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Singular Limit Solutions for a 4-dimensional Semilinear Elliptic System of

Liouville Type

Sami Baraket*, Imen Bazarbacha, Rima Chetouane and Abdellatif Messaoudi

Abstract. We consider the existence of singular limit solutions for a nonlinear elliptic
system of Liouville type with Navier boundary conditions. We use the nonlinear

domain decomposition method and a Pohozaev type identity.

1. Introduction and statement of the results

Let © C R?* be a regular bounded open domain in R%. We consider the following elliptic

System

A2y = plernt1-7u2 iy Q
u@-:Aui:(],z':l,Q OIlaQ,

here v, £ and p are constants. We assume that «,£ € (0,1) such that v+ & > 1. So in all
the following, we have

571_77 e (0,1).

gl §
We are interested in the study of the existence of solutions with singular limits as the
parameter p tends to 0.
The system is a natural generalization of the equation

(1.2) A%y = 6e™  in RY,

Equation ((1.2) is invariant under translation, rotation, dilatation in the Euclidean space
and the Kelvin transforms. In [15], Lin proved the following important classification result
of finite-mass solutions of equation (|1.2)).
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Theorem 1.1. |[15] Let u be a solution of (1.2)), satisfying the finite-mass condition

(1.3) / et dr < oo
R4

and |u(z)| = o(|z|?) at co. Then there exists some point 2° € R* such that u is radially

u(z) =1In (2)\> .
14+ A2z — 292
This result is decisive for solving completely under , because it reduces the
problem to a simple ODE problem.
In [21], Wei and Ye constructed a non-radial solution of Liouville equation under
with the following asymptotic behavior

symmetric about x° and

A2
3

k
u(z) = — Zaj(:vj - a:?)2 —aln|z|+c+o(l), |z|>1 and / M) dy =
=1 R

for each fixed 2° € R*, 1 <k <4, a € (1 —k/4,2) and a; >0 for 1 < j < k.

We consider the corresponding Dirichlet problem on a bounded domain in R?,
(1.4) —Au=p%" inQ, u=0 ondQ,

where the parameter p tends to 0. The study of this equation goes back to 1853 when
Liouville derived a representation formula for all solutions of that are defined in
R? [18].

It is well known that as the parameter p tends to 0, non-minimal solutions exist and

they have singular limits. In [6], Baraket and Pacard proved

Theorem 1.2. [6] Let Q be a smooth open subset of R? and 2',... 2™ € Q. Assume

that (z1,...,2™) is a nondegenerate critical point of the function
F:(z4,...,2")eC™— Zh(zj,zj) —i—Zg(zj,zl),
J J#l
then there exist po > 0 and (up)pe(0,py) @ 0ne parameter family of solutions of (1.4)) such
that

m

. . N} 1

,l,l_r%up:u* = Elg(-,z]) in Coo(Q—{z,...,2M}).
]:

Here g is the Green’s function defined as the solution of

—A,g(z,2") =8md,—, in Q,
g(z,2)=0 on 09
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and h is its smooth part defined by h(z,2') = g(z,2') + 41n|z — 2/|. Some generalizations
can be found in [3}8}14].

In dimension 4, other authors were motivated by similar problems, we refer the reader
to [2,4L[11,12]. Wei in [20], has studied the behavior of solutions to the following nonlinear
eigenvalue problem for the biharmonic operator A? in R*. More precisely, consider the

following problem

Ay = \f(u) in Q,
u=Au=0 on 0.

(1.5)

When f(u) = e, we can see that is issued from the conformal geometry by prescrib-
ing the so-called @-curvature on 4-dimensional Riemannian manifolds. For more details
and background material we refer to [1,(9|13].

Before announcing the result of [20], we will introduce some notations. Let G(z,z")
defined over 2 x Q, be the Green function associated to the bi-laplacian operator with

Navier boundary conditions, which is the solution of
A2G(x,2") = 64725,y in 0,
G(z,2") = A,G(x,2') =0 on 09

and denote by H(z,2') = G(z,2') + 8ln|z — 2’| its smooth part. Consider now the

functional
m

BE(z',...a™) = H(al,2)) + ) G(ad, )
j=1 J#l

and denote by u* the solution of
A?u* = 6472 D10y in
u*=Au* =0 on 0.
In [20], the author proved the following result.

Theorem 1.3. [20] Let Q be a smooth bounded domain in R* and f a smooth nonnegative

increasing function such that
e “f(u) tends to 1 as u — +oo.

For uy solution of (L.5), denote by Xy = X [, f(ux) dz. Then there are only three possi-

bilities:
(i) The {¥x} accumulate to 0. Then |[ux||fe() — 0 as A — 0.

(ii) The {X\} accumulate to +00. Then uy — +00 as A — 0.
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(iii) The {Z\} accumulate to 64w®m for some positive integer m. Then the limiting

function u* = limy_,ouy has m blow-up points, {x',... ™}, where uy(z*) — 400
as A — 0.
Moreover, (z',...,2™) is a critical point of E.

In dimension 4, the authors in [5] considered the following problem

2, _ 4 :
A2y = plewrtmuz in Q,
A2y = p4e"2+72“1 in Q,
ui=Au; =0, ¢=1,2 on 0.

They proved the existence of singular limit solutions which blow-up on different points as
p tends to 0 using the nonlinear domain decomposition method.
In dimension 2, the L-system has been interested by several authors [7},10,|16}/17}/19].

Recently, the authors in [7] considered the following problem

—Auy = pPerat=7uz in O
—Auy = pPefuet=8uripn Q
up =uo =0 on 0f).

They proved the existence of singular limit solutions with blow-up on common points as
p tends to 0.

In this paper, we prove the following results.

Theorem 1.4. Let Q be a regular open subset of R* and x', x2, 23 € Q be given disjoint
points. Suppose that (uf,u5) is a one parameter family of solutions of (L.1)), such that

f:ql/G(-,xl)—kG(-,xQ):uT n CIOC(Q\{J: z%})

and

loc

1
lim uf = EG( L)+ G at) =ub in CEMQ\ {22, 2%Y).

Then (z', 2%, 23) is a critical point of the functional

E(xl,a:Q,xS):17_£H(w1,w1)+(2—'y—§)H(:v )—l—lgH(x %)
+1g71_£G( ! )—l—’yéG(x x)—&-lg’YG(ﬂU ,z°).

A natural question that arises: can one find a solution that concentrates in a common
point z2. Before giving a partial answer of this question, we define an auxiliary function
which is a cut-off function in C§°(€2) such that ¢ = 1 in B(z!,r9) U B(z3,79) and ¢ = 0
in Q\ (B(z!,70) UB(23,70)), where rg > 0 and such that B(z¢,2rg) C Q for i = 1,3 and
B(z!,2r) N B(x3,2rg) = 0.
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Theorem 1.5. Let Q be a regqular open subset of R* and x', 22,23 € Q be given disjoint
points. Suppose that (x', 22 23) is a nondegenerate critical point of the functional
1,2 .3 1-¢ 1,1 2 .2 -~ 3.3

5
+ 1-71-¢ (z!,2%) + 5@@1’ z2) + 1_7761(:627103)‘

& v gl £
Then there exist vy and &y in (0,1) such that for all v € (y0,1) and § € (&o, 1), there exist
po >0 and (uf,uh),<p, a one parameter family of solutions of (L.1), such that

lim guf = 2G(-,2Y) in CE(Q\{z'}), limpul = ZG(-,2%) in CENQ\ {27})
p—0 ¥ o¢ p—0 { o¢

and
lim (1= &uf + (1= ~)uf)
- 1;%('””1) " ?GW% + 27— G(-,2%) in CLQ\ {222, 2%)).

Unfortunately, we are not able to give the asymptotic behavior of uf and uf separately.

2

But, under an additional assumption on the points set {z!, 22,23}, we give a positive

answer.

Theorem 1.6. Let Q be a reqular open subset of R* and x', 2%, 2% € Q be given disjoint

points. Suppose that (x', 22, 23) is a nondegenerate critical point of the functional

%) = LS HE ) + 2 - QHE ) + L)

3
+ 1;71;€G(x1, z®) + 1;5(;(301’362) + ?G(xz’ z%)

such that

1 362:1:1:1 22, 2%)  an l St x2:1 ) (2?
(1.6) ,YG( , ) éG( ,x°)  and ,YVG(7 )(@7) §VG(, )(z7).

Then there exist yo and &y in (0,1) such that for all vy € (vo,1) and £ € (&o,1), there exist
po >0 and (uf,uf),<p, a one parameter family of solutions of (L.1), such that

1
limuf = ~G(-,a") + G(-,a%) i CLQ\ {a!,a}),

p—0 v loc
1 a
limuf = 2G(-,2") + G(-,a%)  in o (2\ {a?,27}).

Remark 1.7. Denote by S; the blow up points set of u; for i =1, 2.
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1. Theorem [I.4) can be extended, but the computation is more complicated. Indeed we
replace £(x!, 2%, 23) by F(aP € 81\ S1N Sy, 2% € S1NSs, 2! € S5\ 51N Sy), given by

f(IPGSl\SlmSQ,IkGSlﬂSQ,IIESQ\SlﬂSQ)
1—~1-—
— 775 Z G(ml,m”)

5 ILESQ\SlmS2
zP€S1\S1NS2
1-— /
+€< Z H (2P, 2P) + Z G(z* zP) + Z G(z?,a? ))
v zP€S1\S1NS> px’“ESlﬁsz :L’p,xp/GSI\S'1ﬁS'2
T ESl\SlﬂSQ p#pl
1-— /
+fy< Z H(z' zh) + Z G(a',z*) + Z G(at, 2! )>
zt€S2\S1NS2 z'€5:\S1nS> ml,ml,GSQ\Slﬂsz
z*eS1nSy 1Al
re-r-g( X mEESHE X a6ha))
zkeS1NSy xk,mk/eslﬂSQ

2. Theorem can be also extended by assuming that (zP € Sy \ S; N So,z¥ € S1 N
So, 2l € S5\ S1 N Sy) is a nondegenerate critical point of F.

3. Theorem is hold if S7 \ S1 NSy # 0 and Sy \ S1 N Sz # 0 and the condition (1.6)
will be replaced for all z* € S; N S5 by

1 Z G(zF,2P) = ! Z G(z", zh)

v xpesl\SmSz xlESQ\S1ﬂSQ
and
1 by _ L (o k
— > VG, =2 > VG(-,ah)h).
v xpesl\SmSg IZESQ\SlﬂSQ

4. To have a readable and clear proof, we considered the choice of S = {z!, 2} and

So = {22, 23}, which is already supposed in Theorems and

5. Our functional presents the same terms as those of the functional introduced by
Baraket-Pacard [6], the only difference here is that these terms are weighted by

certain weights not equals.

6. The conditions of Theorem are certainly not valid on all domain  of R%. Tt is

thought that a certain symmetry of the domain must be imposed for the condition

(1.6) to be verified.

2. Proof of Theorem

We first give the green identity for the bilaplacian operator:

0Au ov  Ou 0Av
20— (A29) .y — Cy— 7. .
/(A u)-v— (A%) - u /{9 ( » v — Au ” + ” Av—u » > do.




Singular Limit Solutions for a 4-dimensional Semilinear Elliptic System of Liouville Type 861

2.1. Behavior of solution around 2

We multiply the equation A2%u; = pler1 (=% by V(yu; + (1 — v)ug) and then in-
tegrating over By = B(z?%,7) where 7 fixed small enough, we obtain a pohozaev type

identity

(2.1) 7/ (A2%u1)Vug + (1 — v)/ (A2u)Vuy = p4/ (Y= _ 1), 4o,
Bs

Bo OBs
Using the Green’s formula we obtain
/ (A2U1)VU1 = —/ (Aul)V(A(ul)) - V(V(Aul) . Vul)
By By By
+ V(Aul) -vVui do + Vuq - VV(Aul) do
OBs 0B>
1
= —/ (Auy)?v do — / (V(Auy) - Vuy)vdo

2 Jop, 0B;

+ / V(Auy) - vVuy do + Vui - vV (Auy) do.
0By 0By

Similarly we multiply the equation A%uy = plef®2t(1=8u1 by V(¢uy + (1 — €)uy) and then

integrating over By = B(x2,7) we obtain a pohozaev type identity

(2.2) €| (A%ug)Vuy + (1—¢) / (A%ug)Vuy = p? / (eSuz+(1=8w _ 1)y o,

By B> 9By
Using the Green’s formula we obtain
/ (A2uy)Vuy = — / (Aus)V(A(u2)) — [ V(V(Aus) - Vuo)
By B B
+ V(Aug) - vVua do + Vug - vV (Aug) do
OB> 0B2
= —1/ (Auz)*vdo — / (V(Aug) - Vug)rdo
2 JoB, 0B,

+ V(Aug) - vVug do + Vug - vV (Aug) do.
0Bs 0B>

Making use of the identity

A%usVuy + A2uy Vg
Bz BZ

= —/ V(Auy - Auy) +/ MVM do +/ a(AU1)vu2 do
Bo 0By OV 0B, OV
8(Au2) 8(Au1)

= —/ (Aug - Auq)vdo + / ———=Vu do + / Vus do,
9B oB, OV oB, OV
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then by combination of (2.1)) and (2.2) we obtain
(2.3)
~(1 - f)/ {;(Aul)zy — (V(Au1) - Vur)v + V(Auq) - vVuq + Vg - VV(Aul)] do
OB2

+£(1—7) /83 |:_21(A’LL2)21/ — (V(Aug) - Vug)v + V(Aug) - vVug + Vus - Z/V(A’LLQ):| do

(A (A
+(1-7)1=9 |:_/832(Au2'AU1)VdU+/832 (852)Vu1da+/832 (8:1)Vu2d0]

- p4(1 _ 5)/ (evu1+(1—v)uz —Vvdo +p4(1 _7)/ (efuz+(1—£)u1 —1)vdo.
OB> 9B

In the desire to construct solutions of the system that blow-up in the point 2 this means

that, if p tends to zero,
1 1
uy — ui(z) = G(x,2?) + ;G(az,xl) and  uy — uh(z) = G(z,2%) + gG(ﬁC, z3).

Since we have G(z,2?) = —8In |z — 22| + H(z,2?), where H is a smooth function in €,
then
* 2y, | 1 2 2y, | 1
uj(z) = G(x,z%) + ;G(aj,x )=—-8In|z —x*|+ H(x,z°) + ;G(l’,l’ )
= —8In|z — 2?| + R(z, z?)

and

wy(z) = Gz, 2?) + 2G($,$3) = —8ln|z — 2| + H(z,2%) + iG(w, %)

= —8In|z — 2*| + K(x,2?).

Thanks to the fact that the solutions of the system (I.1)) are regular on Q\ {z!, 22, 23}
and by inserting the profile of the limits of the solutions in the identity (2.3) when p — 0

and 7 fixed small enough, we obtain

lim p*(1 — f)/ (Yt (=7vz _ 1)y do 4 p(1 — ’y)/ (eSu2t=8u _ 1) do = 0,
p—0 dBs dBs

then
v(1-=¢) /632 {?(Au’{)% — (V(Au]) - Vui)v + V(Au]) - vVui + Vuj - VV(A’U,T):| do
(=) /332 {?(Au;)% (VAW - Ve + V(Au) - vV + Vi - VV(Au’Q‘)] do
F(1-y1-¢) {— /BBQ(AU; - Au)vdo +/8 @vu’; do + /%2 3(§:T)vu; do’] —0.

B2
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We set
Ips =~(1 — f)/ [;(Auf)zu — (V(Au]) - Vul)v + V(Aul) - vVui + Vui - I/V(AUT):| do
OB>

+€(1—v)/ [—Zl(Au;)zy_(V(Au;)-Vu’g)u+V(Au;).Vvu;Jrvu;.,,v(Au;)} do
0B

O(Aul I Au*
+(1-y1=9 [—/aBz(Au;.Au;)ydaJr/ %VU’{doJr/ (Auy)

OB, oB, OV

Vuj da} ,
by computation, we prove that

Ins =—27(1—¢) [ VARG, 2% do - S¢(1—7) [ VAK(z,2%)do
n 0B n 0B

+ §(1 -1 - ’y)/ (VAK (z,2%) + VAR(z,2%)) - v)v do
n 0B2

+ g [(1 - &) AR(z,2*)vdo 4 (1 — ) AK (z,2%)v da]
77 8B2 8BZ

L2 [(1 —o [ VR@ ) do+ (1-7) VK(x,xz)da} +0®).
n 0B 0B2

Then we have

—8ny(1 - €) VAR(z,2?) do — 8n&(1 — ) VAK (z,2%) do

0By 0By
+8n(1 =& —7) /8B (VAK (z,2%) + VAR(z,2?)) - v)vdo
+ 16 [(1 —&) AR(z,2*)vdo 4 (1 —7) AK (z,2%)v da]
OB> 0B>
+ 32 {(1 -§) VR(z,z?)do + (1 — ) VK (z,2°) da} = O(n?).
n 0B 0B

Writing VR(z,2%) = VR(2?,22) + O(n) and VK (x,2%) = VK (2%, 2?) + O(n) we obtain
(1= &VR(2?2%) + (1 - 7)VK(2?,2%) = O(),

which means that 22 is a critical point of the functional

1-¢

P UE—— .fL'ZEl .’L‘ZL’2 1_77 l‘$3.
7(2—7—§)G(’ )+ H @) G, 2%)

(2.4) Ertx— f2—7—0)

2.2. Behavior of solution around z! and 23

We multiply the equation A%u; = p*er1+(1=1u2 by V(yu; + (1 — y)uy) and then inte-
grating over By = B(x!,7) we obtain a Pohozaev type identity

(A2u)Vuy = p4/ (Y t1=1vz _ 1)y 4o,
9B1

(2.5) v/B (A2%u)Vug + (1 - 7)/

By
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Using the Green’s formula we obtain
/ (A2u1)Vu1 = —/ (Aul)V(A(ul)) — V(V(Aul) . Vul)
B1 B By

+ V(Auy) - vVuy do + Vup - vV (Auy) do
0B1 0B1

:—1/ (Aul)Quda—/ (V(Auy) - Vuy)vdo
2 JoB, 0B,

+ V(Auy) - vVuy do + Vui - vV (Auy) do.
0B1 0By

Similarly we multiply the equation A%uy = plef2t(1=8u1 by V(¢uy + (1 — €)uy) and then
integrating over By = B(x',n) we obtain a Pohozaev type identity

(2.6) €| (A%ug)Vuy + (1-¢) / (A%ug)Vuy = p? / (efu2t(1=8u1 _ 1y, o,

By Bi OB
Using the Green’s formula we obtain
/ (AQUQ)VUQ = —/ (AUQ)V(A(ZLQ)) - V(V(A’u,g) . V'LLQ)
B B B
+ V(Aug) - vVua do + Vug - vV (Aug) do
OB1 0By
1
= —/ (Aug)?v do — / (V(Aug) - Vug)rdo

2 Jon, 0B,

+ V(Aug) - vVua do + Vug - vV (Aug) do.
0By 0By

Making use of the identity

AQUQVul + A2U1Vu2
Bl Bl

A a(A
= [ V(Aus - Auy) +/ A g da—l—/ oAU G dor
By oB, OV oB, OV

- _/ (Aug - Auy)vdo + / MVM do + / 8(Au1)Vu2 do,
9B oB, OV oB, OV

then by combination of (2.5) and (2.6) we obtain

~v(1—=9) /aB [?(Aul)zu — (V(Auy) - Vur)v + V(Auq) - vVug + Vg - Z/V(AU1):| do

+£&(1-7) /83 |:_21(A’U,2)21/ — (V(Aug) - Vug)v + V(Ausg) - vVug + Vug - VV(AUQ):| do

o(A O(A
(11— [ /8 (B By + /8 . (34) u o+ /6 ) ( ajﬂvum]

=p*(1 - f)/ (Yt =1z _ 1)y do + p*(1 — 'y)/ (eSuet1=8ur _ 1)y o,
631 BBI
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In the desire to construct solutions of the system that blow-up at the point z' this means

that, if p tends to zero,

uy — ui(z) = G(x,2?) + iG(x,xl) and  uy — uh(z) = G(z,2?) + 2G(£C,.T3).

Since we have G(x,z') = —8In |z — 2!| + H(z,2'), where H is a smooth function in €,
then

1 1
ui(z) = Gz, 2?) + ;G(:J:,xl) = —i In|z — z'| + ;H(l’,fUl) + G(z, x?)
= —§ln|m — 2|+ S(x, 2!)
~y

and

uy(z) = G(x, 2?) + éG(az,x?’) = T(x,z% z%).

Thanks to the fact that the solutions of the system (1.1)) are regular on Q \ {z!, 22, 23}
and by inserting the profile of the limits of the solutions in the identity (2.3) when p — 0

and 7 fixed small enough, we obtain

lim p*(1 — 5)/ (Yt 1= _ 1)y do + p*(1 — 7)/ (efu2t(=80wm _ 1), do = 0,
p=0 9B 9B

then

v(1-=¢) / {;(Aui)zy — (V(Au) - Vul)v + V(Aul) - vVui + Vui - VV(AUT):| do
aB,

-1
+&(1— 7)/ [2(Au§)2y — (V(Au3) - Vul)v + V(Au3) - vVus + Vuj - VV(AU’Q‘)] do
9B,

+ (=71 -9¢) [—/aBl(Au;-Au’f)yda-l-/ WWMH/

(9B1 831

O(Aut)

Vuj da] =0.
We set

-1
Ips =~v(1 — 5)/ [Z(Au’{)2y — (V(AuT) - Vul)v + V(Aul) - vVui + Vuj - I/V(AUT):| do
0B,

+§(1—v)/ [?(Augyy—(V(Aug).VuZ)u—&—V(Au;).Vvu;_i_vu;_UV(AUZ)} i
0B
+(1-n1-¢ [—/BB (Au§~Au’{)yd0—+/ WWT da+/ d(Au)

OB, oB, OV

Vuj da} ,

by computation, we prove that

_ 8. : LT W)
= =201-) [ VASG@ado+ 2 0-9)0-9 /aB( i v do

6. v 2y do 1=70=9 z, 2%, 23)vdo
T [(1 2 aBlAS( @Iy o+ v aBlAT( ) d]
+ % [(1 —§) VS($,$1) do + w VT(%I‘Q#U?’)CZU} +O(n).

77 8B1 PY 631
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Then we have

87
—8n(1-¢) VAS(xvml)dJJ“?(l_w(l_g) /831 ( v

()AT xr
( ,ZB ,I‘ )) v

+ 16 {(1 - &) AS(z,zY v do + d=vl=¢ AT (z, 22, 23w da}

0B v 9By
+ 32 {(1 - &) VS(z,z') do + (Sl (Gl ) VT (z, 22 x3) da} = O0(nP).
n 0B v 0B

Writing VS(z,z!) = VS(2!,2!) + O(n) and VT (z,22,2%) = VT (2!, 2% 23) + O(n) we
obtain

(1—-6VS(zh 2 + WVT(JCH 22 23) = O(n?),

which means that a' is a critical point of the functional
1
(2.7) 51:x+—>H(.,x1)+G(-,x2)+T”G(-,x3).

In B3 = B(x3,7), we proceed similarly as in By = B(x!,n) and respect the changes we

obtain that 23 is a critical point of the functional

(2.8) 53::6}—>H(-,933)+G(-,m2)+1;£G(-,x1).

Finally by combination of (2.4), (2.7) and (2.8) we conclude that the point (2!, 22, z3) is
a critical point of the functional £ defined by

et ot ) = TS H o) + (2=~ OHGR ) + L H ()
1-€q1 2y, =00 =% 1 5 1=7, 3 2
+ 5 Gz, z%) + e G(z",z°) + ¢ G(z°,z%).

3. Proof of Theorem 1.5

3.1. Construction of the approximate solution
We denote by e the smallest positive parameter satisfying

4 384e!
P =0+

Let
uc(x) :=41In(1 + €?) — 41n(% + |z|?),

which is a solution of

(3.1) A%y = ple* in RL
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Hence for all 7 > 0 the function
(3.2) Ue 7 (2) := 4In(1 + &%) + 41In7 — 41In(e? + |72|?)

is also a solution to (3.1)).

3.1.1. A linearized operator
First we introduce some definitions and notations.

Definition 3.1. Given k € N, a € (0,1), u € R and |z| = r, we define the Holder weighted
k,a

Y(R?) for which the following norm

space Cﬁ’a(R‘l) as the space of functions w € C
|’UHC§Q(R4) = lluller.a B, ) + sup (14 7%) 2 fu(r - )Hck,a(ﬁl(o)_Bl/g(o)))

is finite. Similarly, for given 7 > 1, let Ci*®(B#(0)) be the space of functions in C¥(Bx(0))

for which the following norm
_ — ) _
lelleo oy = Ielleromaon + 502 ("l ek @i 0)-5, 2000

is finite. Finally, set B(2%) = B,(2%) — {2}, let Cﬁ’a(ET(O)) be the space of functions in
cke(B7(0)) for which the following norm

loc
lellego ;o) = Tillf/)z (r™lfutr ) lere @0~ 5 0)

is finite.

We define the linear elliptic operator L by

384

L:=A%2_ """
(14r2)4

which is the linearized operator of A%u — p*e* = 0 about the radial symmetric solution
Ug=1,r=1 defined by . When k£ > 2, we let [Cﬁ’a(ﬁ)]o to be the subspace of functions
w e Cﬁ’a(ﬁ) satisfying Aw = w = 0 on 0N.

For all e,7; > 0,7 =1,2,3 and 7,& € (0, 1), we define

re := max (¢'/2,e0TD/ 0D/ and RL = Tt
e

Proposition 3.2. [4] All bounded solutions of Lw = 0 on R* are linear combination of

_ el

8.%'2'
QSO(:E) - 1+ |.%"2

T

and  ¢i(z) fori=1,...,4.

Moreover, for p > 1, ¢ 7, the operator L: Cﬁ’a(R"‘) — Cg’_o‘4(R4) 18 surjective.
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In the following, we denote by G,, to be a right inverse of L. Similarly, using the fact

that any bounded bi-harmonic solution on R?* is constant, we claim
Proposition 3.3. Let § > 0, § ¢ Z then A? is surjective from C;’Q(R4) to Cgfl(R‘l).

We denote by Ks: Cgfz(R‘l) — C;’Q(R"‘) a right inverse of A2 for § > 0, 0 ¢ Z.
Finally, we consider punctured domains. Given Z', z2, Z° three distinct points in €,
we define & := (z',72,7°%) and Q' (%) := Q — {z',2%,2%}. Let ro > 0 be small such that

B, (7%) are disjoint and included in Q. For all € (0,7¢), we define

3
7—UB 7
=1

Definition 3.4. Let k € R, a € (0,1) and v € R, we introduce the Holder weighted space
che@ (z)) as the space of functions w € C{Zf‘(ﬁ* (z)) such that

||w||ck°‘ (:1:) ||chka Q /2 (%)) + ZO<§1<1£)0/2 ”||w(§z +7r- )||Ck’a(§2(0)7B1(0)))
=1

is finite. Furthermore, for k£ > 2, let [C{f’a(ﬁ*(:ﬁ))}o to be the set of w € CE*(Q(T))
satisfying Aw = w = 0 on 0.

We recall the following result.

Proposition 3.5. [12] Let v < 0, v ¢ Z then A? is surjective from [Cf}’a(ﬁ*(%))]o to
C, (' (%))

We denote by G,: C%,(Q' (@) — [Cf,‘a(ﬁ*(i))] a right inverse of A? for v < 0,

v ¢ .

0

3.1.2. Ansatz and first estimates

For all ¢ > 1, we denote by &,,: Cp®*(B,(0)) — C*(R*) the extension operator defined
by

o)) = f(
1o (£)@) = x(E) floF) for fo] 2 0.

x) for |z| <o,
(3.3) .

Here x is a cut-off function over R4, which is equal to 1 for ¢ < 1 and equal to 0 for ¢t > 2.
It is easy to check that there exists a constant ¢ = ¢(u) > 0, independent of o such
that

(3.4) 1.0 (@)llo.o gy < Ellwlleoe s, (0))-
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Now we define an ansatz for solution of (|1.1)):

%ugm (z —at) — 177476*(3:,362) ~ 2@z, 4%) - 21 e B, (a)),

073 v
ui(x) = Ue,ro (T — 332), x € By, (xQ),
1G(w,a") + Glo,2?), v e Q\ UL, B ()
and
%uam(az —a3) — %G(z,:ﬂ) — %G(x,xl) - %, T € B, (23),
ug(z) = Ue,ry (T — xz), x € By, (1:2),

1G(x, %) + G(x,2?), z € Q\ UL, Br.(a").
Therefore, in B,_(z!), there holds

2~ 4y (=)t _
A*uy — prel™t (I=7)w2 —

41=¢ 1-—¢

4.y 2\4—1— _ _

A2y — etz t(1-0 _ —384c™ry T (147 7 aHElGa)+ Gl

- 1-¢ 1-¢ N

VIl et

Then, for r = | — 2| and 0 < § < (y + & — 1) /7, we have

41=¢
4 4—0
HAQ;{Z _ 4e£ﬂg+(1—§)ﬁ1H <Csu Tl R g T
2—p Cgfl(BrE(xl)) — <p 1-¢ 9 44128 g1=¢ - 2\ 41=¢
ey (L) T e (14 (2)7) T
S8 =0 A=
< C sup — 1-¢

1-¢
r<Rl (14e2)"45 (1402)" 5

_gl=¢_
< C sup 27575 65(7’),
r<R}!

o 7,475
where S(r) = Ao -

If4—-6—-8(1—¢€)/vy <0, then S is bounded on R, hence

_gi=¢_
<OV 0 < on?

HAQaQ . p4e§ﬂz+(1—f)’l71 HCgi(BrE(xl)) < e

If4—0—-8(1—¢&)/v>0,supp,, /. S(r) = S(%=), then

~ ~ 1—
8% = e OO <02 s ST (1) < o

Similarly in B,._(z?), there holds

1—n

A _
~ =384etny ¢ (1+¢€?)
=

5%(62 + 72z — 2

AZag - p4€£ﬂ2+(lf§)al =0.

AZﬁl _ p4e"yﬂ1+(1f’y)ﬂg
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Then, for r = |z — 23| and 0 < § < (y + & — 1)/, we have the same estimates

HAzﬁl — preyintd-vue Hco,

2
0. (5, (=) = OTe-

Finally, in B,_(z?), we have an exact solution of the system.

3.1.3. Bi-harmonic extensions

Next, we will study the properties of interior and exterior bi-harmonic extensions.
Given (p,1), (§, ) € C+(S3)xC2*(53), we define respectively H™ = HIMt (¢ q);.) =
H, and H™ = H™Y(, Pi-) = H%XT% to be the solution of

A2H = in By (0), A2H*™" =0 in R* — B (0),
H = o on dB1(0), and H™ = ¢ on 0B1(0),
AH™ = on 8B,(0), AHet — 7; on 0B1(0),

which decays at infinity. We will also use

Definition 3.6. Given k € N, a € (0,1) and v € R, we define the space Ci*(R* — B, (0))
as the space of functions w € C{Zf‘ (R* — B1(0)) for which the following norm

||w||C§’a(R4fBl(O)) = i1>111) (r‘”“w(’l“ . )||C’;va(§2(0)—31(0)))
is finite.

We denote by ey, ...,es the coordinate functions on S3.

Lemma 3.7. [2] Assume that

(3.5) / (8¢ — 1Y) dvgs =0 and / (1290 —)egdvgs =0 forl=1,...,4.
S3 S3
Then there exists ¢ > 0 such that

VR ot oy < cllleraqss) + ¥llease)-

Similarly, there exists ¢ > 0 such that if
(3.6) Y dugs =0,
SS
then
HH;;%Hcff‘(Ral_Bl(o)) < C(H%EHC‘%O‘(S?’) + ‘WHCZQ(S?*))-
If F C L%(S®) be a subspace S3, we denote F'*- to be the subspace of F' which are
L?(S3)-orthogonal to the functions 1,eq,...,es. We will need the following result.
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Lemma 3.8. [2] The mapping

P C4,a(53)L X C2,a(SS)L N C3,a(S3)L % CI’O‘(S?’)L
(o) — (On(HES, — HES), 0 (AH, — AHES))

s an isomorphism.

3.2. The nonlinear interior problem

Here, we are interested to study the system
(37) A2u1 — p4e’7u1+(1—'y)u2’ AQUQ o p4e§u2+(l f)

Using the following transformations

(2) = wr(£2) + Slne — 2 (POF2)) in B, (o),
(2) = up (£ ) in By (a'),
vi(z) = (Sa) +8lne —4ln (2AF)) in B, (a2),
va(z) = uz(Sa) +8lne —4ln (2UF=D) in B, (22)
and
vi(z) = ui () in B, (z%),
va(@) = up(Sa) + Elne — L (BUF) i B, (9.

So the previous systems can be written as

AZy; = 24701 t(1=7)v2 in Bp (z1),
(3'8) PRE=Ss ga+é—1
APyy =24C, " e efv2t(1=8v in By (al),

A2y = 24701tz iy Bpe (z?),

(3.9) ‘
A%y = 24efv2t1-8v iy B2 (2?)
and
(3.10) A2y = 2403;?158”?1ewﬁ(l—v)w in Bps(a?),
A?yy = 24eEv2 (10 in Bps (z3),
where C; . = W for i = 1,3. Here 7; > 0 is a constant which will be fixed later.

Given ¢' := (¢, ¢h) € <C4’a(53)) and ¢ = (4], ¥5) € (C>*(5?))? such that (¢}, ])
and (b, %) satisfy (3.5). We denote by U = uc—1 r,—1, we write for z € Bpr: (z') the
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following system

m@»=iwx—w5—1‘”a<”iﬁ> a(Z )

ln’y " x! 1
!lll’l h
y + ( 17%7 Rc} )+ ( )

1 g 3 ) int (1 ,1.% '
@) =16 (Za*) 4.6 (Zoa) 4 1 (houk T )+ nho)

Using the fact that H'™® is bi-harmonic and that ¢%(@—") = W, we see that
this amounts to solve the system
(sl (e
R 8~I+5—1
(B.11) o, 24CI. T 167 ¢
A h2 — 1— f f
o
" 6“I+§ 1G(%7x2)+"/+’Y§£—1G(%7x3)+§(hl Hmltwl) (1—5)(}11 Hmlt wl)

We denote by
Lhi = Ti(hi,hd) and A2k = T5(hi, hd).

Fix p € (1,2) and § € (O,min{(#), (%)}) To find a solution of (3.11)), it is
enough to find a fixed point (h},h}) in a small ball of C;y®(R?) x C3**(R*) solutions of
h% = g# © gu,Ré ° ﬂ(hiu h%) = Nl(hia h%),
hy = K5 0 & g1 0 Ta(h1, hg) = Mu(hi, hy).

Here £, g1 is defined in (3.3), G, and Ks are defined after Propositions and re-
spectively.

(3.12)

Given k > 0 (whose value will be fixed later on), we further assume that the functions
gojl and wjl- satisfy
(3.13) ||<,0]1-||C4,a(53) < wr? and H'IIZJJI‘HCQ,()(SS) < wr? forj=1,2.

Then we have the following result.
Lemma 3.9. Let ¢! = (pl,¢}) € (CH*(S?))? and ! = (i,9d) € (C*%(S?))? such
that (o}, 91) and (o3, ) satisfy (B.5) and (B.13). Given k > 0, there exist e, > 0,
¢ > 0 and o € (0,1) such that for all e € (0,ex), v € (70,1), p € (1,2) and § €
(O,min{(%g_l), (%5_1)}) We have

||N1(0a0)”c4»a (R4) < C,{Tg, ||M1(0?0)||C§’0‘(R4) < CM“?,

HNl(h ) Nl(klv k2)Hc4a (R4) < CNTQH}ll k%”cjv‘l(Rél) + cu(1 - V)Hh% - k%”cg»a(Rél)
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and

1M (R3, h3) = Ma(ki, k)|t gy < enr2ll(his ha) = (K1 k3l gt gy et sy
provided (hi, h), (ki, ki) € Cﬁ’a(R4) X Cg’a(R‘l) satisfying
(314) 0 D) et ooy < 202 N0 D)ooy sy < 20072

Proof. The proof of the first and the second estimates follows from the asymptotic behavior
of H™ together with the assumption on the norms of np} and @Z)jl- given by (3.13]) and it
follows from the estimate of H™", given by Lemma that

Hlnt .
@]7 8

for all » < RL/2. Then by (3.13)), we get
Hlnt o
¢i%; \ RL

384r4—H 1‘ yHY ¢1+(1 NHY

B < Cr*(RY 2 (16fllca(se) + 4] llcza(ss)
C42(B2(0)—B1(0))

< c,{527"2.

CH(B2(0)—B1(0))

On the other hand,

sup r*7#|71(0,0)| < sup ERCIE|

—|€e
r<R! r<R! (L+7r2)ty
384y4—H

< sup

2 l_-[lnt 2 E[ln
(e 1 «@
= e 4(1 e ) ( ” Ll ||C4 ( ) ” 1 ||C4 )

Making use of Proposition together with (3.4)), for u € (1,2), we get that there exists
¢, > 0 such that

IN71(0,0) HCﬁ’“(R‘l) < c,irg.

For the second estimate, we have

1-¢
e | 16 e
sup 70| 75(0,0)| < ¢ sup G T pAd <24
r<Rl r<Rl (1+72)
y+€-1 gx .2 y+€-—-1 ex .3 int int
xe 7 G(-r1 o )+ 7€ G(‘F1 " )+5H¢5,w5+(1 OH elwl
16 1-¢
€1 ¥
< c sup 8T o —vg
TSRl (1 +r )

X (62| HE all s + (1= ©r? | HE llpse +1).

Using the same argument as above, we get || M(0, O)HC4,Q(R4) < cpr?
&
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To derive the third estimate, for (hi, h}), (k}, ki) verifying (3.14), we have

sup 4| Ti(h, hy) — Ti(ki, k)|
r<Rl

4 47/,1, 1 + Hm + h1+ 1— Hmt

< sup 387“247’( VHEY 1 (1=7)ha+(1-7) 2%_7%_1)
r<Rl (1+T ) v
kl Hint _ kl Hmt
o (67 1+'7 @%,w%—‘r(l '7) ( '7) 2 '9112 _ 7/{1 _ 1)’

384r4H 1,
< e sup ———— 2 — (kD) + (1 —~)|hd — kS
= rglgl (1+r2)47h ((h1) (k1)7) + ( Y)Ihs 2”

384rt~ 2,.2 1 1 1 Syl 1
< —_ H (]| R o k a)|lhy — K o 1-— hs — k ol
—CE% 152 7[ (I1llse + | 1IIC4 ) tllgpe + (1 =2)rlhg — kalles ]

We conclude that
(3.15) [N (k) N (k. kD) gty < xr? 10—k ot gy +ex (1) 13—k gt g
On the other hand, we have

sup 77| To(hi, hd) — Ta(ki, k3))|

r<R}
1-¢
y+E—1 _ _ v +£—-1 ex +£-—1 ex
< sup 240, T 4 ST ( — 4> T pame (5 ) e (5 0)
r<Rl (1 +r )
eéhéﬁH;n;wf(l*@hH(l »g)Hmlt ol _egk%+§H;“£’w%+(17§)k% (1- g)Hm1 ol
4zl 1-g goend 16 5
_1-¢ goté-1 R _
<csup 24C, 7y e 7 <24> rt 5[£]h%—k%\+(1—£)|h%—k%|]
r<R} (1 +r )

1-¢
- 24C4VJrg L 1-¢ 8v+51< 16 > 2
¢ su I v
e (+2)

ler g = kallgre + (1= Or*liby = killgse]-
We conclude that
(3.16) [Mu(h1,ha) = Mu(ki, kg)llghegay < exrZll(h1, h2) — (B Ko) gt oy weto ey O

Reducing ¢, if necessary, we can assume that c,r2 < 1/2 for all € € (0,e,). There

exists also 79 € (0,1) such that ¢.(1 — ) < 1/2 for all 4 € (7p,1). Therefore (3.15) and
(3.16) are enough to show that

(hi,h3) = (Ni(Ri, hg), My(hi, hs))
is a contraction from the ball

{(h%a h%) € Cﬁ7a<R4) X C?Q(RZL) : H(h%v h%)”cﬂ“([@)xcéa([&q < 26,&"3}
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into itself. Then applying a contraction mapping argument, we obtain the following propo-

sition.

Proposition 3.10. Given k > 0, p € (1,2) and 6 € (O,min{(%é_l),(%é_l)}), there

exist €, > 0, ¢, > 0 and vo € (0,1) such that for all € € (0,e), v € (70, 1), for all 1
in some fived compact subset of [r; , 7| C (0,00) and for gpj and @ZJl satzsfymg and

(3-13), there exists a unique (hi, h}) (= (P er ot pls Mo e 7y o1 gi1)) solution of (3.12)) such
that

H (hi h%) HCfL’Q(R‘l)XC?’O‘(R‘l) < 2657’3.

Hence

vl(x):zrlyu(:c—arl) 1;7G<ﬁ z) 17—§WG< 3>

1117 1 't<1 13”—351
+hy(z) + H™ | 01,915 —57— | »
y PRl

1 T 3 T 2 1 int o —a!
vo(x) = gG(ﬁux>+G(ﬁ7x>+h2( )+ H ©3, Q;Té
solves (B.8) in Bpi(x').

In Bps (x3), following the same arguments as the first case by reversing the roles of the
functions w; and us and by respecting the changes of the coefficients we can prove that
there exists (h$,h3) € C;’Q(Rﬂ‘) x Cy*(R*) such that

”(h?7 h%)Hcg’a(R‘l)XCﬁ’a(R‘l) < 26,.;‘7"3.

Furthermore (h3, h3) solves the equations

e L grte=l
2403 ¢ 16°¢€ 3
A2h3 — €
1 1— 41=2
&€ (1412
OB () i ) v (43 )
Lhj = s {eg(herHl% w3) 1-9) (h3+Hm3 w3) —&h3 — 1}

E(1+7r2)4

Given k > 0 (whose value will be fixed later on), we further assume that the functions
go? and 1/133 satisfy

(3.17) |]g0§-’||c4,a(53) < wr? and Hzp?ch,a(Sg) < wkr? forj=1,2.

Then we have the following proposition.
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Proposition 3.11. Given k > 0, pu € (1,2) and § € (O,min{(%g_l),(%g_l)}), there

exist €, > 0, ¢, > 0 and & € (0,1) such that for all e € (0,e4), & € (&,1), for all T3
in some fived compact subset of [r3 , 75 ] C (0,00) and for gpj and w3 satzsfymg and

(3-17), there exists a unique (h3, h3) (= (P r 03,03 Mo ey 03,43) ) solution of (3.12)) such
that

”(h?’, hg)"c;’a(R4)XCﬁ’a(R4) S 2657’3.

1 _ 3

=20 () 0 (2.2) o (.2 257).
'_17 .3 71_6 2 71_6 |

va(x) = fu(x x”) wE G(Tg ) € G<7_375'3)

16 in 3
Z + hi(x) + Ht< 3 8, Rf)

solves (3.10) in Bps (23).
In Bps (22), we look for a solution of (3.9)) of the form

Hence

_ in $—$2
(o) =ale - a) 4 1 (ot T ) + 1)
€

_ in x — 2
U2(‘r) = U(.’L' - ) +H ' ( ¥25 %7 R2 ) + h%(x)
€

This amounts to solve the equations

2 int 2 mt
e ) )
(3.18)
L= SB[l -0l g) ey
(14 r2)* '

We denote by
Lhi = Ts(hi,h3) and Lhj =Ta(hi,h3).

To find a solution of ([3.18), it is enough to find a fixed point (h?, h2) in a small ball of
C™(RY) x Cr™(R*), solutions of

(3.19) 9 9 .9 9 .9
hy =Gy o fu,Rg o Ta(h1, hy) = Ma(h1, h3).

Given k > 0 (whose value will be fixed later on), we further assume that the functions
cpjz and %2' satisfy
(3.20) ”(p?”cél,a(si’;) < m"g and H?,/J?HCM(SS) < m«? for j =1,2.

Then, we have the following result.
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Lemma 3.12. Let p € (1,2), v and & € (0,1). Given k > 0, there exist €, > 0 and
¢ > 0 such that for all e € (0,e4), v € (70,1) and & € (&, 1). We have

|’N2(070)”c4va(R4) < Cnr?a HMQ(Ovo)Hc‘W(RAL) < C,@T?,
(2. 3) — N, k) gty < xlL = VN3, 1) = (2, k) s e oy
Mo, 1) = Mok, k) sy < enlL = Ol (A3, 1) = (2K gt gy o ey
provided (h2,h3), (k?,k3) in Cﬁ’a(R"‘) X Cﬁ’a(R"‘) satisfying
(3.21) ||( h2)||c4a (RA)xCh (RY) < 20,.4“? and H(k%’kg)”cﬁ’“(ﬂ%‘l)xcﬁ’“(ﬂ%‘l) < 20,.;7"?.

Proof. The proof of the first and the second estimates follows from the asymptotic behavior
of H™ together with the assumption on the norms of gp? and 7711]2- given by (13.20]) and it

follows from the estimate of H™™, given by Lemma that
< Cr¥ (R (I1¢3llcaa(se) + 1 ez s3))

‘ Hmt < >
SYNBE ) |lereBa0)-i0)

for all » < R%/2. Then by (3.20)), we get

‘ H(‘Pnt ( > < c.elr?.
v\ RE ¢4 (B2(0)-B1(0))
On the other hand,
384,,,.4—;1/ ’)/Hin +(1 ’Y)Hmt
d—p ¥ 3
sup r T75(0,0 gsupi‘ e1Y1 e3v3 _ 1
r<R2 7(0,0) r<r (L4724
38474—H

< sup

2 int 2 int
T H [e% ]._ )4 H ,oo ).
N r<R2 (1 +r ) ( ” ¢2||C4 ( )T ” ‘P%: SHCS )

Making use of Proposition together with (3.4]), for © € (1,2), we get that there exists
¢, > 0 such that
HN2(0=O)HC;%Q(R4) < CHTEQ-

For the second estimate, we use the same techniques to prove
2
M2 (0, 0) gty < nr?
To derive the third estimate, for (h2, h3), (k%, k3) verifying (3.21)), we have

sup T4_M|7E’>(h%> h%) - 73(]{:%7 kg)|

r<R2

VRV (== HE

d—p
< sup 384r ‘(e P1YT P33 _ h2)

B r<R2 (1 + 7"2)4
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B (evk%ﬂH;?w%Jr(l—v)k% A=DHY 2 kQ)’
384r4—H
<esup oy | (v = Dk = K + (1= )5 — K3)
r<r2 (L4712
384r4— 9 9 9 9
550:22% (If;;jj](l —'7)[T“”hq _'kl”cﬁa +r|[h3 —'kQHcﬁa]-

We conclude that

(3.22) [Na(h3. h2) — Na(k? ) e iy < (1 — DI (13, B2) — (KK gt oy o -

Similarly, we get

(3:23) || Ma(hi, h3) — M2(k?, k3) | gt oy < cx(L = E)II(A, 3) = (K2, k) | gt iyt -
O]

Then there exist 79 and & € (0,1) such that ¢.(1 —v) < 1/2 and ¢, (1 — &) < 1/2 for
all v € (70,1) and € € (&, 1). Therefore (3.22)) and (3.23) are enough to show that

(hi,h3) = (Na(h3, h3), Mao(hT, h3))
is a contraction from the ball

{(h1,h3) € Co(RY) x C*(RY) + [[(hF, h3) | gty et ay < 26w72

into itself. Then applying a contraction mapping argument, we obtain the following propo-

sition.

Proposition 3.13. Given k >0, p € (1,2), 70 € (0,1) and & € (0,1), there exist &,, > 0
and ¢,; > 0 such that for all e € (0,2,), v € (70,1) and £ € (&, 1), for all T in some fized
compact subset of [y , 75 ] C (0,00) and for (p] and ¢2 satisfying ([3-5) and (3.20)), there
exists a unique (h3,h3) (== (M1 e m 02 2 P ey 02 ,02) ) SOlution of (3.19 - such that

||(h%’h%)||cﬁ’a(R4)XCﬁ’a(R4) S 2C,€’I“§.
Hence
02
vi(z) = u(x — %) + hi(z) + H™ < 1, f;ng> :
RE
. T — 22
va(2) = u(x — 2°) + hj(x) + H™ (@%, 5 RQ)
€

solves (3.9) in Bre (22).

Remark also that the functions (h,h}) (:= (b} JRNIE h - n,gag,w’))’ for i € {1,2,3},

depend continuously on the parameter ;.
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3.3. The nonlinear exterior problem

Given z := (z%,72,7%) € Q3 close to « := (z!,22,23), A := ()\1,)\2,)\3) € R3 close to 0,
B = GLA A € CP 6o = (A € C i = G T <
(C?(53))3 and vy := (¥a,v3,13) € (C>*(S3))3 satisfying (3.6). Let w; and ws be
defined by

~ L+M ~1 ~2 - ~i prext = LT
B1(2) = TG, ) + (14 X)G(@, ) + 3 xo (0 — F)H (w)

Y im1 Te
and
1+ A 3 . ~ X=X
wa(x) = : 3G(x,553) + (14 X)G(z,T%) + Zxro(az — ) H*™ ( , 55 > .
i=1 Te

Here x;, is a cut-off function identically equal to 1 in B,,/5(0) and identically equal to 0
outside By, (0). We would like to find a solution of the system

(324) A2u1 = p4€7ul+(1_7)u2 and A2u2 _ p4e§UQ+(1 Hur

in the domain Q,_(Z) with uj = wy + v, a perturbation of wy, k = 1,2. This amounts to
solve in Q,_(7),

(3.25)
A%, = p4ev(ﬁ1+171)+(1—7)(ﬁ2+52)_AQ,,El and Ay, = p4e§(ﬁ2+5z)+(1—§)(ﬁ1+51)_A2@2

For all o € (0,79/2) and all z = (z%,72,2%) € Q3 such that ||z — Z|| < r9/2, where
x = (z', 2% 2%), we denote by 5‘775: o (Q,(T)) — CO*(Q°(F)) the extension operator
defined by

ga,ﬁ(f) = f in Qa(i)a
Ea(N@ +2)=X(E)F(@ + o) in By(@) - Byp(a), ¥1<j <3,
ga,%(f)z in‘Ba/2( )UBJ/Q( )UBO'/2( )

Here X is a cut-off function over R which is equal to 1 for ¢ > 1 and equal to 0 for ¢ < 1/2.

Obviously, there exists a constant ¢ = ¢(v) > 0 only depending on v such that
(3-26) Hfm%(w)Hch“(ﬁ*(i)) < E”wHCB*‘*(ﬁg(gz))-

We fix v € (—1,0), to solve (3.25)), it is enough to find (T1,72) € (Co'*(Q"(&)))? solution
of

(3.27) =K, 0 55,5 0 S1(31,72) and T =K, 0 gs,i o Sy(V1, Ta),
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where
51(51,52) = p467(61+51)+(1—7)(ﬁ2+52) _ AQ’[[)l

and
(01, Ty) = pleS@Am)+1-O@1+T) _ A2,

We denote by

N(@1,72) = Ky 0 & 50 81(T1,02) and  M(31,7a) = Ky 0 &y 5 0 Sa(T1, Ta).

Given k > 0 (whose value will be fixed later on), we further assume that for i € {1,2,3}

and j € {1,2} the functions @;, 1;;, the parameters )\; and the point & = (2!, 72, 2%) satisfy

(3.28) 1B llcass) < w12 Idillcaass) < w2,

(3.29) | < w2, |7 — 2| < R
Then the following result holds.
Lemma 3.14. Under the above assumptions, there exists a constant c, > 0 such that
INV(0,0)ll gt zyy < €xres M0, 0) gt ) < w2
N @1, B2) = N @, ) e 3y < enr 201, 82) = 5 35 e 3y
and
IM(@1,2) = M3 D) gt @) < Cnr2ll@152) = @, 3) | s @ a2+
provided (01, T, ¥}, T5) € (Co™(Q7(&)))* satisfy
(3.30) H(ﬁl,62)”(53@@*(5)))2 <2c,r? and H(ﬁ/b6/2)”(53@@*(5)))2 < 2c,r2.

Proof. As for the interior problem, the proof of the two first estimates follows from the
asymptotic behavior of H®™*' together with the assumption on the norm of boundary data
&; and w;- given by (13.28]). Indeed, let ¢, be a constant depending only on &, by Lemma

-t

ext ([~ 7i. X" T -
(3.31) 'H t (goj, 5 7"5)' < cordrh
On the other hand,
51(0,0) = prey@1t0=®2 _ A2, and  S5(0,0) = plef@rt1-OW1 _ A2,

We will estimate S (0,0) in different subregions of Q0 ().
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e In BT0/2(%1) - B?”a<%1)) we have X’I“o(x - %1) = 1) X?“o(x - %2) = 07 XT‘()(‘T - %3) =0
and A%w; = 0, so that |S1(0,0)| = pte?@1+(1=7)@2 Then

’gl(oa 0)| < 0554‘3’: — 51|78(1+>\1) < C,.;E47"78(1+>\1),
Hence, for v € (—1,0) and A; small enough, we get

3 - 4 -4
HSl(O,0)]\cgf4(3r0/2(51)) < ngilgo/zr 151(0,0)] < cper "

e In B, (z') — B,,/2(¥"), using the estimate (3.31]), then we have

Te

~ B " o~ o — 7t
151(0,0)] < cnetr30H) 4 [[A2, v, (2 — 3 (so%,w%; ) ]
< Cﬁ(€4T—8(1+/\1) +T—1T§),

where

(A2, g Jw = wA X, + 28w Ay, + 4V (Aw) - Vi,

4 aQXTO 82w
+ 4Vw - V(AXTO) +4 Z 0x;0x; Ox;0x;
N T

Hence, for v € (—1,0) and A; small enough, we get

sup T4_”|§1(0,0)| < cﬂrg.
r0/2<r<ro

15100, 0)llco.e, (., 1B, u(@t)) <

e In BT‘Q/Q(%Q) — B, (EZL we have Xr, (v — El) = 0, Xro (T — 52) =1, Xro (7 — :fg) =0
and A%2w; = 0, so that S1(0,0) = p*er@1+(1=7)®W2_ Then

151(0,0)| < cpet|a — 72| 780H22) < ¢ g4p—80+A2)
Hence, for v € (—1,0) and Ay small enough, we get

Si 0,0)|| -0, oy < sup S, 0,0)| < ¢ur?.
15100, 0)llgo.e 5, (z2)) Lo [151(0,0)] < ers

e In B, (7?) — B,,/2(#?), using the estimate (3.31]), there holds

3 _ ~ oy o T — T2
‘Sl<070)‘ < 05547' 8(1+22) + [A27XT0(x - $2)}H6Xt <§017 %7 T)’

3
R}

Hence, for v € (—1,0) and Ay small enough, we get

181(0,0)l|gn

(B (32)) < sup T47V|§1(O,0)| < cnrg,

ro/2<r<ro
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Similarly, for v € (—1,0) and A3 small enough, we can prove the same result for z°.
e In Q — (B, (z) U By, (2%) U B, (2%)), we have xro(z — ') = 0, xpo(z — 7%) = 0,
Xro(x —73) = 0 and A?w; = 0. So for v € (—1,0), we have

< sup r4’”|§1(0,0)\ < ¢qel.

r>T0

151(0,0) ‘|cgf4(§_uf:1 By (7))

We conclude that
] 4
19100, 0)lleo.e, @, @) < ox7=-
Now, we are interested in the second equation of the previous system.
e In Bro/z(fl) — B,.(7Y), we have xpo(x —71) = 1, X0y (z —7%) = 0, Xy (z —73) =0
and A2, = 0, so that |S5(0,0)] = ptes@2+(1-O81 Then
~ (1=8(A+Xry) _o(=8A4A)
192(0,0)] < cuctlz — T2 7 <enetr S .

Hence, for v € (—1,0) and A; small enough, we get

152(0.0)] g

By @y S S TY]S2(0,0)] < e

TESTST0/2

e In B, (z') — B,,/2(7"), using the estimate (3.31]), then we have

- _g=90+ap) _ 4 o z—T!
52(0,0)] < cpetr T |IA% (@ = THHO (93, ; —
3
(1-9(+21)
o o S B

where

(A2, g Jw = wA X, + 28wAXy, + 4V (Aw) - Vi,

4 82)(7‘0 8210
+4Vw - V(Axy,) +4 Z Oz;01; 0x;01;
N T

Hence, for v € (—1,0) and A; small enough, we get

Q. . _ _ < 4—-v | Q < 2‘
152(0,0)llgoe, 5, 1) B,, o)) < L v 152(0,0)] < cpr?

e In Br0/2(52) — B,.(7%), we have X (z —71) = 0, Xy (z —7%) = 1, X0y (z —7%) =0
and A2y = 0, so that S5(0,0) = ptef®2+(1=®1 Then

|§2(05 0)| < Cﬁ54|x - 52|_8(1+A2) < 05547«_8(1"")‘2)'
Hence, for v € (—1,0) and A2 small enough, we get

o o " < 4—v o < 2.
||52(0’0)||CS;4(B7»0($2)) < rsgiipro/zr 192(0,0)| < cer
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e In B, (7?) — B,,/2(#?), using the estimate (3.31]), there holds

3 _ - oy o T — T2
‘82(070)‘ S C/{€47" 8(1+22) -+ [A27XT0(:I" - xQ)}HeXt (ngv %; 7_)’

£

< cg (647“’8(1“2) +7r7r2).

Hence, for v € (—1,0) and A2 small enough, we get

< sup  r17Y]95(0,0)] < eur?.
ro/2<r<rg

1520, 0)llgs, 5, @)

Similarly, for v € (—1,0) and A3 small enough, we can prove the same result for 3.

e In Q — (B, (Z') U By, (2%) U B, (2%)), we have xro(z — ') = 0, xro(z — 7%) = 0,
Xro(x — T3) = 0 and A?w; = 0. So for v € (—1,0), we have
< sup r*7]95(0,0)| < cpe.

r>T0

152(0, 0)llgo. -2, B,, @)

Making use of Proposition together with (3.26]) we conclude that
H/\/(0,0)Hcﬁ,a@*(i)) <cer? and HM(O,O)HC:%,Q@*(%)) < cpr?.

For the proof of the third estimate, let vy, U2, v} and v}, € Cﬁ’a(ﬁ*) satisfy (3.30]), we
have

%

|§1(51,52) - §1(5/17%)| < cpetermrt e ‘eﬁﬁ(l_w)% — eI

< cpet (701 = O | + (1 = y)[F2 — T)).
So, for A\;, i = 1,2, 3, small enough and using the estimate (3.26]), there exists ¢, (depending
on k) such that
(3-32) HN(Ul,52)—/\/(53,5’2)”03@@*@)) < CHTS(H%_%/1Hcﬁva(ﬁ*(ﬁ))"‘H%_%Hq‘}’a(ﬁ*(i)))'
Similarly we can use the same arguments to prove
(3.33)
| M(v1,v2) — M(ﬁiﬁé)\lcga@*@)) < C,J?(Hﬂl - a”(jj}va(ﬁ*(g)) + ||[v2 — %”(jj}va(ﬁ*(%)))‘

O]

Reducing ¢, if necessary, we can assume that c,r2 < 1/2 for all ¢ € (0,e,). Then,
(3.32) and (3.33)) are enough to show that

(01,02) = (N (01, 02), M(01,72))
is a contraction from the ball
{(51,52) € (Cp*(RY)?: ”(51752)”(03#1(]1@4))2 < 20&7"3}

into itself. Hence there exists a unique fixed point (v1,02) in this set, which is a solution

of (3.27). Applying a fixed point Theorem for contraction mappings, we conclude that
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Proposition 3.15. Given k > 0, there exists €, > 0 (depending on k) such that for any
e €(0,ex), \i and T* satisfying (3.29) and functions @ goj and W satisfying (3.6) and ( -,
there exists a unique (v1,02) (= ( U e A ha@ @00 V2 Ao Mo @ ,(pzﬂzz)) solutwn of (3:27) so
that for vy (k =1,2) defined by

1+ A _ ~ T — _
(o) = TG ) + (14 )G, +me s (05 2T w)w(xx

1+ N oo —at\
02(2) = =G, ) + (14 D) G, 7 +me H( b, ;,IT‘”)W(@

solves (3.24)) in Q,_(x). In addition, we have

||(61152)HC§@(§*(5)) < 20/@7".3-

3.4. The nonlinear Cauchy-data matching

We will gather the results of the previous sections. Using the previous notations, assume

that & := (z%,22,7%) € Q3 are given close to = := (2!, 2%, 23). Assume also that

7= (1,72, 73) € [, ] % [y 7] % [, 7] € (0, 00)°
are given (the values of 7, and Tl+, for Il = 1,2,3 will be fixed later). First, we consider
some set of boundary data ¢ := (¢}, pb) € (C*(S?))? and ¥' := (¥}, ¥h) € (C>*(S?))%.
Let ¢ € (0,e4) and according to the result of Propositions [3.10} [3.11] and [3.13] we can
find, Uint = (Uint.1, Uint,2) & solution of (3.7) in B, (') U B,_(2%) U B,_(23), which can be

decomposed as

Lo (@ — T — 2G(0, 7) — L2G(x, )
n m Rl xr CCl . ~
(@) 1= ”+Ht (5 )+h%(—( ) in B, (@)
Uint, 1(T) = _ Hmt 2 h2 3(95—52) i B ~9
oo (52 4 13 (R i B,.(@),
T int z—3° R3(z—7° . ~
%G(m,xl)—i—G(x )+ H s (5 )—l—h?(%) in B,_(z%)
and
LG (2, 7) + G(z, 7 )+H‘1w1( 2y o ph(BEE)) B, (7,
2 (z—72 . ~
() Ue,rp (T — T )—i—H“% wg(x,r,s ) —l—h%(%) in B,_(7?),
Uint,2(T) ‘=
%ue T3 (.1‘ - ig) - TﬁG(ZL’ $2) 17§G(JZ, 51)
3 (p—73 . ~
ln£ +HH§ ¢3(x;f )+hg(R5(TE )) in BTS(xS)’

where for i € {1,2,3} and j € {1,2}, R = 7;,”= and the functions hé- satisfy

H(h17h%)Hcﬁva(R4)Xc§’a(R4) < 2¢.12, H(h%ah%)u(cﬁaa(ﬂy))z < 2¢,7?
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and

(R, h3) < 2c,r?.

HC?’“(]M) xCp ™ (R4)

Similarly, given some boundary data QZ; € Ch(S3), J; € C%2(S3) satisfying (3-6).
(A1, A2, A3) € R? satisfying (3.29)), provided e € (0,e,), by Proposition we find a
solution Uext 1= (Uext,1, Uext,2) Of in Q\ (B.(7') U B,.(2?)) U B,..(7*)) which can be
decomposed as

Uext,1(T) 1= 1+ M G(z, 7" + (14 X\2)G(x,7?)
]
Y e =T (B0 70 ) + o)
=1
Uext,2(T) 1= ! J??’G(x, 23 4+ (14 \)G(x,7?)
3 ~i
+ Z Xro (x — T ) HO (@7 e x;j) + Ty (),
=1

with 1,7 € Cp®(Q7(Z)) satisfying
H(ila52)”(031“(5*(5)))2 < 26%7"3-

It remains to determine the parameters and the boundary data in such a way that
the function equal to uiy in B, (') U B,_(22) U B,_(23) and equal t0 eyt in Q,_(Z) is a
smooth function. This amounts to find the boundary data and the parameters so that,

for each j =1, 2,

(3 34) Uint,j = Uext, 5, 8ruint,j = 8ruext,j7
AUint,j = Auext,ja 6rAuint,j = arAuext,j

on 0B, (7'), 0B,.(z%) and 0B, (7?).

Suppose that is verified, this provides that for each ¢ small enough u, € C*®
(which is obtained by patching together the functions wiy and the function ueyt), a weak
solution of our system and elliptic regularity theory implies that this solution is in fact
smooth. That will complete the proof since, as € tends to 0, the sequence of solutions we
have obtain satisfies the required singular limit behaviors.

Before we proceed, the following remarks are due. First it will be convenient to observe

that the function u. -, can be expanded as

627'_2

Uer, () = —4InT —8In|z|+ O ( |$|22 ) on 9B, (0).
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e On 0B, (7'), we have

(Uint,l - uext,l)(x)

4 8\ - 1-— . |
=—"Inm + lnlz—7 - JG($,$3) -
Y gl 0is g
(3.35) x —T! : r— 7t x— 1t
it (r2 ) R B A GRS
Te Te Te

2 _—2
€T

1+ A ~ 1- ~

v

Next, even though all functions are defined on 9B, (') in (3.34)), it will be more convenient

to solve on S? the following set of equations

(3 36) (uint,l - uext,l)(fl + 7 ) = 07 a7“(uint,1 - uext,l)(?ﬁl + re ) =0
A(uint,l - uext,l)(%l + 7e - ) =0, arA(uint,l - uext,l)(-%l +re - ) =0

Since the boundary data are chosen to satisfy (3.5)) or (3.6). We decompose

1,1

o1 =1 0T <P1 1+ ‘:01 , Y= &P%,o + 12@%,1 +
~1,1 08 T 71,1
g1 = 9010+<P11+901 ; 7#%:7#%,14‘% ,

where (1 0 @% 0 € Eg = R are constant on S3, gpil, @}71, {/;%1 belong to E; = Span{ey, ea,
es,eq} and <P1 L, 951 -, I/Ji’L, IEL are L%(S3) orthogonal to Ey and E;.
Using (|3 , we have for z € S3,

(uint,l - uext,l)(%1 + TECL')

4 8A1 1 < 77 132 L=y i~ ~3>
=—Inm+—In(rz])— - H + G + —G(z,x
S = (rel]) S (@,2°)+ G, 27) ¢ ( )

. In
+ H™ (o1, yfs ) — HOGY, d ) — =
- A;H(~1 h — MG(@, T2 + O(r?).

Then, the projection of the equations (3.36)) over Eq will yield

—4In7 +8\ Inr. —Invy + 'Y‘P%,o - 76:1{70 —&@ )+ 0@ =0,
537) 8AL+ 291 o + 29P1 o + O(r2) = 0,
' 16A1 + 8y¢1 9+ O(r2) = 0,
—32)\; + O(r?) =0,

where

Ei(-,&) = H(-,F) +G(-,7 )+T7G(',:?3).
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The system ([3.37)) can be simply written as

M=002), ¢19=002), ¢19=0072) and [4lnm+lny+& (T 2)] = O(2).

nre

We are now in a position to define 7, and 7;". In fact, according to the above analysis,
as € tends to 0, we expect that Z* will converge to x* for i € {1,2,3} and 71 will converge
to 71 satisfying

4In7} = —Iny — & (2}, z).
Hence it is enough to choose 7, and 7’1+ in such a way that
4In(r) < —Iny — & (24, ) < 4In(r]").

Consider now the projection of (3.36) over E;. Given a smooth function f defined in
Q, we identify its gradient Vf = (0y, f, ..., 0z, f) with the element of E;,

4

Keeping these notations in mind, we obtain the system of equations
90%,1 - SZ% L= Vea(@hz) +00r?) =
380%,1 + 385%,1 + %QE = Va@E, &) +00?) =
1590%1_385%1 ¢11+O<T) 0,
15<P11+15<P11+ ¢11+O(7" ) =0,
which can be simplified as follows
pli=0(2), @11 =002), Wi, =007 and VEGE,E)=O0(2).
Finally, we consider the projection onto L?(S)*. This yields the system
Pt ET O =0, o (HNL i~ HL 51) +002) =0,
Gt =yt O =0, A(HNL L~ HEL 50) 06 =

Thanks to the result of Lemma [3.8] this last system can be rewritten as

Pt =002), Gt =002), ¢t =002) and ¢yt =002).

£

If we define the parameter t; € R by

t1 =

[4ln7 +Iny + & (2, 2)],
Inr,
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then the systems found by projecting (3.36) gather in this equality
(3.38)

1 1 ~1 1 ~1 1T ~1 =~ 1,1 ~1,1 1,1 71,1 2
Tl,a = (tla)\1)901,07301707901,17()01,17¢1,17vg1(x 7w)7901 y P1 7w1 awl ) :O(Tg)'

As usual, the terms O(r2?) depend nonlinearly on all the variables on the left side, but
is bounded (in the appropriate norm) by a constant (independent of £ and &) times 72,
provided € € (0, ¢ex).

e On 0B, (z'), we have

A ~ - x —T! : x—T!
(uint,Q - uext,Q)(x) = _73G($7$3) + G(xva) + h% (R; > + Hmt <90%7 %; )
§ Te Te
ex ~1 71. 4~ !
— (14 2)G(@,7) — H t( kT >+0(r§).

e

In the same manner as above, we will solve on S® the following system

ar(uint,Q - uext,2)(?ﬁl + e ) =0,
arA(uint,Z - uext,Q)(-%l + e ) =0.

(3.30) (Uint,2 — Uext,2)(i +re-) =0,
A(Uint,2 — Uext,2) (T + 1) =0,

We decompose

1,1 1,1
©3 290%0"‘%’%1“‘%027 ; V3 :8¢%,0+12¢%,1+¢27 ;
~ ~ 1
Py = 9020+<P21+902 ) 1/’%:?/)%,1‘“/12

1,1 71,0
with ¢30,50 € Eo, 931, P3, 1,¢2 1€ IEl and 902 , %02 , Py, Py belong to (L(S%))™.
Projecting the set of equations (3 over g, we get

@ — &3 0+ O(r ) =0, 2@%,0 + 2@,0 +0(r?) =0, 890%,0 +0(r2) =0.
From the L2-projection of over [E1, we obtain the system of equations
@ 902 L +0(2) =0, 3@%,1 + 3855,1 + %%1 +0(r?) =0,
15‘?%,1 @2 1 ¢2 1+ 0@2) =0, 15802 1+ 15902 1+ ?{/%1 +0(r2) =0.

Finally, we consider the L%-projection onto (L?(S%))*. This yields the system

(,0%’L — (Z%’L + 0(7’52) =0, O (H 1, L’@ L Hgg,t{@al) + O(TE) =0,
¢;,L B J;J_ LOu =0, 8, A(H RPN H;’g,ﬁ%,l) +0O(r?) = 0.

Using again Lemma the above system can be rewritten as

Pt =002), Ft=002), ¢yt =02 and Pyt =O002).
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Then the systems found by projecting (3.39) gather in this equality
~ -1 ~1,L 1,1 71,0
(3.40) T21,a = (80%,07 30%,07 @%,17 (P%,lv ¢%,17 ‘Pz v‘PQ P9’ g ) = (’)(r?).
e On 0B, (7?), we have

(1 — &) (wint,1 — Uext,1)(z) + (1 = ¥) (Uint,2 — Uext,2)(T)
42 -7 = +8(2 -~ — &)X In|z — T
~2

(1 )R (Rﬁx;p) + (1 — )R (sz 2)
- (G D) - (B L)
2
1 1

)
~ T — T2 « T —T
) .7'> Het( ©25 %7 >
§

~a-gm (5

_ 2 -2
-le-r-ome )+ e+ 6, ﬂ+o(§f§m)+ovg
We denote by

= (1=t + (1 —7)g5, ¢* =1 -+ (1—7)¥3,
F=(1-9F+1-7g3 *=01-P+ Q-3 h*=1—-hi+ (1 -7)hs.
Then we have
(3.41)
(1 = &) (wint,1 — Uext,1)(2) + (1 = ¥) (Uint,2 — Uext,2)(T)
= 42—y —Inm +8(2—v— &I In|z — 77|

_ 72 ) _ 52 _ 2
+h2 <R§x . T ) +H1nt <w27w2; T . z ) _ Hext (~27¢2 T T >
€

e Te
- 1-¢ » 1—7 » e27;2
2 1 3 2 2
- [(2—7—5)}[(3:,3: )+TG(m,x )—i—TG(aﬁ,x )] +0 Pl + O(rz).
Next, even though all functions are defined on 9B, (z?) in (3.34), it will be more

convenient to solve on S3, the following set of equations

(1= &) (wint,1 — Uext;1) + (1 — ) (Uing,2 — Uext,2)) (T2 + 12+ ) =0,

(342) 8r((1 - 5)(uint,1 - uext71) + (1 - ’7)(uint,2 Uext,Z)) (%2 + 7e ) =0,
A((l - 5)(uint,1 - Uext,l) + (1 - ’7)(uint,2 - Uext,2)) (i2 + 7 ) =0,

A((1 = &) (ting,1 — text,1) + (1 — ) (Uing,2 — Uext,2)) (F° + 1= ) = 0.

Since the boundary data are chosen to satisfy (3.5 or (3.6). We decompose

W=t + i+ P, WP =8pf + 1207 + P,
FP=@ A+ =yt et
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where 3, P93 € Eg = R are constant on S3, ¢3, p?, 1;% belong to E1 = Span{ej, e, e3,¢e4}
and oL, 32+ 2L 2L are L?(S?) orthogonal to Eg and E;.
We insist that, for x € S3, both equations ([3.41)) involve the same relation of the

parameter 5 and the appropriate energy £. Then we have

(1 a 5)(uint,1 B Uext71)(l’) + (1 - ’Y) (uint,Z - uext,2)(52 + TELU)
—42 =~y =) InTy +8(2 — v — OAaInre|z| + H™ (0%, 0% x) — HONZ?, 1;2; 2)

(2=~ — OHE2 ) + 1;€G(%2,%1) + 1_§7G(~2 )| +002).

Projecting the set of equations (3.42)) over Eg, we get

—42 =y —EInTy+ 82—y — N Inre + 2 — 32 — E(T2, x) + o<7~3) =0,
(3.43) 8(2—v— £>A2 + 205 + 285 + O(r2) = 0,
16(2 — v — &)Ag + 8% + O(ri) =0,
—32(2— 7 -\ + O(r2) =0,
where
_ N 1— ~ 1— -
Ea(F) = (27— OH(- 7 + fac,zl) #1260,
The system (3.43|) can be simply written as
_ £(32, %)
_ 2 2 _ 2 2 _ 2 ’ _ 2
/\2 - O(ra)7 Yo = O(ra)7 Yo = O(ra) and 1n7’€ 41n7—2 + 9 _ ~y —f O<r£)'

We are now in a position to define 7, and 7'2+ . In fact, according to the above analysis,
as ¢ tends to 0, we expect that Z° will converge to 2’ for i € {1,2,3} and 7 will converge
to 75 satisfying
Ea(2?, x)

27

Hence it is enough to choose 7, and 7'; in such a way that

dInty = —

< 4In(r)").

Consider now the projection of (3.42]) over E;. Given a smooth function f defined in
Q, we identify its gradient Vf = (0y, f, ..., 0z, f) with the element of E;,

4
i=1
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Keeping these notations in mind, we obtain the system of equations

o2 —V&EE) + O(r

r

3¢ + 37 + ;Z% — V& (3, @) +

(r?)
O(r?)
15¢7 — 3901 wl +0(r2)
(r?)

15801 —+ 15@1 + wl + O T

which can be simplified as follows
¢t =002), ¢1=0(2), ¢i=00%) and V&(ET) = 0(r2).
Finally, we consider the projection onto L?(S3)*. This yields the system

et — 32 L 0@¢?) =0, d, (Hm2 Ly Hi’gﬁ o )+ O(r?) =0,
@Z)ZL_JZL"FO(T?):O? aA(HHgllﬁl Hi);tL w2l) +O(T?) =

Thanks to the result of Lemma this last system can be rewritten as

PPt =002), PP =002, P =002) and P =002).

£

If we define the parameter t2 € R by

then the systems found by projecting (3.42) gather in this equality
(BA4) T2, = (b2 e, 00, 80, 901, 81,07, V@, &), 0™, 551 0P ) = O(rd).

As usual, the terms O(r2?) depend nonlinearly on all the variables on the left side, but
2

is bounded (in the appropriate norm) by a constant (independent of € and ) times rZ,
provided € € (0, ¢e).
e On 0B, (7%), we have
A N x — 23
(tin,1 =t 1) () = = T2G(@, 7) = G, 3) + b (R? . )

£

~3 ~3
r — X r — X
T gint <901, i’%*r ) e (sol, ?;77« >+0(7’§)-
£

13

In the same manner as above, we will solve on S® the following system

(uint,l - uext,l)(%g +re- ) 87"(uint,1 - 'Ulext,l)(-rv3 + e ) =0,

0,
(3.45) 9 9
A(uint,l - uext,l)(x + e ) 0, a7"A(uint,1 - uext,l)(x + e ) = 0.
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We decompose

3,1
o} = ¢} 0T o} 1t 801 ) Y = 890?,0 + 12‘%’?,1 + 977,
3 ~3 1
g} = 9010+<P11+901 ; ¢%:?/):13,1+¢1

3,1 ~3,1L 3,1 731
with ¢ 07901 o € Eo, 901 17901 1a¢1 1€ IEl and @77, 917, P77, P77 belong to (L2(5%)*.
Projecting the set of equations (|3 over g, we get

@?,0 —Piot O(r?) =0, 2@:{’,0 + 2@%,0 +0(r?) =0, 880?,0 +0(r?) =0.
From the L2-projection of over E1, we obtain the system of equations
Pl — @1+ 0(r2) =0, 3071+ 381, + %{/;?1 +0(r2) =0,
1507 1 — 327 1/11 L FO(r2) =0, 1507, + 1557 + ?@%1 +0(r2) = 0.
Finally, we consider the L2-projection onto (L?(S3))*. This yields the system
PG00 =00 g (HBEL o0~ HEL 50) +002) =0,

GG 062 =0, GAHEL a1 - HIL 5.) +O02) =0.

3,1
7’¢'1

Using again Lemma the above system can be rewritten as
=0(2), P =003), ¥t =0(2) and Wi =00?).
Then the systems found by projecting gather in this equality
(3.46) Tig,a = (¢?,0:5?,07‘P?,175%,1aJil)’,la% 75§L7¢f’La@Z?’L) = O(’”?)-
e On 0B, (7%), we have
(Uint,2 — Uext,2) (%)

4 \ Lo1- 1
= 1 B s Lty - B

3 3 vE 3
(347) + h% (Rgfﬁ - §3> + Hint (SO%, S, r — i?)) Hext (~%7 g’ T — %3>
Te Te Te
LA g sy _1=¢ 52 Pt 2
; H(z,2°) ( + A2 ¢ Gz, z°)+ O PP + O(r?).

Next, even though all functions are defined on 9B, (z?) in (3.34)), it will be more convenient

to solve on S? the following set of equations

(uint,Q - uext,2>(%3 +re- ) ar(uint,Z - 'Ulext,Q)(ﬂj3 +re - ) =0,

0,
(3.48) 9 -~
A(uint,2 - uext,Q)(x + e ) 0, arA(uint,Q - uext,?)(x + e ) = 0.
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Since the boundary data are chosen to satisfy (3.5) or (3.6). We decompose
3,1
05 = b ot <P2 1+ 902 ) V3 = 890%,0 + 1290%,1 + 9y,
o 73,1
@5 = 5020+<P21+902 ; w§=¢§,1+w2 ;

where gog’o, 620 € Eg = R are constant on S3, @%71, @3’71, 1’/;31 belong to E; = Span{ey, ea,
es,eq} and <p3 L, @g L 1/134, {/;SL are L%(S3) orthogonal to Ey and E;.

Using (3 , we have for z € S°
(Uint,2 — uext,Z)(EEg +7e)

= By - L <H( )+ GG, + 1_5@(553,551))

§ § 3 gl
. 1
+ H o, via) — B @ 0 0) — =
A3

— ?H(~3 ) — MWG(@, 7 + 0(r?).

Then, the projection of the set equations (3.48) over Eq will yield

—4InT3 4+ 8X3Inr. — Iné + & o — €85 o — E3(T°, &) + O(r?) =0,

5.19) 83 + 265 o + 2655 5 + O(r2) =0,
16A3 + 8¢5 o + O(r2) = 0,

—32)\3 + O(r?) =0,

where
E(-,@) :=H(-, )+ G(-,7%) + 1—_5(;(-,551).

Y
The system (3.49|) can be simply written as

A3 = (’)(r?), go%o = O(T?), §5§,0 = (’)(r?) and [4 In Tg+ln§+53(5§3, 55)] = (’)(r?).

nre

We are now in a position to define ;" and 73 In fact, according to the above analysis,
as ¢ tends to 0, we expect that Z* will converge to 2’ for i € {1,2,3} and 73 will converge
to 73 satisfying

4In7; = —Iné — (2%, x).

Hence it is enough to choose 73 and 7';_ in such a way that
41n(r3) < —In€ — & (2%, x) < 4In(r3").

Consider now the projection of (3.48]) over E;. Given a smooth function f defined in
Q, we identify its gradient Vf = (9, f, ..., 0z, f) with the element of Ej,

4
i=1
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Keeping these notations in mind, we obtain the system of equations
3 ~3 S (53 A 2
o1 — Phq — VE(T7,2) + O(r7) = 0,

1~
39021+39021+§¢§1 VEs(@®, @) + O(r 0,

):
(r2) =
1590%,1—38531 %14‘0(7“) 0,
1590214'15%0214' %14‘0(7“)

7

which can be simplified as follows
P3,=002), F,=002), 5, =002 and V& &) =0(r).

Finally, we consider the projection onto L?(S)*. This yields the system

=G 00 =0 O (HE au — HEL ) +00E) =0,
ViU 002 =0, GA(HEL by — HEL 511) +0(2) =

Thanks to the result of Lemma this last system can be rewritten as
3,1 3,1 3,1 3.1
%) = O(T?), P2 = O(Tg)a 1/}2 = O(’l‘g) and ¢2 = O(Tg)

If we define the parameter t3 € R by

1 a3
t3 = [41n7'3+1n§+83(a:3,w)],

nre

then the systems found by projecting (3.48) gather in this equality

~ ~ 73 T ~3 ~ ~3,L 3,1 73,1
(350) T2375:(t3,)\3,90%70,(,0370,(,0%71,(,0371,¢371v53(1'3,$),(ﬁ2 7902 ,% 7¢2 ):O(TS)

As usual, the terms O(r?) depend nonlinearly on all the variables on the left side, but
is bounded (in the appropriate norm) by a constant (independent of £ and &) times 72,
provided € € (0,¢ex).
We recall that d = r.(z — ), in addition the previous systems can be written as for
i=1,2,3:
(d,ti, My @', &, 0, 98, VE) = O(r).

Combining (3.38), (3.40), (3.44), (3.46) and (3.50)), we have

1,€7 T 1,EY T1,E 3 ) &€

(3.51) Tie = (T} T2, TP.) = (O(r2),0(r2), 0(r2))  fori=1,2.

Then the nonlinear mapping which appears on the right-hand side of is continuous,
compact. In addition, reducing ¢, if necessary, this nonlinear mapping sends the ball of
radius x72 (for the natural product norm) into itself, provided & is fixed large enough.
Applying Schauder’s fixed point Theorem in the ball of radius xr2 in the product space
where the entries live, we obtain the existence of a solution of equation . This
completes the proof of Theorem
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4. Proof of Theorem

4.1. Construction of the approximate solution

4.1.1. Ansatz and first estimates

We define another ansatz for solution of (|1.1)):

)
%usm (x —at) — 22G(x, 2?) — %G(w, z3) — ln%, r € B,_(x1),

(@) = { ey (@ — 2%) + S5y Gla,2!) — gzmtg Gla,2®), € B.(a?),

LG + Gl reQ\UL, B, (')
and
S ry( — 2%) = 12G(2,2%) — EG(z,0") - 55, 2 € B.(2?),
u2(z) = U rp(z — 2%) — 7(21—;§—E)G( xl) + WG(;U 23), € By (2?),

B!
£G(a,2%) + G(z,27), zeQ\ UL, B, ().
Therefore, in B,_(x!), there holds

AZal o p4€7u1+(1—'y)u2 =0,
415 g\41=2=¢
3846 7' T (14e ) ¥ €’Y+§*1g(x’22)+%g(m@3)

ATy — ptefTt (=0T - =
Y

1-¢
YT (€2 + e - 21 )

Then, for r = |z — 2!| and 0 < § < (y + & — 1)/, we have

41=¢
5 4 4—6
2~ 4 _Llp+(1-8)a ¢ !
HA Uy — pletiat( E)ulH 0.0 (B, (a1)) < C’il?p TF L gie o2y 4€
Sy ()T S (1 (2Dt
8— 75 ) 4-6
< C sup 2 d ¢

PR (14250 (14 02)05

_gl=t_
< Csup %5 65’(7"),
r<Rl

where S(r) = T4751,§ :
(1+r2)" 7

If4—6—-8(1—-¢)/vy <0, then S is bounded on R, hence

_gl=¢_
SCes 83 6§C7“2.

HAQaZ 4 ﬁ’LL2+(1 § U1 H 2

Cy%4(Bre (21))
If4—0-8(1—¢&)/y>0,supyg,_ ) S(r) =5(r:/e), then

~ _gi=¢ T
HAQ'LLQ ot etz t(1- éulH < Crg as 2785 799 <—8> < Cr?.

5.4 (Bre (21)
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On the other hand, in B,_(z?), there holds

a 3 —384e'ry OOHED (LG, 01) - 16 (00™))
AQZL/ _ 4e'yu1+(1f'y)UQ — 2 e @-v—¢) 5 (131‘) € (@,2°) -1 ,
L=F (824—7'22]30—372]2)4( )
4.4
A Ty — p4e£u2+(1 &)y _ —384¢ Ty (e%( ’Yl G(I,xl)_i_%G(:C,xS)) B 1)

(e2 + 72|z — 22|2)4

Then, for r = |x — 22|, u € (1,2) and using the condition (1.6)), we have the following
estimates

2~ 4 _~t+(1— 2
HA uy — plet™ ( HCO (Bro(22) < Cr;
and
HA2U1 p4€£u1+(1 3] u2H00a (By. (22)) < CT?.
Finally, in B,_(z3), there holds
4=
2\4(1—€—
A2H1 —p 4 v +(1—7)u2 3845 73 ) (1+e ) (1-¢ 7)/56%5_1G(x,x2)+%0(x7x1)

I

1—
€7 (@4l E
A2, p4€§u2+(1 i _ ().

Then, for r = |z — 23| and 0 < § < (v + & — 1)/, we have the same estimates

< Cr?

HAQal o p4e'y171+(1—’7)172Hcgfil(Brs(xS)) < e

4.2. The nonlinear interior problem

Here, we are interested to study the system
A2U1 _ p4e'yu1+(1—7)u2’ AQUQ _ p4e§u2+(1 Hur

Using the following transformations

() =wi(£2) + Slne - 2 In (24F=)) in B, (a1),
() = ug(£x) in B,_(a'),
ni(2) = ur(Sa) +8Ine — 4ln (25)) in B, (a?),
va(x) = uz(£2) +8Ine —4ln (2UEL)) iy B, (a?)
and
vi(z) = u (£2) in By, (z%),
va(2) = uz(£2) + Elne — i (BUF)) i B, ()
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So the previous systems can be written as

A2y = 24er01t(1=7)ve in Bpi(z'),
(41) 4'y+§71
APyy =240, " e

ol St .
8 vy 6€U2+(1_5)U1 m BR; (x1)7

A%y = 2411 H(=7v2 iy Bz (2?),

(4.2) - ‘
A%yy = 24802128 i Bps (22)
and
y+€-1 _
(4.3) A2y =240 ¢ ST ke gy Bps(2?),
A%yy = 248V H1-8u in Bps(2?),
where C; . = ﬁ for ¢ = 1,3. Here 7; > 0 is a constant which will be fixed later.

Given ¢ == (¢}, ¢h) € (C*(S8?))? and o' == (¥, 9%) € (C**(S?))? such that (¢, ¢])
and (b, %) satisfy (3.5). We denote by U = uz—1 r,—1.
In Bpi (') and Bps(x*), we reproduce exactly the same as in the proof of Theorem 1.5

so we have the following propositions.

Proposition 4.1. Given k >0, p € (1,2) and 6 € (0, min{(%g_l), (7+§_1)}), there exist

gx >0, ¢. >0 and v € (0,1) such that for all e € (0,e,), v € (10,1), for all 1 in some
fized compact subset of [r{ , 7] C (0,00) and for 90]1- and ¢]1' satisfying (3.5) and (3.13]),
there exists a unique (hi, h}) (= (M1 r ot pls Pae o1 1)) solution of (3.12) such that

1 2
||(h%7 h2)||cﬁ’a(lR4)><C§’a(R4) < 20/{"}-

Hence
1 1-— 1-
vi(z) = ~u(z — 2') — g (m,x2) - —Ja <€I,x3>
v v T1

In~y 1 't<1 o —a
= 2 @)+ H (o T )

_ 1
va(x) = Lo <5:c$3> +G (?:ﬁ) + hi(x) + H™ (% 1,22 >

y ¥ 2
£ \7 1 Rl
solves ([@.1) in Bp(x').

Proposition 4.2. Given k >0, pp € (1,2) and 6 € (O,min{(%f_l), (%5_1)}), there exist

g >0, ¢ >0 and & € (0,1) such that for all € € (0,ex), £ € (&0, 1), for all T3 in some
fized compact subset of [73 , 73] C (0,00) and for gog? and w? satisfying (3.5) and (3.17)),
there exists a unique (h3,h3) (= (hl,s,rs,vi’,¢§7 h2,6,fg,¢§’,w§)) solution of (3.12) such that

”(h?,h%) S QCHTE'

oo ayxoon (ray
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Hence

1 ET i z— a3
nto) =6 (5t +6 (5 2)”‘3'(”*”“@?’ F),
€

1115 3 int {3 3,$*$3
5 +h( )+H <S02, 2’R7§

solves (4.3) in Bps (x3).
In Bgz(z*) we look for a solution of (4.2) of the form

RN NS Sl SRNPE (A N Sl SR R
v1(z) = u(z x)+’y(2—fy—§)G<Tg’x> 5(2—7—5)G<7—2’x>

2
r—x
+H1nt< Y15 %’ R2 )+h’%($)a
€

ale) = (e — ) - (21 _f §¢ <€x’x1> T 1—_75— 6¢ <Zw3>
int {2 2 x —a? 2
+H (‘Pm 2;R2> + ha(z).

This amounts to solve the equations

(4.4)
g = B[ el el Dbt 0 g ]
T
g B[R el el -0 ) g
2= [T 1 2y 21

We denote by
Lhi =Ts(hi, h3) and Lh3 = Ta(hi, h3).

To find a solution of (4.4)), it is enough to find a fixed point (h?,h3) in a small ball of
C™(RY) x ™ (RY), solutions of

h% = gﬂ © 5# © 7-3(}7’%7 h%) = NQ(h’% h%)?

h% =Ggpo&uo ﬁ(h%, h%) = M2(h%a h%)

Then, we have the following result.

(4.5)

Lemma 4.3. Let u € (1,2), v0 and & € (0,1). Given k > 0, there exist ,;, > 0 and
¢ > 0 such that for all e € (0,e4), v € (70,1) and & € (&, 1). We have

||N2(0’ O)HCﬁ’&(R‘l) < C,J’g, HM2(07 0)”031“(1@4) < Cf-ﬂ“?,
‘|N2(h27 h2) - NQ(k27 k%)”cﬁva(R4) < k(1 - 'Y)H(hi h%) - (k%7 k%)”cﬁva(qucjﬁva(Rﬂa
||M2(h ) MZ(k k%)”cﬁva(w) < (1 — :S)H(h%, h%) - (k%, k%)”cﬁ»a(w)xcﬁ’a(w)
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: 4, 4, . .
provided (h3,h3), (k3,k3) in Cx*(RY) x C,/“(RY) satisfying

(4.6) I(h3, h%)||cﬁ’a(R4)Xcﬁ’a(R4) < 20%7“? and ||(kF, k%)”eﬁva(w)xcjamg < 20%7«?'

Proof. The proof of the first and the second estimates follows from the asymptotic behavior
of H™ together with the assumption on the norms of <p§ and 1,/1]2 given by (3.20) and it
follows from the estimate of H™, given by Lemma that

Hlnt .
Soja s

for all 7 < R2/2. Then by (3.20]), we get

int
s ()
6

On the other hand, using (1.6)) we obtain

7 < Cr* (R (1€ llcaa(s2) + 17 ez (s3))
¢4 (B2(0)—-B1(0))

< cﬁs2r2.

CHe(B2(0)—B1(0))

sup 1“47“\75,(07 0)|

r<R2
4_ —_ _ T int 1mn
< sup ST SR (Ge(5 ) -6 (500) MR Ty
r<R2 (1 + T2)4

< 38474~ Hyp2e2
C su —_—
=ik (L)

Making use of Proposition together with (3.4)), for p € (1,2), we get that there exists
¢, such that
IN2(0,0)| o ey < w2

For the second estimate, we use the same techniques to prove
IM2(0,0) [l gt ey < cxr?
To derive the third estimate, for (h2, h3), (k?, k3) verifying (4.6]), we have

sup 714_M|7?3<h%7 h%) - 75(]{%7 k;)'

r<R?
4— _ _ int in
< sup M‘eiﬂ POTED (1G(2 ) - 26(52 ) ) JHHHVHEY p A= VEHA-NHE o 2
" or<rz (L4r2)*
_ sy (1G(%,xl)—%G(%@S))e’ka-i-“/H;n%tyw%+(1—’Y)’f§+(1—’Y)Hm2t 42
384ri—+
< csup 7\ = 1)(hf — ki) + (1 = )(h3 — k3)|
r<R2 (1 +r
384r4—H 9 9 9 9
< 0211% m(l ) [T“Wll - kl”gﬁ-ﬂ + r#{[hy — szcﬁ’a]-
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We conclude that

(4~7) HNQ(h ) NQ(k k%)”(}ﬁ’o‘(ﬂg‘l) < C,{(l - V)H(h%a h%) - (k%a k%)”cﬁva(Rél)xcﬁ!a(Rﬂ'

Similarly, we get

(4.8) [|M2(hT, h3) — Ma(ki, K3)ll gt gay < (1 = EII(RT, h3) — (T, k3) | cto (gay oo -
O

Then there exist 79 and & € (0,1) such that c.(1 —v) < 1/2 and ¢, (1 — &) < 1/2 for
all v € (70,1) and & € (&, 1). Therefore (4.7)) and (4.8)) are enough to show that

(B3, h3) — (Na(hi, h3), Ma(hi, h3))
is a contraction from the ball
{(h ) C4Q<R4) Cﬁa(RZL) : H(h%7 h%)”cﬁva([@ﬂxcﬁvamﬂ < QCHT?}

into itself. Then applying a contraction mapping argument, we obtain the following propo-

sition.

Proposition 4.4. Given k > 0, u € (1,2), v € (0,1) and & € (0,1), there exist ,, > 0
and c,; > 0 such that for all € € (0,e4), v € (’yo, 1) and & € (&o,1), for all T in some fized
compact subset of [y , 75| C (0,00) and for goj and 1/)2 satisfying (3.5) and (3.20)), there
exists a unique (h3,h3) (== (M1 e m 02 025 P ey 02 02) ) SOlution of ([4.5) . such that

I(h%, 3

2
2) Hcﬁva(Rzl) xChe (Re) < 2¢,77.

Hence

vi(z) = a(x — 22) + 1_7)G <€T‘;” x1> - 5(1_7)G <€x m3>

v2-7-¢ 2-9-¢ \m
.2
+ B3 () + H™ (cp?, %;me>,

N NS Sk SEPY S Pn N Sk SRR G
va(2) =z — ) 7(2—7—5)G<72’x>+£(2—7—£>G<Tz’m>
.2

+ h3(x) + Hmt( ©2, %:ajR;)

solves ([4.2) in Bpa(x?).

Remark also that the functions (h,h}) (:= (b} JRNIE h - n,gag,w’))’ for i € {1,2,3},

depend continuously on the parameter ;.
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4.3. The nonlinear exterior problem

By the same arguments as in the proof of Theorem exterior problem, we obtain the

following proposition.

Proposition 4.5. Given k > 0, there exists €, > 0 (depending on k) such that for any
e €(0,ex), Ni and T satisfying (3.29) and functions QZ; and QZ; satisfying (3.6) and (3.28)),

there exists a unique (v1,v2) (= (51,59\1,/\2,5,53,151’U2,5,A2,A3,5,$g,$§)) solution of (3.27)) so
that for vy (k= 1,2) defined by

vi(z) = L+ G(z,7") + (1 + X\)G(z,7?)
: »
+ka@—%HM<ﬁﬂmx;x)+am,
=1
vala) i= TG0, F) + (14 A)G(a )
3 ~1
D e GRS T
=1

solves (3.24)) in Q,_(x). In addition, we have

@1, 52)ll o e gy < 26872

4.4. The nonlinear Cauchy-data matching

We will gather the results of the previous sections. Using the previous notations, assume

that = := (2!, 22,7%) € Q3 are given close to @ := (2!, 22, 23). Assume also that

T = (T177_2a7_3) € [vaTfr] X [T{’T;] X [TZ;’T;] C (0’00)3

are given (the values of 7~ and Tl+, for I = 1,2,3 will be fixed later). First, we consider
some set of boundary data ¢’ := (¢}, ¢h) € (CH*(S%))? and ¥' := (i, ¢4) € (C>*(S3))2.
According to the result of Propositions [3. 10|7 |3 11| and [3.13| and provided ¢ € (0,&,), we
can find, Uint := (Uint.1, Uint,2) a solution of (3.7) in B,_(z')U B, (& YU B, (%), which can

be decomposed as

(Lue (2= 7) = 5260, 3) - L2G (0, 7)
—RL o HY (rf>+MG——4% in By (#),
Uing,1(T) 7= 4 e,y (2 — ) TG (5, 7) — sa g G (52, 7%)
+Hmlt7¢1(x z )+h%(#) in B, (z%),
LG, 7) + Gl ) + HIY 4y (52) + b (D) in B, (3)
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and
(1G(2,) + (2,7 )+H11¢1( = )+h1((T1)) in B, (&),
ey (1= ) = g (m ~1)+£(2 505 T)
Uing,2(T) = +H“12t7w2(mrf ) + h2( ) in B, (7%),
fue ry (v — 3°) — 15G(2, 3 > G2, T
N (55) (R in B,.(&)

where for i € {1,2,3} and j € {1,2}, R. = 7;"= and the functions h’ satisfy

||(h%7h%)||cﬁ’a(R4)XC§’o‘(R4) < 2CNT52’ ||(h%’h%)||(cﬁ’a(ﬁg4))2 < 26%7"3

and

”(h:l))7 h%)Hcg’a(R‘l)XCﬁ’Q(R‘l) S 2057"3.

Similarly, given some boundary data @; € Che(S3), 1’/;; € C%%(S3) satisfying (3.6,
(M1, A2, A3) € R3 satisfying ([3.29), provided € € (0,e,), by Proposition we find a
solution uext 1= (Uext 1, Uext.2) of (3.7) in Q\ (B,.(2!) U B,. (%)) U B,_(23)) which can be

decomposed as

1+ A - -
Uext,1(x) 1= —; 1G(:E, I 4+ (14 X\)G(x,7?)
3 . O
# Y xle =T (B0 50 ) + o)
i=1 €
14+ A " -
Uext 2(T) 1= 5 3G(a;, 23 4+ (14 ) G(x,7?)

. .~ -1 ~
+ZXTO He ! (%a'@béa%) + Va(z)
with 1,7 € Cp®(Q7(&)) satisfying

1@, 92) e @ a2 < 272

It remains to determine the parameters and the boundary data in such a way that
the function equal to uiy in By (') U B, (7?) U B, (23) and equal to eyt in Q,_(Z) is a
smooth function. This amounts to find the boundary data and the parameters so that,

for each j = 1,2,

Uint,j = Uext,j, 87"Uint,j = 87"uext,ja

(4.9)
AUint,j = Auext,ju 8rAuint,j = 8rAuext,j

on 0B, (7'), 0B,.(z%) and 0B, (7?).
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Suppose that is verified, this provides that for each ¢ small enough u. € C**
(which is obtained by patching together the functions wiy; and the function ueyt), a weak
solution of our system and elliptic regularity theory implies that this solution is in fact
smooth. That will complete the proof since, as € tends to 0, the sequence of solutions we
have obtain satisfies the required singular limit behaviors.

Before we proceed, the following remarks are due. First it will be convenient to observe

that the function u. r, can be expanded as

627'

2
Uer,(x) = —4InT; — 8ln || +(’)< BE ) on 9B;_(0).

e On 9B, _(7'), according to the proof of Theorem and since when ¢ tend to 0, it

is enough to choose 7; and 7; in such a way that
Aln(r]) < —Iny — & (2!, ) < 4In(r]),

where
~ ~ 1 ~
gl(-,{l’,')::H(',a}l)—i-G( )—’_TVG(V/ES)
Also using the fact that

1,1
o1 = @i 0T <P1 1+ 901 ) P = 8@%,0 + 12@%,1 + ¢,
~1 s ~1,L
P = 901,0 + <P1,1 + 801 ) P = %bh + Y,

where 1 0 ﬂ 0 € Eo =R are constant on 93, gpil, 6%71, J%l belong to E; = Span{ey, ea,

es3,eq} and ¢ J', 951 J', %’J‘, ?’J‘ are L?(S3) orthogonal to Eg and E;. We can prove that

(Uint,l - uext,l)(il +re- ) O a7“(uint,1 - uext,l)(%1 +re- ) = 07
A(Uint,l - uext,l)(gl +7e- ) O a7“A(uint,1 - uext,l)(51 +7e- ) =0

on S2 yield to
(4.10)

~ ~ Tl S i~ ~ 1,1 71,1
Tll,s:(tla)\la50%,0780%,07‘pila‘p%,lv@b%,lvvgl(xlaw)v‘pl 3901 7w1 ’77[)1 )—O(’I"g),

where

t1 =

[4lnm +1ny + & (F, 2)].
Inr.

Finally, using the fact that

1,1

Py =pho+ bty Wh = 8ph o+ 120); +uyt
~ ~ 1
Py = 9020+<P21+902, T/’%:@,l"‘%’
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. ~ ~1 7 1,1 ~1,L 1,1 71,1
with SO%,O)SO%,O € Eo, @%,17@%,17@&%,1 € Ey and Po s P wQ ) % belong to (LQ(S?)))L
We can prove that

(Uint,Z - uext,2)(§1 +7e- )

07 a1“(uint,2 - uext,?)(%l +re- ) = 07
A(Uint,2 - uext,2)(§1 + e ) =Y, =0

aTA(uint,Q - uext,Q)(fl +re- )

on S3 yield to

~ ~ 7 1,1 ~1,1 1,1 71,1
(411) T21,5: (8050790%,0790%,1790%,1717[)%,17()02 )y P2 7'¢}2 a¢2 ):0(7"?)

As usual, the terms O(r2) depend nonlinearly on all the variables on the left side, but
is bounded (in the appropriate norm) by a constant (independent of € and x) times 72,
provided € € (0, &).

e On 0B, (7?), we have

. x— T2
(uim’l — uext’l)(:r) = —4In7my +8X21ln ’.CI? — 1‘2’ + h% (Rg . >

£

- T—T it [~2 9 T—T
e (%%7 %7 r ) ext <7 %’ %’ r >

(4.12) : ¢ -
-le-a-ore )+ = Eew ) + 0w )
527'2_2 2
*O(m—ﬁP)+Om)
and
9
(Uint,2 — Uext,2)(z) = —41Inm + 8o In |z — 552| + h% (R?m " v >
€
in r — 72 oxt [(~2 T — 22
+H t(w% §;T> —H t(%’%a 5; " )
(4.13) : i

72 5 .7t 1_77 .73
—[@—v—Owa)+ e+ 1 G<,>]

e’1y ? 2
Next, even though all functions are defined on 9B, (%) in (4.9), it will be more

convenient to solve on S3, for i = 1,2, the following set of equations

(4 14) (uint,i - uext,i)(g2 +re- ) = O) ar(uint,i - uext,i)(52 +re- ) = 07
‘ =0, =0.

A(uint,i - Uext,i)(%2 +7re- ) aTA(uint,i - Uext,i)(%2 + 7e- )
Since the boundary data are chosen to satisfy (3.5 or (3.6)). We decompose
2,1 2,1
0F = Qloteiit el W =8pho+ 1207 + U
~9  ~9 ~9 ~2, 1 00 ) 72,1
©; = Pio T i1t e, ¥y =i+,
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where @}70, @170 € Eg = R are constant on S3, goi{l, g“o'l-l’l, 1/}1-171 belong to E; = Span{ey, e,
es,eq} and @%’L, {51-14, 1/11»14, {/;llL are L2(S3) orthogonal to Ey and E;.

We insist that, for x € S3, both equations (4.12) and (4.13) involve the same relation

of the parameter 7o and the appropriate energy £. Then we have

(Uinti — Uext,i) (T2 + 1ex) = —4InTo + 8o Inre|a| + H™ (07,92, ) — H™(3?, 92, z)
— 1-— e 1-— —
Ne-y-ou@ @)+ ,fG(x?,xl) + o)
+ O(r?).

Projecting the set of equations (4.14) over Eg, we get

—4lnTy + 82 Inre + ¢y — Gy — E2(32,7) + O(r2) =0,
(415) 8X2 + 2070 + 207 + O(r2) =0,
16X + 8@,270 +0(r?) =0,
—32X2 + O(r2) = 0,
where
E(, @) =2 —y—H(-,7)+ 1;£G(-,§1) + 1:(7@(-,553).

The system (4.15)) can be simply written as

Ay = O(r?), %2,0 = O(T?), @%0 = O(T?) and [4 Inm + 52(52,5)] = O(T‘?).

nre

We are now in a position to define 7, and 7'2+ . In fact, according to the above analysis,
as ¢ tends to 0, we expect that Z° will converge to 2’ for i € {1,2,3} and 7 will converge
to 75 satisfying

4In7y = =& (2, ).

Hence it is enough to choose 7, and 7, in such a way that
41n(ry ) < —Ex(a? x) < 4In(ry).

Consider now the projection of (4.14) over E;. Given a smooth function f defined in
Q, we identify its gradient Vf = (0y, f, ..., 0z, f) with the element of E;,

4

=1

Keeping these notations in mind, we obtain the system of equations

@12,1 - @2,1 —V&(@, @)+ O(r) =0,
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" 1~ = e ~
3%2,1 + 3%2,1 + 5%‘2,1 —V&(@, )+ 0(r) =0,
15%2,1 - 395?,1 - %2,1 +0(r?) =0,
~ 18 ~
15%2,1 + 15%271 + szl +0(r?) =0,

which can be simplified as follows

02 =002), P} =002), ¥} =02 and V&EEE) = O(2).

)

Finally, we consider the projection onto L?(S%)+. This yields the system

PTG RO =0, O (HML a0~ HEY 5u) +O0(r2) =0,
UPt =it £ 00 =0, GA(HML a0 - HEY 51) +O(2) =0,

Thanks to the result of Lemma this last system can be rewritten as
2,1 ~2,1 2,1 2,1
Y = O(T?), Y = O(T?), Y = O(T?) and ¢ = O(T?).
If we define the parameter to € R by

to

= I [41n72 + 52(%2,%)],

then the systems found by projecting (4.14)) gather in this equality
- 2 T2 e 2 A~y 2L ~2 1 21 721
(416) Tc%g = (@)\2#&%07@?,0:%%1;@?,171/1?,17v£2($2aw)7%’ 7%02'7 71/}7j 7% ) = 0(7’3)

for i = 1,2. As usual, the terms O(r?) depend nonlinearly on all the variables on the left
side, but is bounded (in the appropriate norm) by a constant (independent of ¢ and k)
times 72, provided € € (0, &,).
e On 0B,_(73), according to the proof of Theorem using the fact that
3,1 3,1
o} = 90:1)),0 + 90?1),1 +o1, Y3 = 890?1’,0 + 1290?1),1 + 47,
~ ~ ~ ~3,1 it s 3,1
@ = ‘P?,o + @?,1 +ort, Y= Q/)il + ¢
. ~ ~3 T 3,L ~3,L 31 731
with @?,0)@%0 € ]EOa @?,17¢§),15w%,1 € ]El and 1 s P ¢1 ’ 1][)1 belong to (LQ(S?)))L
We can prove that
~ ~3 3,L ~3,1 3,1 73,1
(4.17) TPe = (P10, Plos ¥l 1 PLL Yl o 8 0y ) = O(r2).
On other hand, according to the proof of Theorem and since when ¢ tend to 0, its

enough to choose 7; and 7" is such a way that

4In(ry) < —In¢ — &(2®, ) < 41n(r3),
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where

E(-,T) = H(-,53)+G(~,%2)+1;£G(-,E1).

Also using the fact that
3,1 3,1
Oy =30+ 03Ty, W =805+ 1203, + 1y,
~ ~ ~ ~3,1 e s 73,1
G =030+ + Py, U=,y

where 803,0: 6%70 € Eg = R are constant on S3, cp%l, &%71, ng belong to E; = Span{ey, ea,

es,eq} and gD;’J_, ng’l, g”J‘, N;”J‘ are L?(S®) orthogonal to Eg and E;. We can prove that
(Uint i — Uext,i) (T + 7o) =0, O (Uing,i — Ueset i) (T> +72-) =0,
A(uint,i - uext,i)(%3 +re- ) =0, 8TA(uint,i - Uext,i)(%3 +re- ) =0

on S yield to

~ 3 73 Se 3 ~ 3,1 ~3,1 31 731
(418) T23,z-::(t?n)‘37903,07903,07(p%,lu(pg,law%,lvgi%(xng)v(pQ y P2 7¢2 7w2 ):O(Tg)’

where

1 -
ty = o [41n7'3 +Iné+ &(x ,:c)]

As usual, the terms O(r2) depend nonlinearly on all the variables on the left side, but

2

is bounded (in the appropriate norm) by a constant (independent of ¢ and ) times rZ,

provided € € (0, &).
We recall that d = r.(x — @), in addition the previous systems can be written as for
1=1,2,3:
(d, ti, )\ia 901'7 ()51'7 wiv {/77vgl) = O(T’?)
Combining (4.10)), (4.11), (4.16]), (4.17) and (4.18), we have

(4.19) Tie = (T}, T2, T2.) = (O(r2), 0(r2), 0(r2)) fori=1,2.

i, Tier L, € € €

Then the nonlinear mapping which appears on the right-hand side of is con-
tinuous, compact. In addition, reducing ¢ if necessary, this nonlinear mapping sends
the ball of radius xr2 (for the natural product norm) into itself, provided & is fixed large
enough. Applying Schauder’s fixed point theorem in the ball of radius x72 in the product
space where the entries live, we obtain the existence of a solution of equation . This
completes the proof of Theorem [T.6
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