e1−e2∑
b=0

xe1−bM e1−b (1 + xM)

1− x
.

4.3. On tableaux with the skew part µ = (2e1 + 2, 2e2 + 1)

Notice that every tableau in A(2e1+2,2e2+1)
n contains no vertical domino. Hence sign(T ) = 1

for all T ∈ A(2e1+2,2e2+1)
n . Let H(2e1,2e2)

n ⊂ A(2e1,2e2)
n be the subset of tableaux contain-

ing no vertical domino. We observe that there is an immediate bijection T 7→ T ′ of

A(2e1+2,2e2+1)
n onto H(2e1,2e2)

n such that T ′ is obtained from T by shifting the first (second,

respectively) row to the left by two cells (one cell, respectively). For the sign-balance of

T (2e1+2,2e2+1)
2n , we shall enumerate the tableaux in H(2e1,2e2)

n , under the classification in

(4.2).

For a ≥ 0 and b ≥ 0, let H(2e1,2e2)
n;a,b = H(2e1,2e2)

n ∩ A(2e1,2e2)
n;a,b . Given a tableau T ∈

H(2e1,2e2)
n;a,b , consider the factorization of the associated path Φ(T ) = νβ in (4.1). Since T

contains no vertical domino, sign(T ) = +1 and the segment β can be factorized as

β = πe1−a−bDe1−a−b · · ·π1D1π0,

where Di is the last down step going from the line y = i to the line y = i − 1 for

1 ≤ i ≤ e1−a− b, and πi is a Motzkin path with the base line y = i for 0 ≤ i ≤ e1−a− b.
By the same argument as in the proof of Lemma 4.2, we have∑

n≥0
|H(2e1,2e2)

n;a,b |xn = xe1−a−bM e1−a−b+1.

Hence

∑
n≥0

 ∑
T∈T (2e1+2,2e2+1)

2n

sign(T )

xn =
∑
n≥0

 ∑
T∈A(2e1+2,2e2+1)

n

sign(T )

xn

=

e2∑
a=0

e1−e2∑
b=0

∑
n≥0

 ∑
T∈H(2e1,2e2)

n;a,b

sign(T )

xn =

e2∑
a=0

e1−e2∑
b=0

xe1−a−bM e1−a−b+1.

The proof of Theorem 1.2 is completed.
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We remark that Cheng et al. gave an explicit formula of |A(2e1+2,2e2+1)
n | as a linear

combination of Motzkin numbers, which involves the Chebyshev polynomials of the second

kind [2, Corollary 1.4].

5. Proof of Theorem 1.3

Let Bn ⊂ An be the subset of n-domino SDTs with at most two rows. First, we describe

the structure of images when the map Φ: An →Mn restricted to the set Bn.

A Dyck path of semi-length n is a Motzkin path of length 2n with no level steps. A

dispersed Dyck path of length n is a Motzkin path of length n with no level step above the

x-axis, which is enumerated by the central binomial coefficients [9, A001405].

Lemma 5.1. The number of dispersed Dyck paths of length n is
(

n
bn/2c

)
.

We have the following observations about the images of the map Φ restricted to Bn.

Proposition 5.2. For a tableau T ∈ Bn, the following properties hold.

(i) If T contains no vertical domino then Φ(T ) is a dispersed Dyck path of length n.

(ii) If T contains d vertical dominoes then Φ(T ) can be factorized as

(5.1) Φ(T ) = α0U1 · · ·αdUdπ,

where Uj is the last up step going from the line y = j − 1 to the line y = j for

1 ≤ j ≤ d, αi is a Dyck path (possibly empty) for 0 ≤ i ≤ d− 1, and π is a dispersed

Dyck path (possibly empty).

Example 5.3. For the tableau T ∈ B15 shown in Figure 5.1(a), we have the tiling

word x1x2 · · ·x15 = V 121122V 12V 1121. The corresponding path Φ(T ) is shown in Fig-

ure 5.1(b).

(a)

(b)

1
3

4 52
6 7

8
9
10 11

12
14

13 15

Figure 5.1: A SDT and the associated path under the map Φ.
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To prove Theorem 1.3(i), we shall establish a sign-reversing involution Λ: Bn → Bn in

terms of dispersed Dyck paths.

We describe the set Gn ⊂ Bn of fixed points of the map Λ. The set Gn consists of the

SDTs T such that the associated path Φ(T ) is in either one of the following forms:

(G1) Φ(T ) = Lπ, where π is a dispersed Dyck path of length n− 1.

(G2) Φ(T ) = Uπ, where π is is a dispersed Dyck path of length n− 1 (with the base line

y = 1).

By Lemma 5.1 and the conditions (G1) and (G2), the number of fixed points of the

map Λ is determined.

Lemma 5.4. We have

|Gn| = 2

(
n− 1

bn−12 c

)
.

Now, we construct the map Λ on the set Bn.

Algorithm C. Given a tableau T ∈ Bn \ Gn with d vertical dominoes for some d ≥ 0,

construct the associated lattice path Φ(T ), and factorize it as in (5.1). Since the tableau

T is not a fixed point, by the conditions (G1) and (G2), we observe that if the initial

segment α0 of Φ(T ) is empty then d ≥ 2. We create a path β from Φ(T ) according to the

following cases.

Case 1. The segment α0 is not empty. Then α0 is a Dyck path. Find the first down step

going from the line y = 1 to the x-axis, say za. Then the path β is obtained from

Φ(T ) by replacing za by an up step, which goes from the line y = 1 to the line

y = 2.

Case 2. The segment α0 is empty. Then d ≥ 2 and find the last up step going from the

line y = 1 to the line y = 2, say zb. Then the path β is obtained from Φ(T ) by

replacing zb by a down step, which goes from the line y = 1 to the x-axis.

Then the requested tableau Γ(T ) is defined to be the tableau associated with β, i.e.,

Γ(T ) = Φ−1(β).

Example 5.5. Given the tableau T ∈ B15 shown in Figure 5.2(a), the path Φ(T ) is shown

in Figure 5.2(b). The path β constructed by Algorithm C is shown in Figure 5.1(b), and

the corresponding tableau Λ(T ) is shown in Figure 5.1(a).
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(a)

(b)

1 4 52
3 6 7 8

9
10 11

12
14

13 15

Figure 5.2: An example for the sign-reversing involution Γ on tableaux in B15.

Proof of Theorem 1.3. (i) By Lemmas 2.2 and 5.4, we have∑
T∈R2n

sign(T ) =
∑
T∈Bn

sign(T ) = |Gn| = 2

(
n− 1

bn−12 c

)
.

(ii) Let B(1,0)n ⊂ A(1,0)
n be the subset of n-domino skew SDTs with at most two rows.

Notice that every tableau in B(1,0)n contains no vertical domino. Under the map Φ: A(1,0)
n →

Mn restricted to the set B(1,0)n , we observe that the image of every tableau is a dispersed

Dyck path of length n. By Lemma 5.1, we have∑
T∈R2n+1

sign(T ) =
∑

T∈B(1,0)n

sign(T ) =

(
n

bn/2c

)
.

The proof of Theorem 1.3 is completed.

6. Concluding remarks

In this paper, except for the case µ = (2e1 + 1, 2e2 + 1), we obtain the generating polyno-

mials of sign-balance of the set T (µ1,µ2)
2n of 2n-cell skew SYTs of all shapes with at most

three rows and the skew part µ = (µ1, µ2). This is accomplished by a simple sign-reversing

involution on the set A(µ1,µ2)
n of skew SDTs in terms of partial Motzkin paths. However,

this approach is restrained by the conditions in Proposition 2.4.

For µ = (1, 1), there is (essentially) a bijection between A(1,1)
n andMn. If we consider

the subset X (1,1)
n ⊂ A(1,1)

n of skew SDTs with an odd number of vertical dominoes, then

by the same argument as in the proof of Theorem 1.1, we have∑
T∈X (1,1)

n

sign(T ) = m0 +m1 + · · ·+mn−1.

The problem arises when the tableaux have an even number of vertical dominoes. For

example, by Algorithm A, the two skew SDTs shown in Figure 6.1 are the images of each
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other under the involution Γ: A(1,1)
n → A(1,1)

n . However, both of them are positive. It will

be interesting to establish a sign-reversing involution on the set A(1,1)
n \ X (1,1)

n , which is

helpful to solve the following question.

1

3
4 5

2
6

7
1

4
5

6
2 3 7

Figure 6.1: An example for the map Γ on tableaux in A(1,1)
7 .

Question 6.1. For e1 ≥ e2 ≥ 0, find the generating polynomial for the sign-balance of

the set T (2e1+1,2e2+1)
2n .

Once the sign-balance of T (µ1,µ2)
2n for the four cases of the skew part are completed, we

can determine the sign-balance of (2n+ 1)-cell skew SYTs as follows.

For any tableau T ∈ T (µ1,µ2)
2n+1 , if we remove the entry 1 from T and subtract the

other entries by 1, then the resulting tableau is in T (µ1+1,µ2)
2n (T (µ1,µ2+1)

2n and T (µ1−1,µ2−1)
2n ,

respectively) if the entry 1 of T is in row 1 (2 and 3, respectively). It follows that∑
T∈T (µ1,µ2)

2n+1

sign(T ) =
∑

T∈T (µ1+1,µ2)
2n

sign(T ) + χ(µ1 > µ2)
∑

T∈T (µ1,µ2+1)
2n

sign(T )

+ χ(µ2 > 0)
∑

T∈T (µ1−1,µ2−1)
2n

sign(T ).
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