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Counting the Number of Solutions to Certain Infinite Diophantine Equations

Nian Hong Zhou* and Yalin Sun

Abstract. Let r, v, n be positive integers. This paper investigate the number of

solutions sr,v(n) of the following infinite Diophantine equations

n = 1r · |k1|v + 2r · |k2|v + 3r · |k3|v + · · ·

for k = (k1, k2, k3, . . .) ∈ Z∞. For each (r, v) ∈ N× {1, 2}, a generating function and

some asymptotic formulas of sr,v(n) are established.

1. Introduction and statement of results

Let r, n be positive integers. A partition into r-th powers of an integer n is a sequence

of non-increasing r-th powers of positive integers whose sum equals n. Such a partition

corresponds to a solution of the following infinite Diophantine equation:

(1.1) n = 1r · k1 + 2r · k2 + 3r · k3 + · · ·

for k = (k1, k2, k3, . . .) ∈ N∞0 . Let pr(n) be the number of partitions of n into r-th powers

and let pr(0) := 1, we have the generating function∑
n≥0

pr(n)qn =
∏
n≥1

1

1− qnr
,

where q ∈ C with |q| < 1.

Determining the values of pr(n) has a long history and can be traced back to the work

of Euler. In the famous paper [3], Hardy and Ramanujan proved an asymptotic expansion

for p1(n) as n → ∞. They [3, p. 111] also gave an asymptotic formula for pr(n), r ≥ 2,

without proof. In [7, Theorem 2], Wright confirmed their asymptotic formula

pr(n) ∼ crn
1
r+1
− 3

2√
(2π)1+r(1 + 1/r)

e(r+1)crn
1
r+1

as integer n → ∞, where cr =
(
r−1ζ(1 + 1/r)Γ(1 + 1/r)

) r
r+1 , ζ(·) is the Riemann zeta

function and Γ(·) is the classical Euler Gamma function.
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In this paper we investigate certain infinite Diophantine equation analogous to (1.1).

For given positive integers n and r, we use sr,v(n) to denote the number of solutions of

the following infinite Diophantine equation

(1.2) n = 1r · |k1|v + 2r · |k2|v + 3r · |k3|v + · · ·

for k = (k1, k2, k3, . . .) ∈ Z∞. The first result of this paper is about the generating function

for sr,v(n).

Proposition 1.1. Let sr,v(0) := 1 and q ∈ C with |q| < 1. We have

Gr,1(q) :=
∑
n≥0

sr,1(n)qn =
∏
n≥1

1 + qn
r

1− qnr

and

Gr,2(q) :=
∑
n≥0

sr,2(n)qn =
∏
j≥1

∏
n≥1

1− (−1)nqnj
r

1 + (−1)nqnjr
.

Remark 1.2. From the proof of this proposition (see Subsection 2.1), the above infinite

product expansion for Gr,s(q) (r ∈ N, s = 1, 2) follows the identities∑
n∈Z

q|n| =
1 + q

1− q
and

∑
n∈Z

q|n|
2

=
∏
n≥1

1− (−q)n

1 + (−q)n
.

They actually follow from the geometric sequence sum formula and the Jacobi triple

product identity. However, any useful expansion for the sum
∑

n∈Z q
|n|v with each integer

v > 2 is still not found yet. Therefore, whether there are infinite product formulas which

is similar to Proposition 1.1 for sr,v(n) (r ∈ N, v ∈ Z>2) is still a question to be settled.

Thanks to the infinite product expansion in Proposition 1.1, we can determine the

asymptotic behavior of Gr,v(q) when |q| → 1−. From which we can further determine the

asymptotics of sr,v(n) ((r, v) ∈ N× {1, 2}) as n→∞. More precisely, we prove

Theorem 1.3. For any given positive integers r and p, we have

sr,1(n) =
κ

3/2
r√

2r+1πr

(
1

n

) 1+1/2
1+1/r

W 1
r
, 1
2

(
κrn

1
1+r
)(

1 +O

(
1

np

))
and

sr,2(n) =
κ

5/4
r

4
√

2rπr+1

(
η(1/r)

n

) 1+1/4
1+1/r

W 1
r
, 1
4

(
κrη(1/r)

(
n

η(1/r)

) 1
1+r

)(
1 +O

(
1

np

))
as integer n→∞. Here κr > 0 is given by

κ1+1/r
r = 2r−1(1− 2−1−1/r)ζ(1 + 1/r)Γ(1 + 1/r),
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η(s) =
∑

n≥1(−1)n−1n−s is the Dirichlet eta function, and

Wα,β(λ) =
1

2π

∫ 1

−1
(1 + iu)β exp

(
λ(α−1(1 + iu)−α + (1 + iu))

)
du

for all α, β, λ > 0.

Using the standard saddle-point method, such as referring to [5, p. 127, Theorem 7.1],

we can derive an asymptotic expansion for Wα,β(λ) as λ → +∞. Hence it is possible to

derive full asymptotic expansions for sr,v(n) ((r, v) ∈ N × {1, 2}). In particular, we have

the following leading asymptotics.

Corollary 1.4. For any given positive integer r, we have

sr,1(n) ∼ 2−(r+2)/2π−(r+1)/2(1 + 1/r)−1/2κrn
− 3r+1

2+2r e(1+r)κrn
1

1+r

and

sr,2(n) ∼ 2−(r+2)/4π−(r+3)/4(1 + 1/r)−1/2η(1/r)
3r

4r+4κ3/4
r n−

5r+2
4+4r e(1+r)κrη(1/r)

r
1+r n

1
1+r

as n→∞.

2. Some results of the generating function

2.1. Proof of Proposition 1.1

We shall proceed in a formal manner to prove Proposition 1.1. Formally, using (1.2) we

have ∑
n≥0

sr,v(n)qn =
∑
n≥0

qn
∑

k∈Z∞∑
j≥1 j

r|kj |s=n

1

=
∑

k∈Z∞
q
∑
j≥1 j

r|kj |s =
∏
j≥1

∑
kj∈Z

qj
r|kj |s

 .

Now, for q ∈ C with |q| < 1, by noting that∑
n∈Z

q|n| = 1 + 2
∑
n≥1

qn =
1 + q

1− q

and an identity of Gauss (see Andrews [1, Corollary 2.10])∑
n∈Z

qn
2

=
∏
n≥1

1− (−q)n

1 + (−q)n
,
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we have

Gr,1(q) :=
∑
n≥0

sr,1(n)qn =
∏
n≥1

1 + qn
r

1− qnr

and

Gr,2(q) :=
∑
n≥0

sr,2(n)qn =
∏
j≥1

∏
n≥1

1− (−1)nqnj
r

1 + (−1)nqnjr
.

Clearly, the product for Gr,1(q) is absolute convergence for all q ∈ C with |q| < 1. For the

product for Gr,2(q), since∣∣∣∣∏
j≥1

∏
n≥1

1− (−1)nqnj
r

1 + (−1)nqnjr

∣∣∣∣ ≤∏
j≥1

∏
n≥1

1 + |q|njr

1− |q|njr
=
∏
`≥1

(
1 + |q|`

1− |q|`

)σ1,r(`)
,

where

σ1,r(`) = #{(n, j) ∈ N2 : njr = `} ≤ `;

and hence the product is absolute convergence for all q ∈ C with |q| < 1. This completes

the proof of Proposition 1.1.

2.2. Asymptotics of the generating function

To give a proof of Theorem 1.3, we need to determine asymptotics of the generating

function in Proposition 1.1 at q = 1.

Proposition 2.1. Let r be a given positive integer, z = x+iy with x, y ∈ R and | arg(z)| ≤
π/4. As z → 0,

Gr,1(e−z) =
z1/2 exp

(
rκ

1+1/r
r z−1/r

)
√

2r+1πr

(
1 +O(|z|p)

)
and

Gr,2(e−z) =
z1/4 exp

(
rη(1/r)κ

1+1/r
r z−1/r

)
4
√

2rπr+1

(
1 +O(|z|p)

)
holds for any given p > 0. Here κr > 0 such that

κ1+1/r
r = 2r−2(1− 2−1−1/r)ζ(1 + 1/r)Γ(1/r).

Proof. The proof of the result for Gr,1(e−z) is similar to Gr,2(e−z), hence we only prove the

later one. We shall follow the proof of [1, p. 89, Lemma 6.1]. The series for the Riemann

zeta function

ζ(s) =
∑
n≥1

n−s
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and the Dirichlet eta function

η(s) =
∑
n≥1

(−1)n−1n−s

converge absolutely and uniformly for s ∈ C when <(s) ≥ c > 1. Therefore, by using

Mellin’s transform,

logGr,2(e−z) = 2
∑
`≥1
` odd

1

`

∑
j≥1

∑
n≥1

(−1)n−1e−n`j
rz

= 2
∑
`≥1
` odd

1

`

∑
j≥1

∑
n≥1

(−1)n−1 1

2πi

∫ c+i∞

c−i∞
(n`jrz)−sΓ(s) ds

=
2

2πi

∫ c+i∞

c−i∞

( ∑
`≥1
` odd

1

`s+1

∑
n≥1

(−1)n−1

ns

∑
j≥1

1

jrs

)
Γ(s)z−s ds,

that is

(2.1) logGr,2(e−z) =
2

2πi

∫ c+i∞

c−i∞
(1− 2−1−s)ζ(s+ 1)η(s)ζ(rs)Γ(s)z−s ds

for all z ∈ C with <(z) > 0. Since the only poles of gamma function Γ(s) are at s = −k
(k ∈ Z≥0), and all are simple; η(s) is an entire function on C; all s = −2k (k ∈ N) are

zeros of zeta function ζ(s), and s = 1 is the only pole of ζ(s) and is simple. Thus, it is

easy to check that the only possible poles of the integrand

gr(s)z
−s := (1− 2−1−s)ζ(s+ 1)η(s)ζ(rs)Γ(s)z−s

are at s = 0 and 1/r. For all σ ∈ [a, b], a, b ∈ R and real number t, |t| ≥ 1, we have the

well-known classical facts (see [6, p. 38, p. 92]) that

Γ(σ + it)�a,b |t|σ−1/2 exp
(
−π

2
|t|
)

and ζ(σ + it)�a,b |t||σ|+1/2.

Hence we have gr(s) �a,b |t|O(1) exp
(
− π

2 |t|
)
. Thus, using the residue theorem, moving

the line of integration (2.1) to the <(s) = −p with any given p > 0, and taking into

account the possible pole at s = 0 and s = 1/r of g(s), we obtain

(2.2) logGr,2(e−z) = 2
∑

s∈{0,1/r}

Res
(
gr(s)z

−s)+O(|z|p)

as z → 0 with | arg(z)| < π/4. By Laurent expansion of ζ(s + 1) and Γ(s) at s = 0, we

have

ζ(s+ 1) = 1/s+ γ +O(|s|) and Γ(s) = 1/s− γ +O(|s|)
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as s→ 0. Therefore,

Res
s=1/r

(
gr(s)z

−s) =
(1− 2−1−1/r)ζ(1/r + 1)η(1/r)Γ(1/r)

rz1/r

and

Res
s=0

(
gr(s)z

−s) =
1

8
log
( z

2rπr+1

)
.

Combining (2.2) with above results, we obtain the proof of this proposition.

We also need the following upper bound results.

Lemma 2.2. Let (r, v) ∈ N × {1, 2} be given, z = x + iy with x ∈ R+ and y ∈ (−π, π] \
(−x, x). As x→ 0,

<
(

log
Gr,v(e

−x)

Gr,v(e−z)

)
� x−1/r.

Proof. By using Proposition 1.1 with q ∈ C and |q| < 1, we have

logGr,1(q) =
∑
j≥1

log

(
1 + qj

r

1− qjr
)

=
∑
j≥1

∑
`≥1

(−1)`−1 q
`jr

`
+
∑
`≥1

q`j
r

`


=
∑
`≥1

1

`

∑
j≥1

(
(−1)`−1 + 1

)
q`j

r
= 2

∑
`≥1
` odd

1

`

∑
j≥1

qj
r`

and

logGr,2(q) =
∑
n,j≥1

log

(
1− (−1)nqnj

r

1 + (−1)nqnjr

)
=
∑
n,j≥1

∑
`≥1

1

`

(
− (−1)n`qnj

r` + (−1)`(−1)n`qnj
r`
)

=
∑
`,j≥1

(−1)` − 1

`

(−qjr)`

1− (−qjr)`
= 2

∑
`≥1
` odd

1

`

∑
j≥1

qj
r`

1 + qjr`
.

Furthermore,

<
(

log
Gr,1(e−x)

Gr,1(e−z)

)
= 2

∑
`≥1
` odd

1

`

∑
j≥1

e−j
r`x<

(
1− exp

(
2πi`jr

y

2π

))
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and

<
(

log
Gr,2(e−x)

Gr,2(e−z)

)
= 2

∑
`≥1
` odd

1

`

∑
j≥1

<
(

e−j
r`x

1 + e−jr`x
− e−j

r`z

1 + e−jr`z

)

= 2
∑
`≥1
` odd

1

`

∑
j≥1

tanh
(
jr`x2

)
cosh(jr`x) + cos(jr`y)

sin2
(
jr`

y

2

)
.

By noting that all summand in above sums are nonnegative we have

<
(

log
Gr,1(e−x)

Gr,1(e−z)

)
≥ 2

∑
j≥1

e−j
rx<

(
1− exp

(
2πijr

y

2π

))
�

∑
(2π/x)1/r<j≤2(2π/x)1/r

<
(

1− exp
(

2πijr
y

2π

))

and

<
(

log
Gr,2(e−x)

Gr,2(e−z)

)
≥ 2

∑
j≥1

tanh
(
jr x2
)

cosh(jrx) + cos(jry)
sin2

(
jr
y

2

)
�

∑
(2π/x)1/r<j≤2(2π/x)1/r

<
(

1− exp
(

2πijr
y

2π

))
.

Thus by using Lemma 2.3 with L = (2π/x)1/r, we find that

<
(

log
Gr,v(e

−x)

Gr,v(e−z)

)
� δr(2π/x)1/r � x−1/r

holds for all sufficiently small x > 0 and v ∈ {1, 2}. This finishes the proof.

Lemma 2.3. Let r ∈ N, y ∈ R and L ∈ R+ such that L−r < |y| ≤ 1/2. Then there exists

a constant δr ∈ (0, 1) depending only on r such that∣∣∣∣ ∑
L<n≤2L

e2πinry

∣∣∣∣ ≤ (1− δr)L

holds for all positive sufficiently large L.

Proof. The lemma for r = 1 is easy and we shall focus on the cases of r ≥ 2. By the

well-known Dirichlet’s approximation theorem, for any y ∈ R and L > 0 being sufficiently

large, then there exist integers d and h with 0 < h ≤ Lr−1 and gcd(h, d) = 1 such that

(2.3)

∣∣∣∣y − d

h

∣∣∣∣ < 1

hLr−1
.
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The use of [4, Equation 20.32] implies that

(2.4)
∑

L<n≤2L

e2πinry =
1

h

∑
1≤j≤h

e2πijr d
h

∫ 2L

L
e2πiur

(
y− d

h

)
du+O(h).

If the real number y satisfies L−r < |y| ≤ L1−r, then y satisfies the approximation (2.3)

with (h, d) = (1, 0). This means that∣∣∣∣ ∑
L<n≤2L

e2πinry

∣∣∣∣ =

∣∣∣∣∫ 2L

L
e2πiury du+O(1)

∣∣∣∣
≤ 2 · 1

2πr|y|Lr−1
(1 + 21−r) +O(1) ≤ 1 + 21−r

πr
L+O(1).

(2.5)

If the real number y satisfies 1/2 ≥ |y| ≥ L1−r, then y satisfies the approximation (2.3)

with h ≥ 2. Further, by using [2, Lemma 2.1] in (2.4), we find that there exists a positive

constant δr1 depending only on r such that

(2.6)

∣∣∣∣ ∑
L<n≤2L

e2πinry

∣∣∣∣ ≤ (1− δr1)L+O(h).

On the other hand, the use of Weyl’s inequality (see [4, Lemma 20.3]) implies that

(2.7)
∑

L<j≤2L

e2πijry �ε L
1+ε(h−1 + L−1 + hL−r)21−r � L1−2−r−1/2

holds for all integers h ∈ (L1/2, Lr−1]. By using (2.5), (2.6) and (2.7), it is not difficult to

obtain the proof of the lemma.

3. Proof of the main theorem

From Proposition 2.1 and Lemma 2.2, we can check that the sequences {sr,1(n)}n≥0 and

{sr,2(n)}n≥0 satisfy the conditions of Proposition 3.1 below. Therefore, applying the

following proposition, Theorem 1.3 and Corollary 1.4 follow.

Proposition 3.1. For a sequence {cn}n≥0 of real numbers, we let G(q) :=
∑

n≥0 cnq
n.

Suppose that for x ∈ R+ and y ∈ (−π, π],

G(e−x−iy)− γ(x+ iy)βeκα
−1(x+iy)−α � xpG(e−x), x→ 0

holds for any given p > 0, where κ, γ, β, α ∈ R+. Then, for any given p > 0 we have

cn = γ
(κ
n

) 1+β
1+α

Wα,β

(
κ

1
1+αn

α
1+α
)(

1 +O(n−p)
)

as integer n→∞. In particular,

cn ∼ 2−1/2π−1/2(1 + α)−1/2γκ
β+1/2
1+α n−

1+β+α/2
1+α e(1+α−1)κ

1
1+α n

α
1+α

, n→∞.
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Proof. For any given positive integer n sufficiently large, by using the orthogonality we

have

cn =
1

2π

∫ π

−π
G(e−x−iy)enx+niy dy.

We split the above integral as

cn =
1

2π

∫ x

−x
γ(x+ iy)βeκα

−1(x+iy)−α+n(x+iy) dy

+
1

2π

∫ π

−π

(
G(e−x−iy)− γ(x+ iy)βeκα

−1(x+iy)−α
)
en(x+iy) dy

=: I(n) + E(n).

(3.1)

Let x =
(
κ
n

) 1
α+1 . For E(n), we estimate that

E(n)�
∫ π

−π
x(1+α)pG(e−x)enx dy

�
∫ π

−π
xpeκα

−1x−α+nx dy � n−pe(α−1+1)κ
1

1+α n
α

1+α

(3.2)

holds for any given p > 0. For I(n), we compute that

I(n) =
γ

2πi

∫ x+ix

x−ix
zβeκα

−1z−α+nz dz

=
γx1+β

2πi

∫ 1+i

1−i
uβeκα

−1x−αu−α+nxu du

= γ
(κ
n

) 1+β
1+α 1

2πi

∫ 1+i

1−i
uβeκ

1
1+α n

α
1+α (α−1u−α+u) du,

that is

(3.3) I(n) = γ
(κ
n

) 1+β
1+α

Wα,β

(
κ

1
1+αn

α
1+α
)
.

By using the standard Laplace saddle-point method (see, for example, [5, p. 127, Theo-

rem 7.1]), since the integral

Wα,β(λ) =
1

2π

∫ 1

−1
(1 + iu)β exp

(
λ(α−1(1 + iu)−α + (1 + iu))

)
du

has a simple saddle point u = 0, it is not difficult to prove that

(3.4) Wα,β(λ) ∼ 1√
2π(1 + α)

e(1+α−1)λ

λ1/2

as λ → +∞. The proof of Proposition 3.1 follows from (3.1)–(3.3) and (3.4). This

completes the proof.
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