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Regularity of Commutators of Maximal Operators with Lipschitz Symbols

Feng Liu* and Guoru Wang

Abstract. This paper is devoted to studying Sobolev regularity properties of commu-
tators of Hardy-Littlewood maximal operator and its fractional case with Lipschitz
symbols, both in the global and local case. Some new pointwise estimates for the
weak gradients of the above commutators will be established. As applications, some

bounds for the above commutators on the Sobolev spaces will be obtained.

1. Introduction

1.1. Background

The regularity theory of maximal operators is an active topic of current research. A
driving question related to this theory is whether a given maximal operator improves,
preserves or destroys the a priori regularity of an initial datum f. In 1997, Kinnunen [16]

first studied the Sobolev regularity for the Hardy-Littlewood maximal operator

1
M f(z) = sup W /B(w,r) |f(y)| dy,

r>0

where B(x,r) is the open ball in R™ centered at x with radius r and |B(x, )| denotes its
volume, and showed that M is bounded on the first order Sobolev spaces W1P(R") for
1 < p < o0, where

WHP(R™) := {f: R" = R | ||fll1p = I flp + [V flp < oo},

where || flwiosy = [ fl1ps 1l == |fllzoen) and Vf = (Dif,..., Duf) is the weak
gradient of f. Later on, more and more scholars devoted to extending Kinnunen’s result

to various variants (see [7},(17,(19,23]). Since the derivative of maximal function has no
sublinearity, the continuity of M : W1P(R?) — W1P(R") for 1 < p < oo is affirmatively a
nontrivial issue. This question was first answered by Luiro [27] and later extended to the

local case in [28] and to the multilinear fractional case in [22]. The endpoint regularity
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properties of maximal operators can be found in [2,5,/6}[8,29]. Other interesting works
of regularity theory are [20}21,2428] for the boundedness for maximal operator on the
fractional Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces as well as [25,26] for
the regularity properties for the commutators of maximal operators.

Recently, Liu, Xue and Zhang [26] studied the regularity properties for the commuta-
tors of Hardy—Littlewood maximal function. To be more precise, let b be a locally integral
function defined on R", the commutators of the Hardy—Littlewood maximal operator is
defined by

[b, M](f)(x) = b(zx)M f(x) = M(bf)(z), =e€R"

The maximal commutator of M with b is defined as

Embf(x):sup’BxT‘/ b)|lf W) dy, € R™

r>0

Liu, Xue and Zhang [26] established the following result.

Theorem 1.1. [26] Let 1 < p1,p2,p < o0 and 1/p = 1/p1 + 1/ps. If b € WhHP2(R?),
then the map [b, M]: W1PL(R") — WLP(R™) is bounded and continuous. Moreover, if
f € WhPL(R™), then

116 M0 < Coprpa 10112 1F 11,1

The above boundedness also holds for IMy.

Very recently, Liu and Xi [25] extended Theorem to the fractional case. Let us

introduce the commutators of fractional maximal operator.

Definition 1.2. Let 0 < o < n and M, be the fractional maximal operator on R", i.e.,
for f € LIOC(R”),

Maf(:c):sup|er‘/ y)|dy, xeR".

r>0

For a locally integral function b defined on R™, the commutator of fractional maximal
operator M, with b is defined by

b, Mo)(f) (@) = b(2) Mo f(z) — Ma(bf)(2), « € B

The fractional maximal commutator of M, with b is defined as

Moo f () = SUp s / bw)I|f ()| dy, = €R™

r>0
Clearly, M, = M, [b, M,] = [b, M] and I, o, = My, when o = 0.

We now introduce the main results of [25] as follows.
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Theorem 1.3. [25] Let 1 < p1,p2,p,pip2/(p1 + p2) < 00, 0 < a < n/p; and 1/q =
Upr +1/ps — afn. If b € WYP2(R?), then the map [b, Ma]: W1 (R?) — WL4(R?) s
bounded. In particular, if f € WYPL(R"), then

| Di[b, Mo (f)(2)] < [b(z)|Ma(Dif)(x) + Ma(bD; f)(x) + [Dib(x)|Maf (z) + Mo (Dibf)(z)
for almost every x € R"™ and i =1,2,...,n. Moreover,

116, Ma] ()1, < Canpr,pa [0

1,P2Hf‘|1,731'
The same conclusions hold for My, 4.

In this paper we continue to focus on the Sobolev regularity properties for the commu-
tators of Hardy—Littlewood maximal operator and its fractional version. More precisely,
we shall establish some new results on the Sobolev regularity properties of the above

commutators with Lipschitz symbols, both in the global and local case.

1.2. The global case

In 1990, Milman and Schonbek [30] first introduced the commutator of maximal operator
and established the L” (1 < p < oo0) bounds of [b, M¢| when b > 0 and b € BMO(R"™). Here
Me¢ is the Hardy-Littlewood maximal operator associated to cubes. Subsequently, Bastero,
Milman and Ruiz [3] improved the above result by removing the restrictive condition
b > 0. It was shown in [4] that the operator [b, Mc] can be used in studying the product
of a function in H!(R") and a function in BMO(R"). Later on, the LP — L% bounds
for the commutators of fractional maximal operator have been studied by many authors
(see 19412,32]). The maximal commutator was first studied by Garcia-Cuerva, Harboure,
Segovia and Torrea [10] who showed that the maximal commutator of M with b is bounded
on LP(R™) for 1 < p < oo if and only if b € BMO(R"™). Other interesting papers related
to this topic can be consulted [1,31], among others. It should be pointed out that the
corresponding results also hold for [b, M], [b, M,], M or My, o, which is based on the fact
that the Hardy—Littlewood maximal operator associated to balls has same properties as
the Hardy—Littlewood maximal operator associated to cubes.

From Theorems and one sees that, the assumptions that these symbols b
belong to Sobolev spaces guarantee certain Sobolev regularity for the commutators of the
Hardy—Littlewood maximal operator and its fractional version. A natural question is the

following

Question 1.4. Do the commutators [b, M], [b, M,], M, and My, , have somewhat Sobolev

regularity properties when the symbols b are not Sobolev functions?
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Question [T.4] is one of main motivations in this paper. In order to formulate our main

results, let us introduce Lipschitz space.

Definition 1.5 (Lipschitz space). The homogeneous Lipschitz space Lip(R™) is defined
by
Lip(R") := {f: R" — C continuous : || f|| ,jprn) < 00},
where
[fz+h) — f2)]

| fll Lip(rny := sup  sup < o0.
R R heRm\ {0} |h|

The inhomogeneous Lipschitz space Lip(R"™) is given by
Lip(R") := {f: R™ — C continuous : || f||Liprn) < oo},
where
I fliprn) := I flloo + I fll Liprny < o0

Remark 1.6. Let b € Lip(R™). Then the weak partial derivatives D;b, i = 1,...,n, exist

almost everywhere. Moreover, it holds that

b(x + he;) — b(x)

(1.1) Dib(z) = }llli% Y

and

(1.2) |Dib(@)| < [b]] Liprn)

for almost every = € R™. Here ¢; = (0,...,0,4,0,...,0) is the canonical i-th base vector
in R” fort=1,...,n.

To see (1.1)) and (1.2)), let us fix ¢ = 1,...,n. Since b is Lipschitz continuous, then
by Rademacher’s theorem, we know that b is differentiable almost everywhere. Then the
partial derivatives D;b exists almost everywhere and ([1.1)) holds. For almost every x € R™,

we get by (1.1) that

. b(z + he;) — b(x) . |b(x + he;) — b(z)]
l ) . — l m < 1 1Y < ; n
’ Zb(x)’ hl 0 h — hl 0 |h’ — HbHLZp(]R )7

which gives ((1.2). It follows from ([1.2)) that
(1.3) IVb(z)| < vnllbl| Liprn)

for almost every z € R".
We also list some comments on [b, M,] and 9y, o, which are useful for our aim.

Remark 1.7. Let 1 <p<oo,0<a<n/pand 1/¢=1/p—a/n. If b € L>(R"), then the

following are valid:
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(i) If f € LP(R™), then

(1.4) [Mafllg < Aanpll flp

where Aqpnp = [[Mallrprr)—ro@n). By (L4) and the sublinearity of M,, we see
that M,: LP(R™) — L9(R™) is continuous.

(ii) The operator [b, M,] is neither positive nor sublinear. Applying Holder’s inequality

and ((1.4), one has

(1.5) 11 Ma](£)llq < 2Aa,np

Olloo |l £l,-

On the other hand, it is easy to see that

|[b, Ma)(f) = [b; Ma](9)| < [bIMa(f = 9) + Ma(b(f - 9)),

which together with (1.4]) implies that the map [b, M,]: LP(R™) — L2(R"™) is contin-

uous.

(iii) The operator My, , is positive and sublinear. Observe that
(1.6) Mp,of (x) < [b(x)|Maf(z) + Ma(bf)(z), = ecR"
Inequality together with Holder’s inequality and implies that

(1-7) ||Emb,af||q < 2Aa,n,p||b||00||f||p'

Moreover, by the sublinearity and boundedness for 9, ,, we see that the map
Mp.o: LP(R™) — LI(R™) is continuous.

Now we shall provide a positive answer to Question by the following theorem.

Theorem 1.8. Let 1 < p < oo, 0 < a <n/pand1/q=1/p—a/n. If b € Lip(R"),
then the map [b, M,]: WIP(R™) — WH4(R™) is bounded and continuous. In particular, if
f € WEP(R™), then for each i € {1,...,n} and almost every x € R™,

(1.8) IV([b, Ma]())(@)] < 2v/70[|b]| Liprny Ma f () + 2[blloc Ma|V f|(2).
Consequently,
(1.9) 16, Ma](f)ll1,q < 2Aamp(n + Dbl Lip@n) [ fll1p,

where Aqnp is given as in (1.4). Inequalities (1.8)) and (1.9) also hold for My 4.

Remark 1.9. 1t is unknown that whether the map 9, o: WHP(R™) — WH4(R") is contin-

uous under the same conditions in Theorem which is certainly an interesting issue.
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We would like to remark that the proof of Theorem for [b, M,] is based on
Lemma2.1]and some known regularity results on the Hardy-Littlewood maximal operator
and its fractional version (see Lemma . The main ingredients of proving Theorem
for My, o are the equivalent characterization of Sobolev spaces (see ({2.1])), the characteriza-
tion of the product of a function in W1?(R") and a function in Lip(R") (see Lemma
and the difference estimates for M, o f (see (3.5))).

1.3. The local case

Let us recall the definitions of the commutators of local fractional maximal operator.

Definition 1.10. Let Q be a subdomain in R" and 0 < oo < n. We denote by M, o the

local fractional maximal operator on , i.e., for f € Ll (Q),

Maogof(z)=  sup / yldy, =€,
0<r<dist(x,2°) | (z,7)

where Q¢ = R™ \ Q. For a locally integrable function b defined on 2, we define the

commutator of local fractional maximal operator [b, M, q] by

b, Mo 0](f)(z) = b(x) Moo f(x) — Mao(bf)(x), €.

The fractional maximal commutator of M, o with b is defined by

Wyanf(r)= s i / bw)llf ()l dy, @€ Q.

0<r<dist(x,2°)

It is clear that [b, My o] = [b, My] and My 00 = My o when Q@ = R”. When o = 0,
we denote [b, M, 0] = [b, M) and My, 4.0 = My o, the operator M, o reduces to the usual
local Hardy—Littlewood maximal operator Mg.

The following are some basic properties for [b, M, o] and 9 o o, which are useful for

our proofs.

Remark 1.11. Let 1 <p < 00,0 <a <n/pand1/q=1/p—a/n. Assume that b € L>°(Q).

The following facts are valid:
(i) If f € LP(R2), then
(1.10) [IManfllg0 < Canpll fllpo-

By (1.10) and the sublinearity of M, o, we see that M, q: LP(2) — L9(Q2) is con-

tinuous.



(i)

(iii)
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The operator [b, M, o] is neither positive nor sublinear. Applying Hélder’s inequality

and , one may get
(1.11) 116, Ma0](F)llg.0 < Canplblloc ol fllpo-
It is not difficult to see that
|[b, Ma](f) = [b, Ma,l(9)] < [0 Mao(f = 9) + Ma,(b(f = 9)),
which together with implies that [b, My q]: LP(Q) — L9(Q2) is continuous.

The operator 9y, o« is positive and sublinear. Observe that

(1.12) Mpa0f(z) < |b(x)|Maaf(x)+ Maadf)(xz), xell
Inequality ((1.12) together with Holder’s inequality and ([1.10)) implies that
(1.13) 19,00 lg.0 < Camnpllblle.oll flpe-

Moreover, we get by the sublinearity and boundedness for 9, , o that the map
My.a,0: LP(Q) = L) is continuous.

The Sobolev regularity for maximal operators in local setting has been studied by many

authors. The first work was due to Kinnunen and Lindqvist [17] who proved that the map
Mgq: WIP(Q) — WP(Q) is bounded for all 1 < p < oo (see also [13]). Here W1P(Q) is
the first order Sobolev space on (2, which is defined in the same way as W1P(R"), but

with R™ replaced by 2. For simplicity, we denote

1 fllp.e = I fllwie)y, I fllpo = 1fllzr )

Later on, the main result of |17] was extended by many authors (see |14}|15,25,28]).
Particularly, Liu and Xi [25] established the Sobolev regularity of [b, M, o] and 9 4 0.

The main results of [25] can be listed as follows:

Theorem 1.12. [25]

(i)

(i)

Let 1 < p1,p2,pip2/(p1 +p2) < 00, 1 < p1 < n, 1 < a < n/p1 and 1/p =
1/p1+ 1/p2 — (a — 1)/n. Assume that |Q| < oo and b € WHP2(Q), then the map
[b, My q]: WEPL(Q) — WEP(Q) is bounded. Moreover, if f € W1P1(Q), then

116, Ma,ol(F)ll1p.02 < Camnprps.2llOll1po.0ll 1000

Let 1 < p1,p2,p1p2/(p1 +p2) < oo, 1 <p1 <n,1 <a<n/p and 1/p =1/p; +
1/p2 — a/n. Assume that b € WHP2(Q) and Q0 admits a p1-Sobolev embedding, then
the map [b, My q]: WHPL(Q) — WIP(Q) is bounded. Moreover, if f € W1P1(Q),
then

116, Mol ()

1»P7Q S Ca7nap17p2||b||17p279||f| 1’p17Q'
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(iii) Let 1 < p1,p2 < o0, n/(n —1) < pip2/(p1 +p2) <00, 1 < a < n/p; and 1/p =
1/p1 + 1/p2 — (o — 1)/n. Assume that |Q| < co and b € WHP2(Q), then the map
[b, Moq]: LPY(Q) — WLP(Q) is bounded. Moreover, if f € LP*(Q), then

116; Mool (N)ll1p.0 < Conpr.po.ll0ll1ps. 0l fllpr 0

The above conclusions hold for My o 0.
Based on Theorems and it is natural to ask the following question:

Question 1.13. What happens when we consider the Sobolev regularity properties for

[b, My 0] and My, o o when b belongs to local Lipschitz space?

Question [1.13] is another one of main motivations in this paper. Before establishing

the rest results, let us introduce local Lipschitz space.

Definition 1.14 (Local Lipschitz space). The homogeneous local Lipschitz space Lip(2)
is defined as
Lip(Q) := {f: Q@ — C continuous : || || i) < o0},

where

| fllLip(e) = sup sup [+ h) = f(z)] < o0,
€9 heQ\{0} Id

The inhomogeneous Lipschitz space Lip(€2) is given by
Lip(Q2) := {f: Q — C continuous : || f||rip) < o0},
where
1fILip) = [Iflloo.0 + 1 fll Lipe) < oo

Remark 1.15. Let b € Lip(€2). Then the weak partial derivatives D;b, i = 1,...,n, exist

almost everywhere. Moreover, it holds that

b(x + he;) — b(x)

D;b(x) = ]llin% o
ﬁ
and
(1.14) | Dib(z)] < 16l Lip(e)

for almost every x € Q2. By ([1.14), we get

(1.15) V()| < vVnllbllLipe)

for almost every x € Q2.
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The rest of main results can be listed as follows:

Theorem 1.16. Let b € Lip(92).

(i)

(iii)

(iv)

Let 1 < p < co. Then the map [b, Mq]: WHP(Q) — WLP(Q) is bounded and contin-
uous. If f € WIP(Q), then

(1.16) [V[b, Ma)(f)(2)] < 4l|bllcc.oMalV fI(z) + 3v/nllbll Lipo) Maf ()

for almost every x € Q2. Consequently,
(1.17) 11, Mol (£)ll1p.0 < CrpllbllLip@ 1fll1p.0-

Let p € (1,n), a € [1,n/p) and ¢ = np/(n — (o — 1)p). Assume that || < oo,
then [b, Maq]: WHP(Q) — WH4(Q) is bounded and continuous. In particular, if
f e Whr(Q), then

Vb, Mo,0](f)(2)]

(1.18
< 3Vn|bll Lipe) Moo f (2) + 4[|bllcc.0 Ma,olV f1(2) + 20blloc0Ma—1,0.f ()

for almost every x € Q2. Consequently,
(1.19) 16, Mao](F)llge < CamplaillblLipe | flp.0-

Letp € (1,n), a € [1,n/p) and ¢ = pn/(n —ap). If f € WHP(Q) and Q admits a p-
Sobolev embedding, i.e., || f|z0 < Cpllfll1,p,0 withp = np/(n—p), then [b, My a](f) €
Wh4(Q). Moreover,

Vb, Mo,0](f)(2)]

(1.20)
< 3Vn|bll Lipe) Moo f (2) + 4[[bllcc. 0 Mool V f1(2) + 20[blloc0Ma—1,0.f ()

for almost every x € 2. Consequently,

(1.21) 116: Mao](Ml1g0 < CanpllbllLip@llfll1.p.0-

Letpe (n/(n—1),00), a € [I,min{(n—1)/p,n—2n/((n—1)p)} +1), ¢ =np/(n —
(o —1)p) and || < oco. If f € LP(R2), then

Vb, Mo,0](f)(2)]

(1.22)
< Vbl| Lip) Moo f () + Collblloc.o (Ma—1,0f () + Sa-1,0f(2))

for almost every x € . Moreover,

(1.23) 16, Maol(F)ll1g0 < ComploillblLipe | fllp.o-
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Here S, s the local spherical mazimal operator, i.e.,

T,Oé

Saof(z) = sup |f ()| dH" " (y),

0<r<dist(z,Q°) |8B(.’E,T)‘ 0B(z,r)

where dH" ! is the normalized (n — 1)-dimensional Hausdorff measure.

Theorem 1.17. Let b € Lip(Q2).

(i)

(i)

(iii)

Let 1 < p < oo. Then the map Mpq: WHP(Q) — WIP(Q) is bounded. If f €
WLP(Q), then

(1.24) VO, f (2)] < 3Vl Lipo) Maf (2) + 200,0|V £|(2)

for almost every x € Q2. Consequently,
(1.25) M0 fll1p.0 < CnplbllLip@llfllLp.0-

Letp € (1,n), a € [1,n/p) and ¢ = np/(n — (o — 1)p). Assume that |Q| < oo, then
My 0.0: WHP(Q) — WH(Q) is bounded. In particular, if f € WHP(Q), then

(1.26) |VMya.0f(@)] < oMy a-1.0f (@) +3Vn0]l Lip) Ma,nf () + 29 0.0 V f| ()

for almost every x € Q). Consequently,

(127) ||9ﬁb,a,QfHLq,Q < Ca,n,p,m\HbHLip(Q)”f|

17p79'

Letp € (1,n), a € [1,n/p) and ¢ = pn/(n — ap). If f € WEP(Q) and Q admits a
p-Sobolev embedding, i.e., || f|z.a < Cpllfll1p0 withp =np/(n—p), then My oo f €
Wh4(Q). Moreover,

(1.28) |V a.0f (@) < oMy a-1,0f () + 2D 0.0|V f|(2) +2v/0|b]| Lip@) Ma,o f ()

for almost every x € Q). Consequently,

(129) ||mb,a,Qf||1,q,Q < Ca,n,p

bl Lip() 11,0

Letp € (n/(n—1),00), a € [I,min{(n—1)/p,n—2n/((n—1)p)} +1) and || < cc.
If f € LP(Q), then
[V 0,0f (2)]
< (n— )My o—1.0f (@) + V)bl Lip) Moo f () + 201b]l00,0Sa—1,0.f ()

for almost every x € Q). Moreover,

(1.30)

(131) Hmb,a,Qle,q,Q < Ca,n,p,|Q|||b||Lip(Q)HfHP797

where ¢ = np/(n — (o — 1)p).
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The proof of Theorem [1.16] is based on Lemmas [2.5] and 2.6] and a characterization of
the product of a function in W1?(Q) and a function in Lip(Q) (see Lemma. The proof
of Theorem is motivated by the idea in [14,/15,25]. However, some new techniques
and more refined analyses are needed in the proof of Theorem (1.1

Finally, we shall show that the above commutators preserve the zero boundary values
in Sobolev’s sense. Recall that the Sobolev space I/VO1 P(Q) with zero boundary values
with 1 < p < oo, is defined as the completion of C5°(€2) with respect to the Sobolev
norm. In 1998, Kinnunen and Lindqvist [17] first proved that Mg is bounded on WO1 P(Q)
with 1 < p < co. Later on, Heikkinen, Kinnunen, Korvenp#é and Tuominen |15] proved
that M, q is bounded from LP(Q2) to Wol’q(Q) forp >n/(n—1), 1 < a < n/p and
q = np/(n — (a — 1)p) by assuming that || < co. Recently, by assuming that || < oo,
Hart, Liu and Xue [14] established the boundedness for M, q: WP(Q)) — Wol’q(Q) for
1<pg<oo,g=np/(n—(a—1)p),1<a<n/p+1.

As direct applications of Theorems and the following conclusions are valid.

Corollary 1.18. Let b € Lip(Q).
(i) Let 1 < p < oco. If f € WyP(Q), then [b, Mo](f) € Wy (Q).

(ii) Let p € (1,n), a € [1,n/p) and ¢ = np/(n — (a — 1)p). Assume that || < oo, then
[b, My q]: WEP(Q) — Wol’q(Q) is bounded.

(iii) Let p € (1,n), a € [1,n/p) and q¢ = pn/(n — ap). If f € WHP(Q) and Q admits a
p-Sobolev embedding, then the map [b, My q]: W1P(Q) — Wol’q(Q) is bounded.

(iv) Letp € (n/(n—1),00), a € [1,min{(n —1)/p,n—2n/((n—p)} +1), ¢ =np/(n—
(v = 1)p) and || < oo, then the map [b, My ql: LP(2) — Wol’q(Q) is bounded.

The same conclusions hold for the operator My o -

1.4. Outline of this paper

This paper will be organized as follows. Section [2| contains some auxiliary notations and
lemmas, which paly key roles in the proofs of Theorems[1.8] [I.16|and [[.17} In Section [3]we
shall prove Theorem[I.8] The proofs for Theorems and will be given in Sections
and [5] respectively. Finally, we shall prove Corollary in Section [6}

2. Preliminary notations and lemmas

This section is devoted to presenting some notations and lemmas.
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2.1. Preliminary notations

Throughout the paper, the letter C, g denote the positive constants that depend on the
parameters «, 5. Let f € LP(R") with p > 1. For all h € R, |h| > 0, y € R™ and
i =1,...,n, we define the function f;; by setting

[z + hei) — f(z)
Id ’

Jhi(x) = z e R".

It is well known that for p > 1, f5; — D;f in LP(R") when h — 0 if f € WHP(R™). For
h € R™ and any arbitrary functions f defined on R", we define the first order difference
of f by

Apf(z) = f(x +h)— f(z), x€R"

For y € R", we define the function f, by f,(z) = f(xz +y). Set

A
h—0 |h|
According to |11, Section 7.11], we have
(2.1) ue WH(R™), 1<g<oo <= wucLiR") and G(u;q) < oo.

2.2. Some lemmas

The following result presents a characterization of the product of a function in W1P(R")

and a function in Lip(R™).

Lemma 2.1. Let 1 < p < co. If f € WHP(R") and b € Lip(R"), then bf € WHP(R™).

Moreover,

(2.2) Di(bf)=0bD;f+ fD;b, i=1,...,n
almost everywhere in R™. Consequently,

(2.3) V(bf) =bVf+ fVb

almost everywhere in R™. In particular, it holds that

(2.4) 1bf

Lp < VllbllLip@n) 1 fll1.p-

Proof. The proof is similar to that of Lemma 2.1 in [26]. At first, we claim that bf €
WLP(R™). Tt is easy to see that

(2.5) 16£1lp < N1bllooll £1l-
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One can easily check that
(2.6) Ap(bf) = (bf)n —bf = bpAnf + fARD
for any h € R™. It follows from (2.6]) that

[AR(0S)

G(osp) = timsup 12D < oG ) 4 100 11, <

h—

This together with and yields that bf € WLP(R").

Next we shall prove . Fix i € {1,...,n}. Noting that f,; — D;f and (bf)n; —
D;(bf) in LP(R™) when h — 0. This together with yields that there exist a sequence
of numbers {hy} satisfying limy_,~, hx = 0 and a measurable set E satisfying [R"\ E| =0
such that f, i(x) = Dif(x), (bf)n,.i(x) = Di(bf)(x) and by, ;(x) = D;b(x) as k — oo
for all x € E. It is easy to see that b(hiye; + ) — b(z) as k — oo for all x € E since
|b(hkei + x) — b()| < [1]] Lipn) | sl-

Therefore, we get from that

Di(bf)(x)

= Jim (b)p ()

= kﬁ_?;o(b(hkei +2) fry i () + bny,i(2) f(2)) = b(z) D f(x) + f(2)Dib(x)

for any x € E. This proves (2.2)). Equality ({2.3)) follows easily from (2.2). By (2.3)), (2.5),
(1.3) and Minkowski’s inequality, we have

1of1l1p = 101l + IV By < Dol fllp + 10V fllp + 1Vl < VllbllLip@m) [ f111.0,

which gives (2.4)) and completes the proof. O

Proposition 2.2. [15/17] Let 1 < p < oco. If fr = f, g9 — g weakly in LP(Q) and
fe < gk (k=1,2,...) almost everywhere in Q, then f < g almost everywhere in €.

Applying Proposition we can get a local version of Lemma [2.1

Lemma 2.3. Let 1 < p < co. If b € Lip(Q) and f € WHP(Q), then bf € WLP(Q).

Moreover,
(2.7) V(bf)=bVf+ fVb
almost everywhere in Q). In particular, it holds that

(2.8) 1bfll1.p.02 < VllbllLip) | fl11p.0-
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Proof. Since f € W1P(Q), there exists a sequence {¢, }52, of functions in WHP(Q)NC>® ()
such that ¢; — f in WP(Q) as j — oo. Fix j € N. Note that b is differentiable almost

everywhere in (2. By Leibniz rule,
Di(p;b)(x) = Digj(x)b(x) + Dib(x)p;(x)
foralli=1,...,n and almost every x € 2. Thus we have
(2.9) V(p;b)(x) = b(2)V;(x) + ¢;(2)Vb(z)
for almost every x € 2. By , and Minkowski’s inequality, one finds that

(2.10) [2i0ll1p.0 = [lbllpa + V(i) llpa

< blloocllillpe + IVeibllpa + IVhpillpa < VallbllLipo)lleilipe
and
2.11) [V (@jb) = (b(Vf) + f(VD)llpa < [[bVe; — bV fllpa + lle; Vb — fVbllpa

< Vbl Lip) 195 = fllLpo-
It follows from ([2.10) and (2.11)) that {¢;b}32, is a bounded sequence in WhP(Q) and

(2.12) V(pjb) = bV f+ fVb in LP(Q) as j — oo.

Since pjb — fbin LP(Q) as j — oo, then by Riesz theorem, there exists a subsequence
{©j,b}72, such that
@i (@)b(z) = f(x)b(x) ask — oo

for almost every x € Q. Consequently, there exists a measurable set E such that |Q\E| =0
and
@i, (2)b(x) = f(x)b(x) as k — o0

for every x € E. From the above we can conclude that the Sobolev derivative V(fb) exists

almost everywhere in £ and that
V(pib) = V(fb) weakly in LP(E) as j — oo.
Furthermore, the weak gradient V(fb) exists almost everywhere in 2 and
(2.13) V(p;b) = V(fb) weakly in LP(Q) as j — oc.
Applying Proposition and , , we can get . By , and

Minkowski’s inequality, one can get
161,20 = 0f[lp.0 + V() lp.
< [bllss.llfllp + (1blloo,l V.f
< VnlbllLip@) | fl11.p.0,

which gives (2.8)). O

p2 T Vilblluip@llflpe)
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In order to prove Theorem[L.8|for the commutator [b, M,], we need the following known
results.

Lemma 2.4. [16,19,22,27] Let 1 <p < 00, 0 < a < n/p and g = np/(n—ap). Then the
map My: WHP(R™) — WL4(R™) is bounded and continuous. Moreover, if f € W1P(R"),
then

|D1Maf(l')’ éMasz(:L')? 1=1,2,...,n
for almost every x € R™. Consequently,

[ Mo f

1q < Cp7q7n||f

The boundedness part and pointwise estimates in Lemma for a =0 (resp., 0 < a <
n) follows from [16, Theorem 1.4] (resp., [19, Theorem 2.1] and [19, Remark 2.2]). The
continuity part in Lemma[2.4] for o = 0 (resp., 0 < o < n) follows from [27, Theorem 4.1]
(resp., |22, Remark 1]).

The following known results are the main ingredients of proving Theorem [1.16

1,p:

Lemma 2.5. (i) [17] Let 1 < p < oco. Then the map Mq: WP(Q) — WLP(Q) is
bounded. Moreover, if f € WLP(Q), then

VMo f(2)] < 2Ma|V f|(x)
for almost every x € €.
(ii) [28] The map Mq: W'P(Q) — WLP(Q) is continuous.

Lemma 2.6. (i) [15] Let p € (1,n), o € [I,n/p) and ¢ = np/(n — (a — 1)p). If
f € W(Q) and || < oo, then

‘VMa,Qf(x)’ < 2Mo¢,Q’vf‘(x) + aMafl,Qf(‘r)
for almost every x € Q2. Consequently,

[Ma0f|

1,q,2 < Coz,n,p,ﬂ ||f

1)p7Q'

(i) [14] Let p € (1,n), o € [1,n/p) and ¢ = np/(n — (o — 1)p). Assume that |Q] < oo,
then the map My o: WHP(Q) — WH4(Q) is continuous.

(iii) [14] Let p € (1,n), « € [1,n/p) and ¢ = pn/(n — ap). If f € WIP(Q) and
admits a p-Sobolev embedding, i.e., ||fllza < Cpllf
My of € WH(Q). Moreover,

1,p,0 With p=np/(n —p), then

VMoo f ()] < 2Mao|Vf|(2) + aMa-1,0f(z)

for almost every x € Q2. Consequently,

||Ma,Qf||1,q,Q < Ca,n,prHl,p,Q-
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(iv) |15) Letp € (n/(n—1),00) and o € [1,min{(n — 1)/p,n —2n/((n — 1)p)} + 1). If
f e Lr(Q), then
|VMO¢,Qf( )| < C ( a— 1Qf( )+Sa—1,Qf(x))

for almost every x € Q. If in addition |Q| < oo, then

[Ma0f|

1,4,0 < Ca,n,p,ﬂ ||f

1,])797
where ¢ =np/(n — (a — 1)p).
In order to prove Theorems and the following result is also needed.

Lemma 2.7. [15] Letn>2, p>n/(n—1), 0 <a <min{(n—1)/p,n—2n/((n—1)p)}.
Then [[Sa.afllgo < Canpllflpo-

3. Proof of Theorem

Throughout this section, we fix 1 < p < o0, 0 < a <n/p, 1/¢=1/p—a/n, f € WIP(R")
and b € Lip(R").

3.1. Proof of Theorem |1.8|for [b, M,]

The proof of Theorem for [b, M,] will be divided into two steps:
Step 1: Proofs of (1.8)) and (1.9). Invoking Lemma we note that bf € WHP(R™)

and
almost everywhere in R". By Lemma we have that M, f € W14(R"™). This together
with Lemma and Lemma implies that
| Di([b, Ma](f)) ()]
< |Di(0Mo f) ()| + |DidMo(bf) ()]
< Dib(x)[Ma f () + [b(2)||DiMa f (2)| + Ma(Di(bf))(z)
< [Dib(x)|[ Mo f(x) + [b(2)||MaDif (2)] + Ma(Dibf)(x) + Ma(Difb)(x)

(3.2)

for any i = 1,...,n and almost every x € R™. By (3.2]) and the arguments similar to those

used to derive (2.4) in [16], we have
IV([b, Ma](£))(2)] < [Vb(2)|Ma f () + [b(2)|Ma|V f[(z) + Ma([Vb|f)(2) + Ma([V f[b)(x)
for almost every x € R™. This together with ([1.3]) leads to

IV ([, Ma] () (@)] < 2v/n|bll iprn) Maf (x) + 2[[blloc Ma |V f|(2)
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for almost every x € R™. This proves (L.8)). By (1.8), (1.4), (1.5) and Minkowski’s

inequality, we have

116, Mo (f)ll1g = 1116, Ma](F)llg + V[0, Ma](f)llg
< 24anplblloc |l fllp + 2vRlbll Liprny [ Mafllg + 2[1b] oo re) | Mal V £lq
< 240npVnlbllLipen) | 115

This proves .

Step 2: Proof of the continuity part. Let f; — f in WP(R") as j — co. By Lemma
we see that bf; — bf in WHP(R™) as j — oo. This together with the continuity part of
Lemma implies that My (bf;) — My (bf) in WH9(R") as j — oo. Moreover, M, fj —
M,f in WH(R") as j — oo. By Lemma again, we have that bM,f; — bM,f in
WLH4(R") as j — oo. Thus, [b, Ma](fj) — [b, Ma](f) in WHI(R") as j — oo.

3.2. Proof of Theorem for My, o

We divide the proof of Theorem for My, , into three steps:
Step 1: Proof of My o f € WH(R™). Fix z,h € R", we can write

(M (o) = sup ot /B )~ a0

r>0
which leads to

|(mb,af)h(x) - mb,af(x)’

o = IB(;O:'f’)I /B(:c,r) |(br (@) = b)) fr(y) = (b(2) = b(y)) f (v)| dy.

r>0
Observe that

(b () = br(y)) fn(y) — (b(x) = b(y)) f(y)
= (ba(@) = bu(y)) (fa(y) — f(¥)) + (bu(x) = b(x)) f(y) — (brly) — b(y)) f (v),
which together with and implies that
|ARM0 f) ()| < My, o(fr — (@) + [br(x) — b(2)[Maf(z) + Ma((br — b) f) ()
(3.4) < b + h) [ Ma (Anf) (@) + |Anb(2)| Mo f(2) + Ma(AnbAs f)(@)
+ Ma(Arbf)(x) + Ma(Anfb)(2)
for any h,z € R". By , and Minkowski’s inequality, one has
[ARM0f)llg < [16C- + h)Ma(Anf)llq + [AndMafllq + | Ma(ArbALS) g
+ Mo (Anbf)llg + [[Ma(Anf0)lq
(3.5) < [[blloo | Ma (A f)llg + 1Bl Liper) | Maflq|P]
+ Acpn (18002 llp + 880 S llp + [ An bllp)
< 4Aapn ([1bllip@n [ Awfllp + 10l Lipaen | fllplR]),
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which combining with G(f;p) < oo leads to

A
(36)  GOyafi) = limsup 122 T0alle gy

h—0 ’h‘

bl Lipn) (G(f5p) + | fllp) < oo

On the other hand, by (1.7) we known that 9, o f € L4(R™). This together with (3.6)
and (2.1)) implies that My, f € WHI(R™).
Step 2: Estimate for VI, o(f). We want to show that

(3.7) V(0 f) (@) < 2v/nbl| Liprn) Ma f (2) + 2(blloc Ma |V f](z)
for almost every x € R™. To prove , it suffices to show that
(3-8) [Di(My o f) ()| < [Dib(x)| Mo f(x)+|b(x)|MaDif (2)+Ma(Dibf)(2)+Ma(Difb)(x)

for any ¢ = 1,...,n and almost every x € R™. Once (3.8) was proved, by (3.8)) and using

the arguments similar to those used in deriving (2.4) in [16], we have
V(M0 f) ()] < [b(2)|Ma|V f](x) + |Vb(2)|[Ma f(x) + Ma([VO[f)(2) + Ma([V f]b)(x)

for almost every x € R™, which together with leads to .

Now we prove (3.8). Fix i € {1,...,n}. Since f € W'P(R") and M, of € WHI(R"),
then fh; — D;f in LP(R™) when h — 0 and ([b, Mo](f))ni — Di([b, Ma](f)) in LI(R™)
when h — 0. It is clear that f, ;b — D;fb in LP(R™) when h — 0. By Remark [L.7]i), we
have that Mo (fn,i) = Ma(D;f) and Mu(fn,ib) = M (D;fb) in LY(R™) as h — 0. By
and we have that |D;b(x)| < [|b Lip@mn) and by i(z) — Dib(z) as h — 0 for almost
every x € R". It follows that by, ;(z) f(x) = D;b(x) f(z) as h — 0 for almost every z € R™.
By Fatou lemma, we have that by, ;f — D;bf in LP(R™) as h — 0. This together with
Remark [1.7)(i) implies that Mo (bnif) = Mo (Dsbf) in LI(R™) as h — 0. Therefore, there
exist a sequence {hy} satisfying hy > 0 and limy_,o hy = 0 and a measurable set E with
|R™\ E| = 0 such that for all z € E,

(1) Mo fhyi(x) = Di(Mpof)(x) as k — oo and by, ;(x) — D;b(x) as k — oo;
(i) Ma(fai)(x) = Ma(Dif)(x) as k — 00, Ma(fh,ib)(x) = Ma(D;fb)(x) as k — oo;
(ifi) Mg (bp, i f)(x) = Ma(Dibf)(z) as k — oo.

Above facts together with will give that
| Di (M. f ) ()]

(Dﬁb,af)hk K ($)

= | lim
k—o0
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< Jim oo (b(o + ) Mol B ) ) + By (o) Mo (0)

+ Mo (Ahye;bAnye, ) (@) + Ma(Apye;0f)(2) + Ma(Apye, f0) ()
<l (b -+ hier) M (F ) (&) + b1 1(5) | Mo F ()
+ Mo (A0 i) (@) + Ma(bpy i f) (@) + Ma(fry,:0)(2))
< it (Bl apany ]+ 1) )Mo i )(2) b1 () Mo ()
+ 10l Lipen) e Mo fry i) (@) + Ma(bnyi f) (@) + Ma(fryib)(2))
< [b(@)|Ma(Dif)(2) + |Dib()[Ma f(x) + Ma(Dibf)(x) + Ma(D; fb)(2)
for all x € E. This proves (3.8]).
Step 3: Proof of the boundedness part. It follows from (3.7)), (1.4)), (L.7)) and Minkowski’s
inequality that
1M, fll1,g = 1MMp,0fllg + IV, fllg
< 24anpllblloc | fllp + 23/ nlbll Liprny [ Mafllg + 2110lloc [ MalV fllq
< 2AanpVlbllLip®e) 1 fll1p-
This finishes the proof of Theorem

4. Proof of Theorem |1.16

The proof of Theorem will be divided into four steps:

4.1. Proof of Theorem |1.16(i)

Let 1 < p < oo, f € WP(Q) and b € Lip(f2). By Lemma we have that bf € WHP(Q)
and
(4.1) V(bf)(z) = b(x)Vf(z) + f(z)Vb(z)
for almost every x € €). Combining with Lemma (1) and (1.15)) implies that
IVMo(bf) ()] < 2Ma(V(bf))(z) < 2Ma(b|V f])(2) + 2Ma(f|Vb])(x)
< 2|[blloo, oMoV fI(x) + 2v/n|b]| Lip@) Ma f(z)

for almost every z € €. On the other hand, by Lemma i), we have that Mg €
WLP(Q) and |[VMqf(z)| < 2Mq|Vf|(x) for almost every x € 2. These facts together

with Lemma and imply that
IV(bMa f)(z)| = [Maf(z)Vb(z) + b(z)V Mo f(z)|
(4.3) < [Vb(x)|Ma f ()] + 2[b(x) || M|V f|(z)]
< Vbl i) Maf (@) + 2[|bllc o Mol V f1(2)

(4.2)
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for almost every x € €. It follows from (4.2)) and (4.3)) that
[V[b, Ma](f)(2)] < 4l|blloc.0o MalV f[(2) + 3v/n|b] Lip@) Ma f ()
for almost every = € . This proves (1.16)). By (1.16)), (1.10) and Minkowski’s inequality,

we have

IV[b, Ma](f)

p2 < 4bllcollMalV fllp.a + 3vnllbllLipw | Maf
< Cup([bllsolV £l + bl Lip@ I £ llp.2),

which together with (1.11)) leads to ((1.17)).
It remains to prove the continuity part. Let f; — f in WhP(Q) as j — oco. By

Lemma we have that bf; — bf in WHP(Q) as j — oo. This together with Lemma(ii)
implies that Mq (bf;) — Mq(bf) in W1P(Q) as j — oo. On the other hand, by Lemma(ii)
again, one sees that Mqf; — Mqof in WhP(2) as j — oo. This together with Lemma
leads to bMq f; — bMqf in WP(Q) as j — oo. Therefore, we have that [b, Mq](f;) —
[b, Mo](f) in WHP(Q) as j — oo.

p,Q2

4.2. Proof of Theorem |1.16(ii)

Let p € (1,n), a« € [1,n/p), ¢ =np/(n — (o — 1)p) and ¢1 = np/(n — ap). It is clear that
q < q. Let f € WHP(Q) and b € Lip(2). By Lemma we have that bf € WP(Q)
and V(bf)(z) = b(x)Vf(x) + f(z)Vb(x) for almost every z € . This together with

Lemma [2.6{i) and yields that
IV My (b5 (@)
< 2Ma o[V BN (@) + aMa1,0(bf) (@)
< 2My o |VBF)(@) + 2Ma (9 115)(@) + allblocoMa—1.0/ (2)
< 2Vlbl Lipgey Mo f @) + 20blloo s Magl 9 11(2) + allblloosMa-1.0.f ()
for almost every z € Q.
On the other hand, by Lemmas [2.6(i) and (L.15)), we have
IV(0Ma,of)()|
< |Vb|(2) Moo f (z) + [b(2)[|V Moo f|(x)
< Vbl ipy Moo f () + [b(@)|(2Ma,o|V f|(2) + aMao—1,0f(x))
< Vnllbll ip) Moo f () + 2[bllc 0 MooV () + afblloc 0 Ma-1,0f(2))
for almost every = € €. In light of and we would have

Vb, Ma0](f) ()]
< V(Moo f)(@)| + |VMa0(bf)(2)]
< 3\/ﬁ”b||L1p(Q)Ma,Qf(x) + 4HbHOO,QMa,Q’vf|(x) + 2a||bHOO,QMa71,Qf(x)

(4.4)
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for almost every x € €. This proves (|1.18]).
By (1.18]), (1.10]), Minkowski’s inequality and Holder’s inequality, we have

V16, Maol(f)llg.0
< 3Vnbl| Lip(e) [ Moo fllge + 4lbllool Moo
< 3VlIbl Lip(ey [V | Moo f gy 0 + 4
+ Capnllbllocoll flpe
< Camp ol 10lLip@) 1 f1[1.p.0,

which together with (1.11)) leads to ((1.19).
We now prove the continuity part. Let f; — f in WP(Q) as j — co. By Lemma

we see that bf; — bf in WHP(Q) as j — oo. This together with Lemma (ii) implies that
My a(bf;) = Maq(bf) in WH4(Q) as j — oo. On the other hand, by Lemma (ii), we
have that M, of; = Maof in Wh4(Q) as j — oo. This together with Lemma leads
to bMyafj — bMaof in WH(Q) as j — oo. Therefore, we have that [b, M, q](fj) —
[b, My 0](f) in WhH(Q) as j — oo.

Vilga + 2afbllecoll Ma-1.0fllg0
[blloo,al U4 [ Mo 0]V flllgr 0

4.3. Proof of Theorem |1.16(iii)

Let p € (1,n), @ € [1,n/p) and ¢ = pn/(n — ap). Set 1/p = 1/p — 1/n. It is clear that
1/g=1/p— (a —1)/n. By using Lemma[2.6(iii) and the arguments similar to those used
to derive , one can get . By , and Minkowski’s inequality, we have
V[0, Ma,0](f)llg.0
< 3Vn|bll Lip(e) [ Moo fllgn + 4lblle ol MaolV flllg0 + 20]|bllco.0| Ma—1.0fllg0
< Cano(WBllzip@) I + 15local ¥ Fllpa + Bl fI50)

< Canplbllip@ £ 1p.0,

which together with (1.11)) implies ([1.21)).

4.4. Proof of Theorem |1.16{iv)

Let p € (n/(n—1),00), a« € [l,min{(n —1)/p,n —2n/((n — 1)p)} + 1) and || < co. By
Lemma [2.6{iv), we have
[VMeao(bf)(@)] < Cn(Ma-1,0(bf)(2) + Sa—1,0(bf)(2))
< Cng”OO7Q (Moa—l,Qf(x) + Sa—l,Qf<w))
for almost every z € Q. By Lemmas [2.6{iv), and (L.15)), we have
V(Moo f)(@)] < [Vb(x)|Maof(x) + [b(2)||[VMaof(z)|
< Vb Lip) Moo f (x) + Cu||bll oo, (Ma—1,0f (%) + Sa—1,0f ()

(4.6)

(4.7)
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for almost every z € ). Combining (4.6)) with (4.7) implies (1.22]).
Let 1/¢g1 = 1/p — a/n. Clearly, ¢ < ¢1. By (1.22)), (1.10), Minkowski’s inequality,
Holder’s inequality and Lemma we have

V[, Mool (f)ll4.0
< ValbllLip) IManfllae + Callbllson (IMa-10fllg + ISa-1.0/lla0)
< \/ﬁHbHLip(Q)’QP/q_l/(h||Ma,Qf||q1,Q + Ca,n,prHoo,Q ‘pr,Q

< C104,n,p,|Q| HbHLlp(Q) Hpr=Q7

which together with (1.11)) implies ([1.23]). This completes the proof of Theorem m

5. Proof of Theorem |1.17

5.1. Preliminary notation and lemmas

For convenience, we set §(x) = dist(x, Q). It is clear that J is a Lipschitz function. By
Rademacher’s theorem, we see that ¢ is differentiable almost everywhere in 2. Moreover,
|[Vé(x)] =1 for almost every = € Q. Let b, f be two suitable functions defined on €. For
t € (0,1) and o € (0,n), we define the function A;pq(f): Q — [—00, 00] by

(@) .
AN = (B oo ) = b))y

When o = 0, we denote A;p o = At p.
In what follows, for any arbitrary functions F'(z,y) defined on Q x Q, we set V,F =
(D1sF,...,Dy o F), where D; . F' is the i-th weak partial derivative of F' in z.

Lemma 5.1. Letp € (1,n), a € [1,n/p) and g = np/(n—(a—1)p). Assume that || < 0o
and b € Lip(Q). If f € WLP(Q), then Aipo(f) € WH(Q) and

(5.1)  [VAupa(f)(@)] < oMy a-1,0f (@) + 3vn[bl| Lip) Moo f (2) + 2D 0,0|V f|(z)
for almost every x € €.

Proof. At first we assume that f € WHP(Q) N C®(Q). Fix i = 1,2,...,n. By [25, (5.8)],

we have

VA polf)()]
N (to(z))*t
B2, ()] JB(ats(a))

[Vé(z)]  (té(z))” - o
5(z) yB(a:,té(x))\/B(x,w(x)) IVy([b(z) = b(y)|f(y) - (v — )| dy

[b(z) = b(W)I|f(y)] dy
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(13(2))" o
52 e (L [V = bl dy
+/W V4(1b() ~ bl F >>|dy>
< OMraf )+ a9 b))l dy

)" o
REEO) /B(z,w(z» Va[ble) = bw)lf W)l dy

for almost every = € Q. Since b € Lip(£2), then [b(x) —b(-)| € Lip(Q2), [|[b(z) —b( )|l Lipi2) <
161l Lip(ery and [[[b(z) =b() l|Lip) < 2lIbllLip(e)- Similarly, we have that [b(-)—b(y)| € Lip(€2)

b(
and ||[b(+) — b(y)|HLl'p(Q) < HbHLw(Q). Invokmg Lemma we have that |[b(x) —b(-)|f(:) €
WLP(Q) and

(5-3) Vy([b(z) = b(y)|f () = F(y)Vylb(x) = b(y)| + |b(x) — b(y)[V f(y)

for almost every y € Q. By (L.15) and the fact that [[|b(x) — b()|l|Lip) < 0l Lip), We
have that [V, |b(x) — b(y)|| < v/nllbllLip) for all z € Q. Similarly, [V.[b(z) — b(y)|| <
Vbl Lip) for all y € Q. Then we get from (5.3) that

(5-4) IVy(Ib(z) = b W] < VnllbllLip | f ()] + b(x) = b))V £ ()]

for almost every y € Q. By (5.4), (5.2)) and the fact that [V |b(x) — b(y)|| < v/nl|bll Lip)

we have
IV Aipalf)()]

R e ey WL

B(x7
st . .
T 1B, t6(2))| JB(es(e)) (|b( ) = bWV f(y)] + \F||b||sz(Q)|f(y)|) dy

< oMy a—1.0f(2) + 3Vnl|b] Lip) Mo, f(2) + 200 00|V f|(2)

(5.5)

/-\\_/

for almost every x € Q. This proves for f € WHP(Q) N C>(R).

Next we complete the rest of proof by an approximation argument. Assume that
f € WhP(Q) for some p € (1,n). There exists a sequence of functions {¢; 152, in WhP(Q)N
C>(f2) such that ¢; — f in WP(Q) as j — co. By Hélder’s inequality, we have

sl ) = Auna DI < il [ o) = by o) — S0

(t(x))"

< (\b(w)l + Hb”ooﬂ)||90j - f\\pﬂW’
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which leads to
Jim Agpa(es)(7) = Avpalf)(@)

for all z € Q. It was shown that

(5.6) |VApalef)(@)] < oMy a-1,.00i(x) + 3vV0lbl Lip) Ma,09; () + 2000

Vil (z)

for almost every x € Q. Let g1 = np/(n — ap). It is clear that ¢ < ¢;. By (1.15), (1.13)),
(5.6)), Holder’s inequality and Minkowski’s inequality, we have

IV ALpa(@i)llg,0
< allMpa-1.00; g0 + 3Vl Lip) | Ma.09i g0 + 219,00l Veilllgo
(5.7) < Camplbllsellsllpe + 3v/nllbll i) |29 | My,00; 141 .0
+2QM TV 90, o 0| Vsl 0

< C’oz,n,p,|Q| HbHLlp(Q) H(pJ H17P79'

This yields that {[VA;pa(p;)|}52; is a bounded sequence in L(Q2). By the fact that
Arpalpi)(@) = Apa(f)(x) as j — oo for almost every z € Q, we have that the
Sobolev derivative VA o(f) exists almost everywhere in € and there exists a subse-
quence {V At pa(pj,)}72; of {VAipal(p;) 52, such that

(5.8) VAipalpj,) = VArpa(f) weakly in LI(Q) as £ — oo.

On the other hand, we get by Remark |1.11{(iii) that 9 o—1.00; = Mya—1,0f in LI(Q)
and My, o.0|Vei| = Myl V| and My op; = Moof in L9(Q) as j — oco. Hence, by
Hoélder’s inequality, we have that 9, o 0| Vi = Mpaol|VSf| and My op; = Myaf in

L%(Q) as j — oo. For convenience, we set
be := aMy 01,095, () + 3Vn[[b] Lip@) Ma,0pj, () + 200 0,0/ Ve, |(2).
It was proved that
(5.9)  be = aMya-r.0f + 3Vl ip) Maf + 200V in LI(Q) as £ — oco.

Combining (5.9) with (5.6), (5.8) and Proposition [2.2] yields (5.1). O

Lemma 5.2. Let 1 < p < oo and b € Lip(Q). If f € WHP(Q), then Aip(f) € WHP(Q)

and

(5.10) IVA(f) ()] < 3vnlbll iy Ma f(z) + 20y 0|V f|(x)

for almost every x € Q.
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Proof. At first we assume that f € WhP(Q)NC>®(Q2). By (5.2) and the arguments similar
to those used in deriving (5.5)),

VAL (f)(@)] < 3Vnlbllipe) Maf () + 2000V f|(2)

for almost every = € €. This proves (5.10)) for the case f € WhP(Q) N C>(Q). The rest
of the proof follows from the arguments similar to those used in the proof of Lemma [5.1
We omit the details. O

Lemma 5.3. Let p € (1,n), a € [1,n/p) and ¢ = pn/(n — ap). Let Q admit a p-Sobolev
embedding and b € Lip(Q). If f € WIP(Q), then Aipo(f) € WH(Q) and

(5.11)  [VAppa(f)(@)] < aMya—1,0f (@) + 20,0V F|(2) + 3vnlb]l Lip) Moo f (2)
for almost every x € €.

Proof. By (5.5), we known that (5.11)) holds for all f € W1P(Q) N C>®(f2). The rest of

the proof follows from an approximation argument. Assume that f € W1P(Q) for some
p € (1,n). There exists a sequence of functions {¢;}52; in WLP(Q) N C* () such that
;= fin W'P(Q) as j — oo. It was known that

]]LIEO At,b,a(@j)(x) = At,b,oz(f)(x)
for all z € Q and
(5.12) [VAipalpi)(@)] < adya-1,00i(@) + 3v0l[b]l Lip) Ma,00;(2) + 29 0 0| Ve;|(2)

for almost every = € Q.
Let 1/p = 1/p —1/n. Clearly, 1/¢ = 1/p — (o — 1)/n. Since 2 admits a p-Sobolev
embedding, then

(5.13) lullgo < Conllullipo,  Vue LP(Q).

By (1.10), (1.13)), (5.12)), (5.13]) and Minkowski’s inequality, we have

IV At bales)
< al|Mp o100l + 3VRlbl Lip) | Ma.0@;illgn + 219 0.0l Veilllgo
< Compllblooa (@il + 1Vejlpa) + Camnp
< ConpllbllLipo) 9]

q,92

(5.14)

Ol Lip 125 llp.0

17p7Q'

On the other hand, we get by that ¢; — f in LP(Q) as j — oo. Then by Re-
mark we have that My, o | Ve;i| = My o 0| V], Moo = Maof and My, 01005 —
Mp.a—1,0f in LI(Q) as j — co. The rest of the proof follows from the arguments similar
to those used in the proof of Lemma We omit the details. O
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Lemma 5.4. Let p € (n/(n —1),00), a € [1,min{(n — 1)/p,n — 2n/((n — 1)p)} + 1),
q=np/(n—(a—1)p) and |Q| < co. Ifb € Lip(Q) and f € LP(Q), then A p(f) € WHI(Q)
and

VA po(f)(2)] < (0 — )My a—1,0f (@) + V1llb|| Lipi) Ma,0 f (2)
+ 2n||b]|0.0Sa—1,0f ()

for almost every x € ().

Proof. Let f € LP(2) NC>(R). It was shown in the proof of [25, Lemma 5.3] that

IVo(z | (to(x
VApa(D@) < (0 - ) e BB Lo ) WIS
Bt L 196l = b0
s ) = bl ) )] )
OB (x,t6(x))
vt ) - sl Vo))
OB(z,td(x))

for almost every x € Q, where v(y) = (y — x)/(td(x)). This together with the fact that
¥ alb(a) = b(@)I| < Vbl (e implies that

VA (f )( )|
a 1
< (- ) g ‘/M ~ b7 )l dy
+\ﬂ|bump<m‘3x o / e @
n(16(2))*~

1OB(x. 152N x) — n—1
B ey 1) B )

< (n— a)Mya-—1,0f(@) + V0llbll Lip) Moo f () + 20]|bl|cc,0Sa—1,0f (2)

for almost every x € Q2.

The rest of the proof follows an approximation argument. Assume that f € LP(2) for
some p € (1,n). There exists a sequence of functions {¢;}52; in LP(Q2) NC*°(€2) such that
w; — fin LP(Q) as j — oo. It was known that

lim Apa(o;) = Arpalf) (@)
J—00

for all x € . Moreover, it was proved that

IVAipa(ej)(@)] < (n—a)Mya—1,00i() + Vllbll Lip) Ma0e;(z)

(5.15)
+ 20 bl|s0,08a-1,005 (%)
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for almost every x € Q2. Let ¢1 = np/(n — ap). Clearly, ¢ < ¢1. By (1.10)), (1.13)), (5.15)),
Minkowski’s inequality, Holder’s inequality and Lemma we have

IV ALpa(@i)llg0
< (n = A)[[Mp,a—1,005llg.0 + VlbllLip@) | Ma0pillgn + 2n)b]c.0llSa-1,00;

(5.16) < Canp |03 llp2 + VlIbl| ip(e) |24 | M 00 [141 0
+ Conpllblloo,0ll¥;]

7,9

bl o2

P,

< Ca,n,p,\m ”bHLlp(Q) ||(pj ||p,Q'

On the other hand, by Remark we have that My 1095 = Mpa—1,0f in LI(Q) as
Jj — 00. Moreover, My ap; — Maaf in L3 (Q) as j — oo. This together with Hélder’s
inequality implies that M, ap; — My of in LY(2) as j — oo. By the sublinearity and
Lemma one sees that Sp—1,0p; = Sa—1,0f in LI(Q) as j — oo. The rest of the proof
follows from the arguments similar to those used in the proof of Lemma We omit the
details. O

5.2. Proof of Theorem [1.17]

We adopt the method of |17] to prove Theorem Lett;, 7 =1,2,..., be an enumeration
of the rationals between 0 and 1. For any k£ > 1, 0 < a < n and two suitable functions f,

b defined on €2, we define the operator ujp o by

U bo(f)(x) = max Ay po(f) (7).

1<j<k

For oo = 0, we denote uy o = U, p-
We first prove (i). Let f € WP(Q) with p € (1,00) and b € Lip(Q2). Invoking
Lemma one has that 4, ;(f) € W'(Q) and

(5.17) VA b(f) (@) < 3vnl|bllLipie) Ma f (x) + 2000, 0|V f|(2)

for all j =1,2,... and almost every x € ). On the other hand, it is easy to see that

My f(z) =sup Ay, 5(f)(2)
jz1

for all x € Q. Moreover, the sequence {uyp}7°, is an increasing sequence of functions
converging pointwise to My of. Using (5.17) and the fact that the maximum of two

Sobolev functions belongs to the Sobolev space (see [11, Lemma 7.6]), one finds that

(5.18) Vurp(@)] = |V max Ay, p(f)(@)| < max [VA, p(f)()]

< 3Vn|bl| Lipio) Ma f(x) + 200, 0|V f| ()
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for all £ = 1,2,... and almost every x € 2. By (5.18), (1.10), (1.13) and Minkowski’s

inequality, we have

IVugpllpa < 3Valbll il Mafllp.a + 2[00l V 0

(5.19)
< Cop(I0llzip@) | fllpe + 1l 2l VFllpe) < Crpllbllip@) I 11,9,

which gives that {|Vug|}72, is a bounded sequence in LP(£2). Since uy; converges point-
wise to My of as k — oo, then the weak gradient VI, o f exists and there exists a
subsequence {ug, 5}, of {urp}pe, such that |Vuy, | — |V o f| weakly in LP(S2) as
{ — o0. The estimate follows from the same argument as in the end of the proof of
Lemma [B11

By and the arguments similar to those used to derive , we have

VI fllp.o < CopllbllLip@l fllLpe,
which combining with (1.14]) implies that
199%,0fll1p.0 = [P0f]

which proves (|1.25]).
Using Lemma and the arguments similar to those used in deriving (|1.24]), we can

prove (1.26). By (1.26) and the arguments similar to those used to derive (5.7)),

pQ T ||V§mb,ﬂf”p,ﬂ < Cn,p

bl Lip) 111,05

IV 00fllg.0 < CanpjolbllLip@)ll fll1p.0;

which together with (1.13)) leads to ((1.27)).
By Lemma and the arguments similar to those used in deriving (|1.24]), we can

prove ([1.28). By (1.28)) and the arguments similar to those used to derive (5.14)),

vab,aﬂf

q,2 < Ca,n,prHLip(Q)”f”l,p,Qa

which together with (1.13)) leads to (|1.29).
Finally, using Lemma and the arguments similar to those used in deriving (1.24)),

we can prove (1.30). By (1.30) and the arguments similar to those used to derive ({5.16}),
IVIMy0,0fllg.e < CanplollbllLip@) |l f

which together with (1.13)) leads to ([1.31)). This completes the proof of Theorem m

P,

6. Proof of Corollary |1.18

To prove Corollary we need the following property of the Sobolev space with zero

boundary values.
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Lemma 6.1. [18] Let Q C R™, Q # R"™, be an open set. Let f € WHP(Q) for 1 < p < oo

and [ (%)pda} < 0. Then f € WyP(Q).

Proof of Corollary [1.18] The proof of Corollary will be divided into four steps:

(i) Let f € Wol’p(Q) with p € (1,00) and b € Lip(f2). There exists a sequence of
functions {¢x}32, in C§°(S2) such that ¢ — f in WHP(Q) as k — oco. It follows from
Theorem [1.16{(i) that [b, Mq](px) € WEP(Q), k = 1,2,.... Note that [b, Mg](px)(z) = 0
whenever dist(z, 0Q) < 1/(2dist(supp g, 9Q2)). Thus we have [b, Mql(¢x) € Wol’p(Q). By
Remark [1.11](ii) we see that [b, Mq](px) — [b, Mo](f) in LP(2) as k — co. On the other
hand, by Theorem [L.16i),

V[b, Mo (¢r) ()] < 4[bllsc. 0 Ma|Veer|(2) + 3v/nlbl Lipe) Maspr()

for almost every x € €. This together with the arguments similar to those used to derive

(1.17) implies
16, Ma](¢r)

This yields that {[b, Mq](¢x)} is a bounded sequence in Wy (Q) converging to [b, Mq](f)
in LP(Q2). A weak compactness implies [b, Mq|(f) € WO1 P(Q)). Similarly, we can prove
Myaf € Wy (Q).

(ii) Let f € WHP(Q) with p € (1,n) and a, ¢, © be given as in Corollary (ii). It is
easy to see that My qf(z) < dist(x, Q%) My_1.0f(z) for any z € Q. Tt follows that

l1p.0 < Chp b”Lip(Q)H‘PkHLPﬂ'

[b, Ma,0](f)(x)| < dist(z, Q) (|b(2)[Ma-1,0f (2) + Ma—1,0(bf)(x))

(6.1) .
< 2|b]| oo, dist(x, Q) My—1 o f ()

for all z € Q. In light of (6.1)) and ([1.10) we would have

</Q (U)’MQQWY d$>1/q < 2[[bllco,0l| Ma-1,0flg.0

(6.2) dist(z, Q°)

S Ca7n7p||b||0079”f||1’79 < 0.

On the other hand, we get from Theorem [1.16(ii) that [b, M, o](f) € Wh4(Q2). This

together with (6.2) and Lemmayields b, Mo l(f) € Wol’q(Q).
One can easily check that

(6.3) Mp,a0f(2) < 2[[bllcc.0Manf(2) < 2[[bllo,0 dist(x, 1) Ma—1,0f (2),

which together with Theorem M(u) and the arguments similar to those used in deriving
[b, Mao](f) € Wy () implies My 0.0 f € Wy9(Q).
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(iii) Let f € W'P(Q) and «, p, ¢,  be given as in Corollary [1.18(iii). Let 1/p =

1/p—1/n. Clearly, 1/¢ =1/p— (o —1)/n. By (6.1]), (1.10) and the p-Sobolev embedding
property of €2, we have

o (L Cmiea) @) " < Al

< Canpllblloooll fllpe < oo

|Ma—1,0fllg.0 < Canpllblloc.all fliza

On the other hand, we get from Theorem (iii) that [b, Mao](f) € WH9(Q). This
together with and Lemma yields [b, My 0](f) € Wol’q(Q). Similarly, we get by
(6-3) and Theorem [1.17(iii) that My 0 0f € Wy ().

(iv) Let f € LP(R2) and p, a, g be given as in Corollary (iv). By , we have

(©5) ([ (BMaal D) 0™ < sl <

By Theorem M(iv) we have [b, M, q](f) € WH9(Q). This together with (6.5) and

Lemma [6.1] yields [b, M, 0] (f) € W(Q).
On the other hand, by (6.3) and the arguments similar to those used to derive (6.2,

My 0.0f () 1/q
TOeREd A\ < ‘
</Q < dist(zx, Q°) dx < Canpllfllpo < oo

This together with Theorem m(iv) and Lemma |6.1| implies My, o o f € I/VO1 Q). O
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