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Monogenic Binomial Compositions

Joshua Harrington and Lenny Jones*

Abstract. We say a monic polynomial f(x) ∈ Z[x] of degree n ≥ 2 is monogenic if

f(x) is irreducible over Q and {1, θ, θ2, . . . , θn−1} is a basis for the ring of integers

of Q(θ), where f(θ) = 0. In this article, we investigate when a pair of polynomials

f(x) = xn−a and g(x) = xm−b has the property that f(x) and f(g(x)) are monogenic.

1. Introduction

In this article, unless stated otherwise, when we say a polynomial f(x) ∈ Z[x] is “irre-

ducible”, we mean irreducible over Q. Suppose that f(x) is irreducible with deg(f) =

n ≥ 2 and f(θ) = 0. We let ∆(∗) denote the discriminant over Q of ∗ ∈ {θ, f,K}, where

K = Q(θ). Then the following equation is well-known [6]:

(1.1) ∆(f) = ∆(θ) =
[
ZK : Z[θ]

]2
∆(K),

where ZK is the ring of integers of K. We say a monic polynomial f(x) ∈ Z[x] is monogenic

if f(x) is irreducible and
[
ZK : Z[θ]

]
= 1; or, equivalently from (1.1), that ∆(f) = ∆(K).

In this situation, {1, θ, θ2, . . . , θn−1} is a basis for ZK referred to as a power basis. We say

that a field K is monogenic, if there exists an irreducible polynomial f(x) with f(α) = 0,

such that {1, α, α2, . . . , αn−1} is a basis for ZK . There is a subtle difference here and

we caution the reader that although f(x) being monogenic implies that K = Q(θ), where

f(θ) = 0, is monogenic, the converse is false. For example, let f(x) = x2−5 with f(α) = 0

and g(x) = x2 − x − 1 with g(β) = 0. Observe that Q(α) = Q(β), and let K = Q(α).

Note that g(x) is monogenic since it is well-known [21] that {1, β} is an integral basis for

ZK . Consequently, K is monogenic. However f(x) is not monogenic since {1, α} is not an

integral basis for ZK [21].

The existence of a power basis facilitates calculations in ZK . A classic example is the

cyclotomic field K = Q(ζ), where ζ is a primitive nth root of unity [30]. We see from (1.1)

that if ∆(f) is squarefree (that is, an integer not divisible by the square of any integer

larger than 1), then f is monogenic. For any fixed degree n ≥ 2, the density of monogenic

Received November 6, 2019; Accepted February 5, 2020.

Communicated by Yu-Ru Liu.

2010 Mathematics Subject Classification. Primary: 11R04; Secondary: 11R09.

Key words and phrases. monogenic, irreducible, composition.

*Corresponding author.

1073



1074 Joshua Harrington and Lenny Jones

polynomials is 6/π2 ≈ .607927 [4]. However, determining infinite families of degree-n

monogenic polynomials can be difficult, and much research has been done to locate such

families [1, 2, 5, 8, 10,12,13,16,17,23,29].

Despite the difficulty in determining conditions under which a single family of degree-

n monogenic polynomials exists, we are inspired by research concerning power bases of

relative extensions [9, 11,14,15,19,26] to ask the following related question:

Is it possible to characterize polynomial pairs (f, g)

such that both f(x) and f(g(x)) are monogenic?
(1.2)

We see that, with g(x) = x, (1.2) encompasses the original question concerning the search

for infinite families of degree-n monogenic polynomials. Therefore, we would expect a

complete answer to (1.2) to be intractable. Nevertheless, progress is possible under suitable

restrictions. We focus here on the situation when both f(x) and g(x) in (1.2) are binomials.

It is perhaps somewhat surprising that, without further restrictions, even this seemingly

easy setting is extremely complicated. The following recent result of Gassert [17], which

can be viewed as the special case of (1.2) with g(x) = x and f(x) = xn− a, provides both

evidence for this complexity and motivation for our investigations.

Theorem 1.1. [17] For any integer n > 1, the polynomial xn − a ∈ Z[x] is monogenic if

and only if a is squarefree and ap 6≡ a (mod p2) for all primes p dividing n.

Remark 1.2. Bardestani [3] had previously examined the situation when both n and a are

primes.

In this article, we use Theorem 1.1 and some additional new machinery to give sets of

conditions for when both f(x) = xn−a and T (x) := f(g(x)) = (xm−b)n−a are monogenic,

under certain restrictions on a, b, m, n. Each of our three main theorems provides an easy

and quick algorithmic test to determine when f(x) and T (x) are monogenic; and, with

the exception of the calculation of primitive sixth roots of unity modulo a prime in the

third theorem, these tests involve only the coefficients and the degrees of the polynomials

in the composition. More precisely, we prove

Theorem 1.3. Let a, b,m, n ∈ Z with m,n ≥ 2, and let κ(∗) denote the squarefree kernel

of ∗. Let f(x) = xn − a, g(x) = xm − b and T (x) = f(g(x)). If

(1) a is squarefree,

(2) ap 6≡ a (mod p2) for all primes p dividing n, and

(3) κ(|m((−b)n − a)|) divides an,

then f(x) and T (x) are monogenic.
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While the conditions given in Theorem 1.3 are sufficient, the conditions given in The-

orems 1.4 and 1.5 are both necessary and sufficient.

Theorem 1.4. Let a, b,m ∈ Z with a 6= 0 and m ≥ 2, and let m̂ = m/ gcd(2a,m). Let

f(x) = x2 − a, g(x) = xm − b, T (x) = f(g(x)) and suppose that κ(|am|) = κ(|b2 − a|),
where κ(∗) denotes the squarefree kernel of the positive integer ∗. Then f(x) and T (x)

are monogenic if and only if all of the following conditions hold:

(1) a is squarefree,

(2) a 6≡ 1 (mod 4),

(3) b2 − a 6≡ 0 (mod p2) for all primes p dividing m̂,

(4) −(2b)p+1 + 3b2 + a 6≡ 0 (mod p2) for all primes p dividing m̂.

The polynomials T (x) in Theorem 1.4 are trinomials and much research has been

conducted concerning the mongeneity of trinomials (see [24] and the references therein).

Although necessary and sufficient conditions for a trinomial to be monogenic have been

given in [22], Theorem 1.4 gives easier and more straightforward conditions to check the

monogeneity of the particular trinomials in Theorem 1.4. We should also point out that

there is no overlap with the trinomials in a more recent examination in [25] and the

trinomials arising from Theorem 1.4.

Theorem 1.5. Let a, b,m ∈ Z with a 6= 0 and m ≥ 2, and let m̂ = m/ gcd(3a,m). Let

f(x) = x3 − a, g(x) = xm − b, T (x) = f(g(x)) and suppose that κ(|am|) = κ(|b3 + a|),
where κ(∗) denotes the squarefree kernel of the positive integer ∗. Then f(x) and T (x)

are monogenic if and only if all of the following conditions hold:

(1) a is squarefree,

(2) a 6≡ ±1 (mod 9),

(3) b3 + a 6≡ 0 (mod p2) for all primes p dividing m̂,

(4) a 6≡ 3 (mod 4) or b 6≡ 3 (mod 4) if m̂ ≡ 0 (mod 2),

(5) Aζ +B + b3 + a 6≡ 0 (mod p2) for all primes p dividing m̂ with p ≡ 1 (mod 6) and

each primitive sixth root of unity ζ modulo p, where

A = (−1)(p+1)/22 · 3(3p−1)/2b3p + 3p+1b2p+1 + (−3)(p+1)/2bp+2,

B = (−1)(p−1)/23(3p−1)/2b3p + (−3)(p+1)/2.
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Although the following corollary, whose proof we omit, is not much more than an

observation from Theorems 1.4 and 1.5, we state it formally to point out the fact that it

prescribes a method for constructing infinite collections of monogenic or non-monogenic

polynomials from these theorems. These collections are not “families” in the traditional

sense of the literature since the members of each collection here have distinct degree.

Corollary 1.6. Suppose that f(x) and T (x) = f(xm − b) are polynomials such that all

hypotheses and conditions of Theorem 1.4, respectively Theorem 1.5, are satisfied. Then

the polynomial T (xm
k
) is monogenic for all integers k ≥ 1. Similarly, suppose that f(x)

and T (x) = f(xm − b) are polynomials such that all hypotheses of Theorem 1.4, respec-

tively Theorem 1.5, are satisfied, but that at least one of the conditions of Theorem 1.4,

respectively Theorem 1.5, fails to hold. Then the polynomial T (xm
k
) is not monogenic for

all integers k ≥ 1.

All computer computations in this article were done using either MAGMA, Maple or

Sage.

2. Basic preliminaries

The first two theorems are due to Capelli (see Section 2.1 in [28]).

Theorem 2.1. Let f(x) and g(x) be polynomials in Q[x] with f(x) irreducible. Suppose

that f(α) = 0. Then f(g(x)) is reducible over Q if and only if g(x)− α is reducible over

Q(α).

Theorem 2.2. Let r ∈ Z with r ≥ 2, and let α ∈ C be algebraic. Then xr−α is reducible

over Q(α) if and only if either there is a prime p dividing r such that α = βp for some

β ∈ Q(α) or 4 | r and α = −4β4 for some β ∈ Q(α).

Theorem 2.3. (Dedekind [6]) Let K = Q(θ) be a number field, T (x) ∈ Z[x] the monic

minimal polynomial of θ, and ZK the ring of integers of K. Let p be a prime number and

let ∗ denote reduction of ∗ modulo p (in Z, Z[x] or Z[θ]). Let

T (x) =
k∏
i=1

ti(x)ei

be the factorization of T (x) modulo p in Fp[x], and set

g(x) =
k∏
i=1

ti(x),
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where the ti(x) ∈ Z[x] are arbitrary monic lifts of the ti(x). Let h(x) ∈ Z[x] be a monic

lift of T (x)/g(x) and set

F (x) =
g(x)h(x)− T (x)

p
∈ Z[x].

Then [
ZK : Z[θ]

]
6≡ 0 (mod p) ⇐⇒ gcd(F , g, h) = 1 in Fp[x].

In general, Theorem 2.3 does not give enough information to determine if K is mono-

genic. However, Theorem 2.3 does give precisely the information needed to determine if

T (x) is monogenic. That is,

Corollary 2.4. T (x) is monogenic if and only if gcd(F , g, h) = 1 in Theorem 2.3 for

every prime p such that ∆(T ) ≡ 0 (mod p).

3. Proofs of Theorems 1.3, 1.4 and 1.5

Before embarking on the proof of the main theorems, we require some additional machin-

ery. The first lemma, which we state without proof, gives a formula for the absolute value

of the discriminant of the composition of two monic binomials.

Lemma 3.1. Let a, b,m, n ∈ Z with m,n ≥ 1. Let f(x) = xn − a, g(x) = xm − b and

T (x) = f(g(x)). Then

|∆(T )| = |(mn)mnam(n−1)((−b)n − a)m−1|.

Lemma 3.1 follows from the formula for the discriminant of the composition of two

arbitrary polynomials which is, as far as we can determine, originally due to John Cullinan

[7]. A proof of Lemma 3.1, as well as a proof of the more general result, can be found

in [19].

The following lemma gives sufficient conditions for the irreducibility of T (x) when f(x)

is irreducible.

Lemma 3.2. Let a, b,m, n ∈ Z with m,n ≥ 1. Let f(x) = xn − a and g(x) = xm − b with

f(x) irreducible. If |(−b)n−a| 6= yp and |(−b)n−a| 6= 4ny4 for any integer y ≥ 1 and any

prime p dividing m, then T (x) is irreducible.

Proof. By way of contradiction, assume that T (x) = f(g(x)) is reducible. Suppose that

f(α) = 0 so that αn = a. Then, by Theorem 2.1, g(x)−α is reducible over Q(α). Thus, by

Theorem 2.2, we have that either α+b = βp for some β ∈ Q(α) and some prime p dividing

m, or m ≡ 0 (mod 4) and α + b = −4β4 for some β ∈ Q(α). Suppose that α + b = βp
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for some β ∈ Q(α) and some prime p dividing m. Then, since (x− b)n − a is the minimal

polynomial for α+ b, we deduce by taking the norm, which we denote as N , that

|(−b)n − a| = |N (α+ b) = |N (β)|p,

which is a contradiction since |N (β)| ∈ Z. A similar contradiction is reached using Theo-

rem 2.2 if m ≡ 0 (mod 4) and α+ b = −4β4 for some β ∈ Q(α).

In the next two lemmas, we examine the relationship between the monogeneity of

f(x) = xn − a and the monogeneity of T (x) = f(g(x)). In particular, the first lemma

shows that the monogeneity of f(x) is necessary for the monogeneity of T (x).

Lemma 3.3. Let f(x) = xn − a ∈ Z[x], g(x) ∈ Z[x], and T (x) = f(g(x)). If T (x) is

monogenic then f(x) is monogenic.

Proof. We prove the contrapositive. If T (x) is reducible, then T (x) is not monogenic. So,

suppose that T (x) is irreducible. Let T (θ) = 0, K = Q(θ) and ZK denote the ring of

integers of K. Since f(x) is not monogenic, we have by Theorem 1.1 that either a is not

squarefree or ap ≡ a (mod p2) for some prime p dividing n. In each of these two cases,

we calculate for T (x) the polynomial F (x) in Theorem 2.3, and we denote it as FT (x).

Suppose first that a is not squarefree and that p is a prime such that a ≡ 0 (mod p2).

Then

(3.1) T (x) ≡ g(x)n ≡

(∏
i

τi(x)ei

)n
(mod p),

where the τi(x) are irreducible modulo p. Thus,

FT (x) =

(∏
i τi(x)ei

)n − (g(x)n − a)

p
=

(∏
i τi(x)ei

)n − g(x)n

p
+
a

p
,

where the τi(x) are arbitrary monic lifts of the τi(x). If α is a zero of any τi(x) in an

algebraic closure of Fp, then τi(α) ≡ 0 (mod p). Therefore, from (3.1), we have that(∏
i

τi(α)ei

)n
≡ g(α)n ≡ 0 (mod p2),

since n ≥ 2. Consequently, FT (α) ≡ 0 (mod p), which implies that
[
ZK : Z[θ]

]
≡ 0

(mod p) and T (x) is not monogenic by Corollary 2.4.

Now, suppose that ap ≡ a (mod p2) for some prime p dividing n. Then

(3.2) T (x) ≡ (g(x)n/p − a)p ≡

(∏
i

τi(x)ei

)p
(mod p),
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where the τi(x) are irreducible modulo p. Hence,

FT (x) =

(∏
i τi(x)ei

)p − (g(x)n − a)

p
,

where the τi(x) are arbitrary monic lifts of the τi(x). If α is a zero of any τi(x) in an

algebraic closure of Fp, then τi(α) ≡ 0 (mod p) so that
(∏

i τi(x)ei
)p ≡ 0 (mod p2) since

p ≥ 2. Additionally, from (3.2), we have that g(α)n/p ≡ a (mod p), which implies that

g(α)n ≡ ap ≡ a (mod p2).

Thus,

FT (α) ≡
(∏

i τi(α)ei
)p

p
− g(α)n − a

p
≡ 0 (mod p),

so that T (x) is not monogenic by Corollary 2.4 in this case as well.

Although the full converse of Lemma 3.3 is not true, the next result shows that, if

f(x) = xn − a is monogenic, we only need to check primes that do not divide ∆(f) when

using Corollary 2.4 to determine whether T (x) = f(g(x)) is monogenic.

Lemma 3.4. Let f(x) = xn − a ∈ Z[x] and g(x) ∈ Z[x]. Suppose that T (x) = f(g(x)) is

irreducible, T (θ) = 0, K = Q(θ) and ZK is the ring of integers of K. If f(x) is monogenic,

then [
ZK : Z[θ]

]
6≡ 0 (mod p) for all primes p such that ∆(f) ≡ 0 (mod p).

Proof. From Lemma 3.1, we have that

|∆(f)| = |nnan−1|.

For each of the polynomials T (x) and f(x), we calculate the polynomial F (x) in Theo-

rem 2.3, first for a prime divisor of n, and then for a prime divisor of a. For each of these

primes, we denote this polynomial F (x) respectively as FT (x) and Ff (x). Suppose first

that p is a prime that divides n. Then

T (x) ≡ (g(x)n/p − a)p ≡

(∏
i

τi(x)ei

)p
(mod p),

where the τi(x) are irreducible modulo p. Thus,∏
i

τi(x)ei = g(x)n/p − a+ pr(x)
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for some polynomial r(x), where the τi(x) are arbitrary monic lifts of the τi(x). Hence, in

Theorem 2.3, we have that

FT (x) =

(∏k
i=1 τi(x)ei

)p − (g(x)n − a)

p

=
(g(x)n/p − a+ pr(x))p − (g(x)n − a)

p

=
a+ (−a)p

p
+

p−1∑
j=1

(
p
j

)
p

(−1)jaj(g(x)n/p)p−j

+

p−1∑
j=1

(
p
j

)
p
pjr(x)j(g(x)n/p − a)p−j + pp−1r(x)p.

Therefore,

(3.3) FT (x) ≡ a+ (−a)p

p
+

p−1∑
j=1

(
p
j

)
p

(−1)jaj(g(x)n/p)p−j (mod p).

Similarly, we have that

(3.4) f(x) ≡ (xn/p − a)p ≡

(∏
i

ti(x)ei

)p
≡ (xn/p − a+ ps(x))p (mod p)

for some polynomial s(x), where the ti(x) are arbitrary monic lifts of the irreducible factors

ti(x) of f(x). Then the expansion of the right-hand side of (3.4) yields

(3.5) Ff (x) ≡ a+ (−a)p

p
+

p−1∑
j=1

(
p
j

)
p

(−1)jaj(xn/p)p−j (mod p).

Now, if
[
ZK : Z[θ]

]
≡ 0 (mod p), then there exists α in an algebraic closure of Fp such

that

FT (α) ≡ τ i(α) ≡ 0 (mod p) for some i.

Hence, g(α)n/p− a ≡ 0 (mod p), which implies that the sum in (3.3) is identically zero at

x = α. We conclude that

(3.6)
a+ (−a)p

p
≡ FT (α) ≡ 0 (mod p).

Let β = g(α). Then βn/p− a ≡ 0 (mod p), from which we deduce that ti(β) ≡ 0 (mod p)

for some i, and that Ff (β) ≡ a+(−a)p
p (mod p), since the sum in (3.5) is identically zero at

x = β. But then (3.6) implies that Ff (β) ≡ 0 (mod p) so that gcd(Ff , ti) 6= 1, which, from

Corollary 2.4, contradicts the fact that f(x) is monogenic. Consequently,
[
ZK : Z[θ]

]
6≡ 0

(mod p), and the lemma is established for primes dividing n.
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Next, suppose that p is a prime that divides a. Then

T (x) ≡ g(x)n ≡

(∏
i

τi(x)ei

)n
(mod p),

where the τi(x) are irreducible modulo p, and

(3.7) FT (x) =

(∏
i τi(x)ei

)n − (g(x)n − a)

p
=

(∏
i τi(x)ei

)n − g(x)n

p
+
a

p
,

where the τi(x) are arbitrary monic lifts of the τi(x). If
[
ZK : Z[θ]

]
≡ 0 (mod p), then

there exists α in an algebraic closure of Fp such that

(3.8) τ i(α) ≡ FT (α) ≡ 0 (mod p) for some i.

Hence, (∏
i

τi(α)ei

)n
≡ g(α)n ≡ 0 (mod p2)

since n ≥ 2. Consequently, from (3.8) and (3.7), it follows that a ≡ 0 (mod p2). However,

f(x) ≡ xn (mod p), so that

Ff (x) =
xn − (xn − a)

p
=
a

p
.

Since f(x) is monogenic, we deduce from Theorem 1.1 that a is squarefree, which implies

that a 6≡ 0 (mod p2). This contradiction completes the proof.

We are now in a position to present proofs of our main theorems.

Proof of Theorem 1.3. Conditions (1) and (2) imply that f(x) is monogenic by Theo-

rem 1.1. To show that T (x) is monogenic, we show first that T (x) is irreducible. To do

this, we examine the prime divisors of (−b)n−a. Let p be a prime such that (−b)n−a ≡ 0

(mod p). Then condition (3) implies that p | an. If p | a, then p | b, which implies that

p || (−b)n − a since n ≥ 2 and a is squarefree. If p | n and p - a, then p - b. That is,

gcd(ab, p) = 1. Then, if p2 | (−b)n − a, it follows from Euler’s generalization of Fermat’s

Little Theorem that

ap−1 ≡
(
((−b)n/p)p

)p−1 ≡ ((−b)n/p)φ(p2) ≡ 1 (mod p2).

Hence, ap ≡ a (mod p2), which contradicts condition (2). Thus, (−b)n − a is squarefree,

and by Lemma 3.2, we conclude that T (x) is irreducible.

Finally, Lemma 3.1 and condition (3) imply that all prime divisors of ∆(T ) divide ∆(f).

Then, since f(x) is monogenic, we deduce from Lemma 3.4 that T (x) is monogenic.
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Proof of Theorem 1.4. First note that since n = 2, conditions (1) and (2) are equivalent to

f(x) being monogenic, according to Theorem 1.1. We show next that T (x) is irreducible,

assuming conditions (1), (2) and (3) hold. If |b2−a| = yp for some integer y ≥ 1 and some

prime p dividing m, then y > 1 since

κ(|b2 − a|) = κ(am) > 1.

Thus, since p | m, we have that p | b2 − a so that

yp ≡ b2 − a ≡ 0 (mod p),

which implies that p | y, contradicting condition (3). Similarly, |b2 − a| 6= 16yp for any

integer y ≥ 1 and any prime p dividing m. Hence, we conclude from Lemma 3.2 that T (x)

is irreducible.

Next, we examine primes that divide |∆(T )|. By Lemma 3.1, we have that

|∆(T )| = |(2m)2mam(b2 − a)m−1|.

Thus, to determine when T (x) is monogenic, it follows from Lemma 3.4 and the fact that

κ(am) = κ(|b2 − a|) that we only need to check primes p that divide m̂. So, let p be such

a prime. Then, since T (x) = x2m − 2bxm + b2 − a, we have that

(3.9) T (x) ≡ xm(xm − 2b) ≡ xm(xm/p − 2b)p ≡ xm
(∏

i

τi(x)ei

)p
(mod p),

where the τi(x) are irreducible modulo p. Thus,∏
i

τi(x)ei = xm/p − 2b+ ps(x)

for some polynomial s(x), where τi(x) is an arbitrary monic lift of τi(x). Therefore, the

polynomial FT (x) := F (x) in Theorem 2.3 is

FT (x) =
xm(xm/p − 2b+ ps(x))p − (x2m − 2bxm + b2 − a)

p
,

so that

FT (x) ≡ (−2b)p − (−2b)

p
xm

+ xm
p−1∑
j=1

(
p
j

)
p

(xm/p)p−j(−2b)j − (b2 − a)

p
(mod p).

(3.10)

We see from (3.9) that if T (α) ≡ 0 (mod p), then either α ≡ 0 (mod p), or τi(α) ≡ 0

(mod p) for some i, in which case

2b ≡ αm/p ≡ (αm/p)p ≡ αm (mod p)
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and the sum in (3.10) is identically zero. Consequently,

(3.11) FT (α) ≡

−
(b2−a)
p (mod p) if α = 0,

(−2b)p−(−2b)
p (2b)− (b2−a)

p (mod p) otherwise.

We have from Corollary 2.4 that T (x) is monogenic if and only if neither of the quan-

tities on the right-hand side of (3.11) is zero, which is easily seen to be equivalent to

conditions (3) and (4).

Proof of Theorem 1.5. First note that since n = 3, conditions (1) and (2) are equivalent

to f(x) being monogenic, according to Theorem 1.1. Under the assumption that condi-

tions (1), (2), and (3) hold, an argument similar to the one used in the proof of Theorem 1.4

shows that T (x) is irreducible by Lemma 3.2.

Using Corollary 2.4 to determine when T (x) is monogenic, we only need to examine

primes p dividing m̂ by Lemma 3.4. Let p be such a prime. Since

T (x) = x3m − 3bx2m + 3b2xm − b3 − a,

we have that

T (x) ≡ xm
(
(xm/p)2 − 3b(xm/p) + 3b2

)p
(mod p)

≡ xm
(∏

i

τi(x)ei

)p
(mod p),

(3.12)

where the τi(x) are irreducible modulo p. Then, expanding (3.12), we get that

pFT (x) = xm
(
((xm/p)2 − 3b(xm/p))p + (3b2)p + V

)
− T (x)

= xm
(
x2m + (−3b)pxm + U + (3b2)p + V

)
− T (x)

= ((−3b)p + 3b)x2m + ((3b2)p − 3b2 + U + V )xm + b3 + a,

(3.13)

where

U =

p−1∑
j=1

(
p

j

)
((xm/p)2)p−j(−3bxm/p)j and V =

p−1∑
j=1

(
p

j

)
((xm/p)2 − 3b(xm/p))p−j(3b2)j .

If T (α) ≡ 0 (mod p) for some α in an algebraic closure of Fp, we see from (3.12) that

either

α ≡ 0 (mod p) or αm/p ≡ b(ζ + 1) (mod p),

where ζ is a primitive sixth root of unity modulo p.

If α ≡ 0 (mod p), then we see from (3.13) that FT (α) ≡ 0 (mod p) if and only if

b3 + a ≡ 0 (mod p2), which is condition (3). Suppose then that αm/p ≡ b(ζ + 1) 6≡ 0



1084 Joshua Harrington and Lenny Jones

(mod p). We make use of the fact that ζ2− ζ + 1 ≡ 0 (mod p), and split our analysis into

three cases: p = 2, p ≡ 1 (mod 6) and p ≡ 5 (mod 6). Straightforward computations and

induction arguments yield

(3.14) αm ≡


3bpζ (mod p) if p = 2,

(−3)(p−1)/2bp(ζ + 1) (mod p) if p ≡ 1 (mod 6),

(−3)(p−1)/2bp(ζ − 2) (mod p) if p ≡ 5 (mod 6),

(3.15) α2m ≡


9b2p(ζ − 1) (mod p) if p = 2,

3pb2pζ (mod p) if p ≡ 1 (mod 6),

(−3)pb2p(ζ − 1) (mod p) if p ≡ 5 (mod 6)

and

(3.16) V
∣∣
x=α

=

−18b4 if p = 2,

0 otherwise.

Since

U
∣∣
x=α

=

p−1∑
j=1

(
p

j

)
(3b2ζ)p−j(−3b2(ζ + 1))j =

p−1∑
j=1

(
p

j

)
(3b2)p−jζp−j(3b2)j(−ζ − 1)j

= 3pb2pζp
p−1∑
j=1

(
p

j

)
(ζ−1(−ζ − 1))j = 3pb2pζp

p−1∑
j=1

(
p

j

)
(ζ−1(ζ2 − 2ζ))j

= 3pb2pζp
p−1∑
j=1

(
p

j

)
(ζ − 2)j = 3pb2pζp((ζ − 1)p − (ζ − 2)p − 1),

we also have that

(3.17) U
∣∣
x=α

=


3pb2p(−4ζ + 2) if p = 2,

3pb2p((−3)(p−1)/2 − 1)(ζ + 1) if p ≡ 1 (mod 6),

3pb2p((−3)(p−1)/2 + 1)(ζ − 2) if p ≡ 5 (mod 6).

Combining (3.14), (3.15), (3.16) and (3.17), and using (3.13), we get, after some ma-

nipulation, that

(3.18) pFT (α) =


(27b5 − 9b4)ζ + 27b6 − 27b5 + b3 + a if p = 2,

Aζ +B + b3 + a if p ≡ 1 (mod 6),

Cζ +D + b3 + a if p ≡ 5 (mod 6),
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where

A = (−1)(p+1)/22 · 3(3p−1)/2b3p + 3p+1b2p+1 + (−3)(p+1)/2bp+2,

B = (−1)(p−1)/23(3p−1)/2b3p + (−3)(p+1)/2,

C = (−1)(p+1)/22 · 3(3p−1)/2b3p − 3p+1b2p+1 + (−3)(p+1)/2bp+2,

D = (−1)(p−1)/23(3p−1)/2b3p + 3p+1b2p+1 + (−1)(p−1)/22 · 3(p+1)/2bp+2.

When p = 2, the minimal polynomial for ζ has degree 2, and we see from (3.18) that

pFT (α) ≡ 0 (mod 4) =⇒ 27b5 − 9b4 ≡ 0 (mod 4)

=⇒ b ≡ 0 (mod 2) or b ≡ 3 (mod 4).

However, b ≡ 0 (mod 2) implies that a ≡ 0 (mod 4), which contradicts condition (1).

Thus, b ≡ 3 (mod 4), which in turn implies that a ≡ 3 (mod 4). It is easy to see that if

a ≡ b ≡ 3 (mod 4), then pFT (α) ≡ 0 (mod 4). Hence, we arrive at condition (4).

In the case when p ≡ 1 (mod 6), we have that ζ ∈ Fp so that the minimal polynomial

for ζ is a linear polynomial. Thus, we just have from (3.18) that

pFT (α) ≡ 0 (mod p2) ⇐⇒ Aζ +B + b3 + a ≡ 0 (mod p2),

which simply yields condition (5).

Finally, when p ≡ 5 (mod 6), we see from (3.18) that

pFT (α) ≡ 0 (mod p2) =⇒ C ≡ 0 (mod p2),

since the minimal polynomial for ζ has degree 2. We claim that

(3.19) C ≡ 0 (mod p2) =⇒ D ≡ 0 (mod p2).

To see this claim, tedious, but straightforward calculations show that

C = (−3)(p+1)/2bp+2((−3b2)(p−1)/2 + 1)(2(−3b2)(p−1)/2 + 1),

D = (−1)(p−1)/23(p+1)/2bp+2((−3b2)(p−1)/2 + 1)((−3b2)(p−1)/2 + 2).
(3.20)

By Euler’s criterion, we have that

2(−3b2)(p−1)/2 + 1 6≡ 0 (mod p) and (−3b2)(p−1)/2 + 2 6≡ 0 (mod p).

Thus, if C ≡ 0 (mod p2), then either

bp+2 ≡ 0 (mod p2) or (−3b2)(p−1)/2 + 1 ≡ 0 (mod p2).
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In either case, it follows from (3.20) that D ≡ 0 (mod p2), and the claim (3.19) is estab-

lished. Consequently,

pFT (α) ≡ 0 (mod p2) =⇒ b3 + a ≡ 0 (mod p2).

As previously pointed out, if b3 + a ≡ 0 (mod p2), then pFT (0) ≡ 0 (mod p2). Therefore,

in this case, no additional conditions are required since condition (3) covers this situation.

4. Examples

Using the ideas from Corollary 1.6, the following example illustrates how to construct

infinite collections of monogenic and non-monogenic polynomials in the setting of Theo-

rem 1.4.

Example 4.1. Let p be an odd prime such that p − 1 is squarefree. (Note that it is

well-known that infinitely many such primes exist [20, 27].) Let k ≥ 1 be an integer. Let

a = b = 1− p and m = pk, so that

κ(|am|) = κ(p(p− 1)) = κ(|b2 − a|).

Then f(x) = x2 − (1− p), g(x) = xp
k − (1− p) and

T (x) := f(g(x)) = (xp − (1− p))2 − (1− p) = x2p
k − 2(1− p)xpk + p(p− 1).

We use Theorem 1.4 to determine when T (x) is monogenic. Condition (1) of Theorem 1.4

is satisfied by assumption. Note also that p ≡ 3 (mod 4) and a ≡ 2 (mod 4), so that

condition (2) is satisfied. For conditions (3) and (4), we only need to check the prime

p using Corollary 2.4. Clearly, b2 − a = p(p − 1) 6≡ 0 (mod p2) so that condition (3) is

satisfied. For condition (4), we see that

−2p+1(1− p)p+1 + 3(1− p)2 + (1− p) ≡ (p− 1)(2p+1 + 3p− 4) (mod p2),

and therefore, T (x) is monogenic if and only if

(4.1) 2p+1 + 3p− 4 6≡ 0 (mod p2).

Interestingly, a computer search of the first ten million primes reveals that the only ex-

ception to (4.1) among primes p ≡ 3 (mod 4), such that p− 1 is squarefree, is p = 79.

Finally, we observe that for each such prime p for which (4.1) holds, there exist infinitely

many pairs of binomials f(x) and g(x) such that both f(x) and T (x) are monogenic, simply

by letting the exponent k range on m = pk to Corollary 1.6. Similarly, from Corollary 1.6,

the polynomials T (x79
k
) are not monogenic for all k ≥ 1.
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We now give some examples of polynomials that satisfy the conditions of Theorem 1.5.

We outline an algorithm for constructing these polynomials. First choose a 6≡ 3 (mod 4)

in such a way that a satisfies Theorem 1.1. Then choose b to be a multiple of a such

that b3 + a is squarefree. If κ(|b3 + a|)/a has no prime factors p ≡ 1 (mod 6), then all

conditions of Theorem 1.5 are trivially satisfied and T is monogenic. An example of such

a polynomial is

T (x) = x1908162 + 258x1272108 + 22188x636054 + 636054.

If κ(|b3 + a|)/a has a prime factor p ≡ 1 (mod 6), then we go on to examine condition (5)

of Theorem 1.5. If condition (5) holds, then we deduce that T is monogenic. An infinite

family of such polynomials is given by

T (x) = x3·37
k − 18x2·37

k
+ 108x37

k − 222.

The final example shows that there exist infinitely many pairs of binomials that do

not satisfy the conditions of Theorem 1.5.

Example 4.2. Let k be a positive integer, and let m = 217k. Let a = 29, and b = −58,

so that |b3 + a| = 7 · 29 · 312 and κ(|am|) = κ(|b3 + a|) = 7 · 29 · 31. Then f(x) = x3 − 29,

g(x) = x217
k

+ 58 and

T (x) = x3·217
k

+ 174x2·217
k

+ 10092x217
k

+ 195083.

Conditions (1) and (2) of Theorem 1.5 are easily confirmed to be true. However, condi-

tion (3) is not satisfied with p = 31. Thus, although f(x) is monogenic, we have that T (x)

is not monogenic.

Since k was arbitrary, we have found an infinite collection of pairs of binomials f(x) =

x3−a and g(x) = xm− b such that f(x) is monogenic but f(g(x)) is not monogenic. Note

that this process can be duplicated for any other single pair satisfying conditions (1) and

(2), but not condition (3) to arrive at other such infinite collections.

5. Final comments

Although generalizing Theorem 1.5 to T (x) = f(g(x)) = (xm − b)n − a, where n > 3

is arbitrary, seems to be theoretically possible, there appear to be severe computational

obstacles. Even the case when m and n are both arbitrary odd primes presents extreme

difficulty. Nevertheless, along these lines we make the following conjecture.

Conjecture 5.1. Let a, b ∈ Z. Let p and q be odd primes with p ≡ −1 (mod q). Let

f(x) = xq − a, g(x) = xp − b, T (x) = f(g(x)) and suppose that κ(|ap|) = κ(|bq + a|),
where κ(∗) denotes the squarefree kernel of the positive integer ∗. Then f(x) and T (x)

are monogenic if and only if all of the following conditions hold:
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(1) a is squarefree,

(2) aq − a 6≡ 0 (mod q2),

(3) bq + a 6≡ 0 (mod p2).

Let ζ be a primitive 2qth root of unity modulo p. Since p ≡ −1 (mod q), the minimal

polynomial for ζ has degree 2 [18], and therefore we can write

(5.1) (bp−1(ζ + 1)p − 1)q + 1 ≡ Aζ +B (mod p2).

Conjecture 5.1 will then follow if it can be established that

A ≡ 0 (mod p2) =⇒ B ≡ 0 (mod p2)

in (5.1).
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