
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 25, No. 2, pp. 207–222, April 2021

DOI: 10.11650/tjm/210104

Independent Sets in Tensor Products of Three Vertex-transitive Graphs

Huiqun Mao and Huajun Zhang*

Abstract. The tensor product T (G1, G2, G3) of graphs G1, G2 and G3 is defined by

V T (G1, G2, G3) = V (G1)× V (G2)× V (G3)

and

ET (G1, G2, G3) = {[(u1, u2, u3), (v1, v2, v3)] : |{i : (ui, vi) ∈ E(Gi)}| ≥ 2}.

From this definition, it is easy to see that the preimage of the direct product of two in-

dependent sets of two factors under projections is an independent set of T (G1, G2, G3).

So

αT (G1, G2, G3) ≥ max{α(G1)α(G2)|G3|, α(G1)α(G3)|G2|, α(G2)α(G3)|G1|}.

In this paper, we prove that the equality holds if G1 and G2 are vertex-transitive

graphs and G3 is a circular graph, a Kneser graph, or a permutation graph. Further-

more, in this case, the structure of all maximum independent sets of T (G1, G2, G3)

is determined.

1. Introduction

Let G and H be two graphs. The direct product G×H of G and H is defined by

V (G×H) = V (G)× V (H) = {(a, u) : a ∈ V (G) and u ∈ V (H)}

and

E(G×H) = {[(a, u), (b, v)] : (a, b) ∈ E(G) and (u, v) ∈ E(H)}.

It is an interesting problem to determine the independence number of the direct product of

two graphs G and H. Clearly, the preimage of I under projections is an independent set of

G×H if I is an independent set of G or H. Hence, α(G×H) ≥ max{α(G)|H|, α(H)|G|},
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where α(G) denotes the independence number of G and |G| denotes the order of G. A

natural question is whether the equality holds or not. Jha and Klavžar [6] proved that

the equality cannot always hold if one of the two graphs is non-vertex-transitive, where a

graph G is said to be vertex-transitive if for every pair vertices u and v of G, there exists f

of the automorphism group of G such that f(u) = v. So Tardif [11] proposed the following

problem.

Problem 1.1. (Tardif [11]) Does

α(G×H) = max{α(G)|H|, α(H)|G|}

hold for vertex-transitive graphs G and H?

Furthermore, if the equality holds, then there is another interesting problem as follows.

Problem 1.2. If α(G ×H) = max{α(G)|H|, α(H)|G|}, is every maximum independent

set of G×H the preimage of an independent set of one factor under projections?

An independent set of G×H is called regular if it is the preimage of an independent

set of one factor under projections. We say that the direct product G×H is MIS-normal

(maximum-independent-set-normal) if every maximum independent set ofG×H is regular.

There are many results on these two problems. Frankl [4] and Valencia-Pabon and

Vera [12] solved Problem 1.1 for Kneser graphs and circular graphs, respectively. Larose

and Tardif [10] characterized the structures of maximum independent sets in powers of

circular graphs, Kneser graphs and truncated simplices. Ku and Wong [9] showed the

structure of maximum independent sets in direct products of permutation graphs. Wang

and Yu [14] proved that both Problems 1.1 and 1.2 have positive answers if one of G and H

is a bipartite graph. Recently, Zhang [17] gave an affirmative answer to Problem 1.1 and

showed the structure of maximum independent sets in direct products of vertex-transitive

graphs G and H. (See also [1, 5, 8, 16] for related results on Problems 1.1 and 1.2.)

For a graph G, let S(G) denote the set of all independent sets of G. A fractional

coloring of G is a mapping f from S(G) to [0, 1] such that
∑

u∈S∈S(G) f(S) = 1 for

every u ∈ V (G). The total weight w(f) of a fractional coloring f of G is defined by

w(f) =
∑

S∈S(G) f(S). We call the minimum total weight of a fractional coloring of G the

fractional chromatic number χf (G) of G. It is well-known that χf (G) = |G|/α(G) if G is

vertex-transitive. In [18], Zhu proved that the equality χf (G×H) = min{χf (G), χf (H)}
holds for all graphs G and H.

Before stating the results, we introduce some notation. For a graph G, let I(G) denote

the set of all maximum independent sets of G. Given a subset A of V (G), define

NG(A) = {b ∈ V (G) : (a, b) ∈ E(G) for some a ∈ A},
NG[A] = NG(A) ∪A and NG[A] = V (G) \NG[A].
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The following two results, which can be deduced from the so-called “No-Homomorphism”

lemma of Albertson and Collins [2], are useful to get bounds on the sizes of independent

sets.

Lemma 1.3. (Cameron and Ku [3]) Let G be a vertex-transitive graph and A ⊆ V (G).

Then α(G[A])
|A| ≥ α(G)

|G| . The equality implies that |S ∩ A| = α(G[A]) for every maximum

independent set S ∈ I(G).

Lemma 1.4. (Zhang [16]) Let G be a vertex-transitive graph. Then, for every independent

set A of G, |A|
|NG[A]| ≤

α(G)
|G| . The equality implies that |S∩NG[A]| = |A| for every S ∈ I(G),

and in particular A ⊆ S for some S ∈ I(G).

An independent set A in a graph G is said to be imprimitive if |A| < α(G) and |A|
|NG[A]| =

α(G)
|V (G)| . The graph G is called IS-imprimitive if G has an imprimitive independent set.

Otherwise, G is called IS-primitive. Clearly, a vertex-transitive graph is IS-imprimitive if

it is disconnected. So an IS-primitive vertex-transitive graph must be connected. But an

IS-imprimitive graph is not necessarily disconnected. In [17], Zhang obtained the following

result.

Theorem 1.5. (Zhang [17]) Let G and H be two vertex-transitive graphs with α(G)
|G| ≥

α(H)
|H| . Then

α(G×H) = α(G)|H|,

and exactly one of the following holds:

(i) G×H is MIS-normal,

(ii) α(G)
|G| = α(H)

|H| and one of G or H is IS-imprimitive,

(iii) α(G)
|G| >

α(H)
|H| and H is disconnected.

Note that when condition (ii) holds, the direct product G×H is not MIS-normal. In

fact, if A is an imprimitive set of G, then S = A×V (H)∪NG[A]×I is an independent set

of G×H and |S| = α(G)|H|, where I ∈ I(H). It is clear that the direct product G×H
is not MIS-normal when condition (iii) holds.

For three graphs G1, G2 and G3, their direct products G1 ×G2 ×G3 with vertex set

V (G1)× V (G2)× V (G3) and edge set

E(G1 ×G2 ×G3) = {[(u1, u2, u3), (v1, v2, v3)] : (ui, vi) ∈ E(Gi)}.

Recently, Tardif generalized it and gave the definition of tensor product T (G1, G2, G3) of

G1, G2 and G3, which with the same vertex set as G1 ×G2 ×G3 and edge set

ET (G1, G2, G3) = {[(u1, u2, u3), (v1, v2, v3)] : |{i : (ui, vi) ∈ E(Gi)}| ≥ 2}.
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Clearly, E(G1 ×G2 ×G3) ⊆ ET (G1, G2, G3) and the tensor product is also commutative

and associative.

For i = 1, 2, 3 and Ai ⊆ V (Gi), let A1 × A2 × A3 = {(u1, u2, u3) : ui ∈ Ai}. Clearly,

I1× I2×G3, I1×G2× I3 and G1× I2× I3 are independent sets of (G1, G2, G3) if Ii is an

independent set of Gi, i = 1, 2, 3. So the inequality

αT (G1, G2, G3) ≥ max{α(G1)α(G2)|G3|, α(G1)α(G3)|G2|, α(G2)α(G3)|G1|}

holds. It is natural to ask the following problem.

Problem 1.6. For three vertex-transitive graphs G1, G2 and G3, does

(1.1) αT (G1, G2, G3) = max{α(G1)α(G2)|G3|, α(G1)α(G3)|G2|, α(G2)α(G3)|G1|}

hold? Furthermore, if the equality holds, is every maximum independent set of T (G1, G2,

G3) the preimage of the direct product of two independent sets of two factors under

projections?

In fact, the equality (1.1) does not always hold for non-vertex-transitive G1, G2 and

G3. For example, in Figure 1.1, let S = {v1}×{v9}×{v10, v11, v12}∪{v1}×{v5, v6, v7, v8}×
{v10}. Clearly, α(G1) = 1, α(G2) = 2, α(G3) = 1 and max{α(G1)α(G2)|G3|, α(G1)α(G3)

|G2|, α(G2)α(G3)|G1|} = 6. But S is an independent set of T (G1, G2, G3) of size 7.

(G1, G2, G3) if Ii is an independent set of Gi, i = 1, 2, 3. So the inequality

αT (G1, G2, G3) ≥ max{α(G1)α(G2)|G3|, α(G1)α(G3)|G2|, α(G2)α(G3)|G1|}

holds. It is natural to ask the following problem.

Problem 1.6 For three vertex-transitive graphs G1, G2 and G3, does

αT (G1, G2, G3) = max{α(G1)α(G2)|G3|, α(G1)α(G3)|G2|, α(G2)α(G3)|G1|}
(1)

holds? Furthermore, if the equality holds, is every maximum independent set

of T (G1, G2, G3) the preimage of the direct product of two independent sets of

two factors under projections?
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Fig. 1. Graphs G1, G2, G3.

In fact, the equality (1) does not always hold for non-vertex-transitive G1,

G2 and G3. For example, in Figure 1, let S = {v1} × {v9} × {v10, v11, v12} ∪
{v1} × {v5, v6, v7, v8} × {v10}. Clearly, α(G1) = 1, α(G2) = 2, α(G3) = 1

and max{α(G1)α(G2)|G3|, α(G1)α(G3)|G2|, α(G2)α(G3)|G1|} = 6. But S is

an independent set of T (G1, G2, G3) of size 7.

Similarly, we say that an independent set of T (G1, G2, G3) is regular if it

is the preimage of the direct product of two independent sets of two factors

under projections, and the tensor product T (G1, G2, G3) is called MIS-normal

if every maximum independent set of T (G1, G2, G3) is regular.

Let n ≥ 2r. The well-known circular graph Kn:r has the vertex set [n] =

{1, 2, . . . , n}, and for any i, j ∈ [n], they are adjacent if and only if r ≤ |i−j| ≤
n − r. It is easy to see that Kn:r is vertex-transitive, and α(Kn:r) = r by the

well-known result of Katona [10].

5

Figure 1.1: Graphs G1, G2, G3.

Similarly, we say that an independent set of T (G1, G2, G3) is regular if it is the preimage

of the direct product of two independent sets of two factors under projections, and the

tensor product T (G1, G2, G3) is called MIS-normal if every maximum independent set of

T (G1, G2, G3) is regular.

Let n ≥ 2r. The well-known circular graph Kn:r has the vertex set [n] = {1, 2, . . . , n},
and for any i, j ∈ [n], they are adjacent if and only if r ≤ |i− j| ≤ n− r. It is easy to see

that Kn:r is vertex-transitive, and α(Kn:r) = r by the well-known result of Katona [7].
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In [15], the authors proved that the equality

χfT (G,H,Kn:r) = min{nχf (G)/r, nχf (H)/r, χf (G)χf (H)}

holds for all graphs G and H. That is, the equality (1.1) holds if one of G1, G2 and G3 is

a circular graph.

In this paper, we will characterized the structures of maximum independent sets of

T (G1, G2, G3) if one of G1, G2 and G3 is a circular graph.

The following theorem is the main result of this paper.

Theorem 1.7. Let G and H be two vertex-transitive graphs with α(G)
|G| ≥

α(H)
|H| and Kn:r

be a circular graph. Then

αT (G,H,Kn:r) = max{α(G)α(H)n, α(G)r|H|},

and exactly one of the following holds:

(i) T (G1, G2, G3) is MIS-normal,

(ii) min
{
r
n ,

α(G)
|G|
}
> α(H)
|H| and H is disconnected,

(iii) r
n >

α(H)
|H| = α(G)

|G| and G or H is IS-imprimitive,

(iv) α(G)
|G| >

r
n = α(H)

|H| and H is IS-imprimitive,

(v) r
n = α(H)

|H| = α(G)
|G| and one of them is IS-imprimitive.

Similarly, it is clear that T (G1, G2, G3) is not MIS-normal when one of conditions (ii)–

(v) holds. Indeed, when max
{α(G1)
|G1| ,

α(G2)
|G2|

}
≤ α(G3)
|G3| , T×I3 is a maximum independent set

of T (G1, G2, G3) if T is a maximum independent set of G1 ×G2, where I3 is a maximum

independent set of G3.

The rest of this paper is organized as follows. In the next section, we present some

preliminary results. Then we will prove Theorem 1.7 and give some results on Kneser

graphs and permutation graphs in Section 3.

2. Preliminary results

Let A ⊆ V (G), U ⊆ V (H), I ⊆ V (Kn:r), and S be a maximum independent set of

T (G,H,Kn:r). For simplicity, let (a, u)× I =
⋃
i∈I(a, u, i) for a ∈ A and u ∈ U . Define

∂a,u(S) = {i ∈ [n] : (a, u, i) ∈ S}
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for a ∈ G and u ∈ H. In the sequel, let I be a fixed maximum independent set of Kn:r.

4(S) is defined as a subset of V T (G1, G2, G3) such that, for (a, u) ∈ V (G) × V (H),

∂a,u(4(S)) = I if 0 < |∂a,u(S)| < n and ∂a,u(4(S)) = ∂a,u(S) otherwise. Clearly,

4(S) = {(a, u)× I : 0 < |∂a,u(S)| < n} ∪ {(a, u)× [n] : |∂a,u(S)| = n},

and 4(4(S)) = 4(S). In the following, we will prove that 4(S) is also a maximum

independent set of (G,H,Kn:r). We first introduce a result in [5].

Lemma 2.1. (Geng et al. [5]) Let J1, J2 ⊆ V (Kn:r). If (j1, j2) /∈ E(Kn:r) for every pair

j1 ∈ J1 and j2 ∈ J2, then |J1|+ |J2| ≤ 2r.

Lemma 2.2. Let S be a maximum independent set of T (G1, G2, G3). Then 4(S) is also

a maximum independent set of T (G1, G2, G3).

Proof. Let

∂G,H(S) = {(a, u) ∈ V (G)× V (H) : ∂a,u(S) 6= ∅},
D1 = {(a, u) ∈ ∂G,H(S) : |∂a,u(S)| = n},
D2 = {(a, u) ∈ ∂G,H(S) : r < |∂a,u(S)| < n}

and

D3 = {(a, u) ∈ ∂G,H(S) : 0 < |∂a,u(S)| ≤ r}.

Then,

4(S) = {(a, u)× [n] : (a, u) ∈ D1} ∪ {(a, u)× I : (a, u) ∈ D2 ∪ D3}.

For (a, u), (b, v) ∈ V (G × H), if (a, b) ∈ E(G) or (u, v) ∈ E(H), it follows by definition

that (i, j) /∈ E(Kn:r) for all i ∈ ∂a,u(S) and j ∈ ∂b,v(S), and then Lemma 2.1 implies

|∂a,u(S)| + |∂b,v(S)| ≤ 2r. Therefore, by the definitions of D1, D2 and D3, it follows that

(a, b) /∈ E(G) and (u, v) /∈ E(H) for (a, u), (b, v) ∈ D1 ∪D2 or (a, u) ∈ D1 and (b, v) ∈ D3.

Hence 4(S) is an independent set of T (G1, G2, G3).

Now we prove that |4(S)| = |S|. If D2 ∪ D3 = ∅, it is clear that 4(S) = S and then

the result holds. So we assume that D2 ∪ D3 6= ∅. If D3 = ∅, then

S ′ = {(a, u)× [n] : (a, u) ∈ D1 ∪ D2}

is also an independent set of T (G1, G2, G3) with |S′| > |S|, yielding a contradiction.

Therefore, D3 6= ∅. If D2 = ∅, then it follows by the definition of 4(S) that |4(S)| ≥ |S|,
and the maximality of S further implies |4(S)| = |S|. Hence it remains to verify the case

D2 6= ∅ and D3 6= ∅.
For any (a, u) ∈ D2, if (a, b) /∈ E(G) and (u, v) /∈ E(H) for all (b, v) ∈ D3, then

S′′ = S ∪ (a, u)× [n]
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is an independent set of T (G1, G2, G3) with |S′′| > |S|, a contradiction. So there exists at

least one element (b, v) ∈ D3 such that either (a, b) ∈ E(G) or (u, v) ∈ E(H). For (a, u) ∈
D2, let ND3(a, u) be the set of all (b, v) ∈ D3 with either (a, b) ∈ E(G) or (u, v) ∈ E(H),

and for D ⊆ D2, set ND3(D) =
⋃

(a,u)∈DND3(a, u). For any (b, v) ∈ ND3(D2), there exists

an (a, u) ∈ D2 such that either (a, b) ∈ E(G) or (u, v) ∈ E(H). Then it follows from

Lemma 2.1 that

|∂a,u(S)|+ |∂b,v(S)| ≤ 2r,

and hence

|∂b,v(S)| < r.

Let t be the largest positive integer such that |ND3(D)| ≥ |D| holds for all D ⊆
D2 whenever |D| ≤ t. We now prove that |D2| = t. If |D2| > t, then there ex-

ists a (t + 1)-subset D = {(a1, u1), (a2, u2), . . . , (at+1, ut+1)} of D2 such that ND3(D) =

{(b1, v1), (b2, v2), . . . , (bt, vt)}. Set

S′′′ =

(
t+1⋃
i=1

(ai, ui)×
(
[n] \ ∂ai,ui(S)

))
∪

S \ t⋃
j=1

(bj , vj)× ∂bj ,vj (S)

 .

It is easy to verify that S′′′ is also an independent set of T (G1, G2, G3). By the well-

known Hall’s marriage theorem, we may reorder the elements of ND3(D) such that either

(ai, bi) ∈ E(G) or (ui, vi) ∈ E(H) for 1 ≤ i ≤ t. Then, by Lemma 2.1 and n ≥ 2r, we have

that

|S′′′| − |S| =
t+1⋃
i=1

∣∣(ai, ui)× ([n] \ ∂ai,ui(S)
)∣∣− t⋃

j=1

∣∣(bj , vj)× ∂bj ,vj (S)
∣∣

=
t∑
i=1

(
n− |∂ai,ui(S)| − |∂bi,vi(S)|

)
+
(
n− |∂at+1,ut+1(S)|

)
≥

t∑
i=1

(n− 2r) +
(
n− |∂at+1,ut+1(S)|

)
> 0,

a contradiction. Hence, |D2| = t. Now, let D2 = {(a1, u1), (a2, u2), . . . , (at, ut)} and

ND3(D2) = {(b1, v1), (b2, v2), . . . , (bs, vs)} such that either (ai, bi) ∈ E(G) or (ui, vi) ∈
E(H) for 1 ≤ i ≤ t, where s ≥ t. Then, it follows from Lemma 2.1 that

|4(S)| − |S| =
∑

(a,u)∈D2

(
r − |∂a,u(S)|

)
+

∑
(b,v)∈D3

(
r − |∂b,v(S)|

)
≥

t∑
i=1

(
2r − |∂ai,ui(S)| − |∂bi,vi(S)|

)
+

s∑
j=t+1

(
r − |∂bj ,vj (S)|

)
+

∑
(c,w)∈D3\ND3

(D2)

(
r − |∂c,w(S)|

)
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≥ 0,

and the maximality of S implies that |4(S)| = |S|.

3. Proof of Theorem 1.7

We are now ready to prove the main result (Theorem 1.7) in this paper.

Proof of Theorem 1.7. If one of G, H and Kn:r is empty graph, the result is obvious.

Note that for each vertex-transitive graph G, either α(G)
|G| = 1 or α(G)

|G| ≤ 1
2 . So we suppose

max
{α(G)
|G| ,

α(H)
|H| ,

r
n

}
≤ 1

2 . Let T be a maximum independent set of T (G1, G2, G3). Clearly,

|T | ≥ max{α(G)α(H)n, α(G)r|H|}. Let S = 4(T ), then by Lemma 2.2, S is also a

maximum independent set and |S| = |T |. Furthermore, by definition, 4(S) = S. Let D1,

D2 and D3 be defined as in Lemma 2.2 according to S. Then D2 = ∅. In the following,

we will prove that |S| ≤ max{α(G)α(H)n, α(G)r|H|}.
Set

A1 = {a ∈ V (G) : (a, u) ∈ D1 for some u ∈ V (H)}

and

U0 = {u ∈ V (H) : (a, u) ∈ D1 for some a ∈ V (G)}.

Note that (a, b) /∈ E(G) and (u, v) /∈ E(H) hold for all (a, u), (b, v) ∈ D1∪D2 or (a, u) ∈ D1

and (b, v) ∈ D1 ∪ D3. Hence, A1 and U0 are independent sets of G and H respectively.

Moreover, we have that

D3 ⊆ NG[A1]×NH [U0] ∪A1 ×NH [U0] ∪NG[A1]× U0.

Furthermore, by the maximality of S, we can deduce that

D1 = A1 × U0,

and

NG[A1]× U0 ∪A1 ×NH [U0] ⊆ D3.

For u ∈ V (H), define

Xu = {a ∈ V (G) : (a, u) ∈ D3}.

Let G[Xu] be the subgraph of G induced by Xu. Consider the decomposition Xu =

X∗u ∪ X ′u, where X∗u is the set of all isolated vertices in G[Xu]. Clearly, X∗u = ∅ and

X ′u = NG[A1] if u ∈ U0; Xu = ∅ if u ∈ NH(U0); A1 ⊆ X∗u and X ′u ⊆ NG[A1] if u ∈ NH [U0].

Set X ′ =
⋃
u∈H X

′
u, then X ′ ⊆ NG[A1]. For u ∈ NH [U0], X

∗
u is an independent set of G.

Note that X∗u may be equal to A1. We list all distinct X∗u’s as A2, . . . , As.
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Let U1, U2, . . . , Us be defined as follows:

U1 = NH [U0] and Ui = {u ∈ NH [U0] : X∗u = Ai}, i = 2, 3, . . . , s.

Clearly, V (H) = U1 ∪ U2 ∪ · · · ∪ Us. By Lemma 1.4, we have that

(3.1)
|U0|
|U1|

=
|U0|

|NH [U0]|
≤ α(H)

|H| .

For a ∈ V (G), set

Ba = {u ∈ V (H) : a ∈ X ′u},

and then

|S| = |D1|n+ |D3|r = |D1|n+
∑

u∈V (H)

|Xu|r

= |A1||U0|n+
∑

u∈V (H)

|X∗u|r +
∑

u∈V (H)

|X ′u|r

= |A1||U0|n+
s∑
i=2

|Ai||Ui|r +
∑

u∈V (H)

|X ′u|r

= |A1||U0|n+

s∑
i=2

|Ai||Ui|r +
∑
a∈X′

|Ba|r.

(3.2)

For every pair u, v ∈ V (H), if X ′u ∩ X ′v 6= ∅, then (u, v) /∈ E(H). Hence Ba is an

independent set of H. By definition,

Ba ⊆
∑

i: a∈NG[Ai]

Ui.

Note that X ′ ⊆ NG[A1]. We now prove that Ui ⊆ NH [Ba] if a ∈ NG[Ai] for 2 ≤ i ≤ s,
and so NH [Ba] ⊆

∑
i: a∈NG[Ai]

Ui. Indeed, suppose that Ba 6= ∅ for some a ∈ NG[Ai],

2 ≤ i ≤ s. It is clear that Ui∩Ba = ∅, hence it remains to verify that Ui∩NH(Ba) = ∅. If

a ∈ NG(Ai), then (a, b) ∈ E(G) for some b ∈ Ai. Hence, (a, u)× I ⊆ S and (b, v)× I ⊆ S
for all u ∈ Ba and v ∈ Ui. Then it follows by definition that (u, v) /∈ E(H), and so

Ui∩NH(Ba) = ∅. If a ∈ Ai and Ui∩NH(Ba) 6= ∅, then (u, v) ∈ E(H) for some u ∈ Ui and

v ∈ Ba. On the other hand, since a ∈ X ′v, it follows that (a, c) ∈ E(G) for some c ∈ X ′v.
Hence (a, u)× I, (c, v)× I ⊆ S. However, (a, c) ∈ E(G) and (u, v) ∈ E(H), contradicting

that S is an independent set of T (G1, G2, G3). Therefore, Ui∩NH(Ba) = ∅, and the result

holds. Hence by Lemma 1.4, it follows that

(3.3)
|Ba|∣∣∑

i: a∈NG[Ai]
Ui
∣∣ ≤ |Ba|
|NH [Ba]|

≤ α(H)

|H| .
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By (3.2), (3.3) and Lemma 1.3, we have that

|S| = |A1||U0|n+
s∑
i=2

|Ai||Ui|r +
∑
a∈X′

|Ba|r

≤ |A1||U0|n+

s∑
i=2

|Ai||Ui|r +
α(H)

|H|
∑
a∈X′

∑
i: a∈NG[Ai]

|Ui|r

= |A1||U0|n+

s∑
i=2

|Ai||Ui|r +
α(H)

|H|
s∑
i=1

|NG[Ai]||Ui|r

≤ |A1||U0|n+

s∑
i=2

|Ai||Ui|r +
α(G)

|G|
s∑
i=1

|NG[Ai]||Ui|r(3.4)

≤
(
|A1||U0|n+ α(NG[A1])|U1|r

)
+

s∑
i=2

(
|Ai|+ α(NG[Ai])

)
|Ui|r(3.5)

≤
(
|A1||U0|n+ α(NG[A1])|U1|r

)
+

s∑
i=2

α(G)|Ui|r,(3.6)

where α(NG[Ai]) denotes the independence number of the subgraph of G induced by

NG[Ai].

Now, we distinguish two cases to prove that |S| ≤ max{α(G)α(H)n, α(G)r|H|}.
Case 1: α(H)

|H| ≤ r
n . By inequality (3.1), we have that

(3.7) |A1||U0|n ≤ |A1||U1|r,

and so |A1||U0|n + α(NG[A1])|U1|r ≤
(
|A1| + α(NG[A1])

)
|U1|r. Then, by (3.6) and

Lemma 1.3, it follows that

|S| ≤
(
|A1|+ α(NG[A1])

)
|U1|r +

s∑
i=2

α(G)|Ui|r ≤
s∑
i=1

α(G)|Ui|r = α(G)|H|r.

Case 2: r
n <

α(H)
|H| .

Subcase 2.1: |U0|
|U1| ≤

r
n . By (3.6) and Lemma 1.3, we can derive that

|S| ≤
(
|A1|+ α(NG[A1])

)
|U1|r +

s∑
i=2

α(G)|Ui|r

≤
s∑
i=1

α(G)|Ui|r = α(G)|H|r < α(G)α(H)n.

(3.8)

Subcase 2.2: |U0|
|U1| >

r
n . Note that U2 ∪ · · · ∪ Us = NG[U0]. Then by Lemma 1.3, it

follows that

(3.9) |U0|+
α(H)

|H|
∑

2≤i≤s
|Ui| = |U0|+

α(H)

|H| |NH [U0]| ≤ α(H).
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By (3.6), (3.9) and Lemma 1.3, we obtain that

|S| ≤
(
|A1||U0|n+ α(NG[A1])|U1|r

)
+

s∑
i=2

α(G)|Ui|r

≤
(
|A1|+ α(NG[A1])

)
|U0|n+

s∑
i=2

α(G)|Ui|r

≤ α(G)|U0|n+ α(G)r
s∑
i=2

|Ui|

≤ α(G)|U0|n+ α(G)
α(H)

|H| n
s∑
i=2

|Ui|(3.10)

= α(G)n

(
|U0|+

α(H)

|H|
s∑
i=2

|Ui|
)

≤ α(G)α(H)n.(3.11)

Therefore, |S| = max{α(G)α(H)n, α(G)r|H|}. Now we distinguish two cases to prove

that either T is regular or one of (ii)–(v) holds.

Case 1: T = S.

Subcase 1.1: U0 = ∅. In this case, U1 = ∅. By the maximality of S and (3.6), it follows

that |S| = α(G)r|H|. In this case, max{α(G)α(H)n, α(G)r|H|, α(H)r|G|} = α(G)r|H|,
and so we have that min

{α(G)
|G| ,

r
n

}
≥ α(H)
|H| .

If Ai 6= ∅ for all 2 ≤ i ≤ s, then the equalities in (3.4), (3.5) and (3.6) imply that
α(G)
|G| = α(H)

|H| and Ai is imprimitive if NG[Ai] 6= ∅ for some i. That is, (iii) or (v) holds.

So we suppose that NG[Ai] = ∅ for all i. Then the maximality of S implies that each Ai

is a maximum independent set of G. In this case, S = (A2 × U2 ∪ · · · ∪ As × Us) × I. If

s = 2, then S is regular. Otherwise, it is easy to verify that H is disconnected and one of

(ii)–(v) holds.

If Ai = ∅ for some i, then the equality in (3.4) implies that α(G)
|G| = α(H)

|H| andX ′ = V (G).

Thus, the equality in (3.3) implies that Ba is a maximum independent set of H or Ba is

an imprimitive set of H for every a ∈ V (G). If Ba is a maximum independent set of

H every a ∈ V (G), in the similar way, we can prove that either S is regular or G is

disconnected; and, if Ba is an imprimitive set of H for some a ∈ V (G), we can prove that

H is IS-imprimitive. That is, (iii) or (v) holds.

Subcase 1.2: U0 6= ∅. When NH [U0] = ∅, it is easy to see that U2 ∪ · · · ∪ Us = ∅, and

the maximality of S implies that S = A1×U0× [n]∪NG[A1]×U0×I. If NG[A1] = ∅, then

S = A1×U0× [n]. Otherwise, R = A1× [n]∪NG[A1]×I is a maximum independent set of

G×Kn:r. Hence, the product G×Kn:r is not MIS-normal, and the maximality of R implies
α(G)
|G| = r

n = |A1|
|NG[A1]| . That is, G is IS-imprimitive. By |S| = max{α(G)α(H)n, α(G)r|H|},

it follows that α(G)
|G| = α(H)

|H| = r
n . Then (v) holds.
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When NH [U0] 6= ∅, if r
n < α(H)

|H| , then |S| = α(G)α(H)n. In this case, if |U0|
|U1| ≤

r
n ,

then it follows by (3.8) that |S| < α(G)α(H)n; and, if |U0|
|U1| >

r
n , then one of the strict

inequalities in (3.10) and (3.11) hold, and so |S| < α(G)α(H)n. Therefore, r
n ≥

α(H)
|H| .

Then equalities in (3.1) and (3.7) imply α(H)
|H| = r

n = |U0|
|NH [U0]|

, and so H is IS-imprimitive.

That is, (iv) or (v) holds.

Case 2: T 6= S. By Case 1, it remains to verify that one of (ii)–(v) holds if T is not

regular but S is regular. If S = A×U × [n], it is easy to see that T = S, and so T is also

regular. Thus, we assume that S = A×V (H)× I. By the definition of S, it is easy to see

that S = A × R for some irregular maximum independent set R of H ×Kn:r. Then the

direct product H×Kn:r is not MIS-normal. Note that α(H)
|H| ≤ 1

2 and Kn:r is IS-imprimitive

or disconnected if and only if n = 2r ≥ 4. By Theorem 1.5, either α(H)
|H| = r

n and one of

them is IS-imprimitive or α(H)
|H| <

r
n and H is disconnected. Then (iv) or (v) holds if the

former holds; and (ii) or (iii) holds if the latter holds.

Now we consider Kneser graphs and permutation graphs.

Lemma 3.1. Let G, H and K be three vertex-transitive graphs. If there exists an induced

subgraph K ′ of K such that α(K′)
|K′| = α(K)

|K| and

αT (G,H,K ′) = max{α(G)α(K ′)|H|, α(H)α(K ′)|G|, α(G)α(H)|K ′|},

then

αT (G,H,K) = max{α(G)α(K)|H|, α(H)α(K)|G|, α(G)α(H)|K|}.

Furthermore, if TT (G,H,K ′) is MIS-normal, then exactly one of the following holds:

(i) T (G,H,K) is MIS-normal;

(ii) α(K)
|K| = α(G)

|G| or α(K)
|K| = α(H)

|H| and K is imprimitive;

(iii) α(K)
|K| < min

{α(G)
|G| ,

α(H)
|H|
}

and K is disconnected.

Proof. The result is obvious if K is an empty graph. If one of G and H is an empty graph,

the result holds by Theorem 1.5. So we may assume that all of them are nonempty graphs.

Since T (G,H,K) is a vertex-transitive graph and T (G,H,K ′) is an induced subgraph of

T (G,H,K), by Lemma 1.3,

αT (G,H,K)

|T (G,H,K)| ≤
αT (G,H,K ′)

|T (G,H,K ′)| = max

{
α(G)α(K ′)

|G||K ′| ,
α(H)α(K ′)

|H||K ′| ,
α(G)α(H)

|G||H|

}
= max

{
α(G)α(K)

|G||K| ,
α(H)α(K)

|H||K| ,
α(G)α(H)

|G||H|

}
≤ αT (G,H,K)

|T (G,H,K)| .
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Hence,

(3.12)
αT (G,H,K)

|T (G,H,K)| =
αT (G,H,K ′)

|T (G,H,K ′)| = max

{
α(G)α(K)

|G||K| ,
α(H)α(K)

|H||K| ,
α(G)α(H)

|G||H|

}
.

This proves the equality in Lemma 3.1.

For every σ ∈ Aut(K), where Aut(K) is the automorphism group of K, it is clear that

T (G,H, σ(K ′)) is MIS-normal. Let S be a maximum independent set of T (G,H,K). By

Lemma 1.3 and (3.12), S ∩ V T (G,H, σ(K ′)) is a maximum independent set of T (G,H,

σ(K ′)). For every k ∈ V (K), let

∂k(S) = {(a, u) ∈ ∂G,H(S) : (a, u, k) ∈ S},

and

∂K(S) = {k ∈ V (K) : ∂k(S) 6= ∅}.

For each k ∈ ∂K(S), it is clear that there is a σ ∈ Aut(K) such that k ∈ σ(K ′). Then, by

the assumption that T (G,H,K ′) is MIS-normal, it follows that for k ∈ ∂K(S), ∂k(S) =

A×H or G× U or A× U for some A ∈ I(G) and U ∈ I(H). We will complete the proof

in the following two cases:

Case 1: There exists an i ∈ ∂K(S) such that |∂i(S)| = α(G)|H| or α(H)|G|. For

symmetry, suppose ∂i(S) = A × V (H) for some i ∈ ∂K(S). We now prove that for all

k ∈ ∂K(S), ∂k(S) = A×V (H) or A×U , where U ∈ I(H). Suppose not, then there exists

some j ∈ ∂K(S) such that ∂j(S) = B × V (H) or B × U or V (G) × U , where B ∈ I(G)

and U ∈ I(H) with A 6= B.

If ∂j(S) = B×V (H), then there exist u and v of V (H) such that (u, v) ∈ E(H), since

H is a nonempty graph. On the other hand, since A,B ∈ I(G), (a, b) ∈ E(G) for some

a ∈ A and b ∈ B. Hence (a, u, i) and (b, v, j) are adjacent in (G,H,K). However, (a, u, i)

and (b, v, j) are both contained in the independent set S, yielding a contradiction.

If ∂j(S) = B × U , then (a, b) ∈ E(G) for some a ∈ A and b ∈ B and (u, v) ∈ E(H)

for some u ∈ V (H) and v ∈ U , since A,B ∈ I(G) and U ∈ I(H). So the two elements

(a, u, i) and (b, v, j) of S are adjacent in (G,H,K), yielding a contradiction.

If ∂j(S) = V (G)× U , then there exist a, b ∈ V (G) and u, v ∈ V (H) such that (a, b) ∈
E(G), (u, v) ∈ E(H) and a ∈ A, v ∈ U , since G and H are both nonempty graphs.

Hence the two elements (a, u, i) and (b, v, j) of S are adjacent in (G,H,K), yielding a

contradiction.

Thus, S = A×R for some maximum independent set R of H×K, which implies α(G)
|G| ≥

min
{α(H)
|H| ,

α(K)
|K|
}

. If ∂k(S) = A× V (H) for all k ∈ ∂K(S), then S = A× V (H)× ∂K(S),

and so S is regular. Otherwise, ∂i(S) = A×U for some i ∈ ∂K(S), then R is irregular. By

Theorem 1.5, either α(H)
|H| = α(K)

|K| and one of them is IS-imprimitive, or α(H)
|H| <

α(K)
|K| and
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H is disconnected or α(H)
|H| >

α(K)
|K| and K is disconnected. However, if α(H)

|H| = α(K)
|K| and H

is IS-imprimitive or α(H)
|H| <

α(K)
|K| and H is disconnected, it is easy to verify that (G,H,K ′)

is not MIS-normal. Hence, α(H)
|H| = α(K)

|K| and K is IS-imprimitive or α(H)
|H| >

α(K)
|K| and K

is disconnected. That is, (ii) or (iii) holds.

Case 2: For all k ∈ ∂K(S), |∂k(S)| = α(G)α(H). In this case, the maximality of

S implies that α(K)
|K| ≤ min

{α(K)
|K| ,

α(H)
|H|
}

and ∂K(S) = V (K). If for all k ∈ V (K),

∂k(S) = A × U for some A ∈ I(G) and U ∈ I(H), then S = A × U × V (K). That is,

S is regular. Otherwise, we list all distinct ∂k(S)’s as A1 × U1, . . . , As × Us (s > 2). For

1 ≤ i ≤ s, let

Vi = {k ∈ V (K) : ∂k(S) = Ai × Ui}.

For any distinct pair elements i and j of [s], since Ai × Ui 6= Aj × Uj , there exist (a, u) ∈
Ai × Ui and (b, v) ∈ Aj × Uj with either (a, b) ∈ E(G) or (u, v) ∈ E(H). If there exist

k1 ∈ Vi and k2 ∈ Vj with (k1, k2) ∈ E(K), then the two elements (a, u, k1) and (b, v, k2)

of S are adjacent, yielding a contradiction. Thus, (k1, k2) /∈ E(H) for all k1 ∈ Vi and

k2 ∈ Vj . Hence K is disconnected, and (iii) holds.

For the permutation group Sn, we can define a graph G(Sn) with vertex set Sn and

two vertices σ and γ are adjacent if and only if σ(i) 6= γ(i) for all i ∈ [n]. In [13], Wang

and Zhang proved the following result.

Lemma 3.2. Kn,r is IS-imprimitive if and only if n = 2r ≥ 4, and G(Sn) is IS-

imprimitive if and only if n = 3.

Combing with Theorem 1.7, Lemmas 3.1 and 3.2, we have the following corollary.

Corollary 3.3. Let G and H be two vertex-transitive graphs with α(G)
|G| ≥

α(H)
|H| . If K is a

Kneser graph Kn,r or a permutation graph G(Sn), then

αT (G,H,K) = max{α(G)α(H)|K|, α(G)α(K)|H|},

and exactly one of the following holds:

(i) T (G,H,K) is MIS-normal,

(ii) α(G)
|G| >

α(K)
|K| = α(H)

|H| and one of H and K is IS-imprimitive,

(iii) α(K)
|K| = α(H)

|H| = α(G)
|G| and one of them is IS-imprimitive,

(iv) min
{α(K)
|K| ,

α(G)
|G|
}
> α(H)
|H| and H is disconnected,

(v) α(K)
|K| >

α(H)
|H| = α(G)

|G| and one of G or H is IS-imprimitive.
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