Generalized Integration Operators from Weak to Strong Spaces of Vector-valued Analytic Functions

Jiale Chen^{*} and Maofa Wang

Abstract. For a fixed nonnegative integer m, an analytic map φ and an analytic function ψ , the generalized integration operator $I_{\varphi,\psi}^{(m)}$ is defined by

$$I_{\varphi,\psi}^{(m)}f(z) = \int_0^z f^{(m)}(\varphi(\zeta))\psi(\zeta)\,d\zeta$$

for X-valued analytic function f, where X is a Banach space. Some estimates for the norm of the operator $I_{\varphi,\psi}^{(m)}: wA_{\alpha}^{p}(X) \to A_{\alpha}^{p}(X)$ are obtained. In particular, it is shown that the Volterra operator $J_{b}: wA_{\alpha}^{p}(X) \to A_{\alpha}^{p}(X)$ is bounded if and only if $J_{b}: A_{\alpha}^{2} \to A_{\alpha}^{2}$ is in the Schatten class $S_{p}(A_{\alpha}^{2})$ for $2 \leq p < \infty$ and $\alpha > -1$. Some corresponding results are established for X-valued Hardy spaces and X-valued Fock spaces.

1. Introduction

Let Ω be the open unit disk \mathbb{D} or the complex plane \mathbb{C} , X a complex Banach space and $\mathcal{H}(\Omega, X)$ the space of all X-valued analytic functions on Ω . For $1 \leq p < \infty$ and $\alpha > -1$, the X-valued Bergman space $A^p_{\alpha}(X)$ consists of the functions $f \in \mathcal{H}(\mathbb{D}, X)$ such that

$$||f||_{A^p_{\alpha}(X)} = \left(\int_{\mathbb{D}} ||f(z)||_X^p dA_{\alpha}(z)\right)^{1/p} < \infty,$$

where $dA_{\alpha}(z) = (\alpha + 1)(1 - |z|^2)^{\alpha} dA(z)$ and dA is the Lebesgue measure on \mathbb{C} normalized so that $A(\mathbb{D}) = 1$. For $1 \leq p < \infty$, analogously, the X-valued Hardy space $H^p(X)$ consists of the functions $f \in \mathcal{H}(\mathbb{D}, X)$ satisfying

$$||f||_{H^p(X)} = \sup_{0 < r < 1} \left(\int_{\mathbb{T}} ||f(r\zeta)||_X^p \, dm(\zeta) \right)^{1/p} < \infty,$$

Received October 21, 2020; Accepted December 24, 2020.

Communicated by Xiang Fang.

²⁰²⁰ Mathematics Subject Classification. Primary: 47B38; Secondary: 46E40.

Key words and phrases. generalized integration operator, vector-valued Bergman space, vector-valued Hardy space, vector-valued Fock spaces.

This work was partially supported by NSFC (No. 11771340) of China.

^{*}Corresponding author.

where dm is the normalized Lebesgue measure on $\mathbb{T} = \partial \mathbb{D}$. For $1 \leq p < \infty$ and $\alpha > 0$, the X-valued Fock space $F^p_{\alpha}(X)$ consists of the functions $f \in \mathcal{H}(\mathbb{C}, X)$ such that

$$\|f\|_{F^p_{\alpha}(X)} = \left(\frac{p\alpha}{2} \int_{\mathbb{C}} \|f(z)\|_X^p e^{-\frac{\alpha p}{2}|z|^2} \, dA(z)\right)^{1/p} < \infty.$$

These spaces have been studied by many authors, see e.g. [3, 4, 7]. We also use the customary notation $\mathcal{H}(\Omega)$, A^p_{α} , H^p and F^p_{α} to denote the corresponding spaces for the case $X = \mathbb{C}$. The weak versions of X-valued Bergman and Hardy spaces were considered by e.g. Blasco [2] and Bonet, Domański and Lindström [6]: the weak spaces $wA^p_{\alpha}(X)$ and $wH^p(X)$ consist of the functions $f \in \mathcal{H}(\mathbb{D}, X)$ for which

$$||f||_{wA^p_{\alpha}(X)} = \sup_{x^* \in B_{X^*}} ||x^* \circ f||_{A^p_{\alpha}}, \quad ||f||_{wH^p(X)} = \sup_{x^* \in B_{X^*}} ||x^* \circ f||_{H^p},$$

are finite, respectively. Here and in the sequel, X^* is the dual space of X and $B_{X^*} = \{x^* \in X^* : \|x^*\|_{X^*} \leq 1\}$ is the closed unit ball of X^* . Analogously, the weak space $wF^p_{\alpha}(X)$ consists of X-valued entire functions satisfying

$$||f||_{wF^p_{\alpha}(X)} = \sup_{x^* \in B_{X^*}} ||x^* \circ f||_{F^p_{\alpha}} < \infty.$$

It follows from [14] that $A^p_{\alpha}(X)$ and $wA^p_{\alpha}(X)$ (resp. $H^p(X)$ and $wH^p(X)$) are essential different for any infinite-dimensional Banach space X.

Given a fixed nonnegative integer m, an analytic self-map φ of Ω and a function $\psi \in \mathcal{H}(\Omega)$, the generalized integration operator $I_{\varphi,\psi}^{(m)}$ is defined by

$$I_{\varphi,\psi}^{(m)}f(z) = \int_0^z f^{(m)}(\varphi(\zeta))\psi(\zeta)\,d\zeta, \quad z \in \Omega$$

for $f \in \mathcal{H}(\Omega, X)$. The operator $I_{\varphi,\psi}^{(m)}$ is a generalization of the Volterra type integration operator J_b , which is defined by

$$J_b f(z) = \int_0^z f(\zeta) b'(\zeta) \, d\zeta, \quad z \in \Omega$$

for $b \in \mathcal{H}(\Omega)$ and $f \in \mathcal{H}(\Omega, X)$. The operator J_b has been studied in various \mathbb{C} -valued settings, see [1, 8, 12, 15, 17, 18] and the references therein. However, as far as we know, it seems that the operator J_b has not been studied in the setting of spaces of vector-valued analytic functions.

Using [18, Theorem 1.3] and the following Theorem 2.1, it is easy to show that the following are equivalent for any Banach space $X, 1 \le p < \infty$ and $\alpha > -1$:

(a) $J_b: A^p_\alpha \to A^p_\alpha$ is bounded;

- (b) $J_b: A^p_\alpha(X) \to A^p_\alpha(X)$ is bounded;
- (c) $J_b: wA^p_\alpha(X) \to wA^p_\alpha(X)$ is bounded.

In the Hardy space setting, it is obvious that $J_b: wH^p(X) \to wH^p(X)$ is bounded if and only if $J_b: H^p \to H^p$ is bounded for all $1 \le p < \infty$. Similar to the Bergman space case, using [12, Theorem 3.1] and the following Theorem 4.1, it can be proved that the following are equivalent for any Banach space $X, 1 \le p < \infty$ and $\alpha > -1$:

- (d) $J_b \colon F^p_\alpha \to F^p_\alpha$ is bounded;
- (e) $J_b: F^p_{\alpha}(X) \to F^p_{\alpha}(X)$ is bounded;
- (f) $J_b: wF^p_\alpha(X) \to wF^p_\alpha(X)$ is bounded.

In this paper, we are interested in the boundedness of generalized integration operators on the vector-valued cases. More precisely, we give some estimates for the norms of the operators $I_{\varphi,\psi}^{(m)}$ from the weak type spaces $wA_{\alpha}^{p}(X)$, $wH^{p}(X)$ and $wF_{\alpha}^{p}(X)$ to the strong type spaces $A_{\alpha}^{p}(X)$, $H^{p}(X)$ and $F_{\alpha}^{p}(X)$. As applications, we obtain the boundedness of J_{b} on the corresponding vector-valued cases.

Our first main result is that if X is any complex infinite-dimensional Banach space, $2 \le p < \infty$ and $\alpha > -1$, then $I_{\varphi,\psi}^{(m)} \colon wA_{\alpha}^{p}(X) \to A_{\alpha}^{p}(X)$ is bounded if and only if

$$\int_{\mathbb{D}} \frac{|\psi(z)|^p (1-|z|^2)^{\alpha+p}}{(1-|\varphi(z)|^2)^{2+\alpha+mp}} \, dA(z) < \infty.$$

In particular, $J_b: wA^p_\alpha(X) \to A^p_\alpha(X)$ is bounded if and only if b belongs to the Besov space B_p , which is equivalent to $J_b: A^2_\alpha \to A^2_\alpha$ is in the Schatten class $S_p(A^2_\alpha)$.

In the Hardy space setting, we need some additional conditions for the Banach space X. A Banach space X is said p-uniformly PL-convex if there is a positive constant c such that

$$\int_{\mathbb{T}} \|x + \zeta y\|_{X}^{p} \, dm(\zeta) \ge \|x\|_{X}^{p} + c\|y\|_{X}^{p}$$

for all $x, y \in X$. For $2 \leq p < \infty$ and a complex *p*-uniformly PL-convex infinite-dimensional Banach space X, we obtain a lower estimate for the norm of the operator $I_{\varphi,\psi}^{(m)} \colon wH^p(X) \to H^p(X)$. Furthermore, if X is a complex infinite-dimensional Hilbert space, we prove that $I_{\varphi,\psi}^{(m)} \colon wH^2(X) \to H^2(X)$ is bounded if and only if

$$\int_{\mathbb{D}} \frac{|\psi(z)|^2 (1-|z|^2)}{(1-|\varphi(z)|^2)^{1+2m}} \, dA(z) < \infty.$$

In particular, if X is a complex infinite-dimensional Hilbert space, then $J_b: wH^2(X) \to H^2(X)$ is bounded if and only if b belongs to the Dirichlet space, which is equivalent to the operator $J_b: H^2 \to H^2$ is a Hilbert-Schmidt operator.

In the Fock space case, we show that if X is any complex infinite-dimensional Banach space, $2 \le p < \infty$ and $\alpha > 0$, then $I_{\varphi,\psi}^{(m)} \colon wF_{\alpha}^{p}(X) \to F_{\alpha}^{p}(X)$ is bounded if and only if

$$\int_{\mathbb{C}} \frac{|\psi(z)|^p (1+|\varphi(z)|^m)^p}{(1+|z|)^p} e^{-\frac{\alpha p}{2}(|z|^2-|\varphi(z)|^2)} \, dA(z) < \infty.$$

In particular, $J_b: wF^p_{\alpha}(X) \to F^p_{\alpha}(X)$ is bounded if and only if b is a linear polynomial for $2 , but <math>J_b: wF^2_{\alpha}(X) \to F^2_{\alpha}(X)$ is bounded if and only if b is a constant. As a byproduct, we obtain that the composition operator $C_{\varphi}: wF^p_{\alpha}(X) \to F^p_{\alpha}(X)$ $(2 \le p < \infty)$, which is defined by $C_{\varphi}f = f \circ \varphi$ for entire function φ , is bounded if and only if $\varphi(z) = az + d$ for some $a, d \in \mathbb{C}$ with |a| < 1.

Throughout this paper, the notation $A \leq B$ means that $A \leq CB$ for some inessential constant C > 0. The converse relation $A \gtrsim B$ is defined in an analogous manner, and if $A \leq B$ and $A \gtrsim B$ both hold, we write $A \asymp B$.

2. Bergman space case

In this section we estimate the norm of the operator $I_{\varphi,\psi}^{(m)}: wA_{\alpha}^{p}(X) \to A_{\alpha}^{p}(X)$. To this end, we first introduce some auxiliary results that will be used in the sequel. The first gives an equivalent norm for the space $A_{\alpha}^{p}(X)$, which can be proved as that in [4, Theorem 2.5].

Theorem 2.1. Let $f \in \mathcal{H}(\mathbb{D}, X)$, $n \in \mathbb{N}$, $1 \le p < \infty$ and $\alpha > -1$. Then $f \in A^p_{\alpha}(X)$ if and only if $f^{(n)} \in A^p_{\alpha+np}(X)$.

Due to Theorem 2.1, we can define the following equivalent norm for the space $A^p_{\alpha}(X)$:

$$||f||_* = \sum_{k=0}^{n-1} ||f^{(k)}(0)||_X + ||f^{(n)}||_{A^p_{\alpha+np}(X)}.$$

We also need the following Dvoretzky's theorem, which can be found in [9, Chapter 19].

Theorem A. For any $n \in \mathbb{N}$ and $\epsilon > 0$ there is $c(n, \epsilon) \in \mathbb{N}$ so that for any Banach space X of dimension at least $c(n, \epsilon)$, there is a linear embedding $T_n : l_2^n \to X$ so that

(2.1)
$$(1+\epsilon)^{-1} \left(\sum_{j=1}^{n} |a_j|^2 \right)^{1/2} \le \left\| \sum_{j=1}^{n} a_j T_n e_j \right\|_X \le \left(\sum_{j=1}^{n} |a_j|^2 \right)^{1/2}$$

for any $a_1, \ldots, a_n \in \mathbb{C}$. Here (e_1, \ldots, e_n) is some fixed orthonormal basis of l_2^n .

The following lemma concerns bounded coefficient multipliers from A_{α}^2 to A_{α}^p , see for instance [13, Theorem 12.6.10].

Lemma B. Suppose that $1 \le p < \infty$ and $\alpha > -1$. Then the following hold.

- (i) The sequence $\{k^{(\alpha+2)/p-(\alpha+2)/2}\}\$ is a bounded coefficient multiplier from A^2_{α} to A^p_{α} for $2 \le p < \infty$.
- (ii) The sequence $\{k^{\beta}\}$ is a bounded coefficient multiplier from A^2_{α} to A^p_{α} for $1 \le p < 2$ and $\beta < (\alpha + 1)/p - (\alpha + 1)/2$.

The following well-known estimate, included here for convenience, will be used repeatedly later.

Lemma 2.2. For any $\beta > -1$ and $1/2 \le t < 1$, one has

$$\sum_{k=1}^{\infty} k^{\beta} t^k \ge \frac{c_{\beta}}{(1-t)^{\beta+1}},$$

where c_{β} is some positive constant depending only on β .

We are now ready to estimate the norm of $I_{\varphi,\psi}^{(m)} \colon wA^p_{\alpha}(X) \to A^p_{\alpha}(X)$. The first gives an upper bound of $\|I_{\varphi,\psi}^{(m)}\|_{wA^p_{\alpha}(X)\to A^p_{\alpha}(X)}$ for $1 \leq p < \infty$.

Lemma 2.3. Let X be any complex Banach space, $1 \le p < \infty$ and $\alpha > -1$. Then

$$\|I_{\varphi,\psi}^{(m)}\|_{wA_{\alpha}^{p}(X)\to A_{\alpha}^{p}(X)} \lesssim \left(\int_{\mathbb{D}} \frac{|\psi(z)|^{p}(1-|z|^{2})^{\alpha+p}}{(1-|\varphi(z)|^{2})^{2+\alpha+mp}} \, dA(z)\right)^{1/p}.$$

Proof. For any $f \in wA^p_{\alpha}(X)$, by the pointwise estimate of the derivative of Bergman space functions, we get

$$\begin{split} \|f^{(m)}(z)\|_X^p &= \sup_{x^* \in B_{X^*}} |x^*(f^{(m)}(z))|^p = \sup_{x^* \in B_{X^*}} |(x^* \circ f)^{(m)}(z)|^p \\ &\lesssim \sup_{x^* \in B_{X^*}} \frac{\|x^* \circ f\|_{A_{\alpha}^p}^p}{(1-|z|^2)^{2+\alpha+mp}} = \frac{\|f\|_{wA_{\alpha}^p(X)}^p}{(1-|z|^2)^{2+\alpha+mp}}. \end{split}$$

Therefore, by Theorem 2.1,

$$\begin{split} \|I_{\varphi,\psi}^{(m)}f\|_{A^{p}_{\alpha}(X)}^{p} &\asymp \int_{\mathbb{D}} \|f^{(m)}(\varphi(z))\|_{X}^{p} |\psi(z)|^{p} (1-|z|^{2})^{\alpha+p} \, dA(z) \\ &\lesssim \|f\|_{wA^{p}_{\alpha}(X)}^{p} \int_{\mathbb{D}} \frac{|\psi(z)|^{p} (1-|z|^{2})^{\alpha+p}}{(1-|\varphi(z)|^{2})^{2+\alpha+mp}} \, dA(z), \end{split}$$

which finishes the proof.

The following theorem is the main result of this section, which gives a norm estimate of the operator $I^{(m)}_{\varphi,\psi}: wA^p_{\alpha}(X) \to A^p_{\alpha}(X)$ for $2 \leq p < \infty$.

Theorem 2.4. Let X be any complex infinite-dimensional Banach space, $2 \le p < \infty$ and $\alpha > -1$. Then

$$\|I_{\varphi,\psi}^{(m)}\|_{wA_{\alpha}^{p}(X)\to A_{\alpha}^{p}(X)} \asymp \left(\int_{\mathbb{D}} \frac{|\psi(z)|^{p}(1-|z|^{2})^{\alpha+p}}{(1-|\varphi(z)|^{2})^{2+\alpha+mp}} \, dA(z)\right)^{1/p}$$

Proof. By Lemma 2.3, we only need to proceed the lower estimate. To this end, let $n \in \mathbb{N}$ and $\epsilon > 0$. According to Theorem A, fix a linear embedding $T_n: l_2^n \to X$ so that (2.1) holds. Put $x_k^{(n)} = T_n e_k$ for k = 1, 2, ..., n, where $(e_1, ..., e_n)$ is some fixed orthonormal basis of l_2^n . Let $\lambda_k = k^{(\alpha+2)/p-1/2}$, and define $f_n: \mathbb{D} \to X$ by

(2.2)
$$f_n(z) = \sum_{k=1}^n \lambda_k z^k x_k^{(n)} = T_n\left(\sum_{k=1}^n \lambda_k z^k e_k\right), \quad z \in \mathbb{D}.$$

By Lemma B(i) and the fact that

$$\|z^k\|_{A^2_{\alpha}}^2 = \frac{k!\Gamma(\alpha+2)}{\Gamma(k+\alpha+2)} \asymp k^{-1-\alpha},$$

we have

$$\begin{split} \|f_n\|_{wA^p_{\alpha}(X)} &= \sup_{x^* \in B_{X^*}} \|x^* \circ f_n\|_{A^p_{\alpha}} = \sup_{x^* \in B_{X^*}} \left\| \sum_{k=1}^n \lambda_k x^*(x_k^{(n)}) z^k \right\|_{A^p_{\alpha}} \\ &\lesssim \sup_{x^* \in B_{X^*}} \left\| \sum_{k=1}^n k^{\frac{1+\alpha}{2}} x^*(x_k^{(n)}) z^k \right\|_{A^2_{\alpha}} \asymp \sup_{x^* \in B_{X^*}} \left(\sum_{k=1}^n |T^*_n x^*(e_k)|^2 \right)^{1/2} \le 1. \end{split}$$

It follows from Theorem 2.1 that

(2.3)
$$\|I_{\varphi,\psi}^{(m)}\|_{wA_{\alpha}^{p}(X)\to A_{\alpha}^{p}(X)}^{p} \gtrsim \limsup_{n\to\infty} \|I_{\varphi,\psi}^{(m)}f_{n}\|_{A_{\alpha}^{p}(X)}^{p} \\ \asymp \limsup_{n\to\infty} \int_{\mathbb{D}} \|f_{n}^{(m)}(\varphi(z))\|_{X}^{p} |\psi(z)|^{p} (1-|z|^{2})^{\alpha+p} dA(z).$$

Since $f_n(z) = T_n \left(\sum_{k=1}^n \lambda_k z^k e_k \right)$, we have

(2.4)
$$f_n^{(m)}(z) = T_n \left(\sum_{k=1}^{n-m+1} (k)_m \lambda_{k+m-1} z^{k-1} e_{k+m-1} \right)$$

for $0 \le m \le n$. Here, $(k)_m = k(k+1)\cdots(k+m-1)$ for $m \ge 1$ and $(k)_0 = 1$, and $\lambda_0 = 0$. Combining (2.4) and (2.1), we establish

$$\begin{split} \|f_n^{(m)}(\varphi(z))\|_X^p &= \left\| T_n \left(\sum_{k=1}^{n-m+1} (k)_m \lambda_{k+m-1} \varphi(z)^{k-1} e_{k+m-1} \right) \right\|_X^p \\ &\geq \frac{1}{1+\epsilon} \left(\sum_{k=1}^{n-m+1} (k)_m^2 \lambda_{k+m-1}^2 |\varphi(z)|^{2(k-1)} \right)^{p/2} \\ &\gtrsim \left(\sum_{k=1}^{n-m+1} k^{2m+2(\alpha+2)/p-1} |\varphi(z)|^{2(k-1)} \right)^{p/2}. \end{split}$$

Inserting the above estimate into (2.3) and using monotone convergence theorem and Lemma 2.2, we obtain

$$\begin{split} \|I_{\varphi,\psi}^{(m)}\|_{wA_{\alpha}^{p}(X)\to A_{\alpha}^{p}(X)}^{p} \\ \gtrsim & \int_{\mathbb{D}} \left(\sum_{k=1}^{\infty} k^{2m+2(\alpha+2)/p-1} |\varphi(z)|^{2(k-1)}\right)^{p/2} |\psi(z)|^{p} (1-|z|^{2})^{\alpha+p} \, dA(z) \\ \geq & \int_{\{z\in\mathbb{D}: |\varphi(z)|^{2} \ge 1/2\}} \left(\sum_{k=1}^{\infty} k^{2m+2(\alpha+2)/p-1} |\varphi(z)|^{2k}\right)^{p/2} |\psi(z)|^{p} (1-|z|^{2})^{\alpha+p} \, dA(z) \\ \geq & c_{2m+2(\alpha+2)/p-1}^{p/2} \int_{\{z\in\mathbb{D}: |\varphi(z)|^{2} \ge 1/2\}} \frac{|\psi(z)|^{p} (1-|z|^{2})^{\alpha+p}}{(1-|\varphi(z)|^{2})^{\alpha+2+mp}} \, dA(z). \end{split}$$

Here, $c_{2m+2(\alpha+2)/p-1}$ is the constant defined in Lemma 2.2.

In order to obtain the desired lower estimate, we need to show

(2.5)
$$\|I_{\varphi,\psi}^{(m)}\|_{wA_{\alpha}^{p}(X)\to A_{\alpha}^{p}(X)}^{p} \gtrsim \int_{\{z\in\mathbb{D}:|\varphi(z)|^{2}<1/2\}} \frac{|\psi(z)|^{p}(1-|z|^{2})^{\alpha+p}}{(1-|\varphi(z)|^{2})^{\alpha+2+mp}} \, dA(z).$$

Choose $x \in X$ satisfying $||x||_X = 1$ and let

$$g(z) = xz^m, \quad z \in \mathbb{D}.$$

Then $g \in wA^p_{\alpha}(X)$ and the norm of g in $wA^p_{\alpha}(X)$ only depends on α , p and m. Therefore, we get

Consequently,

$$\int_{\{z\in\mathbb{D}:|\varphi(z)|^2<1/2\}} \frac{|\psi(z)|^p (1-|z|^2)^{\alpha+p}}{(1-|\varphi(z)|^2)^{\alpha+2+mp}} \, dA(z) \lesssim \int_{\mathbb{D}} |\psi(z)|^p (1-|z|^2)^{\alpha+p} \, dA(z)$$
$$\lesssim \|I_{\varphi,\psi}^{(m)}\|_{wA_{\alpha}^p(X)\to A_{\alpha}^p(X)}^p.$$

Hence (2.5) holds and the lower estimate is established. The proof is therefore complete.

For $1 \le p < 2$, using the preceding ideas we can only establish a weaker lower bound. **Proposition 2.5.** Let X be any complex infinite-dimensional Banach space, $1 \le p < 2$ and $\alpha > -1$. Then

$$\|I_{\varphi,\psi}^{(m)}\|_{wA_{\alpha}^{p}(X)\to A_{\alpha}^{p}(X)} \gtrsim \left(\int_{\mathbb{D}} \frac{|\psi(z)|^{p}(1-|z|^{2})^{\alpha+p}}{(1-|\varphi(z)|^{2})^{\gamma}} \, dA(z)\right)^{1/p}$$

for $\alpha + 1 + mp < \gamma < \alpha + 1 + p/2 + mp$.

Proof. Let $\lambda_k = k^{\beta+(1+\alpha)/2}$ with $\beta < (\alpha+1)/p - (\alpha+1)/2$ and define f_n as (2.2). Then by Lemma B(ii) we have $||f_n||_{wA^p_\alpha(X)} \lesssim 1$ for $1 \leq p < 2$. Hence Theorems 2.1, A and monotone convergence theorem yield

$$\begin{split} \|I_{\varphi,\psi}^{(m)}\|_{wA_{\alpha}^{p}(X) \to A_{\alpha}^{p}(X)}^{p} \\ \gtrsim \lim_{n \to \infty} \sup \|I_{\varphi,\psi}^{(m)} f_{n}\|_{A_{\alpha}^{p}(X)}^{p} \\ \gtrsim \int_{\mathbb{D}} \left(\sum_{k=1}^{\infty} (k)_{m}^{2} \lambda_{k+m-1}^{2} |\varphi(z)|^{2(k-1)} \right)^{p/2} |\psi(z)|^{p} (1-|z|^{2})^{\alpha+p} \, dA(z) \\ \gtrsim \int_{\mathbb{D}} \left(\sum_{k=1}^{\infty} k^{2m+2\beta+1+\alpha} |\varphi(z)|^{2k} \right)^{p/2} |\psi(z)|^{p} (1-|z|^{2})^{\alpha+p} \, dA(z) \end{split}$$

for $m \ge 0$. Let $\beta > (\alpha + 1)/p - 1 - \alpha/2$, then $2m + 2\beta + 1 + \alpha > -1$ and by Lemma 2.2 we have

$$\|I_{\varphi,\psi}^{(m)}\|_{wA_{\alpha}^{p}(X)\to A_{\alpha}^{p}(X)}^{p} \gtrsim c_{2m+2\beta+1+\alpha}^{p/2} \int_{\{z\in\mathbb{D}:|\varphi(z)|^{2}\geq 1/2\}} \frac{|\psi(z)|^{p}(1-|z|^{2})^{\alpha+p}}{(1-|\varphi(z)|^{2})^{\gamma}} \, dA(z),$$

where $\gamma = (2m + 2\beta + 2 + \alpha)p/2$ satisfying

$$\alpha + 1 + mp < \gamma < \alpha + 1 + \frac{p}{2} + mp.$$

Similar to (2.5), we also have

$$\|I_{\varphi,\psi}^{(m)}\|_{wA_{\alpha}^{p}(X)\to A_{\alpha}^{p}(X)}^{p} \gtrsim \int_{\{z\in\mathbb{D}:|\varphi(z)|^{2}<1/2\}} \frac{|\psi(z)|^{p}(1-|z|^{2})^{\alpha+p}}{(1-|\varphi(z)|^{2})^{\gamma}} \, dA(z).$$

Thus the proof is finished.

In particular, we have the following estimates for the norm of the Volterra type integration operator $J_b: wA^p_\alpha(X) \to A^p_\alpha(X)$.

Corollary 2.6. Let X be any complex infinite-dimensional Banach space, $1 \le p < \infty$, $\alpha > -1$ and $b \in \mathcal{H}(\mathbb{D})$.

(1) If $2 \le p < \infty$, then $J_b: wA^p_{\alpha}(X) \to A^p_{\alpha}(X)$ is bounded if and only if b belongs to the analytic Besov space B_p . Moreover,

$$\|J_b\|_{wA^p_{\alpha}(X) \to A^p_{\alpha}(X)} \asymp \left(\int_{\mathbb{D}} |b'(z)|^p (1-|z|^2)^{p-2} \, dA(z) \right)^{1/p}$$

(2) If
$$1 \le p < 2$$
, then

$$\left(\int_{\mathbb{D}} |b'(z)|^p (1 - |z|^2)^{\gamma} dA(z) \right)^{1/p} \lesssim \|J_b\|_{wA^p_{\alpha}(X) \to A^p_{\alpha}(X)}$$

$$\lesssim \left(\int_{\mathbb{D}} |b'(z)|^p (1 - |z|^2)^{p-2} dA(z) \right)^{1/p}$$
for $p/2 - 1 < \gamma < p - 1$.

Remark 2.7. By [1, Theorem 2] (see also [18, Theorem 1.4]), we know that $J_b: wA^p_\alpha(X) \to A^p_\alpha(X)$ is bounded if and only if $J_b: A^2_\alpha \to A^2_\alpha$ is in the Schatten class $S_p(A^2_\alpha)$ when $2 \le p < \infty$.

3. Hardy space case

Let X be any complex infinite-dimensional Banach space. In this section we first give a lower bound for the norm of $I_{\varphi,\psi}^{(m)}: wH^p(X) \to H^p(X)$ when X is p-uniformly PL-convex and $2 \leq p < \infty$. To this purpose, we need the following Littlewood-Paley inequality for $H^p(X)$, which can be found in [5, Theorem 2.3].

Theorem C. Let $2 \le p < \infty$ and X be a Banach space. Then X is p-uniformly PL-convex if and only if there exists c > 0 such that

$$\|f\|_{H^p(X)} \ge \left(\|f(0)\|_X^p + c \int_{\mathbb{D}} \|f'(z)\|_X^p (1 - |z|^2)^{p-1} \, dA(z)\right)^{1/p}$$

for all $f \in H^p(X)$.

The following lemma concerns the bounded coefficient multipliers from H^2 to H^p , which is cited from [10, Theorem 1].

Lemma D. The sequence $\{k^{1/p-1/2}\}$ is a bounded coefficient multiplier from H^2 to H^p for $2 \le p < \infty$.

We now estimate the lower bound for $\|I_{\varphi,\psi}^{(m)}\|_{wH^p(X)\to H^p(X)}$.

Proposition 3.1. Let $2 \le p < \infty$ and X be any complex p-uniformly PL-convex infinitedimensional Banach space. Then

$$\|I_{\varphi,\psi}^{(m)}\|_{wH^p(X)\to H^p(X)} \gtrsim \left(\int_{\mathbb{D}} \frac{|\psi(z)|^p (1-|z|^2)^{p-1}}{(1-|\varphi(z)|^2)^{mp+1}} \, dA(z)\right)^{1/p}.$$

Proof. For any given $n \in \mathbb{N}$ and $\epsilon > 0$, fix a linear embedding $T_n: l_2^n \to X$ so that (2.1) holds. Put $x_k^{(n)} = T_n e_k$ for k = 1, 2, ..., n, where $(e_1, ..., e_n)$ is some fixed orthonormal basis of l_2^n . Consider the X-valued polynomials

$$f_n(z) = \sum_{k=1}^n \lambda_k z^k x_k^{(n)}, \quad z \in \mathbb{D}$$

where $\lambda_k = k^{1/p-1/2}$. Then we have

$$\begin{split} \|f_n\|_{wH^p(X)} &= \sup_{x^* \in B_{X^*}} \left\| \sum_{k=1}^n \lambda_k z^k x^*(x_k^{(n)}) \right\|_{H^p} \lesssim \sup_{x^* \in B_{X^*}} \left\| \sum_{k=1}^n z^k x^*(x_k^{(n)}) \right\|_{H^2} \\ &= \sup_{x^* \in B_{X^*}} \left(\sum_{k=1}^n |T_n^* x^*(e_k)|^2 \right)^{1/2} \le 1, \end{split}$$

where the inequality \lesssim follows from Lemma D. Therefore,

$$\|I_{\varphi,\psi}^{(m)}\|_{wH^p(X)\to H^p(X)}\gtrsim \limsup_{n\to\infty}\|I_{\varphi,\psi}^{(m)}f_n\|_{H^p(X)}.$$

By Theorems C, A and Lemma 2.2, we obtain

$$\begin{split} \|I_{\varphi,\psi}^{(m)}\|_{wH^{p}(X)\to H^{p}(X)}^{p} \gtrsim \limsup_{n\to\infty} \|I_{\varphi,\psi}^{(m)}f_{n}\|_{H^{p}(X)}^{p} \\ \gtrsim \limsup_{n\to\infty} \int_{\mathbb{D}} \|f_{n}^{(m)}(\varphi(z))\|_{X}^{p} |\psi(z)|^{p} (1-|z|^{2})^{p-1} \, dA(z) \\ \gtrsim \int_{\mathbb{D}} \left(\sum_{k=1}^{\infty} k^{2m+2/p-1} |\varphi(z)|^{2k}\right)^{p/2} |\psi(z)|^{p} (1-|z|^{2})^{p-1} \, dA(z) \\ \gtrsim c_{2m+2/p-1}^{p/2} \int_{\{z\in\mathbb{D}: |\varphi(z)|^{2} \ge 1/2\}} \frac{|\psi(z)|^{p} (1-|z|^{2})^{p-1}}{(1-|\varphi(z)|^{2})^{mp+1}} \, dA(z) \end{split}$$

for $m \ge 0$. Let $g(z) = xz^m$ for $x \in X$ with $||x||_X = 1$, then $||g||_{wH^p(X)} = 1$. Using Theorem C again, we have

$$\begin{split} \|I_{\varphi,\psi}^{(m)}\|_{wH^{p}(X)\to H^{p}(X)}^{p} &\geq \|I_{\varphi,\psi}^{(m)}g\|_{H^{p}(X)}^{p} \\ &\gtrsim \int_{\mathbb{D}} |\psi(z)|^{p}(1-|z|^{2})^{p-1} \, dA(z) \\ &\gtrsim \int_{\{z\in\mathbb{D}: |\varphi(z)|^{2} < 1/2\}} \frac{|\psi(z)|^{p}(1-|z|^{2})^{p-1}}{(1-|\varphi(z)|^{2})^{mp+1}} \, dA(z). \end{split}$$

This completes the proof.

Remark 3.2. For the case 1 , there are no estimates similar to the one inTheorem C. However, we can give a weaker lower bound for the norm of the operator $<math>I_{\varphi,\psi}^{(m)}: wH^p(X) \to H^p(X)$ via embedding Hardy spaces into Bergman spaces. If X is any complex Banach space, $1 and <math>\alpha = q/p-2$, then $H^p(X) \subset A^q_{\alpha}(X)$ and the inclusion is continuous. To see this, for any $f \in H^p(X)$ and 0 < r < 1, write $f_r(z) = f(rz)$. By [19, Corollary 4.47] and the subharmonic property of $||f_r||_X$, we have

$$||f_r||_{A^q_{\alpha}(X)} \le C ||f_r||_{H^p(X)} \le C ||f||_{H^p(X)}$$

for some absolute constant C > 0. Using Fatou's lemma, we obtain

$$||f||_{A^q_{\alpha}(X)} \le \liminf_{r \to 1} ||f_r||_{A^q_{\alpha}(X)} \lesssim ||f||_{H^p(X)}$$

Therefore, if X is any complex infinite-dimensional Banach space and 1 , thenusing Theorem 2.1 and the same method as in the proof of Proposition 3.1, we have

$$\|I_{\varphi,\psi}^{(m)}\|_{wH^p(X)\to H^p(X)} \gtrsim \left(\int_{\mathbb{D}} \frac{|\psi(z)|^q (1-|z|^2)^{q+q/p-2}}{(1-|\varphi(z)|^2)^{mq+q/2}} \, dA(z)\right)^{1/q}$$

for q > p.

If X is a complex Hilbert space, we have the following Littlewood-Paley type identity for the space $H^2(X)$.

Lemma 3.3. Let X be a complex Hilbert space, then we have

$$\|f - f(0)\|_{H^2(X)}^2 \asymp \int_{\mathbb{D}} \|f'(z)\|_X^2 (1 - |z|^2) \, dA(z)$$

for any $f \in H^2(X)$.

Proof. Using the Taylor expansion of f, this can be obtained by some elementary computations.

If X is a complex infinite-dimensional Hilbert space, we have the following estimate for the norm of the operator $I^{(m)}_{\varphi,\psi}: wH^2(X) \to H^2(X)$.

Theorem 3.4. Let X be a complex infinite-dimensional Hilbert space. Then

$$\|I_{\varphi,\psi}^{(m)}\|_{wH^2(X)\to H^2(X)} \asymp \left(\int_{\mathbb{D}} \frac{|\psi(z)|^2(1-|z|^2)}{(1-|\varphi(z)|^2)^{1+2m}} \, dA(z)\right)^{1/2}$$

Proof. Since any Hilbert space is 2-uniformly PL-convex, the lower estimate follows from Proposition 3.1. We now consider the upper estimate. For any $f \in wH^2(X)$, by the pointwise estimate of the derivative of Hardy space functions, we have

$$\|f^{(m)}(z)\|_X^2 = \sup_{x^* \in B_{X^*}} |x^*(f^{(m)}(z))|^2 = \sup_{x^* \in B_{X^*}} |(x^* \circ f)^{(m)}(z)|^2 \lesssim \frac{\|f\|_{wH^2(X)}^2}{(1-|z|^2)^{1+2m}}$$

Therefore, by Lemma 3.3, we have

$$\begin{split} \|I_{\varphi,\psi}^{(m)}f\|_{H^2(X)}^2 &\asymp \int_{\mathbb{D}} \|f^{(m)}(\varphi(z))\|_X^2 |\psi(z)|^2 (1-|z|^2) \, dA(z) \\ &\lesssim \|f\|_{wH^2(X)}^2 \int_{\mathbb{D}} \frac{|\psi(z)|^2 (1-|z|^2)}{(1-|\varphi(z)|^2)^{1+2m}} \, dA(z), \end{split}$$

which completes the theorem.

As applications, we have the following corollaries.

Corollary 3.5. Let $2 \le p < \infty$ and X be any complex p-uniformly PL-convex infinitedimensional Banach space. Then

$$||J_b||_{wH^p(X)\to H^p(X)} \gtrsim \left(\int_{\mathbb{D}} |b'(z)|^p (1-|z|^2)^{p-2} dA(z)\right)^{1/p}.$$

Corollary 3.6. Let X be any complex infinite-dimensional Hilbert space. Then J_b : $wH^2(X) \rightarrow H^2(X)$ is bounded if and only if b belongs to the Dirichlet space. Moreover,

$$||J_b||_{wH^2(X)\to H^2(X)} \asymp \left(\int_{\mathbb{D}} |b'(z)|^2 \, dA(z)\right)^{1/2}$$

Remark 3.7. Due to [17, Theorem 6.7], we know that if $2 \leq p < \infty$ and X is a complex p-uniformly PL-convex infinite-dimensional Banach space, then the boundedness of $J_b: wH^p(X) \to H^p(X)$ implies $J_b: H^2 \to H^2$ is in the Schatten class $S_p(H^2)$. Furthermore, if X is a complex infinite-dimensional Hilbert space, then $J_b: wH^2(X) \to H^2(X)$ is bounded if and only if $J_b: H^2 \to H^2$ is a Hilbert-Schmidt operator.

4. Fock space case

In the last section, we investigate the boundedness of $I_{\varphi,\psi}^{(m)} \colon wF_{\alpha}^{p}(X) \to F_{\alpha}^{p}(X)$. For this purpose, we need the following result, which characterises a X-valued Fock space function by its derivatives.

Theorem 4.1. Suppose $f \in \mathcal{H}(\mathbb{C}, X)$, $1 \leq p < \infty$, $\alpha > 0$ and $n \in \mathbb{N}$. Then

$$\|f\|_{F^p_{\alpha}(X)} \asymp \sum_{k=0}^{n-1} \|f^{(k)}(0)\|_X + \left(\int_{\mathbb{C}} \left\|\frac{f^{(n)}(z)}{(1+|z|)^n}\right\|_X^p e^{-\frac{\alpha p}{2}|z|^2} \, dA(z)\right)^{1/p}$$

In order to prove the above theorem, we need the following lemma.

Lemma 4.2. Let $f \in \mathcal{H}(\mathbb{C}, X)$, $n \in \mathbb{N}$ and $1 \leq p < \infty$. Then for any $z \in \mathbb{C}$ and r > 0, we have

$$\|f^{(n)}(z)\|_X^p \lesssim \frac{1}{r^{2+np}} \int_{D(z,r)} \|f(w)\|_X^p dA(w),$$

where $D(z,r) = \{ w \in \mathbb{C} : |w - z| < r \}.$

Proof. We only need to consider the case z = 0. For any $\rho > 0$, Cauchy's integral formula yields

$$\|f^{(n)}(0)\|_X \le \frac{n!}{2\pi} \int_0^{2\pi} \|f(\rho e^{i\theta})\|_X \rho^{-n} \, d\theta.$$

Multiplying by ρ^{n+1} and integrating with respect to ρ from r/2 to r, we obtain

$$\frac{r^{n+2} - (r/2)^{(n+2)}}{n+2} \|f^{(n)}(0)\|_X \le \frac{n!}{2\pi} \int_0^r \int_0^{2\pi} \|f(\rho e^{i\theta})\|_X \rho \, d\theta d\rho.$$

Since $r^{n+2} - (r/2)^{n+2} \ge r^{n+2}/2$, we arrive at

$$||f^{(n)}(0)||_X \lesssim \frac{1}{r^{n+2}} \int_{D(0,r)} ||f(w)||_X \, dA(w).$$

Hölder's inequality then gives the desired estimate.

Proof of Theorem 4.1. By Lemma 4.2, we have

$$\|f^{(k)}(0)\|_X \lesssim \left(\int_{D(0,1)} \|f(w)\|_X^p \, dA(w)\right)^{1/p} \lesssim \|f\|_{F^p_\alpha(X)}$$

for any $0 \le k \le n-1$. Using Lemma 4.2 and the estimate (8) in [12], we obtain

$$\begin{split} &\int_{\mathbb{C}} \left\| \frac{f^{(n)}(z)}{(1+|z|)^n} \right\|_X^p e^{-\frac{\alpha p}{2}|z|^2} dA(z) \\ &\lesssim \int_{\mathbb{C}} (1+|z|)^2 \int_{D(z,\frac{1}{1+|z|})} \|f(w)\|_X^p dA(w) e^{-\frac{\alpha p}{2}|z|^2} dA(z) \\ &\lesssim \int_{\mathbb{C}} \|f(w)\|_X^p (1+|w|)^2 \int_{D(w,\frac{2}{1+|w|})} e^{-\frac{\alpha p}{2}|z|^2} dA(z) dA(w) \\ &\lesssim \int_{\mathbb{C}} \|f(w)\|_X^p e^{-\frac{\alpha p}{2}|w|^2} dA(w), \end{split}$$

where the second inequality is due to Fubini's theorem and the facts that $w \in D(z, 1/(1 + |z|))$ implies $z \in D(w, 2/(1 + |w|))$, and $1 + |z| \leq 1 + |w|$ if $z \in D(w, 2/(1 + |w|))$. Combining the estimates above yields

$$\|f\|_{F^p_{\alpha}(X)} \gtrsim \sum_{k=0}^{n-1} \|f^{(k)}(0)\|_X + \left(\int_{\mathbb{C}} \left\|\frac{f^{(n)}(z)}{(1+|z|)^n}\right\|_X^p e^{-\frac{\alpha p}{2}|z|^2} \, dA(z)\right)^{1/p}$$

Conversely, note that $||f||_X^p$ is subharmonic on \mathbb{C} for any $1 \leq p < \infty$. Consequently, $M_p(f, r)$ is increasing with r, see e.g. [11, Corollary 6.6]. We claim that

(4.1)
$$\int_{\mathbb{C}} \left\| \frac{f(z)}{(1+|z|)^k} \right\|_X^p e^{-\frac{\alpha p}{2}|z|^2} dA(z) \lesssim \int_{\mathbb{C}} \left\| \frac{f'(z)}{(1+|z|)^{k+1}} \right\|_X^p e^{-\frac{\alpha p}{2}|z|^2} dA(z)$$

for any fixed $1 \le p < \infty$, $k \ge 0$, and all $f \in \mathcal{H}(\mathbb{C}, X)$ with f(0) = 0. In fact, this can be proven by the same method as in the proof of [12, (11)]. In the case p = 1, for any $0 < \rho < r < \infty$, we have

$$M_1(f,r) - M_1(f,\rho) \le \int_{\mathbb{T}} \|f(r\zeta) - f(\rho\zeta)\|_X dm(\zeta)$$

=
$$\int_{\mathbb{T}} \left\| \int_{\rho}^r f'(t\zeta)\zeta dt \right\|_X dm(\zeta) \le (r-\rho)M_1(f',r).$$

Therefore, (4.1) holds in this case. In the case $1 , vector-valued version of Lemma 2.2 in [12] is needed. Carefully examining the proof of [16, Theorem 1], we see [12, Lemma 2.2] holds for vector-valued functions. Consequently, (4.1) also holds in this case. Then for any <math>f \in \mathcal{H}(\mathbb{C}, X)$, due to (4.1) we obtain

$$\left(\int_{\mathbb{C}} \left\| \frac{f(z)}{(1+|z|)^{k}} \right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} dA(z) \right)^{1/p}$$

$$\leq \left(\int_{\mathbb{C}} \left\| \frac{f(z) - f(0)}{(1+|z|)^{k}} \right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} dA(z) \right)^{1/p} + \|f(0)\|_{X} \left(\int_{\mathbb{C}} \frac{e^{-\frac{\alpha p}{2}|z|^{2}}}{(1+|z|)^{pk}} dA(z) \right)^{1/p}$$

$$\lesssim \|f(0)\|_{X} + \left(\int_{\mathbb{C}} \left\| \frac{f'(z)}{(1+|z|)^{k+1}} \right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} dA(z) \right)^{1/p} .$$

Applying the above estimate repeatedly, we establish

$$\|f\|_{F^p_{\alpha}(X)} \lesssim \sum_{k=0}^{n-1} \|f^{(k)}(0)\|_X + \left(\int_{\mathbb{C}} \left\|\frac{f^{(n)}(z)}{(1+|z|)^n}\right\|_X^p e^{-\frac{\alpha p}{2}|z|^2} \, dA(z)\right)^{1/p},$$

which completes the theorem.

The following lemma estimates the derivatives of Fock space functions.

Lemma 4.3. Let $0 and <math>\alpha > 0$. For any $f \in F_{\alpha}^{p}$ and $n \ge 0$, the following estimate holds:

$$|f^{(n)}(z)| \lesssim (1+|z|^n)e^{\frac{\alpha}{2}|z|^2} ||f||_{F^p_{\alpha}}$$

Proof. The case n = 0 was proved in [20, Corollary 2.8]. We consider the case n > 0. For $|z| \le 1$, by Cauchy's estimate and the estimate in the case n = 0, we have

$$|f^{(n)}(z)| \le \frac{n!}{2\pi} \int_{|\zeta-z|=1} \frac{|f(\zeta)|}{|\zeta-z|^{n+1}} \, |d\zeta| \lesssim \max_{|\zeta-z|=1} |f(\zeta)| \lesssim \|f\|_{F^p_{\alpha}}.$$

For |z| > 1, arguing as above, we get

$$|f^{(n)}(z)| \leq \frac{n!}{2\pi} \int_{|\zeta-z|=1/|z|} \frac{|f(\zeta)|}{|\zeta-z|^{n+1}} |d\zeta| \lesssim |z|^n \max_{|\zeta-z|=1/|z|} |f(\zeta)|$$

$$\leq |z|^n e^{\frac{\alpha}{2}(|z|+\frac{1}{|z|})^2} ||f||_{F^p_{\alpha}} \lesssim |z|^n e^{\frac{\alpha}{2}|z|^2} ||f||_{F^p_{\alpha}}.$$

Combining these estimates, we obtain the desired result.

We now end this section by estimating the norm of $I_{\varphi,\psi}^{(m)}$ on the Fock type setting.

Theorem 4.4. Let X be any complex infinite-dimensional Banach space, $2 \le p < \infty$ and $\alpha > 0$. Then

$$\|I_{\varphi,\psi}^{(m)}\|_{wF_{\alpha}^{p}(X)\to F_{\alpha}^{p}(X)} \asymp \left(\int_{\mathbb{C}} \frac{|\psi(z)|^{p}(1+|\varphi(z)|^{m})^{p}}{(1+|z|)^{p}} e^{-\frac{\alpha p}{2}(|z|^{2}-|\varphi(z)|^{2})} \, dA(z)\right)^{1/p}$$

Proof. For any $f \in wF^p_{\alpha}(X)$, by Theorem 4.1 and the estimate in Lemma 4.3, we get

$$\begin{split} \|I_{\varphi,\psi}^{(m)}f\|_{F_{\alpha}^{p}(X)}^{p} &\asymp \int_{\mathbb{C}} \left\| \frac{f^{(m)}(\varphi(z))\psi(z)}{1+|z|} \right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} dA(z) \\ &\lesssim \|f\|_{wF_{\alpha}^{p}(X)}^{p} \int_{\mathbb{C}} \frac{|\psi(z)|^{p}(1+|\varphi(z)|^{m})^{p}}{(1+|z|)^{p}} e^{-\frac{\alpha p}{2}(|z|^{2}-|\varphi(z)|^{2})} dA(z), \end{split}$$

which gives us the upper estimate.

We next consider the lower estimate. Fix $n \in \mathbb{N}$ and $\epsilon > 0$. According to Theorem A, there is a linear embedding $T_n : l_2^n \to X$ so that (2.1) holds. Put $x_k^{(n)} = T_n e_k$ for k =

 $1, 2, \ldots, n$, where (e_1, e_2, \ldots, e_n) is some fixed orthonormal basis of l_2^n . Define $f_n \colon \mathbb{C} \to X$ by

$$f_n(z) = \sum_{k=0}^{n-1} \sqrt{\frac{\alpha^k}{k!}} z^k x_{k+1}^{(n)}, \quad z \in \mathbb{C}.$$

Then

$$\begin{split} \|f_n\|_{wF^p_{\alpha}(X)} &= \sup_{x^* \in B_{X^*}} \left\| \sum_{k=0}^{n-1} \sqrt{\frac{\alpha^k}{k!}} x^* (x_{k+1}^{(n)}) z^k \right\|_{F^p_{\alpha}} \lesssim \sup_{x^* \in B_{X^*}} \left\| \sum_{k=0}^{n-1} \sqrt{\frac{\alpha^k}{k!}} x^* (x_{k+1}^{(n)}) z^k \right\|_{F^2_{\alpha}} \\ &= \sup_{x^* \in B_{X^*}} \left(\sum_{k=0}^{n-1} |x^* (x_{k+1}^{(n)})|^2 \right)^{1/2} \le 1, \end{split}$$

where the first inequality is due to the embedding $F_{\alpha}^p \subset F_{\alpha}^q$ is bounded whenever $p \leq q$. Therefore, by Theorem 4.1, we obtain

$$\begin{split} \|I_{\varphi,\psi}^{(m)}\|_{wF_{\alpha}^{p}(X)\to F_{\alpha}^{p}(X)}^{p} \gtrsim \limsup_{n\to\infty} \|I_{\varphi,\psi}^{(m)}f_{n}\|_{F_{\alpha}^{p}(X)}^{p} \\ \approx \limsup_{n\to\infty} \int_{\mathbb{C}} \left\|\frac{f_{n}^{(m)}(\varphi(z))\psi(z)}{1+|z|}\right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} dA(z). \end{split}$$

By the definition of f_n and (2.1), we have

$$\|f_n^{(m)}(\varphi(z))\|_X^p = \left\| T_n \left(\sum_{k=0}^{n-m-1} (k+1)_m \sqrt{\frac{\alpha^{k+m}}{(k+m)!}} \varphi(z)^k e_{k+m+1} \right) \right\|_X^p$$

$$\gtrsim \left(\sum_{k=0}^{n-m-1} (k+1)_m^2 \frac{\alpha^{k+m}}{(k+m)!} |\varphi(z)|^{2k} \right)^{p/2}$$

for $0 \le m < n$. Therefore, by monotone convergence theorem, we arrive at

$$\|I_{\varphi,\psi}^{(m)}\|_{wF_{\alpha}^{p}(X)\to F_{\alpha}^{p}(X)}^{p} \gtrsim \int_{\mathbb{C}} \left(\sum_{k=0}^{\infty} (k+1)_{m} \frac{\alpha^{k}}{k!} |\varphi(z)|^{2k}\right)^{p/2} \frac{|\psi(z)|^{p} e^{-\frac{\alpha p}{2}|z|^{2}}}{(1+|z|)^{p}} \, dA(z)$$

It is obvious to see

$$(1+|\varphi(z)|^m)^p e^{\frac{\alpha p}{2}|\varphi(z)|^2} \lesssim \left(\sum_{k=0}^{\infty} (k+1)_m \frac{\alpha^k}{k!} |\varphi(z)|^{2k}\right)^{p/2}$$

Hence we establish the lower estimate for the norm of $I_{\varphi,\psi}^{(m)} \colon wF_{\alpha}^{p}(X) \to F_{\alpha}^{p}(X)$ and the proof is complete.

Remark 4.5. The upper estimate for $\|I_{\varphi,\psi}^{(m)}\|_{wF^p_\alpha(X)\to F^p_\alpha(X)}$ in Theorem 4.4 is actually valid for all $1 \leq p < \infty$ and any complex Banach space X.

In particular, the boundedness of $J_b: wF^p_{\alpha}(X) \to F^p_{\alpha}(X)$ and $C_{\varphi}: wF^p_{\alpha}(X) \to F^p_{\alpha}(X)$ are characterized when $2 \leq p < \infty$.

Corollary 4.6. Let X be any complex infinite-dimensional Banach space and $\alpha > 0$.

- (1) $J_b: wF^2_{\alpha}(X) \to F^2_{\alpha}(X)$ is bounded if and only if b is a constant.
- (2) If $2 , then <math>J_b: wF^p_{\alpha}(X) \to F^p_{\alpha}(X)$ is bounded if and only if b(z) = az + dfor some $a, d \in \mathbb{C}$. Moreover, $\|J_b\|_{wF^p_{\alpha}(X) \to F^p_{\alpha}(X)} \asymp |a|$.

Proof. By Theorem 4.4, we have

$$\|J_b\|_{wF^p_\alpha(X)\to F^p_\alpha(X)}^p \asymp \int_{\mathbb{C}} \left|\frac{b'(z)}{1+|z|}\right|^p \, dA(z).$$

The subharmonicity of $|b'|^p$ implies

$$\left(\int_{D(w,1)} \left|\frac{b'(z)}{1+|z|}\right|^p \, dA(z)\right)^{1/p} \gtrsim \frac{|b'(w)|}{1+|w|}$$

Hence the boundedness of $J_b \colon wF^p_\alpha(X) \to F^p_\alpha(X)$ implies

$$\frac{|b'(w)|}{1+|w|} \to 0 \quad \text{as } |w| \to \infty,$$

which is equivalent to b(z) = az + d for some $a, d \in \mathbb{C}$. So it is only need to prove the necessity of Case (1), since the other case is obvious.

If $J_b: wF^2_{\alpha}(X) \to F^2_{\alpha}(X)$ is bounded and b is not a constant, i.e., b(z) = az + d for some $a \neq 0$, then by the above estimate for the norm of $J_b: wF^p_{\alpha}(X) \to F^p_{\alpha}(X)$, we have

$$\|J_b\|_{wF^2_{\alpha}(X)\to F^2_{\alpha}(X)} \asymp |a| \left(\int_{\mathbb{C}} \frac{dA(z)}{(1+|z|)^2}\right)^{1/2} = \infty,$$

which is a contradiction.

Corollary 4.7. Let X be any complex infinite-dimensional Banach space, $2 \le p < \infty$ and $\alpha > 0$. Then $C_{\varphi} \colon wF^p_{\alpha}(X) \to F^p_{\alpha}(X)$ is bounded if and only if $\varphi(z) = az + d$ for some $a, d \in \mathbb{C}$ with |a| < 1.

Proof. Since

$$I_{\varphi,\varphi'}^{(1)}f(z) = \int_0^z f'(\varphi(\zeta))\varphi'(\zeta)\,d\zeta = f(\varphi(z)) - f(\varphi(0)),$$

we obtain that $C_{\varphi} \colon wF^{p}_{\alpha}(X) \to F^{p}_{\alpha}(X)$ is bounded if and only if $I^{(1)}_{\varphi,\varphi'} \colon wF^{p}_{\varphi}(X) \to F^{p}_{\alpha}(X)$ is bounded. By Theorem 4.4, the boundedness of $C_{\varphi} \colon wF^{p}_{\alpha}(X) \to F^{p}_{\alpha}(X)$ can be characterized by

(4.2)
$$\int_{\mathbb{C}} \frac{|\varphi'(z)|^p (1+|\varphi(z)|)^p}{(1+|z|)^p} e^{-\frac{\alpha p}{2}(|z|^2-|\varphi(z)|^2)} \, dA(z) < \infty.$$

If $\varphi(z) = az + d$ for some $a, d \in \mathbb{C}$ with |a| < 1, then it is trivial to see (4.2) holds. Conversely, the boundedness of $C_{\varphi} \colon wF_{\alpha}^{p}(X) \to F_{\alpha}^{p}(X)$ implies that $C_{\varphi} \colon F_{\alpha}^{p} \to F_{\alpha}^{p}$ is bounded. Therefore, $\varphi(z) = az + d$ with |a| < 1 or $\varphi(z) = az$ with |a| = 1 (see, for instance, Exercise 4 of page 89 in [20]). The latter case obviously contradicts (4.2). \Box

Remark 4.8. By Corollary 4.7 (or Corollary 4.6), we get that $F^p_{\alpha}(X) \subsetneq wF^p_{\alpha}(X)$ for any $2 \le p < \infty$, $\alpha > 0$ and complex infinite-dimensional Banach space X. In fact, if $F^p_{\alpha}(X) = wF^p_{\alpha}(X)$ as linear spaces, then $\|f\|_{F^p_{\alpha}(X)} \asymp \|f\|_{wF^p_{\alpha}(X)}$ for any $f \in \mathcal{H}(\mathbb{C}, X)$ by open mapping theorem. Hence $C_{\varphi} \colon wF^p_{\alpha}(X) \to F^p_{\alpha}(X)$ is bounded if and only if $C_{\varphi} \colon wF^p_{\alpha}(X) \to wF^p_{\alpha}(X)$ is bounded, which in turn is equivalent to the boundedness of $C_{\varphi} \colon F^p_{\alpha} \to F^p_{\alpha}$. However, this is impossible by Corollary 4.7.

Acknowledgments

The authors thank the referees who provided numerous valuable comments that improved the overall presentation of the paper and informed us the relevant reference [1].

References

- A. Aleman and A. G. Siskakis, *Integration operators on Bergman spaces*, Indiana Univ. Math. J. 46 (1997), no. 2, 337–356.
- [2] O. Blasco, Boundary values of vector-valued harmonic functions considered as operators, Studia Math. 86 (1987), no. 1, 19–33.
- [3] _____, Boundary values of functions in vector-valued Hardy spaces and geometry on Banach spaces, J. Funct. Anal. 78 (1988), no. 2, 346–364.
- [4] _____, Introduction to vector valued Bergman spaces, in: Function Spaces and Operator Theory, 9–30, Univ. Joensuu Dept. Math. Rep. Ser. 8, Univ. Joensuu, Joensuu, 2005.
- [5] O. Blasco and M. Pavlović, Complex convexity and vector-valued Littlewood-Paley inequalities, Bull. London Math. Soc. 35 (2003), no. 6, 749–758.
- [6] J. Bonet, P. Domański and M. Lindström, Weakly compact composition operators on analytic vector-valued function spaces, Ann. Acad. Sci. Fenn. Math. 26 (2001), no. 1, 233–248.
- [7] A. V. Bukhvalov and A. A. Danilevich, Boundary properties of analytic and harmonic functions with values in Banach space, Mat. Zametki 31 (1982), no. 2, 203–214.

- [8] O. Constantin, A Volterra-type integration operator on Fock spaces, Proc. Amer. Math. Soc. 140 (2012), no. 12, 4247–4257.
- [9] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics 43, Cambridge University Press, Cambridge, 1995.
- [10] P. L. Duren, On the multipliers of H^p spaces, Proc. Amer. Math. Soc. **22** (1969), 24–27.
- [11] J. B. Garnett, Bounded Analytic Functions, Revised first edition, Graduate Texts in Mathematics 236, Springer, New York, 2007.
- [12] Z. Hu, Equivalent norms on Fock spaces with some application to extended Cesaro operators, Proc. Amer. Math. Soc. 141 (2013), no. 8, 2829–2840.
- [13] M. Jevtić, D. Vukotić and M. Arsenović, Taylor coefficients and coefficient multipliers of Hardy and Bergman-type spaces, RSME Springer Series 2, Springer, Cham, 2016.
- [14] J. Laitila, H.-O. Tylli and M. Wang, Composition operators from weak to strong spaces of vector-valued analytic functions, J. Operator Theory 62 (2009), no. 2, 281–295.
- [15] S. Miihkinen, J. Pau, A. Perälä and M. Wang, Volterra type integration operators from Bergman spaces to Hardy spaces, J. Funct. Anal. 279 (2020), no. 4, 108564, 32 pp.
- [16] B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 44 (1972), 31–38.
- [17] J. Pau, Integration operators between Hardy spaces on the unit ball of Cⁿ, J. Funct. Anal. 270 (2016), no. 1, 134–176.
- [18] J. Xiao, Riemann-Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball, J. London Math. Soc. (2) 70 (2004), no. 1, 199–214.
- [19] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics 226, Springer-Verlag, New York, 2005.
- [20] _____, Analysis on Fock Spaces, Graduate Texts in Mathematics 263, Springer, New York, 2012.

Jiale Chen and Maofa Wang

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China *E-mail addresses*: jialechen@whu.edu.cn, mfwang.math@whu.edu.cn