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Stratifying Lie Strata of Hilbert Modular Varieties

Chia-Fu Yu, Ching-Li Chai* and Frans Oort

Abstract. In this survey we explain a stratification of a Hilbert modular variety ME

in characteristic p > 0 attached to a totally real number field E. This stratification

refines the stratification of ME by Lie type, and has the property that many strata

are central leaves in ME , called distinguished central leaves.

In the case when the totally real field E is unramified above p, this stratification

reduces to the stratification of ME by α-type first introduced by Goren and Oort and

studied by Yu, and coincides with the EO stratification on ME . Moreover it is known

that every non-supersingular α-stratum of ME is irreducible. To treat the general

case where E may be ramified above p, a key ingredient is the notion of congruity,

a p-adic numerical invariant for abelian varieties with real multiplication by OE in

characteristic p. For every Lie stratum Ne on ME , this new invariant defines a finite

number of locally closed subsets Qc(Ne), and Ne is the disjoint union of these Lie-

congruity strata Qc(Ne) in Ne.

The incidence relation between the Lie-congruity strata enables one to show that

the prime-to-p Hecke correspondences operate transitively on the set of all irreducible

components of any distinguished central leaf in ME , see Theorems 7.1, 8.1 and 9.1.

The Hecke transitivity implies, according to the method of prime-to-p monodromy of

Hecke invariant subvarieties, that every non-supersingular distinguished central leaf

in a Hilbert modular variety ME is irreducible. The last irreducibility result is a key

ingredient of the proof the Hecke orbit conjecture for Siegel modular varieties.

1. Introduction

Moduli spaces in characteristic p > 0 have natural stratifications coming from p-adic

invariants of the geometric objects they classify. For instance, the moduli space Ag,1,n over

Fp which classifies g-dimensional principally polarized abelian varieties in characteristic

p with symplectic level-n structure has several stratifications; e.g., the stratifications by

the Newton polygon (respectively the p-rank, respectively the a-number) of an abelian

variety. These stratifications are helpful in understanding the geometry and arithmetic of

moduli spaces.
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This article is a survey of the congruity stratification of Lie strata in a Hilbert modular

variety ME over Fp attached to a totally real number field E. We give complete definitions

and statements of results but no proofs, so “summary of results” is perhaps more befitting

than “survey”. Detailed proofs can be found in [9, Chapter 4]. We have included a long

introduction, together with preliminary materials in Sections 2–4, to make this article more

accessible. The actual summary itself in Sections 5–9, which inevitably is quite technical,

occupies about a third of the total number of pages. The last Section 10, consists of a list

of related questions.

Throughout this paper p is a fixed prime number, E is a totally real number field.

1.1. Motivation: the Hecke orbit conjecture for Siegel modular varieties

This paper was motivated by the Hecke orbit problem for the Siegel modular variety

Ag,1,n over Fp, with n ≥ 3 and gcd(p, n) = 1. For every Fp-point x of Ag,1,n which

corresponds to a principally polarized abelian variety with symplectic level-n structure

(Ax, λx, ηx), the central leaf CAg,1,n(x) is the locally closed smooth subscheme of Ag,1,n

over Fp, characterized by

CAg,1,n(x)(Fp) =
{
y ∈ Ag,1,n(Fp) | (Ay, λy)[p∞] ∼= (Ax, λx)[p∞]

}
,

see [30]. In other words for every geometric point y ∈ Ag,1,n(Fp), y lies in the central leaf

CAg,1,n(x) if and only if the principally polarized p-divisible group (Ay, λy)[p
∞] attached

to y is isomorphic to (Ax, λx)[p∞].

On the other hand, the prime-to-pHecke orbit of x is the countable subsetH
Sp2g(A(p)

f )
(x)

of Ag,1,n(Fp), consisting of all points [(Az, λz, ηz)] ∈ Ag,1,n(Fp) such that there exists a

prime-to-p quasi-isogeny α : Az 99K Ax such that α∗(λx) = λz and α∗(ηz) = ηx.

The Hecke orbit conjecture for Ag,1,n predicts that

the prime-to-p Hecke orbit H
Sp2g(A(p)

f )
(x) is Zariski dense in the central leaf CAg,1,n(x).

A complete proof will appear in [9, Chapter 8]; see also [5], [9, 8.1], [11] for outlines of the

proof. Below is a brief description of how Hilbert modular varieties enter the proof.

A starting point of the proof of the Hecke orbit conjecture for Siegel modular varieties

is Tate’s theorem that every abelian variety over a finite field admits sufficiently many

complex multiplications. This implies the existence of a Hecke-equivariant correspondence

from a product of Hilbert modular varieties to the Siegel modular variety, called the

“Hilbert trick”.

For every x ∈ Ag,1,n(Fp), there exists a product of totally real number fields

E1, . . . , Er with
∑r

i=1[Ei : Q] = g, central leaves CMEi
(yi) in Hilbert mod-
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ular varieties MEi, i = 1, . . . , r, and a finite-to-one Hecke-equivariant cor-

respondence f : CME1
(y1) × · · · × CMEr

(yr) 99K Ag,1,n, such that the image

under f of an irreducible component of CME1
(y1)× · · · × CMEr

(yr) is in finite

isogeny correspondence with a locally closed subvariety of the Zariski closure

of H
Sp2g(A(p)

f )
(x) in CAg,1,n(x).

In the above statement we have used the fact that the Zariski closure in CMEi
(yi) of the

prime-to-p Hecke orbit of yi, a countable subset of CMEi
(yi) is both open and closed in the

central leaf CMEi
(yi). See Subsections 1.2 and 1.3 for the definition of Hilbert modular

varieties MEi and central leaves in them.

With the help of the action of the local stabilizer subgroup at a supersingular point

of the Zariski closure of the Hecke orbit H
Sp2g(A(p)

f )
(x) in Ag,1,n, we may further assume

that there is only one prime above p in OEi for each i = 1, . . . , r.

Changing the yi’s by Ei-isogeny, we may also assume that each of the central leaves

CMEi
(yi) in MEi is distinguished ; see Subsection 1.7. The critical information which comes

from the congruity stratification of the Lie strata is Corollary 9.4:

Every non-supersingular distinguished central leaf in MEi is irreducible.

It is known that every central leaf in MEi contains a robust hypersymmetric point which

corresponds to an abelian variety Bi over Fp with at most two slopes, such that the natural

map End(Bi)⊗Z Qp → End(Bi[p
∞])⊗Zp Qp is an isomorphism. So we conclude that the

Zariski closure in CAg,1,n(x) of the prime-to-p Hecke orbit H
Sp2g(A(p)

f )
(x) contains a robust

hypersymmetric point; cf. [9, Chapter 8] and [10].

With a hypersymmetric point at hand, we are in a position to apply the local rigidity

of p-divisible groups [7], and the density of H
Sp2g(A(p)

f )
(x) in CAg,1,n(x) follows.

To recapitulate: the irreducibility of non-supersingular distinguished central leaves in

a Hilbert modular variety ME implies the existence of a robust hypersymmetric point

in the Zariski closure of a Hecke orbit H
Sp2g(A(p)

f )
(x) in the central leaf CAg,1,n(x). This

irreducibility result is non-trivial—we don’t know of any proof by “pure thought”.

In Subsections 1.2–1.8 below we give a very brief introduction to Lie strata and Lie-

congruity strata on Hilbert modular varieties, as a tour map for Sections 2–9.

1.2. Hilbert modular varieties

Given an element [L̃ ] of the strict class group C̃lE of E, a positive integer n ≥ 3 prime

to p, and a generator δ of the free rank-one (OE/nOE)-module(
L ∨ ⊗OE D

−1
E/Q/nL ∨ ⊗OE D

−1
E/Q

)
⊗(Z/nZ) lµ.. n(Fp),
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we have an associated Hilbert modular variety M L̃
E,n,δ,Fp

over Fp, which classifies principally

L̃ -polarized abelian schemes of relative dimension g over Fp-schemes, with real multipli-

cation by OE with symplectic level-n structures. See Subsection 2.1, Definitions 2.2, 2.3

and 2.4 for the precise definitions.

The Hilbert modular variety M L̃
E,n,δ,Fp

is a reduced irreducible normal g-dimensional

scheme over Fp, and is a local complete intersection. It is smooth over Fp if and only if

E is unramified above p. When E is ramified above p, the locus in M L̃
E,n,δ,Fp

consisting

of singular points is a closed subset of M L̃
E,n,δ,Fp

all of whose irreducible components have

codimension 2 in M L̃
E,n,δ,Fp

.

Since geometric properties of the modular variety M L̃
E,n,δ,Fp

are all independent of the

parameters (L̃ , n, δ), we will shorten M L̃
E,n,δ,Fp

to ME if no confusion is likely.

Remark. Strictly speaking the Hilbert modular variety M L̃
E,n,δ,Fp

are not a special cases

of PEL type modular varieties as defined in [23] unless the element [L̃ ] is 0 in the strict

class group C̃lE . Still, the modular varieties M L̃
E,n,δ,Fp

should be regarded as analogs of

the Siegel moduli space Ag,1,n of g-dimensional principally polarized abelian varieties with

level-n structures; cf. Remark 2.2.3.

We will not discuss those moduli spaces which classify g-dimensional OE-linear abelian

varieties in characteristic p together with OE-linear polarizations of some fixed degree

which is divisible by p.

1.3. Central leaves in ME

For an Fp-point x of a Hilbert modular variety ME which corresponds to an abelian variety

with real multiplication by OE with level-n-structure (Ax, λx, ιx, ηx), the central leaf in

ME passing through x is, by definition, the locally closed smooth subvariety of ME over

Fp such that

CME
(x)(Fp) =

{
y ∈ME(Fp) | (Ay, λy, ιy)[p∞] ∼= (Ax, λx, ιx)[p∞]

}
.

Certain central leaves in Hilbert modular varieties ME , called distinguished central

leaves, are irreducible. Every distinguished central leaf in ME is a Lie-congruity stratum

of ME . See Subsection 1.6 for a short description of Lie-congruity strata, and Defini-

tions 6.2.1 and 6.3.5 for the definition of distinguished central leaves. Every central leaf

in ME is in a finite isogeny correspondence with a distinguished central leaf. As already

mentioned, the proof of the Hecke orbit conjecture in [9, Chapter 8] depends heavily on

the fact that every non-supersingular distinguished central leaf in ME is irreducible.
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1.4. The Lie stratification of ME

Deligne and Pappas [13] introduced a stratification of ME by the isomorphism classes of

Lie(Ax) as vector spaces with actions by OE/pOE , where x runs through all geometric

points of ME , and Lie(Ax) is the Lie algebra of the fiber at x of the universal abelian

scheme with real multiplication by OE over ME . Under this stratification by Lie type, or

the Lie stratification of ME , the set underlying ME is the disjoint union of Lie strata:

ME =
⊔
e∈T sd

E
Ne. Here Ne is the locally closed subset of ME such that a point x of ME is

in Ne if and only if the isomorphism class of the (OE/pOE)-module Lie(Ax) corresponds

to the element e of the indexing set T sd
E . Moreover each Lie stratum Ne with the reduced

scheme structure is a smooth locally closed subscheme of ME , and the Zariski closure of

Ne is a local complete intersection and is normal.

The indexing set T sd
E for the Lie stratification of ME has a natural structure as a

finite poset (partially ordered set). The poset T sd
E is ranked, in the sense that all maximal

chains between any two elements of T sd
E have the same length. Moreover it has a unique

maximal element and also a unique minimal element. This partial ordering on T sd
E is

compatible with the incidence relation of Lie strata, in the following sense: for any two

elements e1, e2 ∈ T sd
E , the Lie stratum Ne1 is contained in the Zariski closure of Ne2 if

and only if e1 � e2. The Lie stratum corresponding to the maximal element in T sd
E is

the smooth locus M sm
E , consisting of all smooth points of ME . The dimension of every

irreducible component of the minimal Lie stratum Nmin, indexed by the minimal element

esd
E,min of T sd

E , is
∑

ev odd fv. The sum here runs through all places v of E above p whose

ramification index ev is odd, and fv := [κv : Fp], the degree of the residue field κv of OEv .

1.5. The α-stratification of ME when E is unramified above p

In this subsection we assume that the totally real field E is unramified above p. In this

case the poset T sd
E is a singleton, the Hilbert modular variety ME over Fp is smooth, and

the Lie stratification of ME is trivial.

(i) The stratification of the Hilbert modular variety ME by the isomorphism classes of

the maximal α-subgroup scheme of Ax[p] with action by OE/pOE attached to geo-

metric points [(Ax, λx, ιx, ηx)] of ME was studied in [14], called the α-stratification.

(ii) One of the main results of [14] says that if k ⊇ Fp is an algebraically closed field

and x, y are k-points of ME such that the maximal (OE/pOE)-linear α-subgroup

schemes of Ax[p] and Ay[p] are isomorphic, then there exists an (OE/pOE)-linear

isomorphism from Ax[p] to Ay[p] which respects the principal polarizations. In

other words, the stratification of ME by α-types is a natural generalization of the

EO stratification of Siegel modular varieties Ag,1,n defined in [29].
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(iii) The α-stratification of ME has a unique dense open stratum, which coincides with

the ordinary locus M ord
E in ME , i.e., the open subset M ord

E of ME whose points

correspond to ordinary abelian varieties. The complement of M ord
E in ME is a

smooth divisor D with normal crossings, and the α-stratification coincides with the

stratification of ME associated to the divisor D. Moreover, some of the α-strata are

actually central leaves in ME .

The congruity stratification of Lie strata of Hilbert modular varieties ME for pos-

sibly ramified totally real fields E, described in Subsections 1.6–1.8 below, extends the

α-stratification for Hilbert modular varieties attached to totally real fields unramified

above p considered in this subsection: if E is unramified above p, then ME has a single

Lie stratum, and the congruity stratification of this unique Lie stratum coincides with the

α-stratification.

1.6. The congruity stratification of Lie strata of ME

A numerical invariant c(Ax) with values in a finite poset τE , for g-dimensional principally

L̃ -polarized abelian varieties (Ax, λx, ιx) with real multiplication byOE attached to points

x of ME , was defined in [40, 2.4]. This invariant, called congruity in [9, Chapter 4], is

a refinement of the α-type of Ax, the invariant which defines the α-stratification. The

invariant c(Ax) gives rise to a stratification on every Lie stratum Ne of ME : we have

Ne =
⊔
cQc(Ne), where Qc(Ne) is the locally closed subset of Ne, consisting of points of

Ne whose congruity is c. Below are some properties of the stratification of Ne by congruity,

for every e ∈ T sd
E .

(i) The finite poset τE is ranked, and has a unique maximal element, denoted by 0.

(ii) Each stratum Qc(Ne) is a smooth locally closed subscheme of Ne.

(iii) The Zariski closure in Ne of Qc(Ne), is equal to Q�c(Ne) :=
⊔
c′�cQc′(Ne), which

is smooth over Fp, for every c ∈ τE .

(iv) The stratum Q0(Ne) is a dense open subscheme of Ne.

(v) The complement of Q0(Ne) in Ne, if non-empty, is a divisor in Ne with normal

crossings.

We call a subset of ME of the form Qc(Ne) a Lie-congruity stratum of ME .

A warning is in order, that the incidence relation between Lie-congruity strata is not

well understood yet. For instance we don’t know whether the Zariski closure
(
Qc(Ne)

)zar
in

ME of Qc(Ne) is a union of Lie-congruity strata, for every Lie-congruity stratum Qc(Ne);
see Question 10.1.
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The Lie type and the congruity of an L̃ -polarized abelian variety (Ax, λx, ιx) in charac-

teristic p depend only on the polarized OE-linear p-divisible group (Ax[p∞], λx[p∞], ιx[p∞])

associated to (Ax, λx, ιx). Since the isomorphism class of (Ax[p∞], λx[p∞], ιx[p∞]) does

not change under prime-to-p Hecke correspondences associated to SL2(A(p)
f ), every Lie-

congruity stratum Qc(Ne) is stable under all prime-to-p Hecke correspondences on ME .

More information on prime-to-p Hecke symmetries on Siegel and Hilbert modular varieties

in characteristic p can be found in [4, 42].

1.7. Distinguished Lie-congruity strata

We will define a subset of the set of all Lie-congruity strata of ME , called distinguished

Lie-congruity strata; see Definition 5.6. They have two useful properties:

(a) For any algebraically closed field k ⊇ Fp and any two k-points x1, x2 on a distin-

guished Lie-congruity stratum, there exists an OE-linear isomorphism from Ax1 [p∞]

to Ax2 [p∞] which respects the principal OE-linear polarizations induced by λx1 and

λx2 .

(b) For any algebraically closed field k ⊇ Fp and any k-point x ∈ ME(k), there exists

a k-point y in a distinguished Lie-congruity stratum, and an E-linear quasi-isogeny

from Ay[p
∞] to Ax[p∞] which respects the principal OE-linear polarizations.

Property (a) says that each distinguished Lie-congruity stratum is a central leaf of the

Hilbert modular variety ME , consisting of all points in ME with a fixed geometric iso-

morphism class of principally polarized OE ⊗Z Zp-linear p-divisible groups; these central

leaves are said to be distinguished. Property (b) implies that every central leaf on ME is

in isogeny correspondence with a distinguished central leaf.

1.8. Specialization from distinguished central leaves to E-minimal points

A key result on the geometry of distinguished central leaves on a Hilbert modular variety

ME is Theorem 9.1, which asserts that the Zariski closure of every irreducible component

of a distinguished Lie-congruity stratum on ME contains an E-minimal point, i.e., an

Fp-point x0 ∈ Nmin(Fp) whose underlying abelian variety Ax0 is superspecial. In other

words Ax0 is isomorphic to the product of [E : Q] supersingular elliptic curves over Fp.
Theorem 9.1 follows from the combination of Theorems 7.1 and 8.1. Theorem 7.1 says

that the Zariski closure of every irreducible component of a distinguished Lie-congruity

stratum which is not contained in the minimal Lie stratum Nmin contains an irreducible

component of a distinguished congruity stratum in Nmin. Its proof is intricate; see Subsec-

tion 7.4 for an impressionistic sketch. Theorem 8.1 says that the Zariski closure of every
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irreducible component of a congruity stratum in the minimal Lie stratum Nmin contains

an E-minimal point.

A consequence of Theorem 9.1 is the fact that the prime-to-p Hecke correspondences

operate transitively on the set of all irreducible components of any distinguished central

leaf Qc(Ne) of ME ; see Corollary 9.3. This Hecke transitivity statement and the method of

prime-to-p monodromy [6, 4.4] imply the irreducibility of every non-supersingular distin-

guished central leaf in ME ; see Corollary 9.4. The last irreducibility result in Corollary 9.4

is a crucial ingredient of the proof of the Hecke orbit conjecture for Siegel modular varieties

in characteristic p; see Remark 9.6. This connection to the Hecke orbit problem was the

main motivation of [40].

The congruity stratification of a Lie stratum of a Hilbert modular variety was first

defined in [40, 2.4]; a succinct proof of Theorem 7.1 is in [40, 3.3]. The observation

that certain Lie-congruity strata are actually central leaves in Hilbert modular varieties

appeared in [12, Section 6], [40, 2.5] and [40, 2.8]. The readers are referred to [9, Chapter 4],

which is an expanded version of [40], for more information and proofs.

1.9.

The length of this article is due partly to a long Section 3 on the definitions of type spaces

attached to a totally real number field. Readers who are familiar with basic properties of

Hilbert modular varieties are urged to go directly to Section 5, and consult Section 3 only

when necessary.

The rest of this article is organized as follows. In Section 2 we recall the definition of

Hilbert modular varieties. In Section 3 we define indexing posets for the Lie stratification of

ME and for the congruity stratification on Lie strata of ME . The stratification of a Hilbert

modular variety ME by Lie type and its basic properties are reviewed in Section 4. The

congruity invariant is defined in Section 5. In Section 6 we explain some basic properties

of the congruity stratification of a Lie stratum, including the definition of distinguished

Lie congruity strata. The main results on distinguished central leaves, Theorems 7.1 and

8.1, are explained in Sections 7 and 8 respectively. In Section 9 we explain how these two

theorems imply the irreducibility of non-supersingular central leaves in Hilbert modular

varieties. In Section 10 we discuss some questions on stratifications of ME .

2. Hilbert modular varieties

We fix a totally real field E, a prime number p, and an integer n ∈ Z with n ≥ 3 which

is relatively prime to p. Let Z[ζn] := Z[T ]/(Φn(T )), where Φn(T ) is the n-th cyclotomic

polynomial. Let L be an invertible OE-module, and let L +
R be a notion of positivity for
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L , i.e., a choice of a connected component of

(LR)× := IsomOE⊗QR

(
OE⊗QR,L ⊗Q R

)
.

Let L̃ := (L ,L +
R ). Let

δ ∈
(
L ∨ ⊗OE D

−1
E/Q/nL ∨ ⊗OE D

−1
E/Q

)
⊗(Z/nZ) lµ.. n(Z[ζn, 1/n])

be a generator of the free (OE/nOE)-module(
L ∨ ⊗OE D

−1
E/Q/nL ∨ ⊗OE D

−1
E/Q

)
⊗(Z/nZ) lµ.. n(Z[ζn, 1/n]),

where L ∨ := HomOE (L ,OE), D−1
E/Q is the inverse different of E/Q, and lµ.. n(Z[ζn, 1/n])

is the cyclic subgroup of Z[ζn, 1/n]× of order n generated by the element ζn ∈ Z[ζn, 1/n]×.

In this section we recall the definition of a Hilbert moduli scheme M L̃
E,n,δ

over a number

ring Z[1/n, ζn] which classifies principally L̃ -polarized abelian schemes with real multipli-

cation by OE with δ-symplectic level-n structures. Abelian varieties with real multiplica-

tion by OE over C are uniformized as quotients of OE⊗QC by discrete rank-two projective

OE-submodules of OE ⊗Q C; see Remark 2.2.1(c)(iii). This leads to the uniformization of

M L̃
E,n,δ

×Spec(Z[n,ζn]) Spec(C) and the interpretation of Hilbert modular forms as sections

of equivariant line bundles on Hilbert modular varieties. See [35, p. 11] for an informative

discussion on the history of Hilbert’s modular group and modular functions, including

the first papers [2,3] on Hilbert modular forms by Blumenthal, and the correction [26] by

Maass of an error in [2, 3].

After this section, we will consider only Hilbert modular varieties over Fp, and the

notation M L̃
E,n,δ,Fp

for a geometric fiber of M L̃
E,n,δ

in characteristic p will be shortened to

ME .

2.1. Abelian varieties with real multiplication

2.1.1. Let S be a scheme. An abelian scheme with real multiplication by OE over S is a

pair (A → S, ι), where A → S is an abelian scheme of relative dimension [E : Q], and

ι : OE → EndS(A) is a ring homomorphism. Note that ι is injective because EndS(A) is

torsion-free.

2.1.2. Let (A, ι) be an abelian variety with real multiplication by OE over a field K.

(a) Denote by Homsym
OE (A,At) the group of all K-homomorphisms h : A → At from

A to the dual abelian variety At such that ht = h under the canonical identification of

A with (At)t. The abelian group Homsym
OE (A,At) has a natural structure as a projective

OE-module of rank one.
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(b) The (E ⊗Q R)×-torsor

IsomE⊗QR
(
E ⊗Q R,Homsym

OE (A,At)⊗Q R
)

has a connected component, denoted by Homsym
OE (A,At)+

R , which is uniquely determined

by the property that every element of Homsym
OE (A,At)+

R ∩Homsym
OE (A,At) is a polarization

of the abelian variety A.

Remark. The pair (Homsym
OE (A,At),Homsym

OE (A,At)+
R ) attached to an abelian variety (A, ι)

with real multiplication by OE is an invertible OE-module with a notion of positivity. The

set of all isomorphism classes of invertible OE-modules with notions of positivity is the

strict class group C̃lE of E. Thus the image of the pair (Homsym
OE (A,At),Homsym

OE (A,At)+
R )

in C̃lE is a discrete invariant of (A, ι).

Definition 2.2. Recall that L̃ = (L ,L +
R ) is an invertible OE-module with a notion of

positivity. Let (A→ S, ι) be an abelian scheme over S with real multiplication by OE .

(1) An L̃ -polarization of (A, ι) is an OE-homomorphism λ : L → Homsym
OE ,S(A,At) such

that for every point s ∈ S, the map λs : L → Homsym
OE (As, A

t
s) is an isomorphism

and sends every element of L ∩L +
R to an OE-linear polarization of As.

(2) An L̃ -polarization λ : L → Homsym
S (A,At) is said to be principal if the natural

homomorphism

L ⊗OE A→ At

is an isomorphism.

Here L ⊗OE A is the tensor product of the OE-linear fppf sheaf A over S with the

projective OE-module L , which is representable by an abelian scheme over S, again

denoted by L ⊗OE A.

Remark 2.2.1. Let (A, ι) be an abelian variety A with real multiplication by OE over a

field K.

(a) The natural map

αA : Homsym
OE (A,At)⊗OE A→ At

is an isogeny. This isogeny αA is an isomorphism if and only if there exists a principal

(Homsym
OE (A,At),Homsym

OE (A,At)+
R )-polarization on (A, ι).

(b) If the OE-linear abelian variety (A,α) admits an OE-linear principal polarization

µ : A → At, then the invariant [(Homsym
OE (A,At),Homsym

OE (A,At)+
R )] of (A, ι) is the

zero element of the strict class group C̃lE . So the invariant [(Homsym
OE (A,At),

Homsym
OE (A,At)+

R )] is an obstruction for the existence of an OE-linear principal po-

larization on (A, ι).
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(c) Suppose that K is algebraically closed.

(i) If char(K) = 0 then the isogeny αA : Homsym
OE (A,At)⊗OE A→ At is an isomor-

phism.

(ii) If K = C, then H1(A(C),Z) is a projective OE-module of rank two, and the

invertible OE-module Homsym
OE (A,At) is isomorphic to

HomOE

( 2∧
OE

H1(A(C),Z),OE
)
⊗OE D

−1
E/Q,

where D−1
E/Q is the inverse different of E/Q.

It is a fact that for every discrete rank-two OE-submodule Q of E ⊗Q C, there

exists an abelian variety B with real multiplication by OE over C such that

B(C) is OE-linearly isomorphic to (E ⊗Q C)/Q.

(iii) If char(K) = p > 0, then Ker(αA) is a finite group scheme over K whose order

is a power of p. Moreover there exists an abelian variety (A1, ι1) with real

multiplication by OE over K, a principal OE-linear polarization µ : A1 → At1,

and an OE-linear isogeny (A, ι)→ (A1, ι1) over K.

Remark 2.2.2. There are examples (A, ι) of abelian varieties with real multiplication by

OE such that the isogeny αA is not an isomorphism, and can be constructed as follows.

Suppose that there exists a finite place v of OE above p with residue field degree fv > 1.

Then there exists an algebraically closed field K of characteristic p and an abelian variety

(A1, ι1) over K with real multiplication by OE whose Lie type is not self-dual. It follows

from Lemmas 4.2.2 and 4.2.3 that the isogeny αA : Homsym
OE (A1, A

t
1)⊗OE A1 → At1 is not

an isomorphism.

Remark 2.2.3. Let (A, λ, ι) be a principally L̃ -polarized abelian scheme with real mul-

tiplication over a scheme S. As explained in Remark 2.2.1(a), there exists an OE-linear

principal polarization on A if and only if the image of L̃ in the strict class group C̃lE is

0. If the element [L̃ ] ∈ C̃lE of L̃ is nonzero, then there is no OE-linear principal polar-

ization A→ At, but there exist (many) separable OE-linear polarizations on A: by weak

approximation for L̃ , every element of L ∩L +
R whose image in L /pL is a generator of

the cyclic (OE/pOE)-module L /pL corresponds to an OE-linear separable polarization

of (A, ι).

Definition 2.3. (a) Recall that δ is a free generator of the (OE/nOE)-module

(
L ∨ ⊗D−1

E/Q/nL ∨ ⊗D−1
E/Q

)
⊗(Z/nZ) lµ.. n(Z[ζn, 1/n]).



1318 Chia-Fu Yu, Ching-Li Chai and Frans Oort

For each element l ∈ L , denote by

〈 · , · 〉n,δ,l : (OE/nOE)⊕2
S → lµ.. n,S

the alternating pairing on the free module (OE/nOE)⊕2
S over the sheaf of rings (OE/nOE)S

on Set attached to the free (OE/nOE)-module (OE/nOE)⊕2 with generators e1, e2, which

is equal to the composition of the canonical (OE/nOE)S-linear alternating pairing

(OE/nOE)⊕2
S →

2∧
(OE/nOE)

(OE/nOE)⊕2
S

with the homomorphism of group schemes

2∧
(OE/nOE)

(OE/nOE)⊕2
S → lµ.. n,S , a · e1 ∧ e2 7→ (TrE/Q⊗1)(l · δ · a)

for all local sections a of (OE/nOE)S , where

TrE/Q⊗1: (D−1
E/Q/nD

−1
E/Q)⊗(Z/nZ) lµ.. n,S → lµ.. n,S

is the homomorphism of group schemes induced by the (E/Q)-trace.

(b) Let S be a scheme over Z[1/n, ζn]. Let (A → S, ι) be an abelian scheme over S

with real multiplication by OE , and let λ be a principal L̃ -polarization of (A, ι).

A δ-symplectic level-n structure on (A, λ, ι) is an OE-linear isomorphism

(OE/nOE)2
S

η

'
// A[n]

such that for every l ∈ L , the diagram

(OE/nOE)2
S ×S (OE/nOE)2

S

η×η //

〈 · , · 〉n,δ,l
��

A[n]×S A[n]

1A×λ(l)

��

lµ.. n,S A[n]×S At[n]
〈 · , · 〉n,Aoo

commutes, where

〈 · , · 〉n,A : A[n]×S At[n]→ lµ.. n,S
is the Weil pairing for A[n].

Definition 2.4. (a) Denote by

M L̃
E,n,δ

: (Z[1/n, ζn]-Schemes)→ (Sets)

the functor from the category of Z[1/n, ζn]-schemes to the category of sets as follows. For

every Z[1/n, ζn]-scheme S, M L̃
E,n,δ

(S) is the set of all isomorphism classes of quadruples
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(A → S, λ, ι, η), where (A → S, ι) is an abelian scheme with real multiplication by OE
over S, λ is a principal L̃ -polarization of (A, ι), and η is a δ-symplectic level-n structure.

(b) Pick and fix a ring homomorphism from Z[1/n, ζn] an algebraic closure of Fp.
Denote by M L̃

E,n,δ,Fp
the restriction of the moduli functor M L̃

E,n,δ
to the category of Fp-

schemes.

Proposition 2.5. (a) The functor M L̃
E,n,δ

is representable by a scheme of finite type

over Z[1/n, ζn], again denoted by M L̃
E,n,δ

. The structural morphism M L̃
E,n,δ

→
Spec(Z[1/n, ζn]) is faithfully flat, normal and is a relative complete intersection.

(b) The geometric fiber M L̃
E,n,δ,Fp

is normal and irreducible. It is smooth over Fp if and

only if E/Q is unramified above p.

(c) Suppose that E/Q is ramified above p. Then the smooth locus M L̃ ,sm

E,n,δ,Fp
of M L̃

E,n,δ,Fp

is a dense open subscheme of M L̃
E,n,δ,Fp

. The singular locus

Vsing := M L̃
E,n,δ,Fp

rM L̃ ,sm

E,n,δ,Fp

with the reduced structure is a local complete intersection, and every irreducible com-

ponent of Vsing is of codimension 2 in M L̃
E,n,δ

.

Proposition 2.5 is a consequence of [33, Theorem 5.1] and [13, Theorem 3.3]. Here we

explain the irreducibility statement (b). We have an arithmetic toroidal compactification

M L̃ ,Σ

E,n,δ
of M L̃

E,n,δ
over Z[1/n, ζn] which is again a complete intersection over Z[1/n, ζn]. It

follows that the geometric fiber M L̃ ,Σ

E,n,δ,Fp
is normal. Since the geometric generic fiber of

M L̃
E,n,δ

is geometrically irreducible by complex uniformization, so is the geometric fiber in

characteristic p.

Remark 2.5.1. As a special case of Remark 2.2.3, the universal abelian scheme A →
M L̃

E,n,δ,Fp
with real multiplication by OE has many separable OE-linear polarizations, and

it admits an OE-linear principal polarization if and only if the element [L̃ ] in the strict

class group of E is zero. If [L̃ ] is non-zero, one can view the M L̃
E,n,δ,Fp

as an analog of

an irreducible component of Ag,d,n with gcd(d, p) = 1, where Ag,d,n is the moduli space

over Fp of g-dimensional polarized abelian varieties (A, λ, η) with deg λ = d2 and level-n

structure.

2.5.2. In the rest of this article we will consider only Hilbert modular varieties M L̃
E,n,δ,Fp

over Fp. Often we will also suppress the parameters L̃ , n and δ from the notation, and

shorten M L̃
E,n,δ,Fp

to ME , if there is no risk of confusion.
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3. Type spaces

This section contains the definitions of two finite posets T sd
E , τE associated to the totally

real number field E. They are natural indexing sets for the Lie stratification of the Hilbert

modular variety ME , and for the congruity stratification of Lie strata of ME . The partial

ordering of these posets are compatible with the incidence relation between strata in the

respective stratifications.

We recommend readers to go directly to Definition 3.2.1 and skip the rest of this

section, and return to this section only when necessary.

3.1. Product decomposition of the ring OE ⊗Z Λ(Fp)

3.1.1. Notations related to the totally real field E and its p-adic completion E ⊗Q Qp.

• Denote by ΣE,p the set of places of E above p.

• Let v ∈ ΣE,p be a place of E above p and let Ev the v-adic completion of E at v.

– Let Ov = OEv be the ring of integers in Ev, let ℘v be the maximal ideal of

OEv , and let κv := OEv/℘v, the residue field of OEv .

– Let gv := [Ev : Qp], fv := [κv : Fp], and let ev = e(Ev/Qp) be the absolute

ramification index of Ev.

– Denote by πv a generator of the maximal ideal ℘v of Ov.

– Let Eur
v be the maximal subfield of Ev unramified over Qp, and let OEur

v
be the

ring of integers of Eur
v .

– Let Frκv be the arithmetic Frobenius map (y 7→ yp) on κv. We will identify

the Galois group Gal(κv/Fp) with Z/fvZ, by the isomorphism which sends the

element Frκv in Gal(κv/Fp) to the element 1 + fvZ in Z/fvZ.

– Let fE := lcm{fv | v ∈ ΣE,p}, the least common multiple of all fv’s.

• Let κ be perfect field containing κE , where κE denotes a finite field with pfE elements.

– Denote by Λ(κ) the ring of all p-adic Witt vectors with entries in κ.

– Let σ be the continuous ring automorphism of Λ(κ), which sends every infinite

Witt vector (a0, a1, . . . , an, . . .) in Λ(κ) to (ap0, a
p
1, . . . , a

p
n, . . .).

– For every v ∈ ΣE,p, define a torsor Iv = Iv,κ for the cyclic group Gal(κv/Fp) =

Z/fvZ by

Iv = Iv,κ := Homring,cont(OEur
v
,Λ(κ))

∼−→ Homring(κv, κ),

so that for every element i ∈ Iv,κ, the element 1 mod fv ∈ Z/fvZ sends i to the

element σ ◦ i ∈ Iv,κ.
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3.1.2. We have direct product decompositions of rings

OE ⊗Z Zp =
∏

v∈ΣE,p

OEv and OE ⊗Z Fp =
∏

v∈ΣE,p

OEv/℘evv .

For every perfect field κ containing κE , we have direct sum decompositions of rings

OEv ⊗Zp Λ(κ) =
∏
i∈Iv,κ

OEv ⊗(OEur
v
,i) Λ(κ) and OEv ⊗Zp κ =

∏
i∈Iv,κ

OEv ⊗(OEur
v
,i) κ.

So we get a product decomposition

(3.1) OE ⊗Z Λ(κ) =
∏

v∈ΣE,p

∏
i∈Iv,κ

OEv ⊗(OEur
v
,i) Λ(κ) =

∏
v∈ΣE,p

∏
i∈Iv,κ

Λ(κ)(i)
v ,

where Λ(κ)
(i)
v denotes the complete discrete valuation ring

Λ(κ)(i)
v := OEv ⊗(OEur

v
,i) Λ(κ)

with residue field κ and absolute ramification index ev. The maximal ideal of Λ(i) = Λ(κ)(i)

is generated by the element πv ∈ OEv . From the product decomposition (3.1) of the ring

OE ⊗ZΛ(κ), we see that every finitely generated module over OE ⊗ZΛ(κ) is a direct sum,

over all pairs (v, i), of direct sums of cyclic modules of the discrete valuation rings Λ
(i)
v .

Similarly, for every field K containing κE , not necessarily perfect, we have a product

decomposition

(3.2) OE ⊗Z K =
∏

v∈ΣE,p

∏
i∈Iv,K

OEv ⊗(OEur
v
,i) K =

∏
v∈ΣE,p

∏
i∈Iv,K

(
κv[T ]/(T ev)

)
⊗(κv ,i) K,

where

Iv,K = Iv,κE := Homring(κv, κE) = Homring(κv,K)

for every v ∈ ΣE,p, and κv[T ] is the polynomial ring over κv in the variable T . It follows

that every finitely generated module over OE ⊗ZK is isomorphic to a direct sum, over all

pairs (v, i), of direct sum of cyclic modules of the ring(
κv[T ]/(T ev)

)
⊗(κv ,i) K

∼= K[T ]/T evK[T ].

3.2. Type spaces of finite (OE ⊗Z K)-modules

In this subsection, K is a field containing κE . The type spaces considered in this article

are isomorphisms classes of modules over OE⊗K which can be generated by two elements,

together with natural partial ordering compatible with specialization.

Definition 3.2.1. Let K ⊇ Fp be a field which contains a finite subfield κE with pfE

elements.
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(i) Denote by TE,K to be the set of all isomorphism classes of modules over OE ⊗ K
which can be generated by two elements.

We will identify TE,K with the set consisting of all collections of sequences of pairs

of the form

e = (ev)v∈ΣE,p =
((
e

(i)
v,1, e

(i)
v,2

)
i∈Iv,K

)
v∈ΣE,p

s.t. e
(i)
v,1, e

(i)
v,2 ∈ {0, 1, . . . , ev}, e

(i)
v,1 ≤ e

(i)
v,2

(3.3)

for all v ∈ ΣE,p and all i ∈ Iv,K . An element e as above corresponds to the isomor-

phism class of the (OE ⊗Z K)-module

⊕
v∈ΣE,p

⊕
i∈Iv,K

(
OEv ⊗(OEur

v
,i) K

/
π
e
(i)
v,1
v OEv ⊗(OEur

v
,i) K

)

⊕
(
OEv ⊗(OEur

v
,i) K

/
π
e
(i)
v,2
v OEv ⊗(OEur

v
,i) K

)
.

(ii) Let K(OE ⊗Z K) denote the Grothendieck group of finitely generated (OE ⊗Z K)-

modules. Denote by T sd
E,K ⊂ TE,K the subset consisting of all isomorphism classes of

modules over OE⊗ZK whose image in K(OE⊗K) is equal to the image of OE⊗K
in K(OE ⊗Z K).

Following the explicit form (3.3) of TE,K , we will identify the type space T sd
E,K with

the set of all collections of sequences of pairs((
e

(i)
v,1, e

(i)
v,2

)
i∈Iv,K

)
v∈ΣE,p

s.t. e
(i)
v,1, e

(i)
v,2 ∈ N, e

(i)
v,1 ≤ e

(i)
v,2, e

(i)
v,1 + e

(i)
v,2 = ev

for all v ∈ ΣE,p and all i ∈ Iv,K . Here N denotes the set of all non-negative integers.

(iii) Denote by τE,K the set of all collections of sequences

c = (cv)v∈ΣE,p =
(
(c(i)
v )i∈Iv,K

)
v∈ΣE,p

s.t. 0 ≤ c(i)
v ≤ ev

for all v ∈ ΣE,p and all i ∈ Iv,K . We will identify τE,K with the set of all isomorphism

classes of cyclic (OE ⊗Z K)-modules.

Remark 3.2.2. (a) For any two fields K, K ′ containing κE , every ring homomorphism

h : K → K ′ induces isomorphisms

Iv,K
∼−→ Iv,K′ , TE,K

∼−→ TE,K′ , T sd
E,K

∼−→ T sd
E,K′ , τE,K

∼−→ τE,K′ .

Often we will suppress the subscript “K” and shorten the notations Iv,K , TE,K , T sd
E,K ,

τE,K to Iv, TE , T sd
E , τE respectively, when there is no risk of confusion.
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(b) The type space TE is a direct product of spaces TEv , where v runs through all

v ∈ ΣE,p. The same holds for T sd
E and τE . Explicitly, TE,v consists of all sequences of

pairs (
e

(i)
v,1, e

(i)
v,2

)
i∈Iv , e

(i)
v,1, e

(i)
v,2 ∈ {0, 1, . . . , ev}, e

(i)
v,1 ≤ e

(i)
v,2, ∀ i ∈ Iv,

and similarly for T sd
E and τE .

(c) Elements of T sd
E,K and T sd

E,K will be called self-dual types. The Lie type of any

principally L̃ -polarized abelian variety with real multiplication by OE over K is self-dual.

Similarly the Lie type of any self-dual rank-two OE-linear p-divisible group over K, is

self-dual. See Lemmas 4.2.2 and 4.2.3.

Definition 3.3. We define partial orderings on the type spaces TE , T sdE and τE as follows.

(i) Let e1, e2 be two elements of TE , ej =
((
e

(i)
j;v,1, e

(i)
j;v,2

)
i∈Iv,k

)
v∈ΣE,p

for j = 1, 2. Define

e2 � e1 if

e
(i)
1;v,1 ≤ e

(i)
2;v,1 and e

(i)
1;v,1 + e

(i)
1;v,2 ≤ e

(i)
2;v,1 + e

(i)
2;v,2, ∀ v ∈ ΣE,p, ∀ i ∈ Iv

for all v ∈ ΣE,p and all i ∈ Iv.

(ii) The restriction of the partial ordering � on TE induces a partial ordering on T sd
E .

Explicitly, if e1, e2 are two elements of T sd
E with ej =

((
e

(i)
j;v,1, e

(i)
j;v,2

)
i∈Iv,k

)
v∈ΣE,p

for

j = 1, 2, then

e2 � e1 ⇐⇒ e
(i)
1;v,1 ≤ e

(i)
2;v,1, ∀ v, i.

Note that the last condition is equivalent to e
(i)
2;v,2 ≤ e

(i)
1;v,2 for all v ∈ ΣE,p and all

i ∈ Iv.

(iii) For any two elements cj =
(
c

(i)
j;v

)
v∈ΣE,p,i∈Iv

in τE , j = 1, 2,

c2 � c1 ⇐⇒ c
(i)
1;v ≤ c

(i)
2;v, ∀ v ∈ ΣE,p, ∀ i ∈ Iv.

Remark 3.3.1. (a) The poset T sd
E is ranked, in the sense that any two maximal chain

between two comparable elements have the same length.

(b) The poset T sd
E has a unique maximal element emax and a unique minimal element

emin. The (v, i)-component (e
(i)
max,v,1, e

(i)
max,v,2) of emax is (0, ev) for all v ∈ ΣE,p and all

i ∈ Iv. The (v, i)-component (e
(i)
min,v,1, e

(i)
min,v,2) of emin is

(
bev/2c, dev/2e

)
for v ∈ ΣE,p

and all i ∈ Iv. Here bev/2c is rounding ev/2 down to the nearest integer, while dev/2e is

rounding ev/2 up to the nearest integer.

3.3.2. Let S be a scheme over a field containing κE . Let M be a coherent OS module,

endowed with an action by OE , i.e., a ring homomorphism OE → EndS(M). For every
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point s ∈ S, the product decomposition (3.2) with K replaced by the residue field κ(s) at

s induces a decomposition of the fiber Ms as a module over OE ⊗Z κ(s). Denote by eM,s

the element in the type space TE,κ(s)
∼←− TE,K determined by the (OE ⊗Z κ(s))-module

Ms.

Lemma 3.3.3. Let M be a coherent OS-module as in Subsubsection 3.3.2. Let s, s′ be

points of S. If s is a specialization of s′, then eM,s � eM,s′

The proof of Lemma 3.3.3 is left as an exercise.

Definition 3.3.4. Define a function strdim: T sd
E,k → N by

strdim(e) =
∑

v∈ΣE,p

∑
i∈Iv

(
e

(i)
v,2 − e

(i)
v,1

)
if e =

(
((e

(i)
v,1, e

(i)
v,2))i∈Iv

)
v∈ΣE,p

.

Definition 3.4 (Local version of Definition 3.2.1). Let v be a place of E above p and

let K be a field which contains a subfield with pfv elements. Let Iv,K = Homring(κv,K),

regarded as a torsor over Gal(κv/Fp) ∼= Z/fvZ. The ring OEv ⊗Zp K admits a natural

product decomposition

OEv ⊗Zp K =
∏

i∈Iv,K

(
OEv ⊗OEur

v
,i K

)
.

(i) Denote by TEv ,K the set of all isomorphism classes of modules over OEv⊗ZpK which

can be generated by two elements. We identify TEv ,K with the set consisting of all

sequences of pairs

ev =
(
(b

(i)
1 , b

(i)
2 )
)
i∈Iv,K

, 0 ≤ b(i)1 ≤ b
(i)
2 ≤ ev, ∀ i ∈ Iv,K .

A sequence of pairs as above corresponds to the isomorphism class of the (OEv ⊗Zp
K)-module⊕
i∈Iv,K

(
OEv⊗OEur

v
,iK
)/(

π
b
(i)
1
v OEv⊗OEur

v
,iK
)
⊕
(
OEv⊗OEur

v
,iK
)/(

π
b
(i)
2
v OEv⊗OEur

v
,iK
)
.

(ii) Denote by T sd
Ev ,K

the subset of TEv ,K consisting of all elements
(
(b

(i)
1 , b

(i)
2 )
)
i∈Iv,K

in

TEv ,K such that b
(i)
1 + b

(i)
2 = ev for all i ∈ Iv,K .

(iii) Denote by τEv ,K the set of all sequences

cv = (c(i)
v )i∈Iv,K , c(i)

v ∈ {0, 1, . . . , ev}, ∀ i ∈ Iv,K .

This set τEv ,K is naturally identified with the set of isomorphism classes of cyclic

(OEv ⊗Zp K)-modules.
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Remark 3.4.1. (a) Each of the local type spaces TEv ,K , T sd
Ev ,K

and τEv ,K has a natural

partial ordering, obtained by suppressing the quantifier “∀ v ∈ ΣE,p” in Definition 3.3.

(b) Suppose that K is a field which contains a subfield with pfE elements. Then the

finite poset TE,K (respectively T sd
E,K , τE,K) is the product, over all v ∈ ΣE,p, of the finite

posets TEv ,K (respectively T sd
Ev ,K

, τEv ,K).

(c) We have a local version strdimv : T sd
Ev ,K

→ N of Definition 3.3.4, given by

strdimv

(
(b

(i)
1 , b

(i)
2 )i∈Iv,K

)
=
∑
i∈Iv,K

(b
(i)
2 − b

(i)
1 ).

Then strdim(e) =
∑

v∈ΣE,p
strdimv(ev).

3.5. Newton polygons for abelian varieties with real multiplication

We define a finite poset NPsd
E , which encodes Newton polygons of g-dimensional abelian

varieties with real multiplication by OE .

Definition 3.5.1. (a) Denote by NPsd
E the set of all families of pairs ((sv,1, sv,2))v∈ΣE,p of

non-negative rational numbers such that

• 0 ≤ sv,1 ≤ sv,2 ≤ 1,

• sv,1 + sv,2 = 1,

• [Ev : Qp] · sv,1 ∈ N and [Ev : Qp] · sv,2 ∈ N whenever sv,1 < sv,2,

for all v ∈ ΣE,p.

Elements of NPsd
E will be called self-dual Newton E-polygons, often shortened to “New-

ton E-polygons” or “Newton polygons” if there is no risk of confusion.

(b) For each element s = ((sv,1, sv,2))v∈ΣE,p in NPsd
E , denote by Γsv ⊆ R

2 the union of

the segment from (0, 0) to ([Ev : Qp], [Ev : Qp] ·sv,1) and the segment from ([Ev : Qp], [Ev :

Qp] ·sv,1) to (2[Ev : Qp], [Ev : Qp]), for every v ∈ ΣE,p. This family (Γsv)v∈ΣE,p of polygons

in R2 is the more classical form of s.

Definition 3.5.2. We define a partial ordering on NPsd
E such that any two elements

s = ((sv,1, sv,2))v∈ΣE,p , s′ = ((s′v,1, s
′
v,2))v∈ΣE,p ∈ NPsd

E ,

we have

s � s′ ⇐⇒
(
sv,1 ≥ s′v,1, ∀ v ∈ ΣE,p

)
.

Equivalently,

s � s′ ⇐⇒
(
Γsv lies above Γs′v , ∀ v ∈ ΣE,p

)
.
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Remark 3.5.3. (a) The finite poset NPsd
E is a product of finite posets NPsd

Ev for all v ∈ ΣE,p.

(b) For each v, the finite poset NPsd
Ev is linearly ordered, and

card(NPsd
Ev) = 1 +

⌈ [Ev :Qp]
2

⌉
.

(c) Let A be a g-dimensional abelian variety with real multiplication by OE over an

algebraically closed field k ⊇ Fp. For each place v of E above p, the rank-two OEv -linear

p-divisible group A[℘∞v ] is either isogenous to direct product of two isoclinic p-divisible

groups of height [Ev : Qp], with slopes sv,1 and sv,2, or is isoclinic with slope 1/2. In the

latter case we say that A[℘∞v ] is supersingular and let sv,1 = sv,2 = 1/2. The element

((sv,1, sv,2))v∈ΣE,p ∈ NPsd
E defined this way is said to be the Newton polygon associated

to A; cf. Definition 4.2.5.

(d) The partial ordering on NPsd
E is compatible with specialization; see Lemma 4.2.8.

(e) The minimum element in NPsd
E for the above partial ordering is the element sE,σ

whose v-component is (1/2, 1/2) for every v ∈ ΣE,p, called the supersingular Newton

polygon.

The maximal element in NPsd
E for the above partial ordering is the element sE,ord

whose v-component is (0, 1) for every v ∈ ΣE,p, called the ordinary Newton polygon.

4. Stratifying Hilbert modular varieties by Lie types

4.1. Review of Dieudonné theory

We use covariant Dieudonné theory for commutative finite group schemes and p-divisible

groups over perfect fields of characteristic p.

Let κ ⊇ Fp be a perfect field. Let Λ(κ) be the ring of p-adic Witt vectors with

entries in κ. Let σ be the continuous automorphism of Λ(κ) which sends every element

(a0, a1, . . . , an, . . .) ∈ Λ(κ) to (ap0, a
p
1, . . . , a

p
n, . . .).

Let Rκ be the (non-commutative) ring generated by Λ(κ) and elements F , V, with

defining relations

Fa = σaF , aV = V σa, ∀ a ∈ Λ(κ) and FV = VF = p.

Let CFGSκ be the category of commutative finite group schemes over κ, and let

DMκ,f be the category of modules over Rκ which are of finite length as modules over

Λ(κ).

Denote by p-Divκ the category of p-divisible groups over κ, and denote by DMκ the

category of modules over Rκ which are free of finite rank as modules over Λ(κ).

4.1.1. We have an exact covariant additive functor

D : CFGSκ →DMκ,f
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which is an equivalence of abelian categories and satisfies the following properties.

(i) For every commutative finite group scheme G over κ, with relative Frobenius and

Verschiebung homomorphisms

FrG/κ : G→ G(p) := G×(Spec(κ),Fr∗κ) Spec(κ) and VerG/κ : G(p) → G,

the operator VG on D(G) is equal to the composition

D(G)
D(FrG/κ)

// D(G(p))
= // Λ(κ)⊗(σ,Λ(κ)) D(G)

σ−1⊗1D(G) // D(G),

and the operator FG is equal to the composition

D(G)
x 7→1⊗x // Λ(κ)⊗(σ,Λ(κ)) D(G)

= // D(G(p))
D(VerG/κ)

// D(G).

(ii) A commutative finite group scheme G over κ is etale (respectively multiplicative) if

and only if VG (respectively FG) is bijective.

(iii) If the relative Frobenius homomorphism

FrG/κ : G→ G(p)

is 0, then we have a natural isomorphism

D(G) = Lie(G)(p) := Lie(G)⊗(κ,Frκ) κ.

4.1.2. The Dieudonné functor D in Subsubsection 4.1.1 induces an exact additive functor

D : p-Divκ →DMκ

which is an equivalence of categories with the following properties.

(i) For every p-divisible group X over κ and for every m ∈ N, we have a functorial

isomorphism

p−mD(X)/D(X)
∼−→ D(X[pm])

of Rκ-modules.

(ii) The operators VX , FX on the Dieudonné module D(X) of a p-divisible group X over

κ are equal to the compositions

D(X)
D(FrX/κ)

// D(X(p))
= // Λ(κ)⊗(σ,Λ(κ)) D(X)

σ−1⊗1D(X) // D(X)

and

D(X)
x 7→1⊗x // Λ(κ)⊗(σ,Λ(κ)) D(X)

= // D(X(p))
D(VerX/κ)

// D(X)

respectively.



1328 Chia-Fu Yu, Ching-Li Chai and Frans Oort

(iii) A p-divisible group X over κ is etale (respectively multiplicative) if and only if VX
(respectively FX) is bijective.

(iv) For every p-divisible group X over κ we have natural isomorphisms

Lie(X)
∼−→ D(X)/V(D(X)) and HdR

1 (X/κ)
∼−→ D(X)/pD(X),

so that the short exact sequence

0→ V(D(X))/pD(X)→ D(X)/pD(X)→ D(X)/V(D(X))→ 0

is identified with the Hodge filtration of the first de Rham homology groupHdR
1 (X/κ)

of X.

The formulas in Lemma 4.1.3 below have already been stated in Subsubsections 4.1.1(iii)

and 4.1.2(iv). We give an explicit isomorphism D(X[F ]) ∼= Lie(X[F ])(p) as an illustration.

Lemma 4.1.3. Let X be a p-divisible group over a perfect field κ ⊇ Fp, and let M := D(X)

be the Dieudonné module of X. Let X[F ] = Ker(FrX/κ : X → X(p)) be the kernel of relative

Frobenius homomorphism of X. We have natural κ-linear isomorphisms

Lie(X) ∼= M/VM

and

D(X[F ]) ∼=
// p−1F(M)/M

D(VerX)

'
// (M/V(M))(p)

∼=
// Lie(X)(p).

Proof. The covariant Dieudonné theory we used is normalized so that the Lie algebra

Lie(X) of X is naturally isomorphic to D(X)/V(D(X)). The isomorphism

D(X[F ])
∼= // p−1F(M)/M

follows from Subsubsection 4.1.2(i) and the exactness of the Dieudonné functor for com-

mutative finite group schemes over κ, because

p−1F(M)/M = Ker
(
p−1M/M

V−→ p−1M/M
)
.

Clearly the σ−1-linear operator V on p−1M/M induces a κ-linear isomorphism

(p−1F(M)/M)(p−1) ' //M/V(M).

Remark 4.1.4. (a) There are (at least) two versions of covariant Dieudonné theory, which

differ from each other by a Frobenius twist. The properties in Subsubsections 4.1.1(iii) and

4.1.2(iv) are “normalization conditions” which specify the Dieudonné functors G D(G)

and X  D(X) in Subsubsections 4.1.1 and 4.1.2. Note also that the statement of
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Lemma 4.1.3 will need to be modified by a Frobenius twist if a different Dieudonné theory

is used.

(b) The functor G  D(G) used here is the covariant crystalline Dieudonné theory,

denoted by G E∗(G) in [8, B.3].

We refer to [8, B.3] for the literature and further information about Dieudonné theory,

including the formulas for basic differential invariants in [8, B.3.11] and the comparison

with the classical Dieudonné theory in [8, B.3.10].

4.2. Rank-two OE-linear p-divisible groups and their Dieudonné modules

We apply Dieudonné theory to the p-divisible groups associated to abelian varieties with

real multiplication by OE .

Definition 4.2.1. Let S be an Fp-scheme.

(a) Let v be a place of E above p. A rank-two OEv -linear p-divisible group over S is a

pair (Xv → S, ιv), where Xv → S is a p-divisible group over S of height 2[Ev : Qp],
and ιv : OEv → EndS(Xv) is a ring homomorphism.

(b) A rank-two OE-linear p-divisible group over S is a pair (X → S, ι) where X → S is

a p-divisible group and ι : OE⊗ZZp → EndS(X) is a ring homomorphism, such that

for every v ∈ ΣE,p, the p-divisible group X[℘∞v ]→ S has height 2[Ev : Qp]. In other

words, there exist rank-two OEv -linear p-divisible groups (Xv → S, ιv), v ∈ ΣE,p,

such that the fiber product over S of the (Xv, ιv)’s is (OE⊗ZZp)-linearly isomorphic

to (X, ι).

(c) A rank-two OEv -linear p-divisible group (Xv → S, ιv) is said to be self-dual if its

Serre dual (Xt
v → S, ιt) is OEv -linearly isomorphic to itself. A rank-two OE-linear

p-divisible group (X → S, ι) is self-dual if its Serre dual (Xt → S, ιt) is OE-linearly

isomorphic to itself.

(d) A rank-two OEv -linear p-divisible group (Xv → S, ιv) is said to be self-dual up to

isogeny if there exists an OEv -linear S-isogeny from (Xv, ιv) to (Xt
v, ι

t
v). A rank-two

OE-linear p-divisible group (X → S, ι) is self-dual up to isogeny if there exists an

OE-linear isogeny over S from X to Xt.

Lemma 4.2.2. Let (A, ι) be an abelian variety with real multiplication by OE over a field

K ⊇ Fp.

(a) The p-divisible group A[p∞] with action by OE ⊗Z Zp is a rank-two OE-linear p-

divisible group which is self-dual up to isogeny.



1330 Chia-Fu Yu, Ching-Li Chai and Frans Oort

(b) If (A, ι) admits a principal L̃ -polarization, then the rank-two OE-linear p-divisible

group (A[p∞], ι[p∞]) is self-dual.

Lemma 4.2.3. Let (X, ι) be a self-dual rank-two OE-linear p-divisible group over a field

K ⊃ Fp, then the isomorphism class in TE,K of the Lie algebra Lie(X, ι) of (X, ι)

is self-dual; i.e., the class [Lie(X, ι)] of Lie(X, ι) in the K-group of finitely generated

((OE/pOE)⊗Fp K)-modules is equal to the class [(OE/pOE)⊗Fp K] of (OE/pOE)⊗Fp K.

Lemma 4.2.4. Let (X, ι) be a rank-two OE-linear p-divisible group over a field K ⊇ Fp
which is self-dual up to isogeny. For every v ∈ ΣE,p, suppose that the p-divisible group

X[℘∞v ] is not isoclinic of slope 1/2. Then X[℘∞v ] is isogenous to the product of two isoclinic

OEv -linear p-divisible groups Y1, Y2 of height [Ev : Qp], and the slopes sv,1, sv,2 of Y1, Y2

satisfy

0 ≤ sv,1, sv,2 ≤ 1, sv,1 + sv,2 = 1 and [Ev : Qp] · sv,i ∈ N.

Definition 4.2.5. (a) Let (X, ι) be a rank-two OE-linear p-divisible group over a field

K ⊇ Fp which is self-dual up to isogeny. The Newton polygon of (X, ι) is the element

((sv,1, sv,2))v∈ΣE,p ∈ NPsd
E such that

(sv,1, sv,2) =

(sX,v,1, sX,v,2) if X[℘∞v ] has two distinct slopes sX,v,1 < sX,v,2,

(1/2, 1/2) if X[℘∞v ] is isoclinic.

(b) Let (A, ι) be an abelian variety with real multiplication by OE over a field K ⊇ Fp.
The Newton polygon of (A, ι) is by definition the Newton polygon of (A[p∞], ι[p∞]).

Definition 4.2.6. For each s ∈ NPsd
E , denote by Ws =Ws(ME) the locally closed subset

of ME consisting of all points x ∈ME whose Newton polygon is equal to s. Clearly ME

is the disjoint union of all Newton polygon strata Ws, where s runs through all elements

of NPsd
E .

Remark. The Newton polygon stratum WsE,σ corresponding to the minimal element sE,σ
in NPsd

E , called the supersingular locus in ME , is the closed subset of ME consisting of

points whose underlying abelian varieties are isoclinic of slope 1/2.

Remark 4.2.7. There is another notion of Newton polygon strata attached to a Newton

polygon s in the literature. What was defined in Definition 4.2.5(a) is sometimes called

the open Newton polygon stratum attached to s and denoted by W0
s .

Lemma 4.2.8. Let S be a scheme over Fp and let (X → S, ι) be a rank-two OE-linear

p-divisible group with real multiplication by OE which is self-dual up to isogeny. Let z, z′

be points of S, and let sz, sz′ ∈ NPsd
E be the Newton -polygons of Xz and Xz′ respectively.

If z is a specialization of z′, then sz � sz′.
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Corollary 4.2.9. Let s be an element of NPsd
E . The Zariski closure (Ws)

zar of the Newton

polygon stratum Ws in ME is contained in the union of all Newton polygon strata Ws′

with s′ � s:
(Ws)

zar ⊆
⊔
s′�s
Ws′ .

Remark. Whether (Ws)
zar is equal to

⊔
s′�sWs′ is the content of the Grothendieck con-

jecture on the Newton polygon stratification of ME ; cf. Question 10.4(d)–(e).

Definition 4.2.10. Let κ be a field which contains a subfield with pfE elements. Let

κ1 = κperf be the perfection of κ.

(a) Let v be a place of E above p and let (Xv, ιv) be a rank-two OEv -linear p-divisible

group over κ. The Lie type of (Xv, ιv) is the element eXv ∈ TEv which corresponds

to the isomorphism class of the (OEv ⊗Zp κ)-module Lie(Xv). Equivalently, eXv is

the element of TEv ,κ whose image in TEv ,κ1 under the bijection TEv ,κ
∼−→ TEv ,κ1 is the

isomorphism class of D(Xv ×Spec(κ) Spec(κ1))/V · D(Xv ×Spec(κ) Spec(κ1)).

(b) Let (X, ι) be a rank-two OE-linear p-divisible group over κ. The Lie type of (X, ι) is

the element eX ∈ TE which corresponds to the isomorphism class of the (OE ⊗Z κ)-

module Lie(X). In other words eX = (eXv)v∈ΣE,p , where eXv is the Lie type of the

rank-two OEv -linear p-divisible group Xv = X[℘∞v ], for every place v of E above p.

(c) Let (A, ι) be an abelian variety with real multiplication by OE . The Lie type eA
of (A, ι) is by definition the Lie type of the rank-two OE-linear p-divisible group

(A[p∞], ι[p∞]).

Lemma 4.2.11. Let k ⊇ Fp be an algebraically closed field, and let (X, ι) be a rank-two

OE-linear p-divisible group. Let eX =
(
e

(i)
X,v,1, e

(i)
X,v,2

)
v∈ΣE,p,i∈Iv

∈ TE be the Lie type of

(X, ι). Then (X, ι) is self-dual if and only if eX ∈ T sd
E , i.e., e

(i)
X,v,1 + e

(i)
X,v,2 = ev for all

v ∈ ΣE,p and all i ∈ Iv.

The definition and properties of Lie stratification of Hilbert modular varieties, due to

Deligne and Pappas in [13, Sections 3–4], is summarized in Theorem 4.3 below.

Theorem 4.3. For each e ∈ T sd
E , there exists a locally closed subscheme

Ne(ME) ⊆ME = M L̃
E,n,δ

over Fp, characterized by the property that for every point x ∈ME, we have

x ∈ Ne(ME) ⇐⇒ e(Ax,ιx) = e.

Here (Ax, ιx) denotes the fiber at x of the universal abelian scheme with real multiplication

by OE over ME. The subvarieties Ne = Ne(ME) satisfy the following properties:
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(1) The modular variety ME is the disjoint union of these Lie strata:

ME =
⊔

e∈T sd
E

Ne(ME) =
⊔

e∈T sd
E

Ne.

(2) Each Lie stratum Ne is a locally closed smooth subscheme of ME.

(3) The dimension of the Lie stratum Ne indexed by an element

e =
((
e

(i)
v,1, e

(i)
v,2

)
i∈Iv

)
v∈ΣE,p

∈ T sd
E

is given by

dim(Ne) = strdim(e) =
∑
v

∑
i∈Iv

(
e

(i)
v,2 − e

(i)
v,1

)
.

In particular the dimension of the minimal Lie stratum Nmin = Nemin
(ME) is

dim(Nmin) =
∑
ev odd

fv,

where the sum runs through all places v of E above p with odd ramification index ev,

and fv = [κv : Fp] is the degree over Fp of the residue field κv of OEv .

(4) The maximal Lie stratum Nmax = Nemax
(ME) coincides with the smooth locus of

ME, i.e., the largest open subset of ME which is smooth over Fp.

(5) The Zariski closure (Ne)zar of a Lie stratum Ne in ME is the disjoint union of all

strata Ne′, where e′ runs through all elements in T sd
E such that e′ � e, i.e.,

(Ne)zar =
⊔
e′�e
Ne′ .

(6) For each e ∈ T sd
E , (Ne)zar is a local complete intersection and is normal, and Ne is

the largest open subset of (Ne)zar which is smooth over Fp.

(7) Suppose that e1 � e2 are elements of T sd
E , and there is no element e ∈ T sd

E such that

e1 � e � e2, then dim(Ne1) = dim(Ne2)− 2.

5. The congruity invariant

In this section we define a numerical invariant, called congruity, attached to every rank-

two OE-linear p-divisible group (X, ι) over an algebraically closed field k of characteristic

p. When the congruity invariant c(X,ι) takes certain specific values, the isomorphism class

of (X, ι) is uniquely determined by the invariant c(X,ι), in which case (X, ι) is said to be
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distinguished ; see Definitions 5.3.2, 5.4.3 and 5.6. The definition of the congruity invariant

is described in the next two paragraphs.

In Definition 5.1.1 we define an N-valued invariant c(M ;N,N ′) associated to an un-

ordered pair (N,N ′) of two lattices in a rank-two module M over a discrete valuation ring,

which measures the extent the of the failure of these two lattices in M to be transversal

up to rescaling inside M .

For a rank-two OE-linear p-divisible group (X, ι) over a sufficiently large perfect field

κ1 of characteristic p, the Dieudonné module D(X) is a projective rank-two module over

OE⊗ZΛ(κ1), which decomposes into a direct sum, indexed by the disjoint union of the sets

Iv, of rank-two projective modules D(X)
(i)
v over discrete valuation rings OEv⊗(Our

Ev
,i)Λ(κ1).

The same holds for F(D(X)) and V(D(X)). For each place v of E above p and each i ∈ Iv,
the construction in Definition 5.1.1 applied to D(X)

(i)
v , (FD(X))

(i)
v and a “transport” to

D(X)
(i)
v of (VD(X))

(i′)
v for a suitable element i′ ∈ Iv, gives the (v, i)-component of the

congruity invariant c(X,ι) of (X, ι) defined in Definition 5.2.

5.1. Lattices in a free rank-two module over a discrete valuation ring

In this subsection, D denotes a discrete valuation ring with maximal ideal ℘ and residue

field κ = D/℘. Let M be a free rank-two D-module. We will define a discrete invariant

c(M ;N,N ′) attached to two lattices N , N ′ in M .

Recall that the elementary divisors (b1, b2) of a lattice N in M , b1 ≤ b2, are the two

natural numbers determined by M/N ∼= D/℘b1 ⊕ D/℘b2 , or equivalently there exists a

D-basis v1, v2 ∈M such that N = ℘b1 · v1 + ℘b2 · v2. Note that b1 = max{b | N ⊆ ℘bM},
and b2 = min{b | N ⊇ ℘bM}.

Definition 5.1.1 (An invariant of two lattices in D2). Let N , N ′ be two lattices in M ,

with elementary divisors (b1, b2) and (b′1, b
′
2) respectively, b1 ≤ b2, b′1 ≤ b2. Define an

invariant c(M ;N,N ′) by

M/(℘−b1N + ℘−b
′
1N ′) ∼= D/℘c(M ;N,N ′).

Note that the elementary divisors of ℘−b1N and ℘−b
′
1N ′ are (0, b2 − b1) and (0, b′2 − b′1)

respectively. So M/(℘−b1N + ℘−b
′
1N ′) is a cyclic D-module of finite length. Note also

that the equality

0 ≤ c(M ;N,N ′) ≤ min{b2 − b1, b′2 − b′1}

holds.

Remark 5.1.2. The congruity invariant can be computed as follows. Let (x1, x2) be a

D-basis of M such that N = ℘b1x1 + ℘b2x2, and let (y1, y2) be a D-basis of M such that
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N ′ = ℘b
′
1y1 + ℘b

′
2y2. Define an element (aij)i,j=1,2 ∈ GL2(D) by

yj =
∑
i=1,2

aijxi, j = 1, 2.

From

℘−b1N + ℘−b
′
1N ′ = Dx1 +D · a21x2 + ℘b2−b1x2 + ℘b

′
2−b′1y2

= Dy1 +D · a21y2 + ℘b2−b1x2 + ℘b
′
2−b′1y2,

we see that

c(M ;N,N ′) = min{ord℘(a21), b2 − b1, b′2 − b′1}.

Definition 5.1.3. Let eX = (ev)v∈ΣE,p =
(
(e

(i)
v,1, e

(i)
v,2)i∈Iv

)
v∈ΣE,p

be an element of T sd
E .

For every v ∈ ΣE,p, define a function tev : Iv → N ∪ {−∞} by

tev(i) := min{n ∈ N | e(i+n)
1 < e

(i+n)
2 }, ∀ i ∈ Iv.

Note that tev(i) = −∞ if and only if the set
{
n ∈ N | e(i+n)

1 < e
(i+n)
2

}
is empty, in

which case the function tev on Iv has constant value −∞. Note also that tev(i) = 0 if and

only if e
(i)
v,1 < e

(i)
v,2.

Definition 5.2 (Congruity). Let κ be a field which contains a finite subfield with pfE

elements. Let κ1 = κperf be the perfection of κ.

(a) Let v be a place of E above p. Let (X, ι) be a rank-two OE-linear p-divisible group

over κ. Let Mv := D(Xv ×Spec(κ) Spec(κ1)) be the covariant Dieudonné module of

Xv ×Spec(κ) Spec(κ1). Let

Mv =
⊕
i∈Iv

M (i)
v

be the decomposition of Mv corresponding to the product decomposition of the ring

OEv ⊗Zp Λ(κ) in Subsubsection 3.1.2. Note that M
(i)
v is a free Λ(κ)(i)-module of

rank two for every i ∈ Iv. Moreover we have

F(M (i)
v ) ⊆M (i+1)

v and V(M (i)
v ) ⊆M (i−1)

v , ∀ (v, i).

Let

eX = (ev)v∈ΣE,p =
((
e

(i)
v,1, e

(i)
v,2

)
i∈Iv

)
v∈ΣE,p

be the Lie type of X.

We will define an element cXv =
(
c

(i)
Xv

)
i∈Iv in τEv ,κ

∼−→ τEv ,κ1 , called the congruity of

the rank-two OEv -linear p-divisible group (Xv, ιv). For every i ∈ Iv, the i-component
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c
(i)
Xv

of cXv is given by

c
(i)
Xv

=



0 if tev(i) = −∞,

c
(
M

(i)
v ;F(M

(i−1)
v ),V(M

(i+1)
v )

)
if e

(i)
v,1 < e

(i)
v,2,

c
(
M

(i)
v ;F(M

(i−1)
v ),

π
−

∑
0≤n≤tev (i)−1 e

(i+n)
v,1

v Vtev (i)+1M
(i+tev (i)+1)
v

)
if tev(i) > 0.

(b) Let (X, ι) be a rank-two OE-linear p-divisible group over κ. For every v ∈ ΣE,p, let

Xv := X[℘∞v ], an OEv -linear p-divisible group over κ. The congruity invariant cX
of (X, ι) is the element

cX := (cXv)v∈ΣE,p =
((
c

(i)
Xv

)
i∈Iv

)
v∈ΣE,p

of τE = τE,κ.

Remark 5.2.1. (a) In the case tev(i) > 0, we have

(V(Mv))
(i+n) = V(M (i+n+1)

v ) = π
e
(i+n)
v,1
v M (i+n)

v for n = 0, 1, . . . , tev(i)− 1,

and we use the σ−1-linear isomorphisms

π
−e(i+n)v,1
v V : M (i+n+1)

v
∼−→M (i+n)

v , n = 0, 1, . . . , tev(i)− 1

to transport the lattice V(M
(i+tev (i)+1)
v ) in M

(i+tev (i))
v back to M

(i)
v . The (v, i)-component

of cX is defined to be the congruity of F(M
(i−1)
v ) and the result of the transport, two

submodules of the free Λ(κ)(i)-module M
(i)
v of rank two.

(b) It is easy to see that the elementary divisors of the Λ(κ)(i)-submodule F(M
(i−1)
v ) ⊆

M
(i)
v are

(
ev − e(i−1)

v,2 , ev − e(i−1)
v,1

)
because V ◦ F = p = F ◦ V. Therefore,

0 ≤ c(i)
X,v ≤ min{e(i−1)

v,2 − e(i−1)
v,1 , e

(i+t)
v,2 − e(i+t)

v,1 }, ∀ v ∈ ΣE,p, ∀ i ∈ Iv,

where t = tev(i).

Remark 5.2.2. The congruity invariant cX and the Lie type of (X, ι) determine the α-type

of (X, ι). The relations between the α-type and the Newton polygon were investigated

in [39].

Proposition 5.3. Let v be a place of E above p, and let (Xv, ιv) be a rank-two OEv -linear

p-divisible group over an algebraically closed field k ⊇ Fp. Let eXv =
(
e

(i)
Xv ,1

, e
(i)
Xv ,2

)
i∈Iv ,

cXv =
(
c

(i)
Xv

)
i∈Iv and sXv = (sXv ,1, sXv ,2) be the Lie type, congruity and Newton polygon

of (Xv, ιv) respectively.
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(1) [Ev : Qp] ·
∑

i∈Iv e
(i)
Xv ,1
≤ s(i)

Xv ,1
.

(2) The following statements are equivalent.

(a) [Ev : Qp] ·
∑

i∈Iv e
(i)
Xv ,1

= s
(i)
Xv ,1

.

(b) cXv = 0, i.e., c
(i)
Xv

= 0 for every i ∈ Iv.

(c) There exist

– isoclinic p-divisible groups Y1, Y2 over k of height [Ev : Qp] of slopes sXv ,1

and sXv ,2 respectively, and

– ring homomorphisms ιj : OEv → End(Yj) for j = 1, 2, and

– an OEv -linear isomorphism

(X, ι)
∼−→ (Y1, ι1)× (Y2, ι2).

See [9, Section 4.3] for a proof of Proposition 5.3.

Remark 5.3.1. For j = 1, 2, denote by eYj the Lie type of the CM p-divisible group Yj

in Proposition 5.3(2), i.e., the element of τEv corresponding to the (OEv ⊗Zp k)-module

D(Yj)/V(D(Yj)). Then

eY1 = (e
(i)
Xv ,1

)i∈Iv , eY2 = (e
(i)
Xv ,2

)i∈Iv .

Since two OEv -linear CM p-divisible groups over an algebraically closed field k ⊇ Fp with

the same Lie type are OEv -linearly isomorphic, the unordered pair {(Y1, ι1), (Y2, ι2)} in

Proposition 5.3 is uniquely determined by the congruity invariant cXv of (Xv, ιv) up to

isomorphism.

Definition 5.3.2 (Exquisite rank-two OEv -linear p-divisible groups). Let v be a place

of E above p and let (Xv, ιv) be a rank-two OEv -linear p-divisible group over a field

K ⊇ Fp. We say that (Xv, ιv) is exquisite if for some algebraically closed extension field k

of K, or equivalently for every algebraically closed extension field k of K, the equivalent

conditions (a)–(c) in Proposition 5.3(2) are satisfied.

Corollary 5.3.3. Let v be a place of E above p and let k ⊇ Fp be an algebraically closed

field. If (X1, ι1) and (X2, ι2) are two exquisite rank-two OEv -linear p-divisible groups with

the same Lie type, then there exists an OEv -linear isomorphism from (X1, ι1) to (X2, ι2).

5.4.

In this subsection we define the notion of balanced self-dual rank-two p-divisible groups.

We begin with a preliminary statement in Lemma 5.4.1, whose proof is obvious.
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Lemma 5.4.1. Let K be a field which contains a subfield isomorphic to κv, where v is a

place of E above p. Let (Xv, ιv) be a self-dual rank-two OEv -linear p-divisible group over

K whose Lie type eXv is equal to the minimal element esd
Ev ,min in T sd

Ev
.

(a) Suppose that the ramification index ev of Ev/Qp is even. Then the congruity cXv of

(Xv, ιv) is 0, i.e., c
(i)
X,v = 0 for all i ∈ Iv.

(b) Suppose that the ramification index ev of Ev/Qp is odd. Let cXv =
(
c

(i)
Xv

)
i∈Iv be the

congruity of (Xv, ιv). Then c
(i)
Xv
∈ {0, 1} for every i ∈ Iv.

In the case of (b), the subset

{i ∈ Iv | c(i)
Xv

= 1}

will be called the support of cXv .

Definition 5.4.2 (Balanced subsets of Iv). (a) A non-empty subset J of the (Z/fvZ)-

torsor Iv is an interval if J $ Iv and there exists an element i0 ∈ I and a natural number

b with 0 ≤ b ≤ fv−2 such that J = {i0, i0 +1, . . . , i0 +b}. Such an interval will be denoted

by [i0, i0 + b].

(b) A subset J of Iv is connected if J = ∅, or if J = Iv, or if J is an interval in Iv.

(c) A connected component of a subset I ′ of Iv is a maximal element in the family of

connected subsets of I ′.

(d) A subset I ′ of I is balanced if the cardinality of every connected component of I ′

is even. In particular the empty subset ∅ is balanced, and Iv is balanced if and only if fv

is even.

Definition 5.4.3 (Balanced rank-two OEv -linear p-divisible groups). Let v be a place of

E above p. Let K be a field which contains a finite subfield isomorphic to κv. A self-dual

rank-two OEv -linear p-divisible group (Xv, ιv) over K is said to be balanced if the following

conditions are satisfied.

(a) The Lie type eXv of (Xv, ιv) is equal to the minimal element

esd
Ev ,min =

(
(bev/2c, dev/2e)

)
i∈Iv

in the local type space T sd
Ev

.

(b) The support of cXv is a balanced subset of Iv.

Remark 5.4.4. Note that if the ramification index ev of Ev/Qp is even, then the condition in

Definition 5.4.3(b) is empty, and the congruity cXv of every self-dual rank-two p-divisible

group (Xv, ιv) over a field K which satisfies Definition 5.4.3(a) is both exquisite and

balanced. So the notion of balanced self-dual rank-two OEv -linear p-divisible groups is of

interest only when ev is odd.
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Proposition 5.4.5. Let v be a place of E above p such that ev = 2dv + 1 is odd. Let

k ⊇ Fp be an algebraically closed field.

(a) Let (Xv, ιv) be a balanced rank-two OEv -linear p-divisible group. Let I ′ be the support

of cXv 6= 0. Assume that I ′ 6= ∅, and let I1 be a subset of Iv such that I ′ is the disjoint

union of I1 and I1 + 1. There exist OEv -linear p-divisible groups (Y1, ι1), (Y2, ι2)

over k of height [Ev : Qp] with the following properties:

– The Lie type eY1 =
(
e

(i)
Y1

)
i∈Iv of (Y1, ι1) is given by

e
(i)
Y1

=

dv + 1 if i ∈ I1,

dv if i /∈ I1.

– The Lie type eY2 =
(
e

(i)
Y2

)
i∈Iv of (Y2, ι2) is given by

e
(i)
Y2

=

dv if i ∈ I1,

dv + 1 if i /∈ I1.

– There exists an OEv -linear isomorphism from (Xv, ιv) to (Y1, ι1)× (Y2, ι2).

(b) Suppose that (Xv, ιv) and (X ′v, ι
′
v) are balanced rank-two OEv -linear p-divisible groups

over k with the same congruity invariant. Then (Xv, ιv) is OEv -linearly isomorphic

to (X ′v, ι
′
v).

See [9, Section 4.4] for a proof of Proposition 5.4.5.

Definition 5.5 (E-minimal self-dual rank-two OE-linear p-divisible groups). Let K be a

field which contains a finite subfield with pfE elements.

(a) Let v place of E above p, and let (Xv, ιv) be a self-dual rank-two OEv -linear p-

divisible group over K. We say that (Xv, ιv) is Ev-minimal if its Lie type eXv is the

minimal element esd
Ev ,min in T sd

Ev
, and its congruity cXv =

(
c

(i)
Xv

)
i∈Iv is given by

c
(i)
Xv

=

0 if ev is even,

1 if ev is odd

for all i ∈ Iv.
(b) Let (X, ι) be a self-dual rank-two OE-linear p-divisible group over K. We say that

(X, ι) is E-minimal if the v-component (X[℘∞v ], ι[℘∞v ]) of (X, ι) is Ev-minimal for every

place v of E above p.
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Remark 5.5.1. (a) If (Xv, ιv) is an Ev-minimal self-dual rank-two OEv -linear p-divisible

group over an algebraically closed field k ⊇ Fp, then the p-divisible groupXv is superspecial

in the sense that it is isomorphic to the product of [Ev : Qp] copies of the p-divisible group

attached to a supersingular elliptic curve over k.

(b) The terminology “E-minimal” comes from [31].

Lemma 5.5.2. Let v be a place of E above p, and let k ⊇ Fp be an algebraically closed field.

Any two Ev-minimal self-dual rank-two OEv -linear p-divisible groups are OEv -linearly iso-

morphic.

Definition 5.6 (Distinguished self-dual rank-two OE-linear p-divisible groups). Let K

be a field which contains a finite subfield with pfE elements. Let (X, ι) be a self-dual

rank-two OE-linear p-divisible group over K. Write (X, ι) as a product of self-dual rank

two OEv -linear p-divisible groups over K:

(X, ι) =
∏

v∈ΣE,p

(Xv, ιv),

where (Xv, ιv) := (X[℘∞v ], ι[℘∞v ]) for each v ∈ ΣE,p.

We say that (X, ι) is distinguished if for every v ∈ ΣE,p, the self-dual rank-two OEv -
linear p-divisible group (Xv, ιv) is exquisite, or is balanced, or is Ev-minimal.

Proposition 5.6.1. Let (X, ι) and (X ′, ι′) be distinguished self-dual rank-two OE-linear

p-divisible groups over an algebraically closed field k ⊇ Fp. If (X, ι) and (X ′, ι′) have the

same Lie type and the same congruity, then (X, ι) is OE-linearly isomorphic to (X ′, ι′).

Proof. This is the combination of Corollary 5.3.3, Proposition 5.4.5, and Lemma 5.5.2.

6. The stratification of a Lie stratum by congruity

In this section ME stands for a Hilbert modular variety M L̃
E,n,δ

over Fp, where n ≥ 3 is

a positive integer relatively prime to p, L̃ = (L ,L +
R ) is an invertible OE-module with a

notion of positivity, and δ is an OE-generator of L ∨⊗OE D
−1
E/Q/nL ∨⊗OE D

−1
E/Q. We will

stratify each Lie stratum Ne of ME by the congruity invariant, and explore properties of

the resulting congruity stratification of Ne.

Definition 6.1 (Congruity strata in a Lie stratum Ne). Let

e = (ev)v∈ΣE,p =
((

(e
(i)
v,1, e

(i)
v,2)
)
i∈Iv

)
v∈ΣE,p

be an element of T sd
E , and let Ne = Ne(ME) be the Lie stratum in ME consisting of points

corresponding to abelian varieties with real multiplication by OE whose Lie type is equal

to e.
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For each c ∈ τE , denote by Qc(Ne) the reduced locally closed subscheme of Ne such

that for every algebraically closed extension field k of Fp, the set Qc(Ne)(k) of k-points

of Qc(Ne) consists of all points x = [(Ax, λx, ιx, ηx)] ∈ Ne(k) such that the congruity

invariant cx of (Ax, ιx) is equal to c.

Clearly Ne is the disjoint union of all congruity strata Qc(Ne), where c runs through

all elements of τE . Note that there may exist pairs (e, c) such that Qc(Ne) is empty.

Proposition 6.2. (1) For every c, the Zariski closure of Qc(Ne) is the disjoint union of

all Qc′(Ne) with c′ � c: (
Qc(Ne)

)zar
=
⊔
c′�c
Qc′(Ne).

In particular Q0(Ne) is a dense open subscheme of Ne.
(2) If Qc(Ne) 6= ∅, then every irreducible component of Qc(Ne) 6= ∅ is a locally closed

smooth subscheme of Ne of codimension |c| in Ne, where

|c| :=
∑

v∈ΣE,p

∑
i∈Iv

c(i)
v .

(3) For each c with |c| = 1, the Zariski closure
⊔
c′�cQc′(Ne) of Qc(Ne) is a smooth

divisor on the smooth scheme Ne over Fp. Together these smooth divisors on Ne form a

divisor with normal crossings, whose support is equal to Ne \ Q0(Ne).

Remark. Proposition 6.2 is proved using deformation theory of p-divisible groups and the

theory of displays; see [9, Section 4.5].

Definition 6.2.1. A Lie-congruity stratum Qc(Ne) in ME is said to be distinguished if

for every v ∈ ΣE,p, either cv = 0, or ev = esd
Ev ,min and cv is balanced.

Remark. It follows from Propositions 5.3 and 5.4.5 that a Lie-congruity stratum Qc(Ne) is

distinguished if and only if for every geometric point x of Qc(Ne), the self-dual OE-linear

p-divisible group attached to x is distinguished.

6.3. Central leaves in ME

Through every Fp-point x ∈ ME , we have a smooth locally closed subscheme C(x) =

CME
(x) ⊆ME satisfying the following properties.

(i) For every algebraically closed extension field k of Fp, we have

C(x)(k) =
{
y ∈ME(x) | (Ay[p∞], λy[p

∞], ιy[p
∞]) ∼= (Ax[p∞], λx[p∞], ιx[p∞])

}
.
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(ii) The restriction to C(x) of the universal self-dual rank-two OE-linear principally L̃ -

polarized p-divisible group (A, λ, ι)[p∞] over C(x) is sustained, i.e., for every positive

integer m, the C(x)-scheme

IsomC(x)

(
(Ax, λx, ιx)[pm], (A, λ, ι)[pm]

)
→ C(x)

whose sections over every C(x)-scheme S is

IsomS

(
(Ax, λx, ιx)[pm]×Spec(k) S, (A, λ, ι)[p

m]×C(x) S
)
,

is faithfully flat over C(x). See [9, Chapter 5] for the theory of sustained p-divisible

groups.

(iii) For every positive integer m, there exist an integer j0 such that the images of the

restriction morphisms

IsomC(x)

(
(Ax, λx, ιx)[pm+j ], (A, λ, ι)[pm+j ]

)
→ IsomC(x)

(
(Ax, λx, ιx)[pm], (A, λ, ι)[pm]

)
stabilize for all j ≥ j0 and defines a subscheme

Isomstab
C(x)

(
(Ax, λx, ιx)[pm], (A, λ, ι)[pm]

)
of IsomC(x)

(
(Ax, λx, ιx)[pm], (A, λ, ι)[pm]

)
, called the stabilized Isom scheme for

C(x) at level m, which is finite locally free over C(x).

Remark 6.3.1. (a) The condition (i) uniquely determines C(x) as a subset of ME . The

path adopted in [32], which may be called the “direct approach”, is to first show that this

subset is constructible. Then one shows, in a bootstrapping process, that the subset C(x)

with reduced scheme structure is locally closed and smooth.

(b) The approach to central leaves in [9] via the notion of sustained p-divisible groups

explained in [9, Chapter 5] has the advantage of conceptual clarity and helps revealing the

local structures of central leaves. See Proposition 6.3.3 for an illustration.

Lemma 6.3.2. Let x be an Fp-point of ME, let C(x) be the central leaf in ME containing

x, and let s = ((sv,1, sv,2))v∈ΣE,p ∈ NPsd
E be the Newton polygon for (Ax, ιx). Then

dim(C(x)) =
∑

v∈ΣE,p

[Ev : Qp] · (sv,2 − sv,1).

Proposition 6.3.3. For every Fp-point x of Mx, the leaf CME
(x) in ME is quasi-affine.
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Proof. Consider the stabilized Isom scheme

Isomstab
m = Isomstab

C(x)

(
(Ax, λx, ιx)[pm], (A, λ, ι)[pm]

)
for C(x) at level m, which is finite locally free over C(x). The pullback to Isomstab

m of the

restriction to C(x) of the universal p-divisible group is constant. Therefore the pullback

to Isomstab
m of the Hodge line bundle on ME is trivial. As the Hodge bundle on ME is

ample, the proposition follows.

Proposition 6.3.4. A distinguished congruity stratum Qc(Ne) in a Lie stratum Ne is a

central leaf.

Proof. This is a rehash of Proposition 5.6.1.

Definition 6.3.5. A central leaf in ME which is equal to a distinguished congruity stra-

tum in a Lie stratum Ne is called a distinguished central leaf in ME ; cf. Definition 6.2.1.

Lemma 6.3.6. Newton polygons of distinguished central leaves in ME exhausts all Newton

polygons for E. In other words for every s ∈ NPsd
E , there exists a distinguished central leaf

in ME whose Newton polygon is s.

Proposition 6.4 below, on the incidence relation between distinguished congruity strata

and the E-minimal locus follows from deformation theoretic considerations in [13, Sec-

tions 3–4] and the proof of Proposition 6.2; cf. [9, Section 4.5]. It is an important ingredi-

ent in the proof that prime-to-p Hecke correspondences operate transitively on the set of

irreducible components of a distinguished central leaf in ME .

Proposition 6.4. Let Qc(Ne) be a distinguished Lie-congruity stratum on ME. Let Q′

and Q′′ be irreducible components of Qc(Ne). If there is an E-minimal point z ∈ Nmin

which is contained in the Zariski closure of Q′ and also the Zariski closure of Q′′, then

Q′ = Q′′.

7. Distinguished leaves on non-minimal Lie strata

Theorem 7.1. Let Ne be a non-minimal Lie stratum in ME, i.e., e 6= esd
E,min. No irre-

ducible component of a distinguished Lie-congruity stratum Qc(Ne) is closed in ME. More

precisely, for every distinguished Lie-congruity stratum Qc(Ne) on Ne, the Zariski closure

in ME of every irreducible component of Qc(Ne) contains an irreducible component of the

distinguished Lie-congruity stratum Qc(Nmin) of the minimal Lie stratum Nmin in ME.

Theorem 7.2 below is a slightly stronger version of Theorem 7.1, with the same proof.
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Theorem 7.2. Let e = (ev)v∈ΣE,p be an element of T sd
E and let c = (cv)v∈ΣE,p be an

element of τE. Let Q be an irreducible component of a Lie-congruity stratum Qc(Ne)
in a Lie stratum Ne of ME. Suppose that v0 is a place of E above p such that ev0 6=
esd
Ev0 ,min and cv0 = 0. In other words the self-dual rank-two OEv0 -linear p-divisible group

(Ax[℘∞v0 ], ιx[℘∞v0 ]) attached to any geometric point x of Qc(Ne) is distinguished and its Lie

type is not equal to the minimal element esd
Ev ,min in T sd

Ev
. Then the Zariski closure Qzar of

Q contains an irreducible component of Qc(Ne′), where e′ = (e′v)v∈ΣE,p is the element of

T sd
E given by

e′v =

esd
Ev0 ,min if v = v0,

ev if v 6= v0.

Remark 7.3. The reason that we need a statement like Theorem 7.1 is that a priori, it is

possible that a given distinguished Lie-congruity stratum Qc(Ne) with Ne 6= Nmin may

have an irreducible component Q which is equal to its own Zariski closure in ME . In the

case when c is the maximal element 0 in τE and e is not the minimal element esd
E,min in

T sd
E , the scenario that Q is closed in ME is equivalent to the statement that Q is proper

over Fp. Most people will consider this scenario to be very unlikely, but we don’t know of

any “easy proof”.

Readers who are contemplating going through the details of this proof in [9, Chapter 4]

undoubtedly will prefer a proof which is shorter and more appealing. Unfortunately such

a proof has yet to be found.

7.4.

The main thrust of the proof of Theorem 7.1, described in [40, 2.5] and [9, Chapter 4], is an

inductive procedure to construct, for any given irreducible component Q of a distinguished

Lie-congruity stratum Qc(Ne) with Ne 6= Nmin, P1-families in the Zariski closure of Q.

Each of these P1 families of abelian varieties with real multiplication by OE is OE-linearly

isogenous to a constant abelian variety with real multiplication by OE , and there is a

dense open subset U of P1 contained in Qc(Ne). The Lie types of points of P1 \ U can

be explicitly computed. In the majority of situations there is a point in P1 \ U whose Lie

type is strictly small than e in T sd
e , and the inductive procedure stops if this is the case.

If the Lie types of points of P1 \ U are all equal to e, one constructs another P1 family

and then repeats the same operation. One shows that this procedure eventually produces

a point of the minimal Lie stratum Ne which lies in the Zariski closure of Q.
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8. Congruity strata on the minimal Lie stratum

Theorem 8.1. Every irreducible component of a congruity stratum of the minimal Lie

stratum Nmin = NesdE,min
of ME contains a minimal point, i.e., an irreducible component

of the zero-dimensional congruity stratum in Nmin.

8.2.

The proof of Theorem 8.1 is a variant of the method called Raynaud’s trick in [28, Sec-

tion 4], and is based on the phenomenon, explained in Subsubsection 8.2.2, that the

congruity stratification of the minimal Lie stratum Nmin(ME) bears prominent similari-

ties to the α-type stratification of Hilbert modular varieties attached to a totally real field

L which is unramified above p. See [9, Section 4.7] for details.

8.2.1. For a totally real field L unramified above p, there is only one Lie stratum, and the

congruity invariant on ML has the same information content as the type of the maximal

α-subgroup schemes considered in [14]. It is shown in [14, Section 3] that for every α-type

stratum Wτ of ML, there exists a positive integer m > 0 such that the restriction to Wτ

of the m-th power of the Hodge line bundle on ML is trivial, hence every α-stratum Wτ

of ML is quasi-affine.

8.2.2. Let x ∈ Nmin(Fp) be an Fp-point of the minimal Lie stratum of ME . Let Mv =

D(Ax[℘∞v ]) be the Dieudonné module of the OEv -linear p-divisible group Ax[℘∞v ]. The

assumption that x ∈ Nmin(Fp) implies that the operators F , V on Mv are both divisible

by π
bev/2c
v . Let Φv := π

−bev/2c
v · F|Mv , Ψv := π

−bev/2c
v · V|Mv . These two semi-linear

operators on Mv commute with the action of Ov ⊗Zp Λ(Fp), and

Φv ◦Ψv = Ψv ◦ Φv = p · π−2bev/2c
v .

(i) If ev is even, then Φv is a σ-linear automorphism of Mv, Ψv is a σ−1-linear automor-

phism, and such a triple (Mv,Φv,Ψv) is rigid.

(ii) On the other hand if ev is odd, then π′v := p · π−2bev/2c
v is a generator of ℘v. For the

decomposition Mv =
⊕

i∈IEv
M

(i)
v and the semi-linear operators Φv,Ψv, we have

Φv(M
(i)
v ) ⊆M (i+1)

v , Ψv(M
(i)) ⊆M (i−1)

v , ∀ i ∈ IEv .

It follows that dimFp

(
M

(i)
v /Φv(M

(i−1)
v ) + Ψv(M

(i+1)
v )

)
≤ 1 for every i ∈ IEv . The

congruity cx,v =
(
c

(i)
x,v

)
i∈IEv

of Ax[℘∞v ] is given by

c(i)
x,v =

0 if Φv(M
(i−1)
v ) + Ψv(M

(i+1)
v ) = M

(i)
v ,

1 if Φv(M
(i−1)
v ) + Ψv(M

(i+1)
v ) 6= M

(i)
v .
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This formula for c
(i)
x,v is very similar to the formula for the (w, i)-component of the

a-invariant of an abelian variety with real multiplication by the ring of integers of a

totally real field L unramified above p. Of course if Ev is unramified over Qp, then

ev = 1, and c
(i)
x,v = 1 if and only if F(M

(i−1)
v ) + V(M

(i+1)
v ) $M

(i)
v .

8.2.3. The similarity of the congruity stratification of the minimal Lie stratum Ne on ME

with the α-type stratification of ML, as sketched in Subsubsectin 8.2.2, holds to such an

extent that the argument in [14, Section 3], suitably interpreted, shows that the restriction

of the Hodge line bundle on ME to every congruity stratum Qc(Nmin) on Nmin is torsion.

Therefore every congruity stratum Qc(Nmin) on Nmin is quasi-affine.

9. Irreducibility of non-supersingular distinguished leaves

Theorem 9.1. The Zariski closure of every irreducible component of a distinguished Lie-

congruity stratum in ME contains an E-minimal point.

Proof. Theorem 9.1 follows from Theorems 7.1 and 8.1.

Replacing Theorem 7.1 by Theorem 7.2, we get a slightly stronger statement.

Theorem 9.2. Let Qc(Ne) be a Lie-congruity stratum in ME. Suppose that for every place

v of E above p, either the v-component ev of e is equal to esd
Ev ,min, or the v-component cv

of c is 0. Then every irreducible component of Qc(Ne) contains an E-minimal point.

Corollary 9.3. The prime-to-p Hecke correspondences operate transitively on the set of

all irreducible components of every non-supersingular distinguished Lie-congruity stratum

of ME.

Proof. This is a corollary of Theorem 9.1 and Proposition 6.4.

Corollary 9.4. Every non-supersingular distinguished Lie-congruity stratum in ME is

irreducible.

Proof. This irreducibility statement is a consequence of Corollary 9.3 and the method in [6,

4.4] for proving irreducibility of Hecke-invariant subvarieties via prime-to-p monodromy.

Note that [6, 4.4] was stated for Siegel modular varieties, but the proof therein shows that

the statement also holds for Hilbert modular varieties; see [42, Section 6].

The same argument, using Theorem 9.2 instead of Theorem 9.1, gives a strengthened

version of Corollary 9.4.
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Corollary 9.5. Let Qc(Ne) be a Lie-congruity stratum in ME which is not contained in

the supersingular locus of ME. Suppose that for every place v of E above p, either the

v-component ev of e is equal to esd
Ev ,min, or the v-component cv of c is 0. Then Qc(Ne) is

irreducible.

Remark 9.6. Readers may consult [9, Chapter 8] for a proof of the Hecke orbit conjecture

for Siegel modular varieties, and see Corollary 9.4 in action. See also Subsection 1.1 for

the role played by the Hilbert trick and the irreducibility result in Corollary 9.4 in the

proof of the Hecke orbit conjecture.

10. Some questions

Question 10.1 (Geometry of the Lie-congruity strata). (a) Determine the Zariski closure(
Qc(Ne)

)zar
of the Lie-congruity strata Qc(Ne) in ME , for all e ∈ T sd

E and all c ∈ τE .

(b) Is
(
Qc(Ne)

)zar
normal, Cohen-Macaulay, or a local complete intersection?

(c) Is every Lie-congruity stratum Qc(Ne) quasi-affine?

Remark 10.1.1. An optimist may ask whether there exists a stratification on ME which

refines the Lie stratification on ME and induces the congruity stratification on every Lie

stratum Ne. In other words:

Is the Zariski closure of a Lie-congruity stratum Qc(Ne) a union of Lie-congruity

strata, for every pair (e, c) ∈ T sd
E × τE?

Remark 10.1.2. Question 10.1 contains a preliminary part, namely determine all pairs

(e, c) ∈ T sd
E × τE such that Qc(Ne) 6= ∅. The related problem on non-emptiness of EO

strata and Newton strata of PEL-type Shimura varieties has been solved in [36].

Remark 10.1.3. We know that every distinguished Lie-congruity stratum is quasi-affine,

and so is every congruity stratum on the minimal Lie stratum Nmin. An optimist may ask

whether the restriction of the Hodge line bundle to Qc(Ne) is torsion for every pair (e, c)

in T sd
E × τE .

Question 10.2 (Irreducibility question for Lie-congruity strata). Let Qc(Ne) be a Lie-

congruity stratum not contained in the supersingular locus of ME . Is Qc(Ne) irreducible?

Question 10.3 (Lie-congruity strata and the Newton polygon stratification).

(a) Determine the subset{
(s, e, c) ∈ NPsd

E × T sd
E × τE | Ws ∩Qc(Ne) 6= ∅

}
of NPsd

E × T sd
E × τE .
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(b) Given a Lie-congruity stratum Qc(Ne), determine the Newton polygon of the generic

point of each irreducible component of Qc(Ne).

(c) Given a Newton polygon stratum Ws, determine the Lie type and the congruity of

the generic point of each irreducible component of Ws.

Question 10.4 (Newton polygon strata and Grothendieck’s conjecture).

(a) For each Newton polygon s ∈ NPsd
E , determine the number and dimensions of irre-

ducible components of Ws. Compare the set of irreducible components of Ws and

that of the special fiber the Rapoport–Zink space attached toWs modulo the twisted

stabilizer group (denoted by J(Qp) in [34, p. xiii]).

(b) Determine the singular locus of the Zariski closure (Ws)
zar ofWs. Is every irreducible

component of (Ws)
zar normal (respectively Cohen-Macaulay)?

(c) Let k ⊇ Fp be an algebraically closed field. Let e =
((
e

(i)
v,1, e

(i)
v,2

)
i∈Iv

)
v∈ΣE,p

be an

element of T sd
E . Let x be a k-point of the Lie stratum Ne in ME . Let sx be the

Newton polygon of x. Let s = ((sv,1, sv,2)) ∈ NPsd
E be a Newton polygon such that

sx � s and sv,1 · [Ev : Qp] ≥
∑

i∈Iv ev,1 for all v ∈ ΣE,p. Show that there exists a

point y of Ne such that x is contained in the Zariski closure of y and the Newton

polygon of y is equal to s.

(d) Let k ⊇ Fp be an algebraically closed field. Let x be a k-point of the Lie stratum

Ne in ME . Let sx be the Newton polygon of x. Let s = ((sv,1, sv,2)) ∈ NPsd
E be a

Newton polygon such that sx � s. Show that there exists a point y of ME whose

Newton polygon is equal to s and x is contained in the Zariski closure of y.

Remark. (i) It is not difficult to see that the statement (c) implies the statement (d). So

the question (c) is in essence an approach to (d), which is Grothendieck’s conjecture on

the Newton polygon stratification for Hilbert modular varieties.

This conjecture of Grothendieck is known when p is unramified in E [18,19], and also

when every prime ideal of OE containing pOE has residue field Fp [38, Theorem 6.20].

(ii) For the question (a) when p is unramified in E and the residue field degree fv ≤ 4

for every place v ∈ ΣE,p, the number of the irreducible components of the supersingular

locus is computed by a formula [41, Theorem 4.12]; this formula involves the special value

ζE(−1) of the Dedekind zeta function of E and certain constants c(v) depending only

on fv, v ∈ ΣE,p. Conjecturally [41, 4.13] the same formula for the number of irreducible

components of the supersingular locus in ME holds for all totally real field E, with the

integer-valued constants c(v) depending only on ev and fv, v ∈ ΣE,p.
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(iii) The sets of irreducible components of affine Deligne–Lusztig varieties modulo the

action of the twisted stabilizer group are studied by Hamacher and Viehmann [20] and

by Xiao and Zhu [37] very recently under a general good reduction setting. Their results

give an explicit group-theoretic description of irreducible components of the corresponding

Rapoport–Zink space in the question (a) when p is unramified in E.

(iv) For a general formulation of the notion of Newton invariant of isocrystals with

additional structure, see [22,24].

Question 10.5 (Lie-congruity vs. EKOR strata). Compare the Lie-congruity stratifica-

tion of ME with the EKOR stratification in [21].

Remark. The Lie stratification on ME coincides with the KR stratification introduced

in [25, 27]. The Lie-congruity stratification and the EKOR stratification both refine the

Lie stratification on ME . The geometry of KR strata of Siegel modular varieties is studied

in [15–17].

Question 10.6 (Analog of the EO stratification on ME). Find a good definition of

the Ekedahl–Oort stratification for Hilbert modular varieties, so that the resulting EO

stratification on ME has properties similar to the EO stratification [29] on the Siegel

moduli space Ag,1,n g-dimensional principally polarized abelian varieties over Fp with

symplectic level-n structures.

Remark 10.6.1. The EO stratification on Ag,1,n comes from geometric isomorphism classes

of (A[p], λ[p]), where (A, λ) runs through g-dimensional principally polarized abelian va-

rieties in characteristic p. The naive generalization to M L̃
E,n,δ

involves understanding the

classification of geometric isomorphism classes of triples (A[p], λ[p], ι[p]), where [(A, λ, ι, η)]

runs through geometric points of M L̃
E,n,δ

.

(a) When the totally real field E is unramified above p, this “naive notion” works

nicely. Moreover we know from [14, Theorem 3.2.8] that the principally polarized

(OE/pOE)-linear BT1 group (Ax[p], λx[p], ιx[p]) attached to a geometric point x of

M L̃
E,n,δ

is determined by the α-type of (Ax[p], λx[p], ιx[p]).

(b) One difficulty when E is ramified above p is that the number of geometric isomor-

phism classes of (Ax[p], λx[p], ιx[p]) may not be finite; see [1, 38].

Remark 10.6.2. For any element l ∈ L ∩L +
R such that L = OE · l+pL , we have a finite

etale morphism

fl : M L̃
E,n,δ

→ Ag,d,n,

where d = card(L /OE · l). A question related to Question 10.6 is to investigate basic

geometric properties of the pull-back f∗l SEO
• of the EO stratification on Ag,d,n, such as the
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dimensions, irreducible components and smoothness of strata of f∗l SEO
• and the incidence

relation between strata.

Some of the properties of the EO stratification on Ag,d,n holds for f∗l SEO
• . For instance,

every stratum in f∗l SEO
• is quasi-affine. But other geometric properties of strata in f∗l SEO

• ,

such as dimension, singularity and the closure relation have not been determined. The re-

lations between f∗l SEO
• and other stratifications of ME , such as the congruity stratification

of Lie strata and the Newton polygon stratification, await further work.

Remark 10.6.3. Satisfactory answers to Question 10.1 may very well depend on future

progress on Questions 10.1(a) and 10.5. For instance if it turns out that every Lie-congruity

stratum is quasi-affine and every irreducible component Q of Qc(Ne), the Zariski closure of

Q is a union of irreducible components of Lie-congruity strata of ME , then one can made

a good case that the Lie-congruity stratification is a good analog of the EO stratification

for ME .
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Fourier (Grenoble) 52 (2002), no. 6, 1665–1680.

[28] F. Oort, A stratification of a moduli space of polarized abelian varieties in positive

characteristic, in: Moduli of Curves and Abelian Varieties, 47–64, Aspects Math.

E33, Friedr. Vieweg, Braunschweig, 1999.

[29] , A stratification of a moduli space of abelian varieties, in: Moduli of Abelian

Varieties (Texel Island, 1999), 345–416, Progr. Math. 195, Birkhäuser, Basel, 2001.

[30] , Foliations in moduli spaces of abelian varieties, J. Amer. Math. Soc. 17

(2004), no. 2, 267–296.

[31] , Minimal p-divisible groups, Ann. of Math. (2) 161 (2005), no. 2, 1021–1036.

[32] , Foliations in moduli spaces of abelian varieties and dimension of leaves, in:

Algebra, Arithmetic, and Geometry: in honor of Yu. I. Manin, Vol. II, 465–501,
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