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Regularity of Commutators of Maximal Operators with Lipschitz Symbols

Feng Liu* and Guoru Wang

Abstract. This paper is devoted to studying Sobolev regularity properties of commu-

tators of Hardy–Littlewood maximal operator and its fractional case with Lipschitz

symbols, both in the global and local case. Some new pointwise estimates for the

weak gradients of the above commutators will be established. As applications, some

bounds for the above commutators on the Sobolev spaces will be obtained.

1. Introduction

1.1. Background

The regularity theory of maximal operators is an active topic of current research. A

driving question related to this theory is whether a given maximal operator improves,

preserves or destroys the a priori regularity of an initial datum f . In 1997, Kinnunen [16]

first studied the Sobolev regularity for the Hardy–Littlewood maximal operator

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)| dy,

where B(x, r) is the open ball in Rn centered at x with radius r and |B(x, r)| denotes its

volume, and showed that M is bounded on the first order Sobolev spaces W 1,p(Rn) for

1 < p ≤ ∞, where

W 1,p(Rn) :=
{
f : Rn → R | ‖f‖1,p := ‖f‖p + ‖∇f‖p <∞

}
,

where ‖f‖W 1,p(Rn) := ‖f‖1,p, ‖f‖p := ‖f‖Lp(Rn) and ∇f = (D1f, . . . ,Dnf) is the weak

gradient of f . Later on, more and more scholars devoted to extending Kinnunen’s result

to various variants (see [7, 17, 19, 23]). Since the derivative of maximal function has no

sublinearity, the continuity of M : W 1,p(Rn)→W 1,p(Rn) for 1 < p <∞ is affirmatively a

nontrivial issue. This question was first answered by Luiro [27] and later extended to the

local case in [28] and to the multilinear fractional case in [22]. The endpoint regularity
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properties of maximal operators can be found in [2, 5, 6, 8, 29]. Other interesting works

of regularity theory are [20, 21, 24, 28] for the boundedness for maximal operator on the

fractional Sobolev spaces, Triebel–Lizorkin spaces and Besov spaces as well as [25,26] for

the regularity properties for the commutators of maximal operators.

Recently, Liu, Xue and Zhang [26] studied the regularity properties for the commuta-

tors of Hardy–Littlewood maximal function. To be more precise, let b be a locally integral

function defined on Rn, the commutators of the Hardy–Littlewood maximal operator is

defined by

[b,M ](f)(x) = b(x)Mf(x)−M(bf)(x), x ∈ Rn.

The maximal commutator of M with b is defined as

Mbf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|b(x)− b(y)||f(y)| dy, x ∈ Rn.

Liu, Xue and Zhang [26] established the following result.

Theorem 1.1. [26] Let 1 < p1, p2, p < ∞ and 1/p = 1/p1 + 1/p2. If b ∈ W 1,p2(Rn),

then the map [b,M ] : W 1,p1(Rn) → W 1,p(Rn) is bounded and continuous. Moreover, if

f ∈W 1,p1(Rn), then

‖[b,M ](f)‖1,p ≤ Cn,p1,p2‖b‖1,p2‖f‖1,p1 .

The above boundedness also holds for Mb.

Very recently, Liu and Xi [25] extended Theorem 1.1 to the fractional case. Let us

introduce the commutators of fractional maximal operator.

Definition 1.2. Let 0 ≤ α < n and Mα be the fractional maximal operator on Rn, i.e.,

for f ∈ L1
loc(Rn),

Mαf(x) = sup
r>0

rα

|B(x, r)|

∫
B(x,r)

|f(y)| dy, x ∈ Rn.

For a locally integral function b defined on Rn, the commutator of fractional maximal

operator Mα with b is defined by

[b,Mα](f)(x) = b(x)Mαf(x)−Mα(bf)(x), x ∈ Rn.

The fractional maximal commutator of Mα with b is defined as

Mb,αf(x) = sup
r>0

rα

|B(x, r)|

∫
B(x,r)

|b(x)− b(y)||f(y)| dy, x ∈ Rn.

Clearly, Mα = M , [b,Mα] = [b,M ] and Mb,α = Mb when α = 0.

We now introduce the main results of [25] as follows.
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Theorem 1.3. [25] Let 1 < p1, p2, p, p1p2/(p1 + p2) < ∞, 0 ≤ α < n/p1 and 1/q =

1/p1 + 1/p2 − α/n. If b ∈ W 1,p2(Rn), then the map [b,Mα] : W 1,p1(Rn) → W 1,q(Rn) is

bounded. In particular, if f ∈W 1,p1(Rn), then

|Di[b,Mα](f)(x)| ≤ |b(x)|Mα(Dif)(x) +Mα(bDif)(x) + |Dib(x)|Mαf(x) +Mα(Dibf)(x)

for almost every x ∈ Rn and i = 1, 2, . . . , n. Moreover,

‖[b,Mα](f)‖1,q ≤ Cα,n,p1,p2‖b‖1,p2‖f‖1,p1 .

The same conclusions hold for Mb,α.

In this paper we continue to focus on the Sobolev regularity properties for the commu-

tators of Hardy–Littlewood maximal operator and its fractional version. More precisely,

we shall establish some new results on the Sobolev regularity properties of the above

commutators with Lipschitz symbols, both in the global and local case.

1.2. The global case

In 1990, Milman and Schonbek [30] first introduced the commutator of maximal operator

and established the Lp (1 < p <∞) bounds of [b,MC ] when b ≥ 0 and b ∈ BMO(Rn). Here

MC is the Hardy–Littlewood maximal operator associated to cubes. Subsequently, Bastero,

Milman and Ruiz [3] improved the above result by removing the restrictive condition

b ≥ 0. It was shown in [4] that the operator [b, M̃C ] can be used in studying the product

of a function in H1(Rn) and a function in BMO(Rn). Later on, the Lp → Lq bounds

for the commutators of fractional maximal operator have been studied by many authors

(see [9, 12,32]). The maximal commutator was first studied by Garćıa-Cuerva, Harboure,

Segovia and Torrea [10] who showed that the maximal commutator ofMC with b is bounded

on Lp(Rn) for 1 < p < ∞ if and only if b ∈ BMO(Rn). Other interesting papers related

to this topic can be consulted [1, 31], among others. It should be pointed out that the

corresponding results also hold for [b,M ], [b,Mα], Mb or Mb,α, which is based on the fact

that the Hardy–Littlewood maximal operator associated to balls has same properties as

the Hardy–Littlewood maximal operator associated to cubes.

From Theorems 1.1 and 1.3, one sees that, the assumptions that these symbols b

belong to Sobolev spaces guarantee certain Sobolev regularity for the commutators of the

Hardy–Littlewood maximal operator and its fractional version. A natural question is the

following

Question 1.4. Do the commutators [b,M ], [b,Mα], Mb and Mb,α have somewhat Sobolev

regularity properties when the symbols b are not Sobolev functions?
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Question 1.4 is one of main motivations in this paper. In order to formulate our main

results, let us introduce Lipschitz space.

Definition 1.5 (Lipschitz space). The homogeneous Lipschitz space Lip(Rn) is defined

by

Lip(Rn) :=
{
f : Rn → C continuous : ‖f‖Lip(Rn) <∞

}
,

where

‖f‖Lip(Rn) := sup
x∈Rn

sup
h∈Rn\{0}

|f(x+ h)− f(x)|
|h|

<∞.

The inhomogeneous Lipschitz space Lip(Rn) is given by

Lip(Rn) :=
{
f : Rn → C continuous : ‖f‖Lip(Rn) <∞

}
,

where

‖f‖Lip(Rn) := ‖f‖∞ + ‖f‖Lip(Rn) <∞.

Remark 1.6. Let b ∈ Lip(Rn). Then the weak partial derivatives Dib, i = 1, . . . , n, exist

almost everywhere. Moreover, it holds that

(1.1) Dib(x) = lim
h→0

b(x+ hei)− b(x)

h

and

(1.2) |Dib(x)| ≤ ‖b‖Lip(Rn)

for almost every x ∈ Rn. Here el = (0, . . . , 0, i, 0, . . . , 0) is the canonical i-th base vector

in Rn for i = 1, . . . , n.

To see (1.1) and (1.2), let us fix i = 1, . . . , n. Since b is Lipschitz continuous, then

by Rademacher’s theorem, we know that b is differentiable almost everywhere. Then the

partial derivatives Dib exists almost everywhere and (1.1) holds. For almost every x ∈ Rn,

we get by (1.1) that

|Dib(x)| =
∣∣∣∣ limh→0

b(x+ hei)− b(x)

h

∣∣∣∣ ≤ lim
h→0

|b(x+ hei)− b(x)|
|h|

≤ ‖b‖Lip(Rn),

which gives (1.2). It follows from (1.2) that

(1.3) |∇b(x)| ≤
√
n‖b‖Lip(Rn)

for almost every x ∈ Rn.

We also list some comments on [b,Mα] and Mb,α, which are useful for our aim.

Remark 1.7. Let 1 < p <∞, 0 ≤ α < n/p and 1/q = 1/p− α/n. If b ∈ L∞(Rn), then the

following are valid:



Commutators of Maximal Operators 1011

(i) If f ∈ Lp(Rn), then

(1.4) ‖Mαf‖q ≤ Aα,n,p‖f‖p,

where Aα,n,p := ‖Mα‖Lp(Rn)→Lq(Rn). By (1.4) and the sublinearity of Mα, we see

that Mα : Lp(Rn)→ Lq(Rn) is continuous.

(ii) The operator [b,Mα] is neither positive nor sublinear. Applying Hölder’s inequality

and (1.4), one has

(1.5) ‖[b,Mα](f)‖q ≤ 2Aα,n,p‖b‖∞‖f‖p.

On the other hand, it is easy to see that

|[b,Mα](f)− [b,Mα](g)| ≤ |b|Mα(f − g) +Mα(b(f − g)),

which together with (1.4) implies that the map [b,Mα] : Lp(Rn)→ Lq(Rn) is contin-

uous.

(iii) The operator Mb,α is positive and sublinear. Observe that

(1.6) Mb,αf(x) ≤ |b(x)|Mαf(x) +Mα(bf)(x), x ∈ Rn.

Inequality (1.6) together with Hölder’s inequality and (1.4) implies that

(1.7) ‖Mb,αf‖q ≤ 2Aα,n,p‖b‖∞‖f‖p.

Moreover, by the sublinearity and boundedness for Mb,α, we see that the map

Mb,α : Lp(Rn)→ Lq(Rn) is continuous.

Now we shall provide a positive answer to Question 1.4 by the following theorem.

Theorem 1.8. Let 1 < p < ∞, 0 ≤ α < n/p and 1/q = 1/p − α/n. If b ∈ Lip(Rn),

then the map [b,Mα] : W 1,p(Rn)→W 1,q(Rn) is bounded and continuous. In particular, if

f ∈W 1,p(Rn), then for each i ∈ {1, . . . , n} and almost every x ∈ Rn,

(1.8) |∇([b,Mα](f))(x)| ≤ 2
√
n‖b‖Lip(Rn)Mαf(x) + 2‖b‖∞Mα|∇f |(x).

Consequently,

(1.9) ‖[b,Mα](f)‖1,q ≤ 2Aα,n,p(n+ 1)‖b‖Lip(Rn)‖f‖1,p,

where Aα,n,p is given as in (1.4). Inequalities (1.8) and (1.9) also hold for Mb,α.

Remark 1.9. It is unknown that whether the map Mb,α : W 1,p(Rn)→W 1,q(Rn) is contin-

uous under the same conditions in Theorem 1.8, which is certainly an interesting issue.
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We would like to remark that the proof of Theorem 1.8 for [b,Mα] is based on

Lemma 2.1 and some known regularity results on the Hardy–Littlewood maximal operator

and its fractional version (see Lemma 2.4). The main ingredients of proving Theorem 1.8

for Mb,α are the equivalent characterization of Sobolev spaces (see (2.1)), the characteriza-

tion of the product of a function in W 1,p(Rn) and a function in Lip(Rn) (see Lemma 2.1)

and the difference estimates for Mb,αf (see (3.5)).

1.3. The local case

Let us recall the definitions of the commutators of local fractional maximal operator.

Definition 1.10. Let Ω be a subdomain in Rn and 0 ≤ α < n. We denote by Mα,Ω the

local fractional maximal operator on Ω, i.e., for f ∈ L1
loc(Ω),

Mα,Ωf(x) = sup
0<r<dist(x,Ωc)

rα

|B(x, r)|

∫
B(x,r)

|f(y)| dy, x ∈ Ω,

where Ωc = Rn \ Ω. For a locally integrable function b defined on Ω, we define the

commutator of local fractional maximal operator [b,Mα,Ω] by

[b,Mα,Ω](f)(x) = b(x)Mα,Ωf(x)−Mα,Ω(bf)(x), x ∈ Ω.

The fractional maximal commutator of Mα,Ω with b is defined by

Mb,α,Ωf(x) = sup
0<r<dist(x,Ωc)

rα

|B(x, r)|

∫
B(x,r)

|b(x)− b(y)||f(y)| dy, x ∈ Ω.

It is clear that [b,Mα,Ω] = [b,Mα] and Mb,α,Ω = Mb,α when Ω = Rn. When α = 0,

we denote [b,Mα,Ω] = [b,MΩ] and Mb,α,Ω = Mb,Ω, the operator Mα,Ω reduces to the usual

local Hardy–Littlewood maximal operator MΩ.

The following are some basic properties for [b,Mα,Ω] and Mb,α,Ω, which are useful for

our proofs.

Remark 1.11. Let 1 < p <∞, 0 ≤ α < n/p and 1/q = 1/p−α/n. Assume that b ∈ L∞(Ω).

The following facts are valid:

(i) If f ∈ Lp(Ω), then

(1.10) ‖Mα,Ωf‖q,Ω ≤ Cα,n,p‖f‖p,Ω.

By (1.10) and the sublinearity of Mα,Ω, we see that Mα,Ω : Lp(Ω) → Lq(Ω) is con-

tinuous.
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(ii) The operator [b,Mα,Ω] is neither positive nor sublinear. Applying Hölder’s inequality

and (1.10), one may get

(1.11) ‖[b,Mα,Ω](f)‖q,Ω ≤ Cα,n,p‖b‖∞,Ω‖f‖p,Ω.

It is not difficult to see that

|[b,Mα,Ω](f)− [b,Mα,Ω](g)| ≤ |b|Mα,Ω(f − g) +Mα,Ω(b(f − g)),

which together with (1.10) implies that [b,Mα,Ω] : Lp(Ω)→ Lq(Ω) is continuous.

(iii) The operator Mb,α,Ω is positive and sublinear. Observe that

(1.12) Mb,α,Ωf(x) ≤ |b(x)|Mα,Ωf(x) +Mα,Ω(bf)(x), x ∈ Ω.

Inequality (1.12) together with Hölder’s inequality and (1.10) implies that

(1.13) ‖Mb,α,Ωf‖q,Ω ≤ Cα,n,p‖b‖∞,Ω‖f‖p,Ω.

Moreover, we get by the sublinearity and boundedness for Mb,α,Ω that the map

Mb,α,Ω : Lp(Ω)→ Lq(Ω) is continuous.

The Sobolev regularity for maximal operators in local setting has been studied by many

authors. The first work was due to Kinnunen and Lindqvist [17] who proved that the map

MΩ : W 1,p(Ω) → W 1,p(Ω) is bounded for all 1 < p ≤ ∞ (see also [13]). Here W 1,p(Ω) is

the first order Sobolev space on Ω, which is defined in the same way as W 1,p(Rn), but

with Rn replaced by Ω. For simplicity, we denote

‖f‖1,p,Ω := ‖f‖W 1,p(Ω), ‖f‖p,Ω := ‖f‖Lp(Ω).

Later on, the main result of [17] was extended by many authors (see [14, 15, 25, 28]).

Particularly, Liu and Xi [25] established the Sobolev regularity of [b,Mα,Ω] and Mb,α,Ω.

The main results of [25] can be listed as follows:

Theorem 1.12. [25]

(i) Let 1 < p1, p2, p1p2/(p1 + p2) < ∞, 1 < p1 < n, 1 ≤ α < n/p1 and 1/p =

1/p1 + 1/p2 − (α − 1)/n. Assume that |Ω| < ∞ and b ∈ W 1,p2(Ω), then the map

[b,Mα,Ω] : W 1,p1(Ω)→W 1,p(Ω) is bounded. Moreover, if f ∈W 1,p1(Ω), then

‖[b,Mα,Ω](f)‖1,p,Ω ≤ Cα,n,p1,p2,Ω‖b‖1,p2,Ω‖f‖1,p1,Ω.

(ii) Let 1 < p1, p2, p1p2/(p1 + p2) < ∞, 1 < p1 < n, 1 ≤ α < n/p1 and 1/p = 1/p1 +

1/p2 − α/n. Assume that b ∈W 1,p2(Ω) and Ω admits a p1-Sobolev embedding, then

the map [b,Mα,Ω] : W 1,p1(Ω) → W 1,p(Ω) is bounded. Moreover, if f ∈ W 1,p1(Ω),

then

‖[b,Mα,Ω](f)‖1,p,Ω ≤ Cα,n,p1,p2‖b‖1,p2,Ω‖f‖1,p1,Ω.
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(iii) Let 1 < p1, p2 < ∞, n/(n − 1) < p1p2/(p1 + p2) < ∞, 1 ≤ α < n/p1 and 1/p =

1/p1 + 1/p2 − (α − 1)/n. Assume that |Ω| < ∞ and b ∈ W 1,p2(Ω), then the map

[b,Mα,Ω] : Lp1(Ω)→W 1,p(Ω) is bounded. Moreover, if f ∈ Lp1(Ω), then

‖[b,Mα,Ω](f)‖1,p,Ω ≤ Cα,n,p1,p2,Ω‖b‖1,p2,Ω‖f‖p1,Ω.

The above conclusions hold for Mb,α,Ω.

Based on Theorems 1.8 and 1.12, it is natural to ask the following question:

Question 1.13. What happens when we consider the Sobolev regularity properties for

[b,Mα,Ω] and Mb,α,Ω when b belongs to local Lipschitz space?

Question 1.13 is another one of main motivations in this paper. Before establishing

the rest results, let us introduce local Lipschitz space.

Definition 1.14 (Local Lipschitz space). The homogeneous local Lipschitz space Lip(Ω)

is defined as

Lip(Ω) :=
{
f : Ω→ C continuous : ‖f‖Lip(Ω) <∞

}
,

where

‖f‖Lip(Ω) := sup
x∈Ω

sup
h∈Ω\{0}

|f(x+ h)− f(x)|
|h|

<∞.

The inhomogeneous Lipschitz space Lip(Ω) is given by

Lip(Ω) :=
{
f : Ω→ C continuous : ‖f‖Lip(Ω) <∞

}
,

where

‖f‖Lip(Ω) := ‖f‖∞,Ω + ‖f‖Lip(Ω) <∞.

Remark 1.15. Let b ∈ Lip(Ω). Then the weak partial derivatives Dib, i = 1, . . . , n, exist

almost everywhere. Moreover, it holds that

Dib(x) = lim
h→0

b(x+ hei)− b(x)

h

and

(1.14) |Dib(x)| ≤ ‖b‖Lip(Ω)

for almost every x ∈ Ω. By (1.14), we get

(1.15) |∇b(x)| ≤
√
n‖b‖Lip(Ω)

for almost every x ∈ Ω.
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The rest of main results can be listed as follows:

Theorem 1.16. Let b ∈ Lip(Ω).

(i) Let 1 < p <∞. Then the map [b,MΩ] : W 1,p(Ω)→W 1,p(Ω) is bounded and contin-

uous. If f ∈W 1,p(Ω), then

(1.16) |∇[b,MΩ](f)(x)| ≤ 4‖b‖∞,ΩMΩ|∇f |(x) + 3
√
n‖b‖Lip(Ω)MΩf(x)

for almost every x ∈ Ω. Consequently,

(1.17) ‖[b,MΩ](f)‖1,p,Ω ≤ Cn,p‖b‖Lip(Ω)‖f‖1,p,Ω.

(ii) Let p ∈ (1, n), α ∈ [1, n/p) and q = np/(n − (α − 1)p). Assume that |Ω| < ∞,

then [b,Mα,Ω] : W 1,p(Ω) → W 1,q(Ω) is bounded and continuous. In particular, if

f ∈W 1,p(Ω), then

|∇[b,Mα,Ω](f)(x)|

≤ 3
√
n‖b‖Lip(Ω)Mα,Ωf(x) + 4‖b‖∞,ΩMα,Ω|∇f |(x) + 2α‖b‖∞,ΩMα−1,Ωf(x)

(1.18)

for almost every x ∈ Ω. Consequently,

(1.19) ‖[b,Mα,Ω](f)‖1,q,Ω ≤ Cα,n,p,|Ω|‖b‖Lip(Ω)‖f‖1,p,Ω.

(iii) Let p ∈ (1, n), α ∈ [1, n/p) and q = pn/(n− αp). If f ∈W 1,p(Ω) and Ω admits a p-

Sobolev embedding, i.e., ‖f‖p̃,Ω ≤ Cp‖f‖1,p,Ω with p̃ = np/(n−p), then [b,Mα,Ω](f) ∈
W 1,q(Ω). Moreover,

|∇[b,Mα,Ω](f)(x)|

≤ 3
√
n‖b‖Lip(Ω)Mα,Ωf(x) + 4‖b‖∞,ΩMα,Ω|∇f |(x) + 2α‖b‖∞,ΩMα−1,Ωf(x)

(1.20)

for almost every x ∈ Ω. Consequently,

(1.21) ‖[b,Mα,Ω](f)‖1,q,Ω ≤ Cα,n,p‖b‖Lip(Ω)‖f‖1,p,Ω.

(iv) Let p ∈ (n/(n− 1),∞), α ∈ [1,min{(n− 1)/p, n− 2n/((n− 1)p)}+ 1), q = np/(n−
(α− 1)p) and |Ω| <∞. If f ∈ Lp(Ω), then

|∇[b,Mα,Ω](f)(x)|

≤
√
n‖b‖Lip(Ω)Mα,Ωf(x) + Cn‖b‖∞,Ω

(
Mα−1,Ωf(x) + Sα−1,Ωf(x)

)(1.22)

for almost every x ∈ Ω. Moreover,

(1.23) ‖[b,Mα,Ω](f)‖1,q,Ω ≤ Cα,n,p,|Ω|‖b‖Lip(Ω)‖f‖p,Ω.
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Here Sα,Ω is the local spherical maximal operator, i.e.,

Sα,Ωf(x) = sup
0<r<dist(x,Ωc)

rα

|∂B(x, r)|

∫
∂B(x,r)

|f(y)| dHn−1(y),

where dHn−1 is the normalized (n− 1)-dimensional Hausdorff measure.

Theorem 1.17. Let b ∈ Lip(Ω).

(i) Let 1 < p < ∞. Then the map Mb,Ω : W 1,p(Ω) → W 1,p(Ω) is bounded. If f ∈
W 1,p(Ω), then

(1.24) |∇Mb,Ωf(x)| ≤ 3
√
n‖b‖Lip(Ω)MΩf(x) + 2Mb,Ω|∇f |(x)

for almost every x ∈ Ω. Consequently,

(1.25) ‖Mb,Ωf‖1,p,Ω ≤ Cn,p‖b‖Lip(Ω)‖f‖1,p,Ω.

(ii) Let p ∈ (1, n), α ∈ [1, n/p) and q = np/(n− (α− 1)p). Assume that |Ω| <∞, then

Mb,α,Ω : W 1,p(Ω)→W 1,q(Ω) is bounded. In particular, if f ∈W 1,p(Ω), then

(1.26) |∇Mb,α,Ωf(x)| ≤ αMb,α−1,Ωf(x)+3
√
n‖b‖Lip(Ω)Mα,Ωf(x)+2Mb,α,Ω|∇f |(x)

for almost every x ∈ Ω. Consequently,

(1.27) ‖Mb,α,Ωf‖1,q,Ω ≤ Cα,n,p,|Ω|‖b‖Lip(Ω)‖f‖1,p,Ω.

(iii) Let p ∈ (1, n), α ∈ [1, n/p) and q = pn/(n − αp). If f ∈ W 1,p(Ω) and Ω admits a

p-Sobolev embedding, i.e., ‖f‖p̃,Ω ≤ Cp‖f‖1,p,Ω with p̃ = np/(n− p), then Mb,α,Ωf ∈
W 1,q(Ω). Moreover,

(1.28) |∇Mb,α,Ωf(x)| ≤ αMb,α−1,Ωf(x)+2Mb,α,Ω|∇f |(x)+2
√
n‖b‖Lip(Ω)Mα,Ωf(x)

for almost every x ∈ Ω. Consequently,

(1.29) ‖Mb,α,Ωf‖1,q,Ω ≤ Cα,n,p‖b‖Lip(Ω)‖f‖1,p,Ω.

(iv) Let p ∈ (n/(n− 1),∞), α ∈ [1,min{(n− 1)/p, n− 2n/((n− 1)p)}+ 1) and |Ω| <∞.

If f ∈ Lp(Ω), then

|∇Mb,α,Ωf(x)|

≤ (n− α)Mb,α−1,Ωf(x) +
√
n‖b‖Lip(Ω)Mα,Ωf(x) + 2n‖b‖∞,ΩSα−1,Ωf(x)

(1.30)

for almost every x ∈ Ω. Moreover,

(1.31) ‖Mb,α,Ωf‖1,q,Ω ≤ Cα,n,p,|Ω|‖b‖Lip(Ω)‖f‖p,Ω,

where q = np/(n− (α− 1)p).
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The proof of Theorem 1.16 is based on Lemmas 2.5 and 2.6 and a characterization of

the product of a function in W 1,p(Ω) and a function in Lip(Ω) (see Lemma 2.3). The proof

of Theorem 1.17 is motivated by the idea in [14, 15, 25]. However, some new techniques

and more refined analyses are needed in the proof of Theorem 1.17.

Finally, we shall show that the above commutators preserve the zero boundary values

in Sobolev’s sense. Recall that the Sobolev space W 1,p
0 (Ω) with zero boundary values

with 1 ≤ p < ∞, is defined as the completion of C∞0 (Ω) with respect to the Sobolev

norm. In 1998, Kinnunen and Lindqvist [17] first proved that MΩ is bounded on W 1,p
0 (Ω)

with 1 < p < ∞. Later on, Heikkinen, Kinnunen, Korvenpää and Tuominen [15] proved

that Mα,Ω is bounded from Lp(Ω) to W 1,q
0 (Ω) for p > n/(n − 1), 1 ≤ α < n/p and

q = np/(n − (α − 1)p) by assuming that |Ω| < ∞. Recently, by assuming that |Ω| < ∞,

Hart, Liu and Xue [14] established the boundedness for Mα,Ω : W 1,p(Ω) → W 1,q
0 (Ω) for

1 < p, q <∞, q = np/(n− (α− 1)p), 1 ≤ α < n/p+ 1.

As direct applications of Theorems 1.16 and 1.17, the following conclusions are valid.

Corollary 1.18. Let b ∈ Lip(Ω).

(i) Let 1 < p <∞. If f ∈W 1,p
0 (Ω), then [b,MΩ](f) ∈W 1,p

0 (Ω).

(ii) Let p ∈ (1, n), α ∈ [1, n/p) and q = np/(n− (α− 1)p). Assume that |Ω| <∞, then

[b,Mα,Ω] : W 1,p(Ω)→W 1,q
0 (Ω) is bounded.

(iii) Let p ∈ (1, n), α ∈ [1, n/p) and q = pn/(n − αp). If f ∈ W 1,p(Ω) and Ω admits a

p-Sobolev embedding, then the map [b,Mα,Ω] : W 1,p(Ω)→W 1,q
0 (Ω) is bounded.

(iv) Let p ∈ (n/(n− 1),∞), α ∈ [1,min{(n− 1)/p, n− 2n/((n− 1)p)}+ 1), q = np/(n−
(α− 1)p) and |Ω| <∞, then the map [b,Mα,Ω] : Lp(Ω)→W 1,q

0 (Ω) is bounded.

The same conclusions hold for the operator Mb,α,Ω.

1.4. Outline of this paper

This paper will be organized as follows. Section 2 contains some auxiliary notations and

lemmas, which paly key roles in the proofs of Theorems 1.8, 1.16 and 1.17. In Section 3 we

shall prove Theorem 1.8. The proofs for Theorems 1.16 and 1.17 will be given in Sections 4

and 5, respectively. Finally, we shall prove Corollary 1.18 in Section 6.

2. Preliminary notations and lemmas

This section is devoted to presenting some notations and lemmas.
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2.1. Preliminary notations

Throughout the paper, the letter Cα,β denote the positive constants that depend on the

parameters α, β. Let f ∈ Lp(Rn) with p ≥ 1. For all h ∈ R, |h| > 0, y ∈ Rn and

i = 1, . . . , n, we define the function fh,i by setting

fh,i(x) =
f(x+ hei)− f(x)

|h|
, x ∈ Rn.

It is well known that for p ≥ 1, fh,i → Dif in Lp(Rn) when h → 0 if f ∈ W 1,p(Rn). For

h ∈ Rn and any arbitrary functions f defined on Rn, we define the first order difference

of f by

∆hf(x) := f(x+ h)− f(x), x ∈ Rn.

For y ∈ Rn, we define the function fy by fy(x) = f(x+ y). Set

G(f ; p) = lim sup
h→0

‖∆hf‖p
|h|

.

According to [11, Section 7.11], we have

(2.1) u ∈W 1,q(Rn), 1 < q <∞ ⇐⇒ u ∈ Lq(Rn) and G(u; q) <∞.

2.2. Some lemmas

The following result presents a characterization of the product of a function in W 1,p(Rn)

and a function in Lip(Rn).

Lemma 2.1. Let 1 < p < ∞. If f ∈ W 1,p(Rn) and b ∈ Lip(Rn), then bf ∈ W 1,p(Rn).

Moreover,

(2.2) Di(bf) = bDif + fDib, i = 1, . . . , n

almost everywhere in Rn. Consequently,

(2.3) ∇(bf) = b∇f + f∇b

almost everywhere in Rn. In particular, it holds that

(2.4) ‖bf‖1,p ≤
√
n‖b‖Lip(Rn)‖f‖1,p.

Proof. The proof is similar to that of Lemma 2.1 in [26]. At first, we claim that bf ∈
W 1,p(Rn). It is easy to see that

(2.5) ‖bf‖p ≤ ‖b‖∞‖f‖p.
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One can easily check that

(2.6) ∆h(bf) = (bf)h − bf = bh∆hf + f∆hb

for any h ∈ Rn. It follows from (2.6) that

G(bf ; p) = lim sup
h→0

‖∆h(bf)‖p
|h|

≤ ‖b‖∞G(f ; p) + ‖b‖Lip(Rn)‖f‖p <∞.

This together with (2.1) and (2.5) yields that bf ∈W 1,p(Rn).

Next we shall prove (2.2). Fix i ∈ {1, . . . , n}. Noting that fh,i → Dif and (bf)h,i →
Di(bf) in Lp(Rn) when h→ 0. This together with (1.1) yields that there exist a sequence

of numbers {hk} satisfying limk→∞ hk = 0 and a measurable set E satisfying |Rn \E| = 0

such that fhk,i(x) → Dif(x), (bf)hk,i(x) → Di(bf)(x) and bhk,i(x) → Dib(x) as k → ∞
for all x ∈ E. It is easy to see that b(hkei + x) → b(x) as k → ∞ for all x ∈ E since

|b(hkei + x)− b(x)| ≤ ‖b‖Lip(Rn)|hk|.
Therefore, we get from (2.6) that

Di(bf)(x) = lim
k→∞

(bf)hk,i(x)

= lim
k→∞

(b(hkei + x)fhk,i(x) + bhk,i(x)f(x)) = b(x)Dif(x) + f(x)Dib(x)

for any x ∈ E. This proves (2.2). Equality (2.3) follows easily from (2.2). By (2.3), (2.5),

(1.3) and Minkowski’s inequality, we have

‖bf‖1,p = ‖bf‖p + ‖∇(bf)‖p ≤ ‖b‖∞‖f‖p + ‖b∇f‖p + ‖f∇b‖p ≤
√
n‖b‖Lip(Rn)‖f‖1,p,

which gives (2.4) and completes the proof.

Proposition 2.2. [15, 17] Let 1 ≤ p ≤ ∞. If fk → f , gk → g weakly in Lp(Ω) and

fk ≤ gk (k = 1, 2, . . .) almost everywhere in Ω, then f ≤ g almost everywhere in Ω.

Applying Proposition 2.2, we can get a local version of Lemma 2.1.

Lemma 2.3. Let 1 < p < ∞. If b ∈ Lip(Ω) and f ∈ W 1,p(Ω), then bf ∈ W 1,p(Ω).

Moreover,

(2.7) ∇(bf) = b∇f + f∇b

almost everywhere in Ω. In particular, it holds that

(2.8) ‖bf‖1,p,Ω ≤
√
n‖b‖Lip(Ω)‖f‖1,p,Ω.
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Proof. Since f ∈W 1,p(Ω), there exists a sequence {ϕj}∞j=1 of functions in W 1,p(Ω)∩C∞(Ω)

such that ϕj → f in W 1,p(Ω) as j → ∞. Fix j ∈ N. Note that b is differentiable almost

everywhere in Ω. By Leibniz rule,

Di(ϕjb)(x) = Diϕj(x)b(x) +Dib(x)ϕj(x)

for all i = 1, . . . , n and almost every x ∈ Ω. Thus we have

(2.9) ∇(ϕjb)(x) = b(x)∇ϕj(x) + ϕj(x)∇b(x)

for almost every x ∈ Ω. By (2.9), (1.15) and Minkowski’s inequality, one finds that

‖ϕjb‖1,p,Ω = ‖ϕjb‖p,Ω + ‖∇(ϕjb)‖p,Ω
≤ ‖b‖∞,Ω‖ϕj‖p,Ω + ‖∇ϕjb‖p,Ω + ‖∇bϕj‖p,Ω ≤

√
n‖b‖Lip(Ω)‖ϕj‖1,p,Ω

(2.10)

and

‖∇(ϕjb)− (b(∇f) + f(∇b))‖p,Ω ≤ ‖b∇ϕj − b∇f‖p,Ω + ‖ϕj∇b− f∇b‖p,Ω
≤
√
n‖b‖Lip(Ω)‖ϕj − f‖1,p,Ω.

(2.11)

It follows from (2.10) and (2.11) that {ϕjb}∞j=1 is a bounded sequence in W 1,p(Ω) and

(2.12) ∇(ϕjb)→ b∇f + f∇b in Lp(Ω) as j →∞.

Since ϕjb → fb in Lp(Ω) as j → ∞, then by Riesz theorem, there exists a subsequence

{ϕjkb}∞k=1 such that

ϕjk(x)b(x)→ f(x)b(x) as k →∞

for almost every x ∈ Ω. Consequently, there exists a measurable set E such that |Ω\E| = 0

and

ϕjk(x)b(x)→ f(x)b(x) as k →∞

for every x ∈ E. From the above we can conclude that the Sobolev derivative ∇(fb) exists

almost everywhere in E and that

∇(ϕjb)→ ∇(fb) weakly in Lp(E) as j →∞.

Furthermore, the weak gradient ∇(fb) exists almost everywhere in Ω and

(2.13) ∇(ϕjb)→ ∇(fb) weakly in Lp(Ω) as j →∞.

Applying Proposition 2.2 and (2.12), (2.13), we can get (2.7). By (2.7), (1.15) and

Minkowski’s inequality, one can get

‖bf‖1,p,Ω = ‖bf‖p,Ω + ‖∇(bf)‖p,Ω
≤ ‖b‖∞,Ω‖f‖p,Ω +

(
‖b‖∞,Ω‖∇f‖p,Ω +

√
n‖b‖Lip(Ω)‖f‖p,Ω

)
≤
√
n‖b‖Lip(Ω)‖f‖1,p,Ω,

which gives (2.8).
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In order to prove Theorem 1.8 for the commutator [b,Mα], we need the following known

results.

Lemma 2.4. [16,19,22,27] Let 1 < p <∞, 0 ≤ α < n/p and q = np/(n−αp). Then the

map Mα : W 1,p(Rn)→ W 1,q(Rn) is bounded and continuous. Moreover, if f ∈ W 1,p(Rn),

then

|DiMαf(x)| ≤MαDif(x), i = 1, 2, . . . , n

for almost every x ∈ Rn. Consequently,

‖Mαf‖1,q ≤ Cp,q,n‖f‖1,p.

The boundedness part and pointwise estimates in Lemma 2.4 for α = 0 (resp., 0 < α <

n) follows from [16, Theorem 1.4] (resp., [19, Theorem 2.1] and [19, Remark 2.2]). The

continuity part in Lemma 2.4 for α = 0 (resp., 0 < α < n) follows from [27, Theorem 4.1]

(resp., [22, Remark 1]).

The following known results are the main ingredients of proving Theorem 1.16.

Lemma 2.5. (i) [17] Let 1 < p < ∞. Then the map MΩ : W 1,p(Ω) → W 1,p(Ω) is

bounded. Moreover, if f ∈W 1,p(Ω), then

|∇MΩf(x)| ≤ 2MΩ|∇f |(x)

for almost every x ∈ Ω.

(ii) [28] The map MΩ : W 1,p(Ω)→W 1,p(Ω) is continuous.

Lemma 2.6. (i) [15] Let p ∈ (1, n), α ∈ [1, n/p) and q = np/(n − (α − 1)p). If

f ∈W 1,p(Ω) and |Ω| <∞, then

|∇Mα,Ωf(x)| ≤ 2Mα,Ω|∇f |(x) + αMα−1,Ωf(x)

for almost every x ∈ Ω. Consequently,

‖Mα,Ωf‖1,q,Ω ≤ Cα,n,p,Ω‖f‖1,p,Ω.

(ii) [14] Let p ∈ (1, n), α ∈ [1, n/p) and q = np/(n− (α− 1)p). Assume that |Ω| <∞,

then the map Mα,Ω : W 1,p(Ω)→W 1,q(Ω) is continuous.

(iii) [14] Let p ∈ (1, n), α ∈ [1, n/p) and q = pn/(n − αp). If f ∈ W 1,p(Ω) and Ω

admits a p-Sobolev embedding, i.e., ‖f‖p̃,Ω ≤ Cp‖f‖1,p,Ω with p̃ = np/(n − p), then

Mα,Ωf ∈W 1,q(Ω). Moreover,

|∇Mα,Ωf(x)| ≤ 2Mα,Ω|∇f |(x) + αMα−1,Ωf(x)

for almost every x ∈ Ω. Consequently,

‖Mα,Ωf‖1,q,Ω ≤ Cα,n,p‖f‖1,p,Ω.
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(iv) [15] Let p ∈ (n/(n− 1),∞) and α ∈ [1,min{(n− 1)/p, n− 2n/((n− 1)p)}+ 1). If

f ∈ Lp(Ω), then

|∇Mα,Ωf(x)| ≤ Cn
(
Mα−1,Ωf(x) + Sα−1,Ωf(x)

)
for almost every x ∈ Ω. If in addition |Ω| <∞, then

‖Mα,Ωf‖1,q,Ω ≤ Cα,n,p,Ω‖f‖1,p,Ω,

where q = np/(n− (α− 1)p).

In order to prove Theorems 1.16 and 1.17, the following result is also needed.

Lemma 2.7. [15] Let n ≥ 2, p > n/(n− 1), 0 ≤ α < min{(n− 1)/p, n− 2n/((n− 1)p)}.
Then ‖Sα,Ωf‖q,Ω ≤ Cα,n,p‖f‖p,Ω.

3. Proof of Theorem 1.8

Throughout this section, we fix 1 < p <∞, 0 ≤ α < n/p, 1/q = 1/p−α/n, f ∈W 1,p(Rn)

and b ∈ Lip(Rn).

3.1. Proof of Theorem 1.8 for [b,Mα]

The proof of Theorem 1.8 for [b,Mα] will be divided into two steps:

Step 1: Proofs of (1.8) and (1.9). Invoking Lemma 2.1 we note that bf ∈ W 1,p(Rn)

and

(3.1) Di(bf) = bDif + fDib, i = 1, . . . , n

almost everywhere in Rn. By Lemma 2.4, we have that Mαf ∈ W 1,q(Rn). This together

with Lemma 2.1, (3.1) and Lemma 2.4 implies that

|Di([b,Mα](f))(x)|

≤ |Di(bMαf)(x)|+ |DiMα(bf)(x)|

≤ |Dib(x)|Mαf(x) + |b(x)||DiMαf(x)|+Mα(Di(bf))(x)

≤ |Dib(x)|Mαf(x) + |b(x)||MαDif(x)|+Mα(Dibf)(x) +Mα(Difb)(x)

(3.2)

for any i = 1, . . . , n and almost every x ∈ Rn. By (3.2) and the arguments similar to those

used to derive (2.4) in [16], we have

|∇([b,Mα](f))(x)| ≤ |∇b(x)|Mαf(x) + |b(x)|Mα|∇f |(x) +Mα(|∇b|f)(x) +Mα(|∇f |b)(x)

for almost every x ∈ Rn. This together with (1.3) leads to

|∇([b,Mα](f))(x)| ≤ 2
√
n‖b‖Lip(Rn)Mαf(x) + 2‖b‖∞Mα|∇f |(x)
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for almost every x ∈ Rn. This proves (1.8). By (1.8), (1.4), (1.5) and Minkowski’s

inequality, we have

‖[b,Mα](f)‖1,q = ‖[b,Mα](f)‖q + ‖∇[b,Mα](f)‖q
≤ 2Aα,n,p‖b‖∞‖f‖p + 2

√
n‖b‖Lip(Rn)‖Mαf‖q + 2‖b‖L∞(Rn)‖Mα|∇f |‖q

≤ 2Aα,n,p
√
n‖b‖Lip(Rn)‖f‖1,p.

This proves (1.9).

Step 2: Proof of the continuity part. Let fj → f in W 1,p(Rn) as j →∞. By Lemma 2.1

we see that bfj → bf in W 1,p(Rn) as j → ∞. This together with the continuity part of

Lemma 2.4 implies that Mα(bfj) → Mα(bf) in W 1,q(Rn) as j → ∞. Moreover, Mαfj →
Mαf in W 1,q(Rn) as j → ∞. By Lemma 2.1 again, we have that bMαfj → bMαf in

W 1,q(Rn) as j →∞. Thus, [b,Mα](fj)→ [b,Mα](f) in W 1,q(Rn) as j →∞.

3.2. Proof of Theorem 1.8 for Mb,α

We divide the proof of Theorem 1.8 for Mb,α into three steps:

Step 1: Proof of Mb,αf ∈W 1,q(Rn). Fix x, h ∈ Rn, we can write

(Mb,αf)h(x) = sup
r>0

rα

|B(x, r)|

∫
B(x,r)

|bh(x)− bh(y)||fh(y)| dy,

which leads to

|(Mb,αf)h(x)−Mb,αf(x)|

≤ sup
r>0

rα

|B(x, r)|

∫
B(x,r)

|(bh(x)− bh(y))fh(y)− (b(x)− b(y))f(y)| dy.
(3.3)

Observe that

(bh(x)− bh(y))fh(y)− (b(x)− b(y))f(y)

= (bh(x)− bh(y))(fh(y)− f(y)) + (bh(x)− b(x))f(y)− (bh(y)− b(y))f(y),

which together with (3.3) and (1.6) implies that

|∆h(Mb,αf)(x)| ≤Mbh,α(fh − f)(x) + |bh(x)− b(x)|Mαf(x) +Mα((bh − b)f)(x)

≤ |b(x+ h)|Mα(∆hf)(x) + |∆hb(x)|Mαf(x) +Mα(∆hb∆hf)(x)

+Mα(∆hbf)(x) +Mα(∆hfb)(x)

(3.4)

for any h, x ∈ Rn. By (3.4), (1.4) and Minkowski’s inequality, one has

‖∆h(Mb,αf)‖q ≤ ‖b( ·+ h)Mα(∆hf)‖q + ‖∆hbMαf‖q + ‖Mα(∆hb∆hf)‖q
+ ‖Mα(∆hbf)‖q + ‖Mα(∆hfb)‖q
≤ ‖b‖∞‖Mα(∆hf)‖q + ‖b‖Lip(Rn)‖Mαf‖q|h|

+Aα,p,n
(
‖∆hb∆hf‖p + ‖∆hbf‖p + ‖∆hfb‖p

)
≤ 4Aα,p,n

(
‖b‖Lip(Rn)‖∆hf‖p + ‖b‖Lip(Rn)‖f‖p|h|

)
,

(3.5)
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which combining with G(f ; p) <∞ leads to

(3.6) G(Mb,αf ; q) = lim sup
h→0

‖∆h(Mb,αf)‖q
|h|

≤ 4Ap,q‖b‖Lip(Rn)(G(f ; p) + ‖f‖p) <∞.

On the other hand, by (1.7) we known that Mb,αf ∈ Lq(Rn). This together with (3.6)

and (2.1) implies that Mb,αf ∈W 1,q(Rn).

Step 2: Estimate for ∇Mb,α(f). We want to show that

(3.7) |∇(Mb,αf)(x)| ≤ 2
√
n‖b‖Lip(Rn)Mαf(x) + 2‖b‖∞Mα|∇f |(x)

for almost every x ∈ Rn. To prove (3.7), it suffices to show that

(3.8) |Di(Mb,αf)(x)| ≤ |Dib(x)|Mαf(x)+|b(x)|MαDif(x)+Mα(Dibf)(x)+Mα(Difb)(x)

for any i = 1, . . . , n and almost every x ∈ Rn. Once (3.8) was proved, by (3.8) and using

the arguments similar to those used in deriving (2.4) in [16], we have

|∇(Mb,αf)(x)| ≤ |b(x)|Mα|∇f |(x) + |∇b(x)|Mαf(x) +Mα(|∇b|f)(x) +Mα(|∇f |b)(x)

for almost every x ∈ Rn, which together with (1.3) leads to (3.7).

Now we prove (3.8). Fix i ∈ {1, . . . , n}. Since f ∈ W 1,p(Rn) and Mb,αf ∈ W 1,q(Rn),

then fh,i → Dif in Lp(Rn) when h → 0 and ([b,Mα](f))h,i → Di([b,Mα](f)) in Lq(Rn)

when h→ 0. It is clear that fh,ib→ Difb in Lp(Rn) when h→ 0. By Remark 1.7(i), we

have that Mα(fh,i)→Mα(Dif) and Mα(fh,ib)→Mα(Difb) in Lq(Rn) as h→ 0. By (1.2)

and (1.3) we have that |Dib(x)| ≤ ‖b‖Lip(Rn) and bh,i(x) → Dib(x) as h → 0 for almost

every x ∈ Rn. It follows that bh,i(x)f(x)→ Dib(x)f(x) as h→ 0 for almost every x ∈ Rn.

By Fatou lemma, we have that bh,if → Dibf in Lp(Rn) as h → 0. This together with

Remark 1.7(i) implies that Mα(bh,if)→Mα(Dibf) in Lq(Rn) as h→ 0. Therefore, there

exist a sequence {hk} satisfying hk > 0 and limk→0 hk = 0 and a measurable set E with

|Rn \ E| = 0 such that for all x ∈ E,

(i) (Mb,αf)hk,i(x)→ Di(Mb,αf)(x) as k →∞ and bhk,i(x)→ Dib(x) as k →∞;

(ii) Mα(fhk,i)(x)→Mα(Dif)(x) as k →∞, Mα(fhk,ib)(x)→Mα(Difb)(x) as k →∞;

(iii) Mα(bhk,if)(x)→Mα(Dibf)(x) as k →∞.

Above facts together with (3.4) will give that

|Di(Mb,αf)(x)|

=

∣∣∣∣ lim
k→∞

(Mb,αf)hk,i(x)

∣∣∣∣
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≤ lim
k→∞

1

hk

(
|b(x+ hkei)|Mα(∆hkeif)(x) + |∆hkeib(x)|Mαf(x)

+Mα(∆hkeib∆hkeif)(x) +Mα(∆hkeibf)(x) +Mα(∆hkeifb)(x)
)

≤ lim
k→∞

(
|b(x+ hkei)|Mα(fhk,i)(x) + |bhk,i(x)|Mαf(x)

+Mα(∆hkeibfhk,i)(x) +Mα(bhk,if)(x) +Mα(fhk,ib)(x)
)

≤ lim
k→∞

(
(‖b‖Lip(Rn)|hk|+ |b(x)|)Mα(fhk,i)(x) + |bhk,i(x)|Mαf(x)

+ ‖b‖Lip(Rn)|hk|Mα(fhk,i)(x) +Mα(bhk,if)(x) +Mα(fhk,ib)(x)
)

≤ |b(x)|Mα(Dif)(x) + |Dib(x)|Mαf(x) +Mα(Dibf)(x) +Mα(Difb)(x)

for all x ∈ E. This proves (3.8).

Step 3: Proof of the boundedness part. It follows from (3.7), (1.4), (1.7) and Minkowski’s

inequality that

‖Mb,αf‖1,q = ‖Mb,αf‖q + ‖∇Mb,αf‖q
≤ 2Aα,n,p‖b‖∞‖f‖p + 2

√
n‖b‖Lip(Rn)‖Mαf‖q + 2‖b‖∞‖Mα|∇f |‖q

≤ 2Aα,n,p
√
n‖b‖Lip(Rn)‖f‖1,p.

This finishes the proof of Theorem 1.8.

4. Proof of Theorem 1.16

The proof of Theorem 1.16 will be divided into four steps:

4.1. Proof of Theorem 1.16(i)

Let 1 < p <∞, f ∈W 1,p(Ω) and b ∈ Lip(Ω). By Lemma 2.3, we have that bf ∈W 1,p(Ω)

and

(4.1) ∇(bf)(x) = b(x)∇f(x) + f(x)∇b(x)

for almost every x ∈ Ω. Combining (4.1) with Lemma 2.5(i) and (1.15) implies that

|∇MΩ(bf)(x)| ≤ 2MΩ(∇(bf))(x) ≤ 2MΩ(b|∇f |)(x) + 2MΩ(f |∇b|)(x)

≤ 2‖b‖∞,ΩMΩ|∇f |(x) + 2
√
n‖b‖Lip(Ω)MΩf(x)

(4.2)

for almost every x ∈ Ω. On the other hand, by Lemma 2.5(i), we have that MΩ ∈
W 1,p(Ω) and |∇MΩf(x)| ≤ 2MΩ|∇f |(x) for almost every x ∈ Ω. These facts together

with Lemma 2.3 and (1.15) imply that

|∇(bMΩf)(x)| = |MΩf(x)∇b(x) + b(x)∇MΩf(x)|

≤ |∇b(x)|MΩf(x)|+ 2|b(x)||MΩ|∇f |(x)|

≤
√
n‖b‖Lip(Ω)MΩf(x) + 2‖b‖∞,ΩMΩ|∇f |(x)

(4.3)
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for almost every x ∈ Ω. It follows from (4.2) and (4.3) that

|∇[b,MΩ](f)(x)| ≤ 4‖b‖∞,ΩMΩ|∇f |(x) + 3
√
n‖b‖Lip(Ω)MΩf(x)

for almost every x ∈ Ω. This proves (1.16). By (1.16), (1.10) and Minkowski’s inequality,

we have

‖∇[b,MΩ](f)‖p,Ω ≤ 4‖b‖∞,Ω‖MΩ|∇f |‖p,Ω + 3
√
n‖b‖Lip(Ω)‖MΩf‖p,Ω

≤ Cn,p
(
‖b‖∞,Ω‖∇f‖p,Ω + ‖b‖Lip(Ω)‖f‖p,Ω

)
,

which together with (1.11) leads to (1.17).

It remains to prove the continuity part. Let fj → f in W 1,p(Ω) as j → ∞. By

Lemma 2.3, we have that bfj → bf inW 1,p(Ω) as j →∞. This together with Lemma 2.5(ii)

implies thatMΩ(bfj)→MΩ(bf) inW 1,p(Ω) as j →∞. On the other hand, by Lemma 2.5(ii)

again, one sees that MΩfj →MΩf in W 1,p(Ω) as j →∞. This together with Lemma 2.3

leads to bMΩfj → bMΩf in W 1,p(Ω) as j → ∞. Therefore, we have that [b,MΩ](fj) →
[b,MΩ](f) in W 1,p(Ω) as j →∞.

4.2. Proof of Theorem 1.16(ii)

Let p ∈ (1, n), α ∈ [1, n/p), q = np/(n− (α− 1)p) and q1 = np/(n− αp). It is clear that

q < q1. Let f ∈ W 1,p(Ω) and b ∈ Lip(Ω). By Lemma 2.3, we have that bf ∈ W 1,p(Ω)

and ∇(bf)(x) = b(x)∇f(x) + f(x)∇b(x) for almost every x ∈ Ω. This together with

Lemma 2.6(i) and (1.15) yields that

|∇Mα,Ω(bf)(x)|

≤ 2Mα,Ω(|∇(bf)|)(x) + αMα−1,Ω(bf)(x)

≤ 2Mα,Ω(|∇b|f)(x) + 2Mα,Ω(|∇f |b)(x) + α‖b‖∞,ΩMα−1,Ωf(x)

≤ 2
√
n‖b‖Lip(Ω)Mα,Ωf(x) + 2‖b‖∞,ΩMα,Ω|∇f |(x) + α‖b‖∞,ΩMα−1,Ωf(x)

(4.4)

for almost every x ∈ Ω.

On the other hand, by Lemmas 2.2, 2.6(i) and (1.15), we have

|∇(bMα,Ωf)(x)|

≤ |∇b|(x)Mα,Ωf(x) + |b(x)||∇Mα,Ωf |(x)

≤
√
n‖b‖Lip(Ω)Mα,Ωf(x) + |b(x)|

(
2Mα,Ω|∇f |(x) + αMα−1,Ωf(x)

)
≤
√
n‖b‖Lip(Ω)Mα,Ωf(x) + 2‖b‖∞,ΩMα,Ω|∇f |(x) + α‖b‖∞,ΩMα−1,Ωf(x))

(4.5)

for almost every x ∈ Ω. In light of (4.4) and (4.5) we would have

|∇[b,Mα,Ω](f)(x)|

≤ |∇(bMα,Ωf)(x)|+ |∇Mα,Ω(bf)(x)|

≤ 3
√
n‖b‖Lip(Ω)Mα,Ωf(x) + 4‖b‖∞,ΩMα,Ω|∇f |(x) + 2α‖b‖∞,ΩMα−1,Ωf(x)
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for almost every x ∈ Ω. This proves (1.18).

By (1.18), (1.10), Minkowski’s inequality and Hölder’s inequality, we have

‖∇[b,Mα,Ω](f)‖q,Ω
≤ 3
√
n‖b‖Lip(Ω)‖Mα,Ωf‖q,Ω + 4‖b‖∞,Ω‖Mα,Ω|∇f |‖q,Ω + 2α‖b‖∞,Ω‖Mα−1,Ωf‖q,Ω

≤ 3
√
n‖b‖Lip(Ω)|Ω|1/q−1/q1‖Mα,Ωf‖q1,Ω + 4‖b‖∞,Ω|Ω|1/q−1/q1‖Mα,Ω|∇f |‖q1,Ω

+ Cα,p,n‖b‖∞,Ω‖f‖p,Ω
≤ Cα,n,p,|Ω|‖b‖Lip(Ω)‖f‖1,p,Ω,

which together with (1.11) leads to (1.19).

We now prove the continuity part. Let fj → f in W 1,p(Ω) as j →∞. By Lemma 2.3,

we see that bfj → bf in W 1,p(Ω) as j →∞. This together with Lemma 2.6(ii) implies that

Mα,Ω(bfj) → Mα,Ω(bf) in W 1,q(Ω) as j → ∞. On the other hand, by Lemma 2.6(ii), we

have that Mα,Ωfj → Mα,Ωf in W 1,q(Ω) as j → ∞. This together with Lemma 2.3 leads

to bMα,Ωfj → bMα,Ωf in W 1,q(Ω) as j → ∞. Therefore, we have that [b,Mα,Ω](fj) →
[b,Mα,Ω](f) in W 1,q(Ω) as j →∞.

4.3. Proof of Theorem 1.16(iii)

Let p ∈ (1, n), α ∈ [1, n/p) and q = pn/(n − αp). Set 1/p̃ = 1/p − 1/n. It is clear that

1/q = 1/p̃− (α− 1)/n. By using Lemma 2.6(iii) and the arguments similar to those used

to derive (1.18), one can get (1.20). By (1.20), (1.10) and Minkowski’s inequality, we have

‖∇[b,Mα,Ω](f)‖q,Ω
≤ 3
√
n‖b‖Lip(Ω)‖Mα,Ωf‖q,Ω + 4‖b‖∞,Ω‖Mα,Ω|∇f |‖q,Ω + 2α‖b‖∞,Ω‖Mα−1,Ωf‖q,Ω

≤ Cα,n,p
(
‖b‖Lip(Ω)‖f‖p,Ω + ‖b‖∞,Ω‖∇f‖p,Ω + ‖b‖∞,Ω‖f‖p̃,Ω

)
≤ Cα,n,p‖b‖Lip(Ω)‖f‖1,p,Ω,

which together with (1.11) implies (1.21).

4.4. Proof of Theorem 1.16(iv)

Let p ∈ (n/(n− 1),∞), α ∈ [1,min{(n− 1)/p, n− 2n/((n− 1)p)}+ 1) and |Ω| < ∞. By

Lemma 2.6(iv), we have

|∇Mα,Ω(bf)(x)| ≤ Cn
(
Mα−1,Ω(bf)(x) + Sα−1,Ω(bf)(x)

)
≤ Cn‖b‖∞,Ω

(
Mα−1,Ωf(x) + Sα−1,Ωf(x)

)(4.6)

for almost every x ∈ Ω. By Lemmas 2.6(iv), 2.3 and (1.15), we have

|∇(bMα,Ωf)(x)| ≤ |∇b(x)|Mα,Ωf(x) + |b(x)||∇Mα,Ωf(x)|

≤
√
n‖b‖Lip(Ω)Mα,Ωf(x) + Cn‖b‖∞,Ω

(
Mα−1,Ωf(x) + Sα−1,Ωf(x)

)(4.7)
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for almost every x ∈ Ω. Combining (4.6) with (4.7) implies (1.22).

Let 1/q1 = 1/p − α/n. Clearly, q < q1. By (1.22), (1.10), Minkowski’s inequality,

Hölder’s inequality and Lemma 2.7, we have

‖∇[b,Mα,Ω](f)‖q,Ω
≤
√
n‖b‖Lip(Ω)‖Mα,Ωf‖q,Ω + Cn‖b‖∞,Ω

(
‖Mα−1,Ωf‖q,Ω + ‖Sα−1,Ωf‖q,Ω

)
≤
√
n‖b‖Lip(Ω)|Ω|1/q−1/q1‖Mα,Ωf‖q1,Ω + Cα,n,p‖b‖∞,Ω‖f‖p,Ω

≤ Cα,n,p,|Ω|‖b‖Lip(Ω)‖f‖p,Ω,

which together with (1.11) implies (1.23). This completes the proof of Theorem 1.16.

5. Proof of Theorem 1.17

5.1. Preliminary notation and lemmas

For convenience, we set δ(x) = dist(x,Ωc). It is clear that δ is a Lipschitz function. By

Rademacher’s theorem, we see that δ is differentiable almost everywhere in Ω. Moreover,

|∇δ(x)| = 1 for almost every x ∈ Ω. Let b, f be two suitable functions defined on Ω. For

t ∈ (0, 1) and α ∈ (0, n), we define the function At,b,α(f) : Ω→ [−∞,∞] by

At,b,α(f)(x) =
(tδ(x))α

|B(x, tδ(x))|

∫
B(x,tδ(x))

|b(x)− b(y)|f(y) dy.

When α = 0, we denote At,b,α = At,b.

In what follows, for any arbitrary functions F (x, y) defined on Ω × Ω, we set ∇xF =

(D1,xF, . . . ,Dn,xF ), where Di,xF is the i-th weak partial derivative of F in x.

Lemma 5.1. Let p ∈ (1, n), α ∈ [1, n/p) and q = np/(n−(α−1)p). Assume that |Ω| <∞
and b ∈ Lip(Ω). If f ∈W 1,p(Ω), then At,b,α(f) ∈W 1,q(Ω) and

(5.1) |∇At,b,α(f)(x)| ≤ αMb,α−1,Ωf(x) + 3
√
n‖b‖Lip(Ω)Mα,Ωf(x) + 2Mb,α,Ω|∇f |(x)

for almost every x ∈ Ω.

Proof. At first we assume that f ∈ W 1,p(Ω) ∩ C∞(Ω). Fix i = 1, 2, . . . , n. By [25, (5.8)],

we have

|∇At,b,α(f)(x)|

≤ α (tδ(x))α−1

|B(x, tδ(x))|

∫
B(x,tδ(x))

|b(x)− b(y)||f(y)| dy

+
|∇δ(x)|
δ(x)

(tδ(x))α

|B(x, tδ(x))|

∫
B(x,tδ(x))

|∇y(|b(x)− b(y)|f(y)) · (y − x)| dy
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+
(tδ(x))α

|B(x, tδ(x))|

(∫
B(x,tδ(x))

|∇x|b(x)− b(y)|f(y)| dy(5.2)

+

∫
B(x,tδ(x))

|∇y(|b(x)− b(y)|f(y))| dy
)

≤ αMb,α−1,Ωf(x) +
2(tδ(x))α

|B(x, tδ(x))|

∫
B(x,tδ(x))

|∇y(|b(x)− b(y)|f(y))| dy

+
(tδ(x))α

|B(x, tδ(x))|

∫
B(x,tδ(x))

|∇x|b(x)− b(y)|f(y)| dy

for almost every x ∈ Ω. Since b ∈ Lip(Ω), then |b(x)−b(·)| ∈ Lip(Ω), ‖|b(x)−b(·)|‖Lip(Ω) ≤
‖b‖Lip(Ω) and ‖|b(x)−b(·)|‖Lip(Ω) ≤ 2‖b‖Lip(Ω). Similarly, we have that |b(·)−b(y)| ∈ Lip(Ω)

and ‖|b(·)− b(y)|‖Lip(Ω) ≤ ‖b‖Lip(Ω). Invoking Lemma 2.3, we have that |b(x)− b(·)|f(·) ∈
W 1,p(Ω) and

(5.3) ∇y(|b(x)− b(y)|f(y)) = f(y)∇y|b(x)− b(y)|+ |b(x)− b(y)|∇f(y)

for almost every y ∈ Ω. By (1.15) and the fact that ‖|b(x) − b(·)|‖Lip(Ω) ≤ ‖b‖Lip(Ω), we

have that |∇y|b(x) − b(y)|| ≤
√
n‖b‖Lip(Ω) for all x ∈ Ω. Similarly, |∇x|b(x) − b(y)|| ≤

√
n‖b‖Lip(Ω) for all y ∈ Ω. Then we get from (5.3) that

(5.4) |∇y(|b(x)− b(y)|f(y))| ≤
√
n‖b‖Lip(Ω)|f(y)|+ |b(x)− b(y)||∇f(y)|

for almost every y ∈ Ω. By (5.4), (5.2) and the fact that |∇x|b(x)− b(y)|| ≤
√
n‖b‖Lip(Ω),

we have

|∇At,b,α(f)(x)|

≤ αMb,α−1,Ωf(x) +
√
n‖b‖Lip(Ω)

(tδ(x))α

|B(x, tδ(x))|

∫
B(x,tδ(x))

|f(y)| dy

+
2(tδ(x))α

|B(x, tδ(x))|

∫
B(x,tδ(x))

(
|b(x)− b(y)||∇f(y)|+

√
n‖b‖Lip(Ω)|f(y)|

)
dy

≤ αMb,α−1,Ωf(x) + 3
√
n‖b‖Lip(Ω)Mα,Ωf(x) + 2Mb,α,Ω|∇f |(x)

(5.5)

for almost every x ∈ Ω. This proves (5.1) for f ∈W 1,p(Ω) ∩ C∞(Ω).

Next we complete the rest of proof by an approximation argument. Assume that

f ∈W 1,p(Ω) for some p ∈ (1, n). There exists a sequence of functions {ϕj}∞j=1 in W 1,p(Ω)∩
C∞(Ω) such that ϕj → f in W 1,p(Ω) as j →∞. By Hölder’s inequality, we have

|At,b,α(ϕj)(x)−At,b,α(f)(x)| ≤ (tδ(x))α

|B(x, tδ(x))|

∫
B(x,tδ(x))

|b(x)− b(y)||ϕj(y)− f(y)| dy

≤
(
|b(x)|+ ‖b‖∞,Ω

)
‖ϕj − f‖p,Ω

(tδ(x))α

|B(x, tδ(x))|1/p
,
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which leads to

lim
j→∞

At,b,α(ϕj)(x) = At,b,α(f)(x)

for all x ∈ Ω. It was shown that

(5.6) |∇At,b,α(ϕj)(x)| ≤ αMb,α−1,Ωϕj(x) + 3
√
n‖b‖Lip(Ω)Mα,Ωϕj(x) + 2Mb,α,Ω|∇ϕj |(x)

for almost every x ∈ Ω. Let q1 = np/(n − αp). It is clear that q < q1. By (1.15), (1.13),

(5.6), Hölder’s inequality and Minkowski’s inequality, we have

‖∇At,b,α(ϕj)‖q,Ω
≤ α‖Mb,α−1,Ωϕj‖q,Ω + 3

√
n‖b‖Lip(Ω)‖Mα,Ωϕj‖q,Ω + 2‖Mb,α,Ω|∇ϕj |‖q,Ω

≤ Cα,n,p‖b‖∞,Ω‖ϕj‖p,Ω + 3
√
n‖b‖Lip(Ω)|Ω|1/q−1/q1‖Mα,Ωϕj‖q1,Ω

+ 2|Ω|1/q−1/q1‖Mb,α,Ω|∇ϕj |‖q1,Ω
≤ Cα,n,p,|Ω|‖b‖Lip(Ω)‖ϕj‖1,p,Ω.

(5.7)

This yields that {|∇At,b,α(ϕj)|}∞j=1 is a bounded sequence in Lq(Ω). By the fact that

At,b,α(ϕj)(x) → At,b,α(f)(x) as j → ∞ for almost every x ∈ Ω, we have that the

Sobolev derivative ∇At,b,α(f) exists almost everywhere in Ω and there exists a subse-

quence {∇At,b,α(ϕj`)}∞`=1 of {∇At,b,α(ϕj)}∞j=1 such that

(5.8) ∇At,b,α(ϕj`)→ ∇At,b,α(f) weakly in Lq(Ω) as `→∞.

On the other hand, we get by Remark 1.11(iii) that Mb,α−1,Ωϕj → Mb,α−1,Ωf in Lq(Ω)

and Mb,α,Ω|∇ϕj | → Mb,α,Ω|∇f | and Mα,Ωϕj → Mα,Ωf in Lq1(Ω) as j → ∞. Hence, by

Hölder’s inequality, we have that Mb,α,Ω|∇ϕj | → Mb,α,Ω|∇f | and Mα,Ωϕj → Mα,Ωf in

Lq(Ω) as j →∞. For convenience, we set

h` := αMb,α−1,Ωϕj`(x) + 3
√
n‖b‖Lip(Ω)Mα,Ωϕj`(x) + 2Mb,α,Ω|∇ϕj` |(x).

It was proved that

(5.9) h` → αMb,α−1,Ωf + 3
√
n‖b‖Lip(Ω)Mα,Ωf + 2Mb,α,Ω|∇f | in Lq(Ω) as `→∞.

Combining (5.9) with (5.6), (5.8) and Proposition 2.2 yields (5.1).

Lemma 5.2. Let 1 < p < ∞ and b ∈ Lip(Ω). If f ∈ W 1,p(Ω), then At,b(f) ∈ W 1,p(Ω)

and

(5.10) |∇At,b(f)(x)| ≤ 3
√
n‖b‖Lip(Ω)MΩf(x) + 2Mb,Ω|∇f |(x)

for almost every x ∈ Ω.
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Proof. At first we assume that f ∈W 1,p(Ω)∩C∞(Ω). By (5.2) and the arguments similar

to those used in deriving (5.5),

|∇At,b(f)(x)| ≤ 3
√
n‖b‖Lip(Ω)MΩf(x) + 2Mb,Ω|∇f |(x)

for almost every x ∈ Ω. This proves (5.10) for the case f ∈ W 1,p(Ω) ∩ C∞(Ω). The rest

of the proof follows from the arguments similar to those used in the proof of Lemma 5.1.

We omit the details.

Lemma 5.3. Let p ∈ (1, n), α ∈ [1, n/p) and q = pn/(n− αp). Let Ω admit a p-Sobolev

embedding and b ∈ Lip(Ω). If f ∈W 1,p(Ω), then At,b,α(f) ∈W 1,q(Ω) and

(5.11) |∇At,b,α(f)(x)| ≤ αMb,α−1,Ωf(x) + 2Mb,α,Ω|∇f |(x) + 3
√
n‖b‖Lip(Ω)Mα,Ωf(x)

for almost every x ∈ Ω.

Proof. By (5.5), we known that (5.11) holds for all f ∈ W 1,p(Ω) ∩ C∞(Ω). The rest of

the proof follows from an approximation argument. Assume that f ∈ W 1,p(Ω) for some

p ∈ (1, n). There exists a sequence of functions {ϕj}∞j=1 in W 1,p(Ω) ∩ C∞(Ω) such that

ϕj → f in W 1,p(Ω) as j →∞. It was known that

lim
j→∞

At,b,α(ϕj)(x) = At,b,α(f)(x)

for all x ∈ Ω and

(5.12) |∇At,b,α(ϕj)(x)| ≤ αMb,α−1,Ωϕj(x) + 3
√
n‖b‖Lip(Ω)Mα,Ωϕj(x) + 2Mb,α,Ω|∇ϕj |(x)

for almost every x ∈ Ω.

Let 1/p̃ = 1/p − 1/n. Clearly, 1/q = 1/p̃ − (α − 1)/n. Since Ω admits a p-Sobolev

embedding, then

(5.13) ‖u‖p̃,Ω ≤ Cp,n‖u‖1,p,Ω, ∀u ∈ Lp(Ω).

By (1.10), (1.13), (5.12), (5.13) and Minkowski’s inequality, we have

‖∇At,b,α(ϕj)‖q,Ω
≤ α‖Mb,α−1,Ωϕj‖q,Ω + 3

√
n‖b‖Lip(Ω)‖Mα,Ωϕj‖q,Ω + 2‖Mb,α,Ω|∇ϕj |‖q,Ω

≤ Cα,n,p‖b‖∞,Ω
(
‖ϕj‖p̃,Ω + ‖∇ϕj‖p,Ω

)
+ Cα,n,p‖b‖Lip(Ω)‖ϕj‖p,Ω

≤ Cα,n,p‖b‖Lip(Ω)‖ϕj‖1,p,Ω.

(5.14)

On the other hand, we get by (5.13) that ϕj → f in Lp̃(Ω) as j → ∞. Then by Re-

mark 1.11, we have that Mb,α,Ω|∇ϕj | →Mb,α,Ω|∇f |, Mα,Ωϕj →Mα,Ωf and Mb,α−1,Ωϕj →
Mb,α−1,Ωf in Lq(Ω) as j → ∞. The rest of the proof follows from the arguments similar

to those used in the proof of Lemma 5.1. We omit the details.
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Lemma 5.4. Let p ∈ (n/(n − 1),∞), α ∈ [1,min{(n − 1)/p, n − 2n/((n − 1)p)} + 1),

q = np/(n−(α−1)p) and |Ω| <∞. If b ∈ Lip(Ω) and f ∈ Lp1(Ω), then At,b(f) ∈W 1,q(Ω)

and

|∇At,b,α(f)(x)| ≤ (n− α)Mb,α−1,Ωf(x) +
√
n‖b‖Lip(Ω)Mα,Ωf(x)

+ 2n‖b‖∞,ΩSα−1,Ωf(x)

for almost every x ∈ Ω.

Proof. Let f ∈ Lp(Ω) ∩ C∞(Ω). It was shown in the proof of [25, Lemma 5.3] that

|∇At,b,α(f)(x)| ≤ (n− α)
|∇δ(x)|
|δ(x)|

(tδ(x))α

|B(x, tδ(x))|

∫
B(x,tδ(x))

|b(x)− b(y)||f(y)| dy

+
(tδ(x))α

|B(x, tδ(x))|

(∫
B(x,tδ(x))

|∇x|b(x)− b(y)|||f(y)| dy

+

∫
∂B(x,tδ(x))

|b(x)− b(y)||f(y)||ν(y)| dHn−1(y)

+ t

∫
∂B(x,tδ(x))

|b(x)− b(y)||f(y)| dHn−1(y)|∇δ(x)|
)

for almost every x ∈ Ω, where ν(y) = (y − x)/(tδ(x)). This together with the fact that

|∇x|b(x)− b(y)|| ≤
√
n‖b‖Lip(Ω) implies that

|∇At,b(f)(x)|

≤ (n− α)
(tδ(x))α−1

|B(x, tδ(x))|

∫
B(x,tδ(x))

|b(x)− b(y)||f(y)| dy

+
√
n‖b‖Lip(Ω)

(tδ(x))α

|B(x, tδ(x))|

∫
B(x,tδ(x))

|f(y)| dy

+
n(tδ(x))α−1

|∂B(x, tδ(x))|

∫
∂B(x,tδ(x))

|b(x)− b(y)||f(y)| dHn−1(y)

≤ (n− α)Mb,α−1,Ωf(x) +
√
n‖b‖Lip(Ω)Mα,Ωf(x) + 2n‖b‖∞,ΩSα−1,Ωf(x)

for almost every x ∈ Ω.

The rest of the proof follows an approximation argument. Assume that f ∈ Lp(Ω) for

some p ∈ (1, n). There exists a sequence of functions {ϕj}∞j=1 in Lp(Ω)∩C∞(Ω) such that

ϕj → f in Lp(Ω) as j →∞. It was known that

lim
j→∞

At,b,α(ϕj) = At,b,α(f)(x)

for all x ∈ Ω. Moreover, it was proved that

|∇At,b,α(ϕj)(x)| ≤ (n− α)Mb,α−1,Ωϕj(x) +
√
n‖b‖Lip(Ω)Mα,Ωϕj(x)

+ 2n‖b‖∞,ΩSα−1,Ωϕj(x)
(5.15)
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for almost every x ∈ Ω. Let q1 = np/(n− αp). Clearly, q < q1. By (1.10), (1.13), (5.15),

Minkowski’s inequality, Hölder’s inequality and Lemma 2.7, we have

‖∇At,b,α(ϕj)‖q,Ω
≤ (n− α)‖Mb,α−1,Ωϕj‖q,Ω +

√
n‖b‖Lip(Ω)‖Mα,Ωϕj‖q,Ω + 2n‖b‖∞,Ω‖Sα−1,Ωϕj‖q,Ω

≤ Cα,n,p‖b‖∞,Ω‖ϕj‖p,Ω +
√
n‖b‖Lip(Ω)|Ω|1/q−1/q1‖Mα,Ωϕj‖q1,Ω

+ Cα,n,p‖b‖∞,Ω‖ϕj‖p,Ω
≤ Cα,n,p,|Ω|‖b‖Lip(Ω)‖ϕj‖p,Ω.

(5.16)

On the other hand, by Remark 1.11, we have that Mb,α−1,Ωϕj →Mb,α−1,Ωf in Lq(Ω) as

j → ∞. Moreover, Mα,Ωϕj → Mα,Ωf in Lq1(Ω) as j → ∞. This together with Hölder’s

inequality implies that Mα,Ωϕj → Mα,Ωf in Lq(Ω) as j → ∞. By the sublinearity and

Lemma 2.7, one sees that Sα−1,Ωϕj → Sα−1,Ωf in Lq(Ω) as j →∞. The rest of the proof

follows from the arguments similar to those used in the proof of Lemma 5.1. We omit the

details.

5.2. Proof of Theorem 1.17

We adopt the method of [17] to prove Theorem 1.17. Let tj , j = 1, 2, . . ., be an enumeration

of the rationals between 0 and 1. For any k ≥ 1, 0 ≤ α < n and two suitable functions f ,

b defined on Ω, we define the operator uk,b,α by

uk,b,α(f)(x) = max
1≤j≤k

Atj ,b,α(f)(x).

For α = 0, we denote uk,b,α = uk,b.

We first prove (i). Let f ∈ W 1,p(Ω) with p ∈ (1,∞) and b ∈ Lip(Ω). Invoking

Lemma 5.2, one has that Atj ,b(f) ∈W 1,p(Ω) and

(5.17) |∇Atj ,b(f)(x)| ≤ 3
√
n‖b‖Lip(Ω)MΩf(x) + 2Mb,Ω|∇f |(x)

for all j = 1, 2, . . . and almost every x ∈ Ω. On the other hand, it is easy to see that

Mb,Ωf(x) = sup
j≥1

Atj ,b(f)(x)

for all x ∈ Ω. Moreover, the sequence {uk,b}∞k=1 is an increasing sequence of functions

converging pointwise to Mb,Ωf . Using (5.17) and the fact that the maximum of two

Sobolev functions belongs to the Sobolev space (see [11, Lemma 7.6]), one finds that

|∇uk,b(x)| =
∣∣∣∣∇ max

1≤j≤k
Atj ,b(f)(x)

∣∣∣∣ ≤ max
1≤j≤k

|∇Atj ,b(f)(x)|

≤ 3
√
n‖b‖Lip(Ω)MΩf(x) + 2Mb,Ω|∇f |(x)

(5.18)
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for all k = 1, 2, . . . and almost every x ∈ Ω. By (5.18), (1.10), (1.13) and Minkowski’s

inequality, we have

‖∇uk,b‖p,Ω ≤ 3
√
n‖b‖Lip(Ω)‖MΩf‖p,Ω + 2‖Mb,Ω|∇f |‖p,Ω

≤ Cn,p
(
‖b‖Lip(Ω)‖f‖p,Ω + ‖b‖∞,Ω‖∇f‖p,Ω

)
≤ Cn,p‖b‖Lip(Ω)‖f‖1,p,Ω,

(5.19)

which gives that {|∇uk,b|}∞k=1 is a bounded sequence in Lp(Ω). Since uk,b converges point-

wise to Mb,Ωf as k → ∞, then the weak gradient ∇Mb,Ωf exists and there exists a

subsequence {uk`,b}∞`=1 of {uk,b}∞k=1 such that |∇uk`,b| → |∇Mb,Ωf | weakly in Lp(Ω) as

`→∞. The estimate (1.24) follows from the same argument as in the end of the proof of

Lemma 5.1.

By (1.24) and the arguments similar to those used to derive (5.19), we have

‖∇Mb,Ωf‖p,Ω ≤ Cn,p‖b‖Lip(Ω)‖f‖1,p,Ω,

which combining with (1.14) implies that

‖Mb,Ωf‖1,p,Ω = ‖Mb,Ωf‖p,Ω + ‖∇Mb,Ωf‖p,Ω ≤ Cn,p‖b‖Lip(Ω)‖f‖1,p,Ω,

which proves (1.25).

Using Lemma 5.1 and the arguments similar to those used in deriving (1.24), we can

prove (1.26). By (1.26) and the arguments similar to those used to derive (5.7),

‖∇Mb,α,Ωf‖q,Ω ≤ Cα,n,p,|Ω|‖b‖Lip(Ω)‖f‖1,p,Ω,

which together with (1.13) leads to (1.27).

By Lemma 5.3 and the arguments similar to those used in deriving (1.24), we can

prove (1.28). By (1.28) and the arguments similar to those used to derive (5.14),

‖∇Mb,α,Ωf‖q,Ω ≤ Cα,n,p‖b‖Lip(Ω)‖f‖1,p,Ω,

which together with (1.13) leads to (1.29).

Finally, using Lemma 5.4 and the arguments similar to those used in deriving (1.24),

we can prove (1.30). By (1.30) and the arguments similar to those used to derive (5.16),

‖∇Mb,α,Ωf‖q,Ω ≤ Cα,n,p,|Ω|‖b‖Lip(Ω)‖f‖p,Ω,

which together with (1.13) leads to (1.31). This completes the proof of Theorem 1.17.

6. Proof of Corollary 1.18

To prove Corollary 1.18, we need the following property of the Sobolev space with zero

boundary values.
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Lemma 6.1. [18] Let Ω ⊂ Rn, Ω 6= Rn, be an open set. Let f ∈W 1,p(Ω) for 1 < p <∞
and

∫
Ω

( f(x)
dist(x,Ωc)

)p
dx <∞. Then f ∈W 1,p

0 (Ω).

Proof of Corollary 1.18. The proof of Corollary 1.18 will be divided into four steps:

(i) Let f ∈ W 1,p
0 (Ω) with p ∈ (1,∞) and b ∈ Lip(Ω). There exists a sequence of

functions {ϕk}∞k=1 in C∞0 (Ω) such that ϕk → f in W 1,p(Ω) as k → ∞. It follows from

Theorem 1.16(i) that [b,MΩ](ϕk) ∈ W 1,p(Ω), k = 1, 2, . . .. Note that [b,MΩ](ϕk)(x) = 0

whenever dist(x, ∂Ω) < 1/(2 dist(suppϕk, ∂Ω)). Thus we have [b,MΩ](ϕk) ∈W 1,p
0 (Ω). By

Remark 1.11(ii) we see that [b,MΩ](ϕk) → [b,MΩ](f) in Lp(Ω) as k → ∞. On the other

hand, by Theorem 1.16(i),

|∇[b,MΩ](ϕk)(x)| ≤ 4‖b‖∞,ΩMΩ|∇ϕk|(x) + 3
√
n‖b‖Lip(Ω)MΩϕk(x)

for almost every x ∈ Ω. This together with the arguments similar to those used to derive

(1.17) implies

‖[b,MΩ](ϕk)‖1,p,Ω ≤ Cn,p‖b‖Lip(Ω)‖ϕk‖1,p,Ω.

This yields that {[b,MΩ](ϕk)} is a bounded sequence in W 1,p
0 (Ω) converging to [b,MΩ](f)

in Lp(Ω). A weak compactness implies [b,MΩ](f) ∈ W 1,p
0 (Ω). Similarly, we can prove

Mb,Ωf ∈W 1,p
0 (Ω).

(ii) Let f ∈W 1,p(Ω) with p ∈ (1, n) and α, q, Ω be given as in Corollary 1.18(ii). It is

easy to see that Mα,Ωf(x) ≤ dist(x,Ωc)Mα−1,Ωf(x) for any x ∈ Ω. It follows that

|[b,Mα,Ω](f)(x)| ≤ dist(x,Ωc)
(
|b(x)|Mα−1,Ωf(x) +Mα−1,Ω(bf)(x)

)
≤ 2‖b‖∞,Ω dist(x,Ωc)Mα−1,Ωf(x)

(6.1)

for all x ∈ Ω. In light of (6.1) and (1.10) we would have

(∫
Ω

(
[b,Mα,Ω](f)(x)

dist(x,Ωc)

)q
dx

)1/q

≤ 2‖b‖∞,Ω‖Mα−1,Ωf‖q,Ω

≤ Cα,n,p‖b‖∞,Ω‖f‖p,Ω <∞.
(6.2)

On the other hand, we get from Theorem 1.16(ii) that [b,Mα,Ω](f) ∈ W 1,q(Ω). This

together with (6.2) and Lemma 6.1 yields [b,Mα,Ω](f) ∈W 1,q
0 (Ω).

One can easily check that

(6.3) Mb,α,Ωf(x) ≤ 2‖b‖∞,ΩMα,Ωf(x) ≤ 2‖b‖∞,Ω dist(x,Ωc)Mα−1,Ωf(x),

which together with Theorem 1.17(ii) and the arguments similar to those used in deriving

[b,Mα,Ω](f) ∈W 1,q
0 (Ω) implies Mb,α,Ωf ∈W 1,q

0 (Ω).
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(iii) Let f ∈ W 1,p(Ω) and α, p, q, Ω be given as in Corollary 1.18(iii). Let 1/p̃ =

1/p− 1/n. Clearly, 1/q = 1/p̃− (α− 1)/n. By (6.1), (1.10) and the p-Sobolev embedding

property of Ω, we have(∫
Ω

(
[b,Mα,Ω](f)(x)

dist(x,Ωc)

)q
dx

)1/q

≤ 2‖b‖∞,Ω‖Mα−1,Ωf‖q,Ω ≤ Cα,n,p‖b‖∞,Ω‖f‖p̃,Ω

≤ Cα,n,p‖b‖∞,Ω‖f‖1,p,Ω <∞.
(6.4)

On the other hand, we get from Theorem 1.16(iii) that [b,Mα,Ω](f) ∈ W 1,q(Ω). This

together with (6.4) and Lemma 6.1 yields [b,Mα,Ω](f) ∈ W 1,q
0 (Ω). Similarly, we get by

(6.3) and Theorem 1.17(iii) that Mb,α,Ωf ∈W 1,q
0 (Ω).

(iv) Let f ∈ Lp(Ω) and p, α, q be given as in Corollary 1.18(iv). By (6.2), we have

(6.5)

(∫
Ω

(
[b,Mα,Ω](f)(x)

dist(x,Ωc)

)q
dx

)1/q

≤ Cα,n,p‖f‖p,Ω <∞.

By Theorem 1.16(iv) we have [b,Mα,Ω](f) ∈ W 1,q(Ω). This together with (6.5) and

Lemma 6.1 yields [b,Mα,Ω](f) ∈W 1,q
0 (Ω).

On the other hand, by (6.3) and the arguments similar to those used to derive (6.2),(∫
Ω

(
Mb,α,Ωf(x)

dist(x,Ωc)

)q
dx

)1/q

≤ Cα,n,p‖f‖p,Ω <∞.

This together with Theorem 1.17(iv) and Lemma 6.1 implies Mb,α,Ωf ∈W 1,q
0 (Ω).
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