
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 24, No. 6, pp. 1383–1397, December 2020

DOI: 10.11650/tjm/200403

Maximal Density of Sets with Missing Differences and Various Coloring

Parameters of Distance Graphs
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Abstract. For a given set M of positive integers, a well-known problem of Motzkin

asked to determine the maximal asymptotic density of M -sets, denoted by µ(M),

where an M -set is a set of non-negative integers in which no two elements differ by an

element in M . In 1973, Cantor and Gordon found µ(M) for |M | ≤ 2. Partial results

are known in the case |M | ≥ 3 including results in the case when M is an infinite set.

This number theory problem is also related to various types of coloring problems of

the distance graphs generated by M . In particular, it is known that the reciprocal

of the fractional chromatic number of the distance graph generated by M is equal to

the value µ(M) when M is finite. Motivated by the families M = {a, b, a + b} and

M = {a, b, a + b, b − a} discussed by Liu and Zhu, we study two families of sets M ,

namely, M = {a, b, b− a, n(a+ b)} and M = {a, b, a+ b, n(b− a)}. For both of these

families, we find some exact values and some bounds on µ(M). We also find bounds

on the fractional and circular chromatic numbers of the distance graphs generated by

these families. Furthermore, we determine the exact values of chromatic number of

the distance graphs generated by these two families.

1. Introduction

For a given set M of positive integers, a problem of Motzkin asked to find the maximal

upper density of sets S of non-negative integers in which no two elements of S are allowed

to differ by an element of M . Following the question of Motzkin, if M is a given set of

positive integers, a set S of non-negative integers is said to be an M -set if a, b ∈ S implies

a − b /∈ M . For x ∈ R and a set S of non-negative integers, let S(x) be the number of

elements n ∈ S such that n ≤ x. We define the upper and lower densities of S, denoted

respectively by δ(S) and δ(S), as follows:

δ(S) = lim sup
x→∞

S(x)

x
, δ(S) = lim inf

x→∞

S(x)

x
.
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We say that S has density δ(S) when δ(S) = δ(S) = δ(S). The parameter of interest is

the maximal density of an M -set, defined by

µ(M) := sup δ(S),

where the supremum is taken over all M -sets S. Motzkin [19] posed the problem of finding

the quantity µ(M). In 1973, Cantor and Gordon [2] proved that there exists a set S such

that δ(S) = µ(M), when M is finite. The following two lemmas proved in [2] and [10],

respectively, are useful for bounding µ(M).

Lemma 1.1. Let M = {m1,m2,m3, . . .} and c and m be positive integers such that

gcd(c,m) = 1. Then

µ(M) ≥ κ(M) := sup
(c,m)=1

(1/m) min
k≥1
|cmk|m,

where for an integer x and a positive integer m, |x|m = |r| if x ≡ r (mod m) with

0 ≤ |r| ≤ m/2.

Lemma 1.2. Let α be a real number, α ∈ [0, 1]. If for any M -set S with 0 ∈ S there

exists a positive integer k such that S(k) ≤ (k + 1)α, then µ(M) ≤ α.

For a finite set M , by a remark of Haralambis [10, Remark 1], we can write κ(M) as

(1.1) κ(M) = max
m=mi+mj

1≤k≤m/2

(1/m) min
i
|kmi|m,

where mi, mj are distinct elements of M .

Motzkin’s maximal density problem is closely related to several coloring parameters

of distance graphs generated by M . Moreover, the parameter κ(M), which serves as a

lower bound for µ(M), is related to the “lonely runner conjecture”. The lonely runner

conjecture is a long standing open conjecture on the diophantine approximations, which

was first posed by Wills [27] and then independently by Cusick [6].

The study of Motzkin’s density problem is equivalent to the study of the fractional

chromatic number of distance graphs. A fractional coloring of a graph G is a mapping

c which assigns to each independent set I of G a non-negative weight c(I) such that for

each vertex x,
∑

x∈I c(I) ≥ 1. The fractional chromatic number of G, denoted by χf (G),

is the least total weight of a fractional coloring of G.

Let M be a set of positive integers. The distance graph generated by M , denoted

by G(Z,M), has the set Z of all integers as the vertex set, and two vertices x and y are

adjacent whenever |x−y| ∈M . It was proved by Chang et al. [3] that for any finite set M ,

the fractional chromatic number of the distance graph generated by M is the reciprocal

of the maximal density of M -sets. Precisely, they proved the next theorem.
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Theorem 1.3. For any finite set M of positive integers, µ(M) = 1/χf (G(Z,M)).

The fractional chromatic number of a graph is related to another coloring parameter

called the circular chromatic number defined as follows: Let k ≥ 2d be positive integers.

A (k, d)-coloring of a graph G is a mapping, c : V (G) → {0, 1, . . . , k − 1}, such that

d ≤ |c(u)−c(v)| ≤ k−d for any uv ∈ E(G). The circular chromatic number of G, denoted

by χc(G), is the minimum ratio k/d such that G admits a (k, d)-coloring. Zhu [28] proved

that for any graph G,

χf (G) ≤ χc(G) ≤ χ(G) = dχc(G)e.

Moreover, for a distance graph G(Z,M), the following theorem connects the circular

chromatic number of G(Z,M) with κ(M).

Theorem 1.4. [29] For any finite set M of positive integers, χc(G(Z,M)) ≤ 1
κ(M) .

Notice that κ(M) gives a lower bound for µ(M) and the reciprocal of κ(M) gives an

upper bound for χc(G(Z,M)).

The values and bounds of µ(M) for several special families of sets M (see [2, 3, 5, 7–

10, 14–18, 20–22, 24, 25]) have been studied. But, in general, complete solutions are only

known when |M | ≤ 2 [2].

A set M is called almost difference closed if it holds that ω(G(Z,M)) ≥ |M |, where

ω(G) is the clique size of a graph G. Kemnitz and Marangio [12] characterized almost

difference closed sets into three types as in the following result.

Theorem 1.5. Let M be a finite set of positive integers with |M | = m and gcd(M) = 1.

Then M is almost difference closed if and only if M is one of the following three sets:

(i) M = {a, 2a, 3a, . . . , (m− 1)a, b},

(ii) M = {a, b, a+ b},

(iii) M = {a, b, b− a, a+ b} for some b > a.

The chromatic number of the distance graphs generated by the three types of sets

M in Theorem 1.5 were determined by several authors (see [12] for type (i), [4, 26] for

type (ii) and [11, 13, 17] for type (iii)). The values of µ(M), κ(M), χf (G(Z,M)), and

χc(G(Z,M)) were determined by Liu and Zhu [17] except for a single case in type (iii),

namely, when both a and b are odd, for which only the value of µ(M) was not determined

but bounds were presented. These bounds are tight enough to compute the chromatic

number of G(Z,M). We mention a theorem of Liu and Zhu [17, Theorem 3.1] which is

applied at several places in this paper. This result (stated below) confirmed a conjecture

of Rabinowitz and Proulx [23] in which one direction of the inequality was proved.
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Theorem 1.6. Suppose M = {x, y, x+ y}, where 0 < x < y and gcd(x, y) = 1. Then

µ(M) =


1
3 if y − x ≡ 0 (mod 3),

2x+y−1
3(2x+y) if y − x ≡ 1 (mod 3),

x+2y−1
3(x+2y) if y − x ≡ 2 (mod 3).

In this article, we consider the two four-element families M = {a, b, b−a, n(a+b)} and

M = {a, b, a+ b, n(b− a)}. For these two four-element families, we study the parameters

µ(M), κ(M), χf (G(Z,M)), χc(G(Z,M)), and the chromatic number χ(G(Z,M)). Some

bounds and some exact values of these parameters are determined.

We let N denote the set of positive integers. Using definition (1.1) of κ(M), we give

lower bounds for κ(M) for most of the sets in the families M = {a, b, b− a, n(a+ b)} and

M = {a, b, a + b, n(b − a)} in Sections 2 and 3, respectively. In Section 4, we investigate

and compare χ(G(Z,M)), χf (G(Z,M)), and χc(G(Z,M)) for the families M = {a, b, b−
a, n(a+ b)} and M = {a, b, a+ b, n(b−a)}. In this investigation, we completely determine

χ(G(Z,M)) for both families of sets M . Finally, in Section 5, we present some concluding

remarks.

Since we have µ(M) = µ(kM) for any positive integer k, it is sufficient to consider the

case gcd(M) = 1. Thereby, for both the families of sets M we assume gcd(a, b) = 1.

2. The family M = {a, b, b− a, n(a+ b)}

We find lower bounds for κ(M), where M = {a, b, b − a, n(a + b)}. We divide the study

according to the nature of a + b (mod 3). Theorems 2.1, 2.3, and 2.5 give lower bounds

for κ(M) according as a + b ≡ 0 or 1 or 2 (mod 3), respectively. Theorem 2.1 holds for

all n ≥ 1 whereas, Theorems 2.3 and 2.5 hold for all but finitely many values of n.

Theorem 2.1. Let M = {a, b, b− a, n(a+ b)}, where a < b, gcd(a, b) = 1 and a+ b ≡ 0

(mod 3). Then for n ≥ 1,

κ(M) ≥


n(a+b)
3m if b > 2a, where m = (b− a) + n(a+ b),

n(a+b)
3m if b < 2a, where m = a+ n(a+ b).

Proof. To find the lower bound on κ(M), we consider two cases, b > 2a and b < 2a. In

both cases, we consider two subcases, one each for a ≡ 1 (mod 3) and a ≡ 2 (mod 3).

Notice that since a+ b ≡ 0 (mod 3) and gcd(a, b) = 1, so the case b = 2a and the subcase

a ≡ 0 (mod 3) are not possible.

Case (1): b > 2a. Let m = (b− a) + n(a+ b).

Subcase (i): Let a ≡ 1 (mod 3). Let x = (m− 1)/3. Then

ax ≡ b− 2a+ n(a+ b)

3
(mod m) and n(a+ b)x ≡ −n(a+ b)

3
(mod m).
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Hence,

(b−a)x ≡ −n(a+b)x ≡ n(a+ b)

3
(mod m) and bx ≡ −2b− a+ n(a+ b)

3
(mod m).

Now, using the fact that b > 2a, we see that

n(a+ b)

3
<
b− 2a+ n(a+ b)

3
<

2b− a+ n(a+ b)

3
≤ m

2
.

Therefore,

(2.1) min{|ax|m, |bx|m, |(b− a)x|m, |n(a+ b)x|m} =
n(a+ b)

3
.

Subcase (ii): Let a ≡ 2 (mod 3). Let x = (m+ 1)/3. Then

ax ≡ −b− 2a+ n(a+ b)

3
(mod m) and n(a+ b)x ≡ n(a+ b)

3
(mod m).

Hence,

(b−a)x ≡ −n(a+b)x ≡ −n(a+ b)

3
(mod m) and bx ≡ 2b− a+ n(a+ b)

3
(mod m).

Therefore,

(2.2) min{|ax|m, |bx|m, |(b− a)x|m, |n(a+ b)x|m} =
n(a+ b)

3
.

From (2.1) and (2.2) we get that if b > 2a, then

κ(M) ≥ n(a+ b)

3m
.

Remark 2.2. Before we go to Case (2), we would like to notice here from Case (1) that

to get a lower bound for κ(M), which is actually calculated mostly in this paper, the

key point of the proof is to find the appropriate x and m. Then find the minimum of

|xM |m, and then find the lower bound of κ(M). To avoid similar repeated calculations,

we construct tables presenting |xM |m corresponding to a given x and m under different

conditions, from now onwards throughout the paper, wherever we calculate a lower bound

for κ(M).

Case (2): b < 2a. Let m = a+ n(a+ b). Then, we have the following table.

a ≡ 1 (mod 3), x = m−1
3 a ≡ 2 (mod 3), x = m+1

3

|ax|m = |n(a+ b)x|m n(a+b)
3

n(a+b)
3

|bx|m (n+1)(a+b)
3

(n+1)(a+b)
3

|(b− a)x|m n(a+b)+2a−b
3

n(a+b)+2a−b
3

min |xM |m n(a+b)
3

n(a+b)
3

From the table, we see that κ(M) ≥ n(a+b)
3m . This completes the proof.
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Theorem 2.3. Let M = {a, b, b−a, n(a+ b)}, where a < b, gcd(a, b) = 1, and (a+ b) ≡ 1

(mod 3). Then for n ≥ b−(2a+1)
3 ,

κ(M) ≥ n(a+ b− 1)

3(a+ n(a+ b))
.

Proof. Let m = a + n(a + b) and d = gcd(a,m). Then gcd(a/d,m/d) = 1. Let x be an

integer such that
a

d
x ≡ m/d− (a/d+ n/d)

3
(mod m/d).

Then, we have the following table.

|ax|m = |n(a+ b)x|m n(a+b−1)
3

|bx|m (n+1)(a+b−1)
3

|(b− a)x|m (n−1)(a+b−1)
3 + a+ n

min |xM |m n(a+b−1)
3

From the table, we see that κ(M) ≥ n(a+b−1)
3(a+n(a+b)) . This completes the proof.

Observation 2.4. Let a and b be positive integers with a < b, a+ b ≡ 2 (mod 3), and l

be a non-negative integer. Set

N
(l)
1 =

{
l(2b− a) +

⌊a
3

⌋
+ 1 + t1 : 0 ≤ t1 ≤

2b− a− 7

3
−
⌊a

3

⌋}
,

N
(l)
2 =

{
l(2b− a) +

2b− a− 1

3
+ t2 : 0 ≤ t2 ≤

2b− a− 1

3

}
,

N
(l)
3 =

{
l(2b− a) +

2(2b− a) + 1

3
+ t3 : 0 ≤ t3 ≤

2b− a− 1

3
+
⌊a

3

⌋}
.

Then N
(l)
1 , N

(l)
2 , N

(l)
3 are pairwise disjoint sets and

⋃
l≥0N

(l)
1 ∪N

(l)
2 ∪N

(l)
3 = N \ {1, 2, . . . ,

ba/3c}.

Theorem 2.5. Let M = {a, b, b−a, n(a+ b)}, where a < b, gcd(a, b) = 1, and (a+ b) ≡ 2

(mod 3). Set m = b+ n(a+ b). Then for n ≥ ba/3c+ 1,

κ(M) ≥


m−b(3l+1)+n

3m if n ∈ N (l)
1 ,

m+(3l+1)(b−a)−2n−1
3m if n ∈ N (l)

2 ∪N
(l)
3 .

Proof. Let gcd(b,m) = d. Then gcd(b/d,m/d) = 1. Let x be an integer such that

b

d
x ≡ m/d− (b/d+ 3lb/d− n/d)

3
(mod m/d).
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Then, we have the following table.

|bx|m = |n(a+ b)x|m m−b(3l+1)+n
3

|ax|m m−b(3l+1)+n
3 + l(a+ b) + a+b+1

3

|(b− a)x|m m+(3l+1)(b−a)−2n−1
3

min |xM |m if n ∈ N (l)
1

m−b(3l+1)+n
3

min |xM |m if n ∈ N (l)
2 ∪N

(l)
3

m+(3l+1)(b−a)−2n−1
3

From the table, we see that if n ∈ N (l)
1 , then κ(M) ≥ m−b(3l+1)+n

3m ; and if n ∈ N (l)
2 ∪N

(l)
3 ,

then κ(M) ≥ m+(3l+1)(b−a)−2n−1
3m . This completes the proof.

Corollary 2.6. Let M = {a, b, b − a, n(a + b)}, where a < b, gcd(a, b) = 1, (a + b) ≡ 2

(mod 3), and n ∈ N (l)
2 . Then

µ(M) = κ(M) =
2b− a− 1

3(2b− a)
if b > 2a

and
2b− a− 1

3(2b− a)
≤ κ(M) ≤ µ(M) ≤ a+ b− 1

3(a+ b)
if b < 2a.

Proof. Let m = 2b− a. Then m ≡ 1 (mod 3). Since gcd(b, 2b− a) = 1, suppose that x is

an integer such that bx ≡ −(m− 1)/3 (mod m). Then

(b− a)x ≡ −bx ≡ m− 1

3
(mod m) and ax = bx− (b− a)x ≡ m+ 2

3
(mod m).

We have (a + b)x ≡ 1 (mod m). So n(a + b)x ≡ n ≡ (m − 1)/3 + t2 (mod m). If

0 ≤ t2 ≤ (m+ 2)/6, then (m− 1)/3 + t2 ≤ m/2. Let (m+ 2)/6 ≤ t2 ≤ (m− 1)/3. Then

rewrite the congruence for n(a+ b)x as

n(a+ b)x ≡ −2m+ 1

3
+ t2 (mod m).

Now we also have
m+ 2

3
≤ 2m+ 1

3
− t2 ≤

m

2
.

So,

min{|ax|m, |bx|m, |(b− a)x|m, |n(a+ b)x|m} =
m− 1

3
.

Hence,

µ(M) ≥ κ(M) ≥ m− 1

3m
=

2b− a− 1

3(2b− a)
.
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To get the upper bound for µ(M), we first let b > 2a. Setting x = a, y = b− a, we have

y − x ≡ 2 (mod 3). Hence, using Theorem 1.6, we get

µ(M) ≤ µ({a, b− a, b}) = µ({x, y, x+ y}) =
2y + x− 1

3(2y + x)
=

2b− a− 1

3(2b− a)
.

Secondly, let b < 2a. Setting x = b− a, y = a, we have y − x ≡ 2 (mod 3). Hence, again

using Theorem 1.6, we get

µ(M) ≤ µ({b− a, a, b}) = µ({x, y, x+ y}) =
2y + x− 1

3(2y + x)
=
b+ a− 1

3(b+ a)
.

This completes the proof of the corollary.

3. The family M = {a, b, a+ b, n(b− a)}

We find lower bounds for κ(M), where M = {a, b, a + b, n(b − a)}. We divide the study

according to the nature of b − a (mod 3). Theorems 3.1, 3.3, and 3.5 give lower bounds

for κ(M) according as b − a ≡ 0 or 1 or 2 (mod 3), respectively. Theorems 3.1 and 3.5

hold for all n ≥ 1 whereas, Theorem 3.3 holds for all but finitely many values of n.

Theorem 3.1. Let M = {a, b, a + b, n(b − a)}, where a < b, gcd(a, b) = 1, and a ≡ b

(mod 3). Then for n ≥ 1,

κ(M) ≥ n(b− a)

3(b+ n(b− a))
.

Proof. Let m = b+ n(b− a). Then, we have the following table.

b ≡ 1 (mod 3), x = m−1
3 b ≡ 2 (mod 3), x = m+1

3

|bx|m = |n(b− a)x|m n(b−a)
3

n(b−a)
3

|(a+ b)x|m (m+a+b)
3

(m+a+b)
3

|ax|m m−a
3

m−a
3

min |xM |m n(b−a)
3

n(b−a)
3

From the table, we see that κ(M) ≥ n(b−a)
3(b+n(b−a)) . This completes the proof.

Observation 3.2. Let a and b be positive integers with a < b, b− a ≡ 1 (mod 3), and k

be a non-negative integer. Set

N
(k)
1 =

{
k(2a+ b) +

2a+ b− 1

3
+ t1 : 0 ≤ t1 ≤

2a+ b− 1

3

}
,

N
(k)
2 =

{
k(2a+ b) +

4a+ 2b+ 1

3
+ t2 : 0 ≤ t2 ≤

4a+ 2b− 5

3

}
.
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Then N
(k)
1 , N

(k)
2 are pairwise disjoint sets and

⋃
k≥0N

(k)
1 ∪N (k)

2 = N \ {1, 2, . . . , (2a+ b−
4)/3}.

Theorem 3.3. Let M = {a, b, a+ b, n(b−a)}, where a < b, gcd(a, b) = 1, and (b−a) ≡ 1

(mod 3). Then for n ≥ (2a+ b− 1)/3,

µ(M) = κ(M) =
m− 1

3m
if n ∈ N (k)

1 , where m = 2a+ b

and

κ(M) ≥ m− (n− 2a− 3ak)

3m
if n ∈ N (k)

2 , where m = a+ n(b− a).

Proof. Case (i): n ∈ N (k)
1 . Let m = 2a + b. Then m ≡ 1 (mod 3). Since gcd(a,m) = 1,

suppose that x is an integer such that ax ≡ (m− 1)/3 (mod m). Then

(a+ b)x ≡ −ax ≡ −m− 1

3
(mod m) and bx = (a+ b)x− ax ≡ m+ 2

3
(mod m).

Since (b − a)x ≡ 1 (mod m), we have n(b − a)x ≡ n ≡ (m − 1)/3 + t1 (mod m). From

now on the proof is similar to that as in Corollary 2.6, so we omit the details. Thus, we

get

µ(M) ≥ κ(M) ≥ m− 1

3m
.

On the other hand, by Theorem 1.6, we have µ(M) ≤ µ({a, b, a+b}) = 2a+b−1
3(2a+b) . Therefore,

µ(M) = κ(M) =
2a+ b− 1

3(2a+ b)
=
m− 1

3m
.

Case (ii): n ∈ N (k)
2 . Let m = a+n(b−a). Let d = gcd(a,m). Then gcd(a/d,m/d) = 1.

Let x be an integer such that

a

d
x ≡ m/d− (n/d− 2a/d− 3ak/d)

3
(mod m/d).

Then, we have the following table.

|ax|m = |n(b− a)x|m m−(n−2a−3ak)
3

|bx|m m−(n−2a−3ak)
3 + (k + 1)(b− a)− b−a−1

3

|(a+ b)x|m m−(n−2a−3ak)
3 + n− k(2a+ b)− 4a+2b+1

3

min |xM |m if n ∈ N (k)
2

m−(n−2a−3ak)
3

From the table, we see that if n ∈ N (k)
2 , then κ(M) ≥ m−(n−2a−3ak)

3m . This completes

the proof.
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Observation 3.4. Let a and b be positive integers with a < b, b− a ≡ 2 (mod 3), and k

be a non-negative integer. Set

P
(k)
1 =

{
k(a+ 2b)− 2a+ b− 2

3
+ t1 : 0 ≤ t1 ≤ a+ b− 1

}
,

P
(k)
2 =

{
k(a+ 2b) +

a+ 2b+ 2

3
+ t2 : 0 ≤ t2 ≤

a+ 2b− 4

3

}
,

P
(k)
3 =

{
k(a+ 2b) +

2(a+ 2b) + 1

3
+ t3 : 0 ≤ t3 ≤

b− a− 2

3

}
.

Then P
(k)
1 , P

(k)
2 , P

(k)
3 are pairwise disjoint sets and

⋃
k≥0 P

(k)
1 ∪ P (k)

2 ∪ P (k)
3 ⊃ N.

Theorem 3.5. Let M = {a, b, a+ b, n(b−a)}, where a < b, gcd(a, b) = 1, and (b−a) ≡ 2

(mod 3). Set m = b+ n(b− a). Then

κ(M) ≥


m−(3k+1)b+n

3m if n ∈ P (k)
1 ,

m+(3k+1)(a+b)−(2n+1)
3m if n ∈ P (k)

2 ∪ P (k)
3 .

Proof. Let d = gcd(b,m). Then gcd(b/d,m/d) = 1. Let x be an integer such that

b

d
x ≡ m/d− (3kb/d+ b/d− n/d)

3
(mod m/d).

Then, we have the following table.

|bx|m = |n(b− a)x|m m−(3bk+b−n)
3

|ax|m m−(3bk+b−n)
3 + k(b− a) + b−a+1

3

|(a+ b)x|m m−(3bk+b−n)
3 − n+ k(a+ 2b) + a+2b−1

3

min |xM |m if n ∈ P (k)
1

m−(3bk+b−n)
3

min |xM |m if n ∈ P (k)
2 ∪ P (k)

3
m−(3bk+b−n)

3 − n+ k(a+ 2b) + a+2b−1
3

From the table, we see that if n ∈ P
(k)
1 , then κ(M) ≥ m−(3kb+b−n)

3m ; and if n ∈
P

(k)
2 ∪ P (k)

3 , then κ(M) ≥ m−(3kb+b−n)+(3k+1)(a+2b)−3n−1
3m . This completes the proof.

Corollary 3.6. Let M = {a, b, a+b, n(b−a)}, where a < b, gcd(a, b) = 1, and (b−a) ≡ 2

(mod 3). Then for n ∈ P (k)
2 and m = a+ 2b, we have

µ(M) = κ(M) =
m− 1

3m
.

Proof. Since gcd(b,m) = 1, suppose that x is an integer such that

bx ≡ m− 1

3
(mod m).

The rest of the congruences can be written exactly as in Corollary 2.6, and hence the proof

similarly follows.
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4. Various coloring parameters of G(Z,M)

In this section, we investigate and compare several coloring parameters of G(Z,M) for

M = {a, b, a + b, n(b − a)} and M = {a, b, b − a, n(a + b)}. For n = 1, Liu and Zhu [17,

Corollary 5.2] have shown that if a and b are of distinct parity, then χf (G(Z,M)) =

χc(G(Z,M)) = χ(G(Z,M)) = 4; and if a and b are both odd, then χ(G(Z,M)) = 5. For

n ≥ 2, Barajas and Serra [1, Theorem 3] proved that χ(G(Z,M)) ≤ 4.

In the next lemma, we find χ(G(Z,M)) for both of these families for all n ≥ 2.

Consequently, we are able to completely determine the chromatic numbers of these two

families (see Theorem 4.2). To make the discussion easier in the lemma, we change the

problem into three families M = {a, b, a + b, n(b − a)}, M = {a, b, a + b, n(2a + b)}, and

M = {a, b, a + b, n(a + 2b)}. As {a, b, b − a} can be written as {a, b′, a + b′} by letting

b′ = b− a. If b > 2a, then n(a+ b) = n(2a+ b′); if a < b < 2a, then n(a+ b) = n(a′ + 2b′)

by letting b′ = a and a′ = b − a. The benefit of changing into these families is that we

have now the first three elements same in all the three families, which helps in combining

the discussion of χ(G(Z,M)). Now, we state and prove the lemma.

Lemma 4.1. Let M = {a, b, a + b, n(b − a)} or M = {a, b, a + b, n(2a + b)} or M =

{a, b, a+ b, n(a+ 2b)} with a < b, gcd(a, b) = 1, and n ≥ 2. Then χ(G(Z,M)) = 4.

Proof. We consider two cases.

Case (i): a ≡ b (mod 3). Using Theorem 1.6, we have µ({a, b, a+ b}) = 1/3. Further-

more, since each of b− a, 2a+ b, and a+ 2b is a multiple of 3 and none of a, b or a+ b is

a multiple of 3, we have µ({a, b, a+ b}) (= 1/3) > µ(M). Hence, we get

3 =
1

µ({a, b, a+ b})
<

1

µ(M)
= χf (G(Z,M)) ≤ χc(G(Z,M)) ≤ χ(G(Z,M)) ≤ 4,

which implies χ(G(Z,M)) = 4.

Case (ii): b− a 6≡ 0 (mod 3). Using again Theorem 1.6, we have

3 <
1

µ({a, b, a+ b})
≤ 1

µ(M)
= χf (G(Z,M)) ≤ χc(G(Z,M)) ≤ χ(G(Z,M)) ≤ 4,

which implies χ(G(Z,M)) = 4.

Using Lemma 4.1 and the corollary (for n = 1) of Liu and Zhu [17, Corollary 5.2], we

obtain the complete solution of χ(G(Z,M)) for all n ≥ 1.

Theorem 4.2. Let M = {a, b, a + b, n(b − a)} or M = {a, b, b − a, n(a + b)} with a < b

and gcd(a, b) = 1. Then

χ(G(Z,M)) =

5 if n = 1 and a ≡ b ≡ 1 (mod 2),

4 otherwise.
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In the following corollary, we observe that χc(G(Z,M)) < χ(G(Z,M)) for infinitely

many sets in both the families.

Corollary 4.3. If M = {a, b, a+ b, n(b− a)} or M = {a, b, b− a, n(a+ b)}, then there are

infinitely many sets of these families (i.e., for infinitely many n) with

χc(G(Z,M)) < χ(G(Z,M)).

Proof. Applying Theorems 2.1, 2.3, and 2.5 for M = {a, b, a + b, n(b − a)}; and Theo-

rems 3.1, 3.3, and 3.5 forM = {a, b, b−a, n(a+b)}, we observe that 1/κ(M) < χ(G(Z,M)).

Further, we always have χc(G(Z,M)) ≤ min{1/κ(M), χ(G(Z,M))} for any distance graph

G(Z,M). Hence, we get χc(G(Z,M)) < χ(G(Z,M)).

5. Conclusion

In this concluding remark, we mention the cases where we believe that the given lower

bounds for κ(M) are sharp.

Case Condition for the given lower bound for κ(M) to be sharp

Theorem 2.1 b > 2a

Theorem 2.3 n > n0 for some n0 ≥ 2b−a−2
3

Theorem 2.5
n ∈ N (l)

1 ;

κ(M) = 2b−a−1
3(2b−a) if n ∈ N (l)

2 (proved for b > 2a in Corollary 2.6)

Theorem 3.1 n > n0 for some positive integer n0

Theorem 3.3 n ∈ N (k)
1

Theorem 3.5
n ∈ P (k)

1 for k > k0 for some positive integer k0;

κ(M) = a+2b−1
3(a+2b) if n ∈ P (k)

2 (proved in Corollary 3.6)

Further, we notice that these results for κ(M) align with the known results when

n = 1 [17] only in Theorem 2.1 for b > 2a.
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