# Generalized Integration Operators from Weak to Strong Spaces of Vector-valued Analytic Functions 

Jiale Chen* and Maofa Wang

Abstract. For a fixed nonnegative integer $m$, an analytic map $\varphi$ and an analytic function $\psi$, the generalized integration operator $I_{\varphi, \psi}^{(m)}$ is defined by

$$
I_{\varphi, \psi}^{(m)} f(z)=\int_{0}^{z} f^{(m)}(\varphi(\zeta)) \psi(\zeta) d \zeta
$$

for $X$-valued analytic function $f$, where $X$ is a Banach space. Some estimates for the norm of the operator $I_{\varphi, \psi}^{(m)}: w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)$ are obtained. In particular, it is shown that the Volterra operator $J_{b}: w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)$ is bounded if and only if $J_{b}: A_{\alpha}^{2} \rightarrow A_{\alpha}^{2}$ is in the Schatten class $S_{p}\left(A_{\alpha}^{2}\right)$ for $2 \leq p<\infty$ and $\alpha>-1$. Some corresponding results are established for $X$-valued Hardy spaces and $X$-valued Fock spaces.

## 1. Introduction

Let $\Omega$ be the open unit disk $\mathbb{D}$ or the complex plane $\mathbb{C}, X$ a complex Banach space and $\mathcal{H}(\Omega, X)$ the space of all $X$-valued analytic functions on $\Omega$. For $1 \leq p<\infty$ and $\alpha>-1$, the $X$-valued Bergman space $A_{\alpha}^{p}(X)$ consists of the functions $f \in \mathcal{H}(\mathbb{D}, X)$ such that

$$
\|f\|_{A_{\alpha}^{p}(X)}=\left(\int_{\mathbb{D}}\|f(z)\|_{X}^{p} d A_{\alpha}(z)\right)^{1 / p}<\infty
$$

where $d A_{\alpha}(z)=(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} d A(z)$ and $d A$ is the Lebesgue measure on $\mathbb{C}$ normalized so that $A(\mathbb{D})=1$. For $1 \leq p<\infty$, analogously, the $X$-valued Hardy space $H^{p}(X)$ consists of the functions $f \in \mathcal{H}(\mathbb{D}, X)$ satisfying

$$
\|f\|_{H^{p}(X)}=\sup _{0<r<1}\left(\int_{\mathbb{T}}\|f(r \zeta)\|_{X}^{p} d m(\zeta)\right)^{1 / p}<\infty
$$

Received October 21, 2020; Accepted December 24, 2020.
Communicated by Xiang Fang.
2020 Mathematics Subject Classification. Primary: 47B38; Secondary: 46E40.
Key words and phrases. generalized integration operator, vector-valued Bergman space, vector-valued Hardy space, vector-valued Fock spaces.
This work was partially supported by NSFC (No. 11771340) of China.
*Corresponding author.
where $d m$ is the normalized Lebesgue measure on $\mathbb{T}=\partial \mathbb{D}$. For $1 \leq p<\infty$ and $\alpha>0$, the $X$-valued Fock space $F_{\alpha}^{p}(X)$ consists of the functions $f \in \mathcal{H}(\mathbb{C}, X)$ such that

$$
\|f\|_{F_{\alpha}^{p}(X)}=\left(\frac{p \alpha}{2} \int_{\mathbb{C}}\|f(z)\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} d A(z)\right)^{1 / p}<\infty
$$

These spaces have been studied by many authors, see e.g. [3, 4, 7]. We also use the customary notation $\mathcal{H}(\Omega), A_{\alpha}^{p}, H^{p}$ and $F_{\alpha}^{p}$ to denote the corresponding spaces for the case $X=\mathbb{C}$. The weak versions of $X$-valued Bergman and Hardy spaces were considered by e.g. Blasco [2] and Bonet, Domański and Lindström [6]: the weak spaces $w A_{\alpha}^{p}(X)$ and $w H^{p}(X)$ consist of the functions $f \in \mathcal{H}(\mathbb{D}, X)$ for which

$$
\|f\|_{w A_{\alpha}^{p}(X)}=\sup _{x^{*} \in B_{X^{*}}}\left\|x^{*} \circ f\right\|_{A_{\alpha}^{p}}, \quad\|f\|_{w H^{p}(X)}=\sup _{x^{*} \in B_{X^{*}}}\left\|x^{*} \circ f\right\|_{H^{p}}
$$

are finite, respectively. Here and in the sequel, $X^{*}$ is the dual space of $X$ and $B_{X^{*}}=\left\{x^{*} \in\right.$ $\left.X^{*}:\left\|x^{*}\right\|_{X^{*}} \leq 1\right\}$ is the closed unit ball of $X^{*}$. Analogously, the weak space $w F_{\alpha}^{p}(X)$ consists of $X$-valued entire functions satisfying

$$
\|f\|_{w F_{\alpha}^{p}(X)}=\sup _{x^{*} \in B_{X^{*}}}\left\|x^{*} \circ f\right\|_{F_{\alpha}^{p}}<\infty .
$$

It follows from 14 that $A_{\alpha}^{p}(X)$ and $w A_{\alpha}^{p}(X)$ (resp. $H^{p}(X)$ and $w H^{p}(X)$ ) are essential different for any infinite-dimensional Banach space $X$.

Given a fixed nonnegative integer $m$, an analytic self-map $\varphi$ of $\Omega$ and a function $\psi \in \mathcal{H}(\Omega)$, the generalized integration operator $I_{\varphi, \psi}^{(m)}$ is defined by

$$
I_{\varphi, \psi}^{(m)} f(z)=\int_{0}^{z} f^{(m)}(\varphi(\zeta)) \psi(\zeta) d \zeta, \quad z \in \Omega
$$

for $f \in \mathcal{H}(\Omega, X)$. The operator $I_{\varphi, \psi}^{(m)}$ is a generalization of the Volterra type integration operator $J_{b}$, which is defined by

$$
J_{b} f(z)=\int_{0}^{z} f(\zeta) b^{\prime}(\zeta) d \zeta, \quad z \in \Omega
$$

for $b \in \mathcal{H}(\Omega)$ and $f \in \mathcal{H}(\Omega, X)$. The operator $J_{b}$ has been studied in various $\mathbb{C}$-valued settings, see $[1,8,12,15,17,18]$ and the references therein. However, as far as we know, it seems that the operator $J_{b}$ has not been studied in the setting of spaces of vector-valued analytic functions.

Using [18, Theorem 1.3] and the following Theorem 2.1, it is easy to show that the following are equivalent for any Banach space $X, 1 \leq p<\infty$ and $\alpha>-1$ :
(a) $J_{b}: A_{\alpha}^{p} \rightarrow A_{\alpha}^{p}$ is bounded;
(b) $J_{b}: A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)$ is bounded;
(c) $J_{b}: w A_{\alpha}^{p}(X) \rightarrow w A_{\alpha}^{p}(X)$ is bounded.

In the Hardy space setting, it is obvious that $J_{b}: w H^{p}(X) \rightarrow w H^{p}(X)$ is bounded if and only if $J_{b}: H^{p} \rightarrow H^{p}$ is bounded for all $1 \leq p<\infty$. Similar to the Bergman space case, using [12, Theorem 3.1] and the following Theorem4.1, it can be proved that the following are equivalent for any Banach space $X, 1 \leq p<\infty$ and $\alpha>-1$ :
(d) $J_{b}: F_{\alpha}^{p} \rightarrow F_{\alpha}^{p}$ is bounded;
(e) $J_{b}: F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$ is bounded;
(f) $J_{b}: w F_{\alpha}^{p}(X) \rightarrow w F_{\alpha}^{p}(X)$ is bounded.

In this paper, we are interested in the boundedness of generalized integration operators on the vector-valued cases. More precisely, we give some estimates for the norms of the operators $I_{\varphi, \psi}^{(m)}$ from the weak type spaces $w A_{\alpha}^{p}(X), w H^{p}(X)$ and $w F_{\alpha}^{p}(X)$ to the strong type spaces $A_{\alpha}^{p}(X), H^{p}(X)$ and $F_{\alpha}^{p}(X)$. As applications, we obtain the boundedness of $J_{b}$ on the corresponding vector-valued cases.

Our first main result is that if $X$ is any complex infinite-dimensional Banach space, $2 \leq p<\infty$ and $\alpha>-1$, then $I_{\varphi, \psi}^{(m)}: w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)$ is bounded if and only if

$$
\int_{\mathbb{D}} \frac{|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p}}{\left(1-|\varphi(z)|^{2}\right)^{2+\alpha+m p}} d A(z)<\infty .
$$

In particular, $J_{b}: w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)$ is bounded if and only if $b$ belongs to the Besov space $B_{p}$, which is equivalent to $J_{b}: A_{\alpha}^{2} \rightarrow A_{\alpha}^{2}$ is in the Schatten class $S_{p}\left(A_{\alpha}^{2}\right)$.

In the Hardy space setting, we need some additional conditions for the Banach space $X$. A Banach space $X$ is said $p$-uniformly PL-convex if there is a positive constant $c$ such that

$$
\int_{\mathbb{T}}\|x+\zeta y\|_{X}^{p} d m(\zeta) \geq\|x\|_{X}^{p}+c\|y\|_{X}^{p}
$$

for all $x, y \in X$. For $2 \leq p<\infty$ and a complex $p$-uniformly PL-convex infinite-dimensional Banach space $X$, we obtain a lower estimate for the norm of the operator $I_{\varphi, \psi}^{(m)}: w H^{p}(X) \rightarrow$ $H^{p}(X)$. Furthermore, if $X$ is a complex infinite-dimensional Hilbert space, we prove that $I_{\varphi, \psi}^{(m)}: w H^{2}(X) \rightarrow H^{2}(X)$ is bounded if and only if

$$
\int_{\mathbb{D}} \frac{|\psi(z)|^{2}\left(1-|z|^{2}\right)}{\left(1-|\varphi(z)|^{2}\right)^{1+2 m}} d A(z)<\infty
$$

In particular, if $X$ is a complex infinite-dimensional Hilbert space, then $J_{b}: w H^{2}(X) \rightarrow$ $H^{2}(X)$ is bounded if and only if $b$ belongs to the Dirichlet space, which is equivalent to the operator $J_{b}: H^{2} \rightarrow H^{2}$ is a Hilbert-Schmidt operator.

In the Fock space case, we show that if $X$ is any complex infinite-dimensional Banach space, $2 \leq p<\infty$ and $\alpha>0$, then $I_{\varphi, \psi}^{(m)}: w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$ is bounded if and only if

$$
\int_{\mathbb{C}} \frac{|\psi(z)|^{p}\left(1+|\varphi(z)|^{m}\right)^{p}}{(1+|z|)^{p}} e^{-\frac{\alpha p}{2}\left(|z|^{2}-|\varphi(z)|^{2}\right)} d A(z)<\infty
$$

In particular, $J_{b}: w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$ is bounded if and only if $b$ is a linear polynomial for $2<p<\infty$, but $J_{b}: w F_{\alpha}^{2}(X) \rightarrow F_{\alpha}^{2}(X)$ is bounded if and only if $b$ is a constant. As a byproduct, we obtain that the composition operator $C_{\varphi}: w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)(2 \leq p<\infty)$, which is defined by $C_{\varphi} f=f \circ \varphi$ for entire function $\varphi$, is bounded if and only if $\varphi(z)=a z+d$ for some $a, d \in \mathbb{C}$ with $|a|<1$.

Throughout this paper, the notation $A \lesssim B$ means that $A \leq C B$ for some inessential constant $C>0$. The converse relation $A \gtrsim B$ is defined in an analogous manner, and if $A \lesssim B$ and $A \gtrsim B$ both hold, we write $A \asymp B$.

## 2. Bergman space case

In this section we estimate the norm of the operator $I_{\varphi, \psi}^{(m)}: w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)$. To this end, we first introduce some auxiliary results that will be used in the sequel. The first gives an equivalent norm for the space $A_{\alpha}^{p}(X)$, which can be proved as that in [4, Theorem 2.5].

Theorem 2.1. Let $f \in \mathcal{H}(\mathbb{D}, X), n \in \mathbb{N}, 1 \leq p<\infty$ and $\alpha>-1$. Then $f \in A_{\alpha}^{p}(X)$ if and only if $f^{(n)} \in A_{\alpha+n p}^{p}(X)$.

Due to Theorem 2.1, we can define the following equivalent norm for the space $A_{\alpha}^{p}(X)$ :

$$
\|f\|_{*}=\sum_{k=0}^{n-1}\left\|f^{(k)}(0)\right\|_{X}+\left\|f^{(n)}\right\|_{A_{\alpha+n p}^{p}(X)}
$$

We also need the following Dvoretzky's theorem, which can be found in [9, Chapter 19].
Theorem A. For any $n \in \mathbb{N}$ and $\epsilon>0$ there is $c(n, \epsilon) \in \mathbb{N}$ so that for any Banach space $X$ of dimension at least $c(n, \epsilon)$, there is a linear embedding $T_{n}: l_{2}^{n} \rightarrow X$ so that

$$
\begin{equation*}
(1+\epsilon)^{-1}\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)^{1 / 2} \leq\left\|\sum_{j=1}^{n} a_{j} T_{n} e_{j}\right\|_{X} \leq\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)^{1 / 2} \tag{2.1}
\end{equation*}
$$

for any $a_{1}, \ldots, a_{n} \in \mathbb{C}$. Here $\left(e_{1}, \ldots, e_{n}\right)$ is some fixed orthonormal basis of $l_{2}^{n}$.
The following lemma concerns bounded coefficient multipliers from $A_{\alpha}^{2}$ to $A_{\alpha}^{p}$, see for instance [13, Theorem 12.6.10].

Lemma B. Suppose that $1 \leq p<\infty$ and $\alpha>-1$. Then the following hold.
(i) The sequence $\left\{k^{(\alpha+2) / p-(\alpha+2) / 2}\right\}$ is a bounded coefficient multiplier from $A_{\alpha}^{2}$ to $A_{\alpha}^{p}$ for $2 \leq p<\infty$.
(ii) The sequence $\left\{k^{\beta}\right\}$ is a bounded coefficient multiplier from $A_{\alpha}^{2}$ to $A_{\alpha}^{p}$ for $1 \leq p<2$ and $\beta<(\alpha+1) / p-(\alpha+1) / 2$.

The following well-known estimate, included here for convenience, will be used repeatedly later.

Lemma 2.2. For any $\beta>-1$ and $1 / 2 \leq t<1$, one has

$$
\sum_{k=1}^{\infty} k^{\beta} t^{k} \geq \frac{c_{\beta}}{(1-t)^{\beta+1}}
$$

where $c_{\beta}$ is some positive constant depending only on $\beta$.
We are now ready to estimate the norm of $I_{\varphi, \psi}^{(m)}: w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)$. The first gives an upper bound of $\left\|I_{\varphi, \psi}^{(m)}\right\|_{w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)}$ for $1 \leq p<\infty$.
Lemma 2.3. Let $X$ be any complex Banach space, $1 \leq p<\infty$ and $\alpha>-1$. Then

$$
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)} \lesssim\left(\int_{\mathbb{D}} \frac{|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p}}{\left(1-|\varphi(z)|^{2}\right)^{2+\alpha+m p}} d A(z)\right)^{1 / p}
$$

Proof. For any $f \in w A_{\alpha}^{p}(X)$, by the pointwise estimate of the derivative of Bergman space functions, we get

$$
\begin{aligned}
\left\|f^{(m)}(z)\right\|_{X}^{p} & =\sup _{x^{*} \in B_{X^{*}}}\left|x^{*}\left(f^{(m)}(z)\right)\right|^{p}=\sup _{x^{*} \in B_{X^{*}}}\left|\left(x^{*} \circ f\right)^{(m)}(z)\right|^{p} \\
& \lesssim \sup _{x^{*} \in B_{X^{*}}} \frac{\left\|x^{*} \circ f\right\|_{A_{\alpha}^{p}}^{p}}{\left(1-|z|^{2}\right)^{2+\alpha+m p}}=\frac{\|f\|_{w A_{\alpha}^{p}(X)}^{p}}{\left(1-|z|^{2}\right)^{2+\alpha+m p}}
\end{aligned}
$$

Therefore, by Theorem 2.1,

$$
\begin{aligned}
\left\|I_{\varphi, \psi}^{(m)} f\right\|_{A_{\alpha}^{p}(X)}^{p} & \asymp \int_{\mathbb{D}}\left\|f^{(m)}(\varphi(z))\right\|_{X}^{p}|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p} d A(z) \\
& \lesssim\|f\|_{w A_{\alpha}^{p}(X)}^{p} \int_{\mathbb{D}} \frac{|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p}}{\left(1-|\varphi(z)|^{2}\right)^{2+\alpha+m p}} d A(z)
\end{aligned}
$$

which finishes the proof.
The following theorem is the main result of this section, which gives a norm estimate of the operator $I_{\varphi, \psi}^{(m)}: w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)$ for $2 \leq p<\infty$.

Theorem 2.4. Let $X$ be any complex infinite-dimensional Banach space, $2 \leq p<\infty$ and $\alpha>-1$. Then

$$
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)} \asymp\left(\int_{\mathbb{D}} \frac{|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p}}{\left(1-|\varphi(z)|^{2}\right)^{2+\alpha+m p}} d A(z)\right)^{1 / p}
$$

Proof. By Lemma 2.3, we only need to proceed the lower estimate. To this end, let $n \in \mathbb{N}$ and $\epsilon>0$. According to Theorem A, fix a linear embedding $T_{n}: l_{2}^{n} \rightarrow X$ so that (2.1) holds. Put $x_{k}^{(n)}=T_{n} e_{k}$ for $k=1,2, \ldots, n$, where $\left(e_{1}, \ldots, e_{n}\right)$ is some fixed orthonormal basis of $l_{2}^{n}$. Let $\lambda_{k}=k^{(\alpha+2) / p-1 / 2}$, and define $f_{n}: \mathbb{D} \rightarrow X$ by

$$
\begin{equation*}
f_{n}(z)=\sum_{k=1}^{n} \lambda_{k} z^{k} x_{k}^{(n)}=T_{n}\left(\sum_{k=1}^{n} \lambda_{k} z^{k} e_{k}\right), \quad z \in \mathbb{D} . \tag{2.2}
\end{equation*}
$$

By Lemma B(i) and the fact that

$$
\left\|z^{k}\right\|_{A_{\alpha}^{2}}^{2}=\frac{k!\Gamma(\alpha+2)}{\Gamma(k+\alpha+2)} \asymp k^{-1-\alpha}
$$

we have

$$
\begin{aligned}
\left\|f_{n}\right\|_{w A_{\alpha}^{p}(X)} & =\sup _{x^{*} \in B_{X^{*}}}\left\|x^{*} \circ f_{n}\right\|_{A_{\alpha}^{p}}=\sup _{x^{*} \in B_{X^{*}}}\left\|\sum_{k=1}^{n} \lambda_{k} x^{*}\left(x_{k}^{(n)}\right) z^{k}\right\|_{A_{\alpha}^{p}} \\
& \lesssim \sup _{x^{*} \in B_{X^{*}}}\left\|\sum_{k=1}^{n} k^{\frac{1+\alpha}{2}} x^{*}\left(x_{k}^{(n)}\right) z^{k}\right\|_{A_{\alpha}^{2}} \asymp \sup _{x^{*} \in B_{X^{*}}}\left(\sum_{k=1}^{n}\left|T_{n}^{*} x^{*}\left(e_{k}\right)\right|^{2}\right)^{1 / 2} \leq 1 .
\end{aligned}
$$

It follows from Theorem 2.1 that

$$
\begin{align*}
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)}^{p} & \gtrsim \limsup _{n \rightarrow \infty}\left\|I_{\varphi, \psi}^{(m)} f_{n}\right\|_{A_{\alpha}^{p}(X)}^{p} \\
& \asymp \limsup _{n \rightarrow \infty} \int_{\mathbb{D}}\left\|f_{n}^{(m)}(\varphi(z))\right\|_{X}^{p}|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p} d A(z) \tag{2.3}
\end{align*}
$$

Since $f_{n}(z)=T_{n}\left(\sum_{k=1}^{n} \lambda_{k} z^{k} e_{k}\right)$, we have

$$
\begin{equation*}
f_{n}^{(m)}(z)=T_{n}\left(\sum_{k=1}^{n-m+1}(k)_{m} \lambda_{k+m-1} z^{k-1} e_{k+m-1}\right) \tag{2.4}
\end{equation*}
$$

for $0 \leq m \leq n$. Here, $(k)_{m}=k(k+1) \cdots(k+m-1)$ for $m \geq 1$ and $(k)_{0}=1$, and $\lambda_{0}=0$. Combining (2.4) and 2.1), we establish

$$
\begin{aligned}
\left\|f_{n}^{(m)}(\varphi(z))\right\|_{X}^{p} & =\left\|T_{n}\left(\sum_{k=1}^{n-m+1}(k)_{m} \lambda_{k+m-1} \varphi(z)^{k-1} e_{k+m-1}\right)\right\|_{X}^{p} \\
& \geq \frac{1}{1+\epsilon}\left(\sum_{k=1}^{n-m+1}(k)_{m}^{2} \lambda_{k+m-1}^{2}|\varphi(z)|^{2(k-1)}\right)^{p / 2} \\
& \gtrsim\left(\sum_{k=1}^{n-m+1} k^{2 m+2(\alpha+2) / p-1}|\varphi(z)|^{2(k-1)}\right)^{p / 2} .
\end{aligned}
$$

Inserting the above estimate into 2.3 and using monotone convergence theorem and Lemma 2.2, we obtain

$$
\begin{aligned}
& \left\|I_{\varphi, \psi}^{(m)}\right\|_{w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)}^{p} \\
\gtrsim & \int_{\mathbb{D}}\left(\sum_{k=1}^{\infty} k^{2 m+2(\alpha+2) / p-1}|\varphi(z)|^{2(k-1)}\right)^{p / 2}|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p} d A(z) \\
\geq & \int_{\left\{z \in \mathbb{D}:|\varphi(z)|^{2} \geq 1 / 2\right\}}\left(\sum_{k=1}^{\infty} k^{2 m+2(\alpha+2) / p-1}|\varphi(z)|^{2 k}\right)^{p / 2}|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p} d A(z) \\
\geq & c_{2 m+2(\alpha+2) / p-1}^{p / 2} \int_{\left\{z \in \mathbb{D}:|\varphi(z)|^{2} \geq 1 / 2\right\}} \frac{|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha+2+m p}} d A(z) .
\end{aligned}
$$

Here, $c_{2 m+2(\alpha+2) / p-1}$ is the constant defined in Lemma 2.2 .
In order to obtain the desired lower estimate, we need to show

$$
\begin{equation*}
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)}^{p} \gtrsim \int_{\left\{z \in \mathbb{D}:|\varphi(z)|^{2}<1 / 2\right\}} \frac{|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha+2+m p}} d A(z) \tag{2.5}
\end{equation*}
$$

Choose $x \in X$ satisfying $\|x\|_{X}=1$ and let

$$
g(z)=x z^{m}, \quad z \in \mathbb{D} .
$$

Then $g \in w A_{\alpha}^{p}(X)$ and the norm of $g$ in $w A_{\alpha}^{p}(X)$ only depends on $\alpha, p$ and $m$. Therefore, we get

$$
\begin{aligned}
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)}^{p} & \gtrsim\left\|I_{\varphi, \psi}^{(m)} g\right\|_{A_{\alpha}^{p}(X)}^{p} \\
& \asymp m!\int_{\mathbb{D}}|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p} d A(z) .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\int_{\left\{z \in \mathbb{D}:|\varphi(z)|^{2}<1 / 2\right\}} \frac{|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p}}{\left(1-|\varphi(z)|^{2}\right)^{\alpha+2+m p}} d A(z) & \lesssim \int_{\mathbb{D}}|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p} d A(z) \\
& \lesssim\left\|I_{\varphi, \psi}^{(m)}\right\|_{w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)}^{p}
\end{aligned}
$$

Hence (2.5) holds and the lower estimate is established. The proof is therefore complete.

For $1 \leq p<2$, using the preceding ideas we can only establish a weaker lower bound.
Proposition 2.5. Let $X$ be any complex infinite-dimensional Banach space, $1 \leq p<2$ and $\alpha>-1$. Then

$$
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)} \gtrsim\left(\int_{\mathbb{D}} \frac{|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p}}{\left(1-|\varphi(z)|^{2}\right)^{\gamma}} d A(z)\right)^{1 / p}
$$

for $\alpha+1+m p<\gamma<\alpha+1+p / 2+m p$.

Proof. Let $\lambda_{k}=k^{\beta+(1+\alpha) / 2}$ with $\beta<(\alpha+1) / p-(\alpha+1) / 2$ and define $f_{n}$ as 2.2). Then by Lemma B(ii) we have $\left\|f_{n}\right\|_{w A_{\alpha}^{p}(X)} \lesssim 1$ for $1 \leq p<2$. Hence Theorems 2.1, A and monotone convergence theorem yield

$$
\begin{aligned}
& \left\|I_{\varphi, \psi}^{(m)}\right\|_{w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)}^{p} \\
\gtrsim & \limsup _{n \rightarrow \infty}\left\|I_{\varphi, \psi}^{(m)} f_{n}\right\|_{A_{\alpha}^{p}(X)}^{p} \\
\gtrsim & \int_{\mathbb{D}}\left(\sum_{k=1}^{\infty}(k)_{m}^{2} \lambda_{k+m-1}^{2}|\varphi(z)|^{2(k-1)}\right)^{p / 2}|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p} d A(z) \\
\gtrsim & \int_{\mathbb{D}}\left(\sum_{k=1}^{\infty} k^{2 m+2 \beta+1+\alpha}|\varphi(z)|^{2 k}\right)^{p / 2}|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p} d A(z)
\end{aligned}
$$

for $m \geq 0$. Let $\beta>(\alpha+1) / p-1-\alpha / 2$, then $2 m+2 \beta+1+\alpha>-1$ and by Lemma 2.2 we have

$$
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)}^{p} \gtrsim c_{2 m+2 \beta+1+\alpha}^{p / 2} \int_{\left\{z \in \mathbb{D}:|\varphi(z)|^{2} \geq 1 / 2\right\}} \frac{|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p}}{\left(1-|\varphi(z)|^{2}\right)^{\gamma}} d A(z)
$$

where $\gamma=(2 m+2 \beta+2+\alpha) p / 2$ satisfying

$$
\alpha+1+m p<\gamma<\alpha+1+\frac{p}{2}+m p
$$

Similar to (2.5), we also have

$$
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)}^{p} \gtrsim \int_{\left\{z \in \mathbb{D}:|\varphi(z)|^{2}<1 / 2\right\}} \frac{|\psi(z)|^{p}\left(1-|z|^{2}\right)^{\alpha+p}}{\left(1-|\varphi(z)|^{2}\right)^{\gamma}} d A(z)
$$

Thus the proof is finished.
In particular, we have the following estimates for the norm of the Volterra type integration operator $J_{b}: w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)$.

Corollary 2.6. Let $X$ be any complex infinite-dimensional Banach space, $1 \leq p<\infty$, $\alpha>-1$ and $b \in \mathcal{H}(\mathbb{D})$.
(1) If $2 \leq p<\infty$, then $J_{b}: w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)$ is bounded if and only if b belongs to the analytic Besov space $B_{p}$. Moreover,

$$
\left\|J_{b}\right\|_{w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)} \asymp\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{p-2} d A(z)\right)^{1 / p}
$$

(2) If $1 \leq p<2$, then

$$
\begin{aligned}
\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{\gamma} d A(z)\right)^{1 / p} & \lesssim\left\|J_{b}\right\|_{w A_{\alpha}^{p}(X) \rightarrow A_{\alpha}^{p}(X)} \\
& \lesssim\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{p-2} d A(z)\right)^{1 / p}
\end{aligned}
$$

for $p / 2-1<\gamma<p-1$.

Remark 2.7. By [1, Theorem 2] (see also [18, Theorem 1.4]), we know that $J_{b}: w A_{\alpha}^{p}(X) \rightarrow$ $A_{\alpha}^{p}(X)$ is bounded if and only if $J_{b}: A_{\alpha}^{2} \rightarrow A_{\alpha}^{2}$ is in the Schatten class $S_{p}\left(A_{\alpha}^{2}\right)$ when $2 \leq p<\infty$.

## 3. Hardy space case

Let $X$ be any complex infinite-dimensional Banach space. In this section we first give a lower bound for the norm of $I_{\varphi, \psi}^{(m)}: w H^{p}(X) \rightarrow H^{p}(X)$ when $X$ is $p$-uniformly PL-convex and $2 \leq p<\infty$. To this purpose, we need the following Littlewood-Paley inequality for $H^{p}(X)$, which can be found in [5, Theorem 2.3].

Theorem C. Let $2 \leq p<\infty$ and $X$ be a Banach space. Then $X$ is p-uniformly PL-convex if and only if there exists $c>0$ such that

$$
\|f\|_{H^{p}(X)} \geq\left(\|f(0)\|_{X}^{p}+c \int_{\mathbb{D}}\left\|f^{\prime}(z)\right\|_{X}^{p}\left(1-|z|^{2}\right)^{p-1} d A(z)\right)^{1 / p}
$$

for all $f \in H^{p}(X)$.
The following lemma concerns the bounded coefficient multipliers from $H^{2}$ to $H^{p}$, which is cited from [10, Theorem 1].
Lemma D. The sequence $\left\{k^{1 / p-1 / 2}\right\}$ is a bounded coefficient multiplier from $H^{2}$ to $H^{p}$ for $2 \leq p<\infty$.

We now estimate the lower bound for $\left\|I_{\varphi, \psi}^{(m)}\right\|_{w H^{p}(X) \rightarrow H^{p}(X)}$.
Proposition 3.1. Let $2 \leq p<\infty$ and $X$ be any complex $p$-uniformly PL-convex infinitedimensional Banach space. Then

$$
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w H^{p}(X) \rightarrow H^{p}(X)} \gtrsim\left(\int_{\mathbb{D}} \frac{|\psi(z)|^{p}\left(1-|z|^{2}\right)^{p-1}}{\left(1-|\varphi(z)|^{2}\right)^{m p+1}} d A(z)\right)^{1 / p}
$$

Proof. For any given $n \in \mathbb{N}$ and $\epsilon>0$, fix a linear embedding $T_{n}: l_{2}^{n} \rightarrow X$ so that (2.1) holds. Put $x_{k}^{(n)}=T_{n} e_{k}$ for $k=1,2, \ldots, n$, where $\left(e_{1}, \ldots, e_{n}\right)$ is some fixed orthonormal basis of $l_{2}^{n}$. Consider the $X$-valued polynomials

$$
f_{n}(z)=\sum_{k=1}^{n} \lambda_{k} z^{k} x_{k}^{(n)}, \quad z \in \mathbb{D}
$$

where $\lambda_{k}=k^{1 / p-1 / 2}$. Then we have

$$
\begin{aligned}
\left\|f_{n}\right\|_{w H^{p}(X)} & =\sup _{x^{*} \in B_{X^{*}}}\left\|\sum_{k=1}^{n} \lambda_{k} z^{k} x^{*}\left(x_{k}^{(n)}\right)\right\|_{H^{p}} \lesssim \sup _{x^{*} \in B_{X^{*}}}\left\|\sum_{k=1}^{n} z^{k} x^{*}\left(x_{k}^{(n)}\right)\right\|_{H^{2}} \\
& =\sup _{x^{*} \in B_{X^{*}}}\left(\sum_{k=1}^{n}\left|T_{n}^{*} x^{*}\left(e_{k}\right)\right|^{2}\right)^{1 / 2} \leq 1
\end{aligned}
$$

where the inequality $\lesssim$ follows from Lemma $\square$. Therefore,

$$
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w H^{p}(X) \rightarrow H^{p}(X)} \gtrsim \limsup _{n \rightarrow \infty}\left\|I_{\varphi, \psi}^{(m)} f_{n}\right\|_{H^{p}(X)} .
$$

By Theorems C, A and Lemma 2.2, we obtain

$$
\begin{aligned}
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w H^{p}(X) \rightarrow H^{p}(X)}^{p} & \gtrsim \limsup _{n \rightarrow \infty}\left\|I_{\varphi, \psi}^{(m)} f_{n}\right\|_{H^{p}(X)}^{p} \\
& \gtrsim \limsup _{n \rightarrow \infty} \int_{\mathbb{D}}\left\|f_{n}^{(m)}(\varphi(z))\right\|_{X}^{p}|\psi(z)|^{p}\left(1-|z|^{2}\right)^{p-1} d A(z) \\
& \gtrsim \int_{\mathbb{D}}\left(\sum_{k=1}^{\infty} k^{2 m+2 / p-1}|\varphi(z)|^{2 k}\right)^{p / 2}|\psi(z)|^{p}\left(1-|z|^{2}\right)^{p-1} d A(z) \\
& \gtrsim c_{2 m+2 / p-1}^{p / 2} \int_{\left\{z \in \mathbb{D}:|\varphi(z)|^{2} \geq 1 / 2\right\}} \frac{|\psi(z)|^{p}\left(1-|z|^{2}\right)^{p-1}}{\left(1-|\varphi(z)|^{2}\right)^{m p+1}} d A(z)
\end{aligned}
$$

for $m \geq 0$. Let $g(z)=x z^{m}$ for $x \in X$ with $\|x\|_{X}=1$, then $\|g\|_{w H^{p}(X)}=1$. Using Theorem C again, we have

$$
\begin{aligned}
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w H^{p}(X) \rightarrow H^{p}(X)}^{p} & \geq\left\|I_{\varphi, \psi}^{(m)} g\right\|_{H^{p}(X)}^{p} \\
& \gtrsim \int_{\mathbb{D}}|\psi(z)|^{p}\left(1-|z|^{2}\right)^{p-1} d A(z) \\
& \gtrsim \int_{\left\{z \in \mathbb{D}: \mid \varphi(z)^{2}<1 / 2\right\}} \frac{|\psi(z)|^{p}\left(1-|z|^{2}\right)^{p-1}}{\left(1-|\varphi(z)|^{2}\right)^{m p+1}} d A(z) .
\end{aligned}
$$

This completes the proof.
Remark 3.2. For the case $1<p<2$, there are no estimates similar to the one in Theorem C. However, we can give a weaker lower bound for the norm of the operator $I_{\varphi, \psi}^{(m)}: w H^{p}(X) \rightarrow H^{p}(X)$ via embedding Hardy spaces into Bergman spaces. If $X$ is any complex Banach space, $1<p<q<\infty$ and $\alpha=q / p-2$, then $H^{p}(X) \subset A_{\alpha}^{q}(X)$ and the inclusion is continuous. To see this, for any $f \in H^{p}(X)$ and $0<r<1$, write $f_{r}(z)=f(r z)$. By [19, Corollary 4.47] and the subharmonic property of $\left\|f_{r}\right\|_{X}$, we have

$$
\left\|f_{r}\right\|_{A_{\alpha}^{q}(X)} \leq C\left\|f_{r}\right\|_{H^{p}(X)} \leq C\|f\|_{H^{p}(X)}
$$

for some absolute constant $C>0$. Using Fatou's lemma, we obtain

$$
\|f\|_{A_{\alpha}^{q}(X)} \leq \liminf _{r \rightarrow 1}\left\|f_{r}\right\|_{A_{\alpha}^{q}(X)} \lesssim\|f\|_{H^{p}(X)} .
$$

Therefore, if $X$ is any complex infinite-dimensional Banach space and $1<p<2$, then using Theorem 2.1 and the same method as in the proof of Proposition 3.1, we have

$$
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w H^{p}(X) \rightarrow H^{p}(X)} \gtrsim\left(\int_{\mathbb{D}} \frac{|\psi(z)|^{q}\left(1-|z|^{2}\right)^{q+q / p-2}}{\left(1-|\varphi(z)|^{2}\right)^{m q+q / 2}} d A(z)\right)^{1 / q}
$$

for $q>p$.

If $X$ is a complex Hilbert space, we have the following Littlewood-Paley type identity for the space $H^{2}(X)$.

Lemma 3.3. Let $X$ be a complex Hilbert space, then we have

$$
\|f-f(0)\|_{H^{2}(X)}^{2} \asymp \int_{\mathbb{D}}\left\|f^{\prime}(z)\right\|_{X}^{2}\left(1-|z|^{2}\right) d A(z)
$$

for any $f \in H^{2}(X)$.
Proof. Using the Taylor expansion of $f$, this can be obtained by some elementary computations.

If $X$ is a complex infinite-dimensional Hilbert space, we have the following estimate for the norm of the operator $I_{\varphi, \psi}^{(m)}: w H^{2}(X) \rightarrow H^{2}(X)$.

Theorem 3.4. Let $X$ be a complex infinite-dimensional Hilbert space. Then

$$
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w H^{2}(X) \rightarrow H^{2}(X)} \asymp\left(\int_{\mathbb{D}} \frac{|\psi(z)|^{2}\left(1-|z|^{2}\right)}{\left(1-|\varphi(z)|^{2}\right)^{1+2 m}} d A(z)\right)^{1 / 2}
$$

Proof. Since any Hilbert space is 2-uniformly PL-convex, the lower estimate follows from Proposition 3.1. We now consider the upper estimate. For any $f \in w H^{2}(X)$, by the pointwise estimate of the derivative of Hardy space functions, we have

$$
\left\|f^{(m)}(z)\right\|_{X}^{2}=\sup _{x^{*} \in B_{X^{*}}}\left|x^{*}\left(f^{(m)}(z)\right)\right|^{2}=\sup _{x^{*} \in B_{X^{*}}}\left|\left(x^{*} \circ f\right)^{(m)}(z)\right|^{2} \lesssim \frac{\|f\|_{w H^{2}(X)}^{2}}{\left(1-|z|^{2}\right)^{1+2 m}}
$$

Therefore, by Lemma 3.3, we have

$$
\begin{aligned}
\left\|I_{\varphi, \psi}^{(m)} f\right\|_{H^{2}(X)}^{2} & \asymp \int_{\mathbb{D}}\left\|f^{(m)}(\varphi(z))\right\|_{X}^{2}|\psi(z)|^{2}\left(1-|z|^{2}\right) d A(z) \\
& \lesssim\|f\|_{w H^{2}(X)}^{2} \int_{\mathbb{D}} \frac{|\psi(z)|^{2}\left(1-|z|^{2}\right)}{\left(1-|\varphi(z)|^{2}\right)^{1+2 m}} d A(z)
\end{aligned}
$$

which completes the theorem.
As applications, we have the following corollaries.
Corollary 3.5. Let $2 \leq p<\infty$ and $X$ be any complex $p$-uniformly PL-convex infinitedimensional Banach space. Then

$$
\left\|J_{b}\right\|_{w H^{p}(X) \rightarrow H^{p}(X)} \gtrsim\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{p}\left(1-|z|^{2}\right)^{p-2} d A(z)\right)^{1 / p}
$$

Corollary 3.6. Let $X$ be any complex infinite-dimensional Hilbert space. Then $J_{b}$ : $w H^{2}(X) \rightarrow H^{2}(X)$ is bounded if and only if b belongs to the Dirichlet space. Moreover,

$$
\left\|J_{b}\right\|_{w H^{2}(X) \rightarrow H^{2}(X)} \asymp\left(\int_{\mathbb{D}}\left|b^{\prime}(z)\right|^{2} d A(z)\right)^{1 / 2}
$$

Remark 3.7. Due to [17, Theorem 6.7], we know that if $2 \leq p<\infty$ and $X$ is a complex $p$-uniformly PL-convex infinite-dimensional Banach space, then the boundedness of $J_{b}: w H^{p}(X) \rightarrow H^{p}(X)$ implies $J_{b}: H^{2} \rightarrow H^{2}$ is in the Schatten class $S_{p}\left(H^{2}\right)$. Furthermore, if $X$ is a complex infinite-dimensional Hilbert space, then $J_{b}: w H^{2}(X) \rightarrow H^{2}(X)$ is bounded if and only if $J_{b}: H^{2} \rightarrow H^{2}$ is a Hilbert-Schmidt operator.

## 4. Fock space case

In the last section, we investigate the boundedness of $I_{\varphi, \psi}^{(m)}: w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$. For this purpose, we need the following result, which characterises a $X$-valued Fock space function by its derivatives.

Theorem 4.1. Suppose $f \in \mathcal{H}(\mathbb{C}, X), 1 \leq p<\infty, \alpha>0$ and $n \in \mathbb{N}$. Then

$$
\|f\|_{F_{\alpha}^{p}(X)} \asymp \sum_{k=0}^{n-1}\left\|f^{(k)}(0)\right\|_{X}+\left(\int_{\mathbb{C}}\left\|\frac{f^{(n)}(z)}{(1+|z|)^{n}}\right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} d A(z)\right)^{1 / p}
$$

In order to prove the above theorem, we need the following lemma.
Lemma 4.2. Let $f \in \mathcal{H}(\mathbb{C}, X), n \in \mathbb{N}$ and $1 \leq p<\infty$. Then for any $z \in \mathbb{C}$ and $r>0$, we have

$$
\left\|f^{(n)}(z)\right\|_{X}^{p} \lesssim \frac{1}{r^{2+n p}} \int_{D(z, r)}\|f(w)\|_{X}^{p} d A(w),
$$

where $D(z, r)=\{w \in \mathbb{C}:|w-z|<r\}$.
Proof. We only need to consider the case $z=0$. For any $\rho>0$, Cauchy's integral formula yields

$$
\left\|f^{(n)}(0)\right\|_{X} \leq \frac{n!}{2 \pi} \int_{0}^{2 \pi}\left\|f\left(\rho e^{i \theta}\right)\right\|_{X} \rho^{-n} d \theta
$$

Multiplying by $\rho^{n+1}$ and integrating with respect to $\rho$ from $r / 2$ to $r$, we obtain

$$
\frac{r^{n+2}-(r / 2)^{(n+2)}}{n+2}\left\|f^{(n)}(0)\right\|_{X} \leq \frac{n!}{2 \pi} \int_{0}^{r} \int_{0}^{2 \pi}\left\|f\left(\rho e^{i \theta}\right)\right\|_{X} \rho d \theta d \rho
$$

Since $r^{n+2}-(r / 2)^{n+2} \geq r^{n+2} / 2$, we arrive at

$$
\left\|f^{(n)}(0)\right\|_{X} \lesssim \frac{1}{r^{n+2}} \int_{D(0, r)}\|f(w)\|_{X} d A(w)
$$

Hölder's inequality then gives the desired estimate.
Proof of Theorem 4.1. By Lemma 4.2, we have

$$
\left\|f^{(k)}(0)\right\|_{X} \lesssim\left(\int_{D(0,1)}\|f(w)\|_{X}^{p} d A(w)\right)^{1 / p} \lesssim\|f\|_{F_{\alpha}^{p}(X)}
$$

for any $0 \leq k \leq n-1$. Using Lemma 4.2 and the estimate (8) in [12], we obtain

$$
\begin{aligned}
& \int_{\mathbb{C}}\left\|\frac{f^{(n)}(z)}{(1+|z|)^{n}}\right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} d A(z) \\
\lesssim & \int_{\mathbb{C}}(1+|z|)^{2} \int_{D\left(z, \frac{1}{1+|z|}\right)}\|f(w)\|_{X}^{p} d A(w) e^{-\frac{\alpha p}{2}|z|^{2}} d A(z) \\
\lesssim & \int_{\mathbb{C}}\|f(w)\|_{X}^{p}(1+|w|)^{2} \int_{D\left(w, \frac{2}{1+|w|}\right)} e^{-\frac{\alpha p}{2}|z|^{2}} d A(z) d A(w) \\
\lesssim & \int_{\mathbb{C}}\|f(w)\|_{X}^{p} e^{-\frac{\alpha p}{2}|w|^{2}} d A(w),
\end{aligned}
$$

where the second inequality is due to Fubini's theorem and the facts that $w \in D(z, 1 /(1+$ $|z|))$ implies $z \in D(w, 2 /(1+|w|))$, and $1+|z| \lesssim 1+|w|$ if $z \in D(w, 2 /(1+|w|))$. Combining the estimates above yields

$$
\|f\|_{F_{\alpha}^{p}(X)} \gtrsim \sum_{k=0}^{n-1}\left\|f^{(k)}(0)\right\|_{X}+\left(\int_{\mathbb{C}}\left\|\frac{f^{(n)}(z)}{(1+|z|)^{n}}\right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} d A(z)\right)^{1 / p}
$$

Conversely, note that $\|f\|_{X}^{p}$ is subharmonic on $\mathbb{C}$ for any $1 \leq p<\infty$. Consequently, $M_{p}(f, r)$ is increasing with $r$, see e.g. [11, Corollary 6.6]. We claim that

$$
\begin{equation*}
\int_{\mathbb{C}}\left\|\frac{f(z)}{(1+|z|)^{k}}\right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} d A(z) \lesssim \int_{\mathbb{C}}\left\|\frac{f^{\prime}(z)}{(1+|z|)^{k+1}}\right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} d A(z) \tag{4.1}
\end{equation*}
$$

for any fixed $1 \leq p<\infty, k \geq 0$, and all $f \in \mathcal{H}(\mathbb{C}, X)$ with $f(0)=0$. In fact, this can be proven by the same method as in the proof of $[12$, (11)]. In the case $p=1$, for any $0<\rho<r<\infty$, we have

$$
\begin{aligned}
M_{1}(f, r)-M_{1}(f, \rho) & \leq \int_{\mathbb{T}}\|f(r \zeta)-f(\rho \zeta)\|_{X} d m(\zeta) \\
& =\int_{\mathbb{T}}\left\|\int_{\rho}^{r} f^{\prime}(t \zeta) \zeta d t\right\|_{X} d m(\zeta) \leq(r-\rho) M_{1}\left(f^{\prime}, r\right)
\end{aligned}
$$

Therefore, 4.1 holds in this case. In the case $1<p<\infty$, vector-valued version of Lemma 2.2 in [12] is needed. Carefully examining the proof of [16, Theorem 1], we see [12, Lemma 2.2] holds for vector-valued functions. Consequently, 4.1) also holds in this case. Then for any $f \in \mathcal{H}(\mathbb{C}, X)$, due to (4.1) we obtain

$$
\begin{aligned}
& \left(\int_{\mathbb{C}}\left\|\frac{f(z)}{(1+|z|)^{k}}\right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} d A(z)\right)^{1 / p} \\
\leq & \left(\int_{\mathbb{C}}\left\|\frac{f(z)-f(0)}{(1+|z|)^{k}}\right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} d A(z)\right)^{1 / p}+\|f(0)\|_{X}\left(\int_{\mathbb{C}} \frac{e^{-\frac{\alpha p}{2}|z|^{2}}}{(1+|z|)^{p k}} d A(z)\right)^{1 / p} \\
\lesssim & \|f(0)\|_{X}+\left(\int_{\mathbb{C}}\left\|\frac{f^{\prime}(z)}{(1+|z|)^{k+1}}\right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} d A(z)\right)^{1 / p} .
\end{aligned}
$$

Applying the above estimate repeatedly, we establish

$$
\|f\|_{F_{\alpha}^{p}(X)} \lesssim \sum_{k=0}^{n-1}\left\|f^{(k)}(0)\right\|_{X}+\left(\int_{\mathbb{C}}\left\|\frac{f^{(n)}(z)}{(1+|z|)^{n}}\right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} d A(z)\right)^{1 / p}
$$

which completes the theorem.
The following lemma estimates the derivatives of Fock space functions.
Lemma 4.3. Let $0<p<\infty$ and $\alpha>0$. For any $f \in F_{\alpha}^{p}$ and $n \geq 0$, the following estimate holds:

$$
\left|f^{(n)}(z)\right| \lesssim\left(1+|z|^{n}\right) e^{\frac{\alpha}{2}|z|^{2}}\|f\|_{F_{\alpha}^{p}}
$$

Proof. The case $n=0$ was proved in [20, Corollary 2.8]. We consider the case $n>0$. For $|z| \leq 1$, by Cauchy's estimate and the estimate in the case $n=0$, we have

$$
\left|f^{(n)}(z)\right| \leq \frac{n!}{2 \pi} \int_{|\zeta-z|=1} \frac{|f(\zeta)|}{|\zeta-z|^{n+1}}|d \zeta| \lesssim \max _{|\zeta-z|=1}|f(\zeta)| \lesssim\|f\|_{F_{\alpha}^{p}}
$$

For $|z|>1$, arguing as above, we get

$$
\begin{aligned}
\left|f^{(n)}(z)\right| & \leq \frac{n!}{2 \pi} \int_{|\zeta-z|=1 /|z|} \frac{|f(\zeta)|}{|\zeta-z|^{n+1}}|d \zeta| \lesssim|z|^{n} \max _{|\zeta-z|=1 /|z|}|f(\zeta)| \\
& \leq|z|^{n} e^{\frac{\alpha}{2}\left(|z|+\frac{1}{|z|}\right)^{2}}\|f\|_{F_{\alpha}^{p}} \lesssim|z|^{n} e^{\frac{\alpha}{2}|z|^{2}}\|f\|_{F_{\alpha}^{p}} .
\end{aligned}
$$

Combining these estimates, we obtain the desired result.
We now end this section by estimating the norm of $I_{\varphi, \psi}^{(m)}$ on the Fock type setting.
Theorem 4.4. Let $X$ be any complex infinite-dimensional Banach space, $2 \leq p<\infty$ and $\alpha>0$. Then

$$
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)} \asymp\left(\int_{\mathbb{C}} \frac{|\psi(z)|^{p}\left(1+|\varphi(z)|^{m}\right)^{p}}{(1+|z|)^{p}} e^{-\frac{\alpha p}{2}\left(|z|^{2}-|\varphi(z)|^{2}\right)} d A(z)\right)^{1 / p}
$$

Proof. For any $f \in w F_{\alpha}^{p}(X)$, by Theorem 4.1 and the estimate in Lemma 4.3 we get

$$
\begin{aligned}
\left\|I_{\varphi, \psi}^{(m)} f\right\|_{F_{\alpha}^{p}(X)}^{p} & \asymp \int_{\mathbb{C}}\left\|\frac{f^{(m)}(\varphi(z)) \psi(z)}{1+|z|}\right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} d A(z) \\
& \lesssim\|f\|_{w F_{\alpha}^{p}(X)}^{p} \int_{\mathbb{C}} \frac{|\psi(z)|^{p}\left(1+|\varphi(z)|^{m}\right)^{p}}{(1+|z|)^{p}} e^{-\frac{\alpha p}{2}\left(|z|^{2}-|\varphi(z)|^{2}\right)} d A(z)
\end{aligned}
$$

which gives us the upper estimate.
We next consider the lower estimate. Fix $n \in \mathbb{N}$ and $\epsilon>0$. According to Theorem A, there is a linear embedding $T_{n}: l_{2}^{n} \rightarrow X$ so that (2.1) holds. Put $x_{k}^{(n)}=T_{n} e_{k}$ for $k=$
$1,2, \ldots, n$, where $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is some fixed orthonormal basis of $l_{2}^{n}$. Define $f_{n}: \mathbb{C} \rightarrow X$ by

$$
f_{n}(z)=\sum_{k=0}^{n-1} \sqrt{\frac{\alpha^{k}}{k!}} z^{k} x_{k+1}^{(n)}, \quad z \in \mathbb{C}
$$

Then

$$
\begin{aligned}
\left\|f_{n}\right\|_{w F_{\alpha}^{p}(X)} & =\sup _{x^{*} \in B_{X^{*}}}\left\|\sum_{k=0}^{n-1} \sqrt{\frac{\alpha^{k}}{k!}} x^{*}\left(x_{k+1}^{(n)}\right) z^{k}\right\|_{F_{\alpha}^{p}} \lesssim \sup _{x^{*} \in B_{X^{*}}}\left\|\sum_{k=0}^{n-1} \sqrt{\frac{\alpha^{k}}{k!}} x^{*}\left(x_{k+1}^{(n)}\right) z^{k}\right\|_{F_{\alpha}^{2}} \\
& =\sup _{x^{*} \in B_{X^{*}}}\left(\sum_{k=0}^{n-1}\left|x^{*}\left(x_{k+1}^{(n)}\right)\right|^{2}\right)^{1 / 2} \leq 1,
\end{aligned}
$$

where the first inequality is due to the embedding $F_{\alpha}^{p} \subset F_{\alpha}^{q}$ is bounded whenever $p \leq q$. Therefore, by Theorem 4.1, we obtain

$$
\begin{aligned}
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)}^{p} & \gtrsim \limsup _{n \rightarrow \infty}\left\|I_{\varphi, \psi}^{(m)} f_{n}\right\|_{F_{\alpha}^{p}(X)}^{p} \\
& \asymp \limsup _{n \rightarrow \infty} \int_{\mathbb{C}}\left\|\frac{f_{n}^{(m)}(\varphi(z)) \psi(z)}{1+|z|}\right\|_{X}^{p} e^{-\frac{\alpha p}{2}|z|^{2}} d A(z) .
\end{aligned}
$$

By the definition of $f_{n}$ and (2.1), we have

$$
\begin{aligned}
\left\|f_{n}^{(m)}(\varphi(z))\right\|_{X}^{p} & =\left\|T_{n}\left(\sum_{k=0}^{n-m-1}(k+1)_{m} \sqrt{\frac{\alpha^{k+m}}{(k+m)!}} \varphi(z)^{k} e_{k+m+1}\right)\right\|_{X}^{p} \\
& \gtrsim\left(\sum_{k=0}^{n-m-1}(k+1)_{m}^{2} \frac{\alpha^{k+m}}{(k+m)!}|\varphi(z)|^{2 k}\right)^{p / 2}
\end{aligned}
$$

for $0 \leq m<n$. Therefore, by monotone convergence theorem, we arrive at

$$
\left\|I_{\varphi, \psi}^{(m)}\right\|_{w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)}^{p} \gtrsim \int_{\mathbb{C}}\left(\sum_{k=0}^{\infty}(k+1)_{m} \frac{\alpha^{k}}{k!}|\varphi(z)|^{2 k}\right)^{p / 2} \frac{|\psi(z)|^{p} e^{-\frac{\alpha p}{2}|z|^{2}}}{(1+|z|)^{p}} d A(z) .
$$

It is obvious to see

$$
\left(1+|\varphi(z)|^{m}\right)^{p} e^{\frac{\alpha p}{2}|\varphi(z)|^{2}} \lesssim\left(\sum_{k=0}^{\infty}(k+1)_{m} \frac{\alpha^{k}}{k!}|\varphi(z)|^{2 k}\right)^{p / 2}
$$

Hence we establish the lower estimate for the norm of $I_{\varphi, \psi}^{(m)}: w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$ and the proof is complete.

Remark 4.5. The upper estimate for $\left\|I_{\varphi, \psi}^{(m)}\right\|_{w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)}$ in Theorem 4.4 is actually valid for all $1 \leq p<\infty$ and any complex Banach space $X$.

In particular, the boundedness of $J_{b}: w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$ and $C_{\varphi}: w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$ are characterized when $2 \leq p<\infty$.

Corollary 4.6. Let $X$ be any complex infinite-dimensional Banach space and $\alpha>0$.
(1) $J_{b}: w F_{\alpha}^{2}(X) \rightarrow F_{\alpha}^{2}(X)$ is bounded if and only if $b$ is a constant.
(2) If $2<p<\infty$, then $J_{b}: w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$ is bounded if and only if $b(z)=a z+d$ for some $a, d \in \mathbb{C}$. Moreover, $\left\|J_{b}\right\|_{w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)} \asymp|a|$.
Proof. By Theorem 4.4, we have

$$
\left\|J_{b}\right\|_{w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)}^{p} \asymp \int_{\mathbb{C}}\left|\frac{b^{\prime}(z)}{1+|z|}\right|^{p} d A(z) .
$$

The subharmonicity of $\left|b^{\prime}\right|^{p}$ implies

$$
\left(\int_{D(w, 1)}\left|\frac{b^{\prime}(z)}{1+|z|}\right|^{p} d A(z)\right)^{1 / p} \gtrsim \frac{\left|b^{\prime}(w)\right|}{1+|w|}
$$

Hence the boundedness of $J_{b}: w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$ implies

$$
\frac{\left|b^{\prime}(w)\right|}{1+|w|} \rightarrow 0 \quad \text { as }|w| \rightarrow \infty
$$

which is equivalent to $b(z)=a z+d$ for some $a, d \in \mathbb{C}$. So it is only need to prove the necessity of Case (1), since the other case is obvious.

If $J_{b}: w F_{\alpha}^{2}(X) \rightarrow F_{\alpha}^{2}(X)$ is bounded and $b$ is not a constant, i.e., $b(z)=a z+d$ for some $a \neq 0$, then by the above estimate for the norm of $J_{b}: w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$, we have

$$
\left\|J_{b}\right\|_{w F_{\alpha}^{2}(X) \rightarrow F_{\alpha}^{2}(X)} \asymp|a|\left(\int_{\mathbb{C}} \frac{d A(z)}{(1+|z|)^{2}}\right)^{1 / 2}=\infty
$$

which is a contradiction.
Corollary 4.7. Let $X$ be any complex infinite-dimensional Banach space, $2 \leq p<\infty$ and $\alpha>0$. Then $C_{\varphi}: w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$ is bounded if and only if $\varphi(z)=a z+d$ for some $a, d \in \mathbb{C}$ with $|a|<1$.

Proof. Since

$$
I_{\varphi, \varphi^{\prime}}^{(1)} f(z)=\int_{0}^{z} f^{\prime}(\varphi(\zeta)) \varphi^{\prime}(\zeta) d \zeta=f(\varphi(z))-f(\varphi(0))
$$

we obtain that $C_{\varphi}: w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$ is bounded if and only if $I_{\varphi, \varphi^{\prime}}^{(1)}: w F_{\varphi}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$ is bounded. By Theorem 4.4, the boundedness of $C_{\varphi}: w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$ can be characterized by

$$
\begin{equation*}
\int_{\mathbb{C}} \frac{\left|\varphi^{\prime}(z)\right|^{p}(1+|\varphi(z)|)^{p}}{(1+|z|)^{p}} e^{-\frac{\alpha p}{2}\left(|z|^{2}-|\varphi(z)|^{2}\right)} d A(z)<\infty . \tag{4.2}
\end{equation*}
$$

If $\varphi(z)=a z+d$ for some $a, d \in \mathbb{C}$ with $|a|<1$, then it is trivial to see 4.2 holds. Conversely, the boundedness of $C_{\varphi}: w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$ implies that $C_{\varphi}: F_{\alpha}^{p} \rightarrow F_{\alpha}^{p}$ is bounded. Therefore, $\varphi(z)=a z+d$ with $|a|<1$ or $\varphi(z)=a z$ with $|a|=1$ (see, for instance, Exercise 4 of page 89 in 20]). The latter case obviously contradicts (4.2).

Remark 4.8. By Corollary 4.7 (or Corollary 4.6), we get that $F_{\alpha}^{p}(X) \subsetneq w F_{\alpha}^{p}(X)$ for any $2 \leq p<\infty, \alpha>0$ and complex infinite-dimensional Banach space $X$. In fact, if $F_{\alpha}^{p}(X)=w F_{\alpha}^{p}(X)$ as linear spaces, then $\|f\|_{F_{\alpha}^{p}(X)} \asymp\|f\|_{w F_{\alpha}^{p}(X)}$ for any $f \in \mathcal{H}(\mathbb{C}, X)$ by open mapping theorem. Hence $C_{\varphi}: w F_{\alpha}^{p}(X) \rightarrow F_{\alpha}^{p}(X)$ is bounded if and only if $C_{\varphi}: w F_{\alpha}^{p}(X) \rightarrow w F_{\alpha}^{p}(X)$ is bounded, which in turn is equivalent to the boundedness of $C_{\varphi}: F_{\alpha}^{p} \rightarrow F_{\alpha}^{p}$. However, this is impossible by Corollary 4.7.

## Acknowledgments

The authors thank the referees who provided numerous valuable comments that improved the overall presentation of the paper and informed us the relevant reference 1].

## References

[1] A. Aleman and A. G. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997), no. 2, 337-356.
[2] O. Blasco, Boundary values of vector-valued harmonic functions considered as operators, Studia Math. 86 (1987), no. 1, 19-33.
[3] , Boundary values of functions in vector-valued Hardy spaces and geometry on Banach spaces, J. Funct. Anal. 78 (1988), no. 2, 346-364.
[4] , Introduction to vector valued Bergman spaces, in: Function Spaces and Operator Theory, 9-30, Univ. Joensuu Dept. Math. Rep. Ser. 8, Univ. Joensuu, Joensuu, 2005.
[5] O. Blasco and M. Pavlović, Complex convexity and vector-valued Littlewood-Paley inequalities, Bull. London Math. Soc. 35 (2003), no. 6, 749-758.
[6] J. Bonet, P. Domański and M. Lindström, Weakly compact composition operators on analytic vector-valued function spaces, Ann. Acad. Sci. Fenn. Math. 26 (2001), no. 1, 233-248.
[7] A. V. Bukhvalov and A. A. Danilevich, Boundary properties of analytic and harmonic functions with values in Banach space, Mat. Zametki 31 (1982), no. 2, 203-214.
[8] O. Constantin, A Volterra-type integration operator on Fock spaces, Proc. Amer. Math. Soc. 140 (2012), no. 12, 4247-4257.
[9] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics 43, Cambridge University Press, Cambridge, 1995.
[10] P. L. Duren, On the multipliers of $H^{p}$ spaces, Proc. Amer. Math. Soc. 22 (1969), 24-27.
[11] J. B. Garnett, Bounded Analytic Functions, Revised first edition, Graduate Texts in Mathematics 236, Springer, New York, 2007.
[12] Z. Hu, Equivalent norms on Fock spaces with some application to extended Cesaro operators, Proc. Amer. Math. Soc. 141 (2013), no. 8, 2829-2840.
[13] M. Jevtić, D. Vukotić and M. Arsenović, Taylor coefficients and coefficient multipliers of Hardy and Bergman-type spaces, RSME Springer Series 2, Springer, Cham, 2016.
[14] J. Laitila, H.-O. Tylli and M. Wang, Composition operators from weak to strong spaces of vector-valued analytic functions, J. Operator Theory 62 (2009), no. 2, 281-295.
[15] S. Miihkinen, J. Pau, A. Perälä and M. Wang, Volterra type integration operators from Bergman spaces to Hardy spaces, J. Funct. Anal. 279 (2020), no. 4, 108564, 32 pp.
[16] B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 44 (1972), 31-38.
[17] J. Pau, Integration operators between Hardy spaces on the unit ball of $\mathbb{C}^{n}$, J. Funct. Anal. 270 (2016), no. 1, 134-176.
[18] J. Xiao, Riemann-Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball, J. London Math. Soc. (2) 70 (2004), no. 1, 199-214.
[19] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics 226, Springer-Verlag, New York, 2005.
[20] $\qquad$ , Analysis on Fock Spaces, Graduate Texts in Mathematics 263, Springer, New York, 2012.

Jiale Chen and Maofa Wang
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
E-mail addresses: jialechen@whu.edu.cn, mfwang.math@whu.edu.cn

