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Topological Sensitivity Analysis and Kohn-Vogelius Formulation for

Detecting a Rigid Inclusion in an Elastic Body

Mourad Hrizi

Abstract. Our main interest in this work is to detect a rigid inclusion immersed in an

isotropic elastic body Ω from a single pair of Cauchy data on ∂Ω in two dimensions.

We want to completely characterize the unknown rigid inclusion, namely, the shape

and the location of inclusion. The idea is to rewrite the inverse problem as an opti-

mization problem, where an energy like functional is minimized with respect to the

presence of a small inclusion. A topological sensitivity analysis is derived for an energy

like functional. We proposed a non-iterative reconstruction algorithm based on the

topological gradient concept. The unknown rigid inclusion is defined by a level curve

of a scalar function. The proposed numerical approach is very robust with respect

to noisy data. Finally, in order to show the efficiency and accuracy of the proposed

algorithm, we present some numerical results.

1. Introduction

The detection of inclusions and/or cavities using the over-determined boundary data is

a classical inverse problem that arises in nondestructive testing for damage assessment

of mechanical specimens which are possible defective due to the presence of interior void

(rigid inclusions and cavities) induced during the manufacturing process. There have been

numerous methods for void detection [3, 8, 10,15,20,21,37,41,43,44,52].

In this paper, we address the problem of nondestructing testing: to reconstruct the lo-

cation and shape of a rigid inclusion (defined by a Dirichlet boundary condition) immersed

in an elastic body Ω (represented by a bounded domain in R2) by applying a traction field

at the boundary ∂Ω and by measuring the induced displacement field on the boundary ∂Ω.

The displacement field satisfies the elasticity framework. This inverse problem is known to

be severely ill-posed and nonlinear. Alves and Martins in [9] solved this inverse problem

and proposed an approach based on the method of fundamental solutions (MFS). They

established a numerical scheme that connects the MFS. While Karageorghis et al. [39,40]

proposed a regularization approach relies on the minimization of a nonlinear least-squares
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functional, penalized with respect to both the MFS and the derivative of the radial polar

coordinates describing the position of the rigid inclusions or cavities. Then Shifrin and

Shushpannikov in [55] determined a spheroidal cavity or rigid inclusion in an elastic solid

by applying an analytic approach based on the reciprocity gap functional (RGF). More-

over, the reconstruction of inclusion can also be analyzed in a different framework in terms

of a change in the elastic material properties [4, 48,50].

Here, to reconstruct a rigid inclusion inside an elastic body, we propose an alternative

reconstruction approach combining the advantages of the Kohn-Vogelius formulation [42]

and the topological sensitivity analysis method [51]. The idea is to reformulate the inverse

problem into a shape optimization one, where the rigid inclusion is the unknown variable.

The method relies on the minimization of the so-called Kohn-Vogelius type functional,

which measures the difference between the solutions of two auxiliary problems. To min-

imize this functional, we apply the topological sensitivity analysis. The main advantage

of this reconstruction method is that it provides fast and accurate results for detection.

The main contribution of this paper concerns the theoretical and numerical aspects.

In the theoretical part, we have derived a topological sensitivity analysis for the linear

elasticity problem with respect to the insertion of a small inclusion in the domain Ω

with a Dirichlet condition on the boundary of the inclusion. The obtained results are

based on a rigorous and simplified mathematical analysis valid for a large class of shape

functions. This method allows us to perform the topological sensitivity analysis without

using the truncation technique proposed in [29]. In the numerical part, we propose a

non-iterative algorithm for reconstructing an inclusion. The efficiency of the proposed

algorithm is illustrated by some numerical examples. Particularly, we test the influence

of some parameters in our algorithm such as the shape, location, size and the number of

the inclusions.

This paper is summarized and rounded up as follows. Section 2 contains some nota-

tion and presents the direct and inverse problems. The proposed approach to solve the

considered inverse problem is described in Section 3. In Section 4, we derive a topological

asymptotic analysis with respect to the creation of a small rigid inclusion. Then, we pro-

pose a non-iterative algorithm. The efficiency and accuracy of the proposed algorithm are

illustrated by some numerical results provided in Section 5. The sixth section is devoted to

a conclusion, whereas the closing section records some definitions and preliminary results.

2. The problem setting

2.1. Notations

Let us introduce some notations which will be useful in what follows. For an open and

bounded domain Ω ⊂ R2, we denote by Wm,p(Ω) and Hs(Ω) := [Hs(Ω)]2 the usual
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Lebesgue and Sobolev spaces. Moreover, we denote by ‖ · ‖1,Ω the norm ‖ · ‖H1(Ω) and

| · |1,Ω the semi-norm ‖ · ‖H1(Ω) defined in (7.1). We also denote by ‖ · ‖1/2,∂Ω the norm

‖ · ‖H1/2(∂Ω) and ‖ · ‖−1/2,∂Ω the norm ‖ · ‖H−1/2(∂Ω). We represent the duality product

between H−1/2(∂Ω) and H1/2(∂Ω) by the notation 〈 · , · 〉−1/2,1/2,∂Ω. Finally, we define an

inner product for matrices by M : N =
∑2

i,j=1MijNi,j for M,N ∈ R2×2; the associated

norm is |M | =
√
M : M . The corresponding inner product on L2(Ω)2×2 is

〈M,N〉L2(Ω)2×2 =

∫
Ω
M(x) : N(x) dx for M,N ∈ L2(Ω)2×2.

2.2. The direct problem

Let Ω be an open and bounded domain of R2 with smooth boundary ∂Ω, occupied by

a linear elastic material. Inside the domain Ω, we assume the existence of a simply

connected subdomain B∗ ⊂ Ω (rigid inclusion) with boundary ∂B∗ of class C1 such that

dist(∂B∗, ∂Ω) > 0 (see Figure 2.1).

(a) (b)

Figure 2.1: (a) Domain Ω without inclusion and (b) Domain Ω with inclusion B∗.

The forward linear elastic problem is, therefore, given by

(2.1)


−div σ(ψ) = 0 in Ω \B∗,

σ(ψ)n = ϕ on ∂Ω,

ψ = 0 on ∂B∗,

where ϕ 6≡ 0 is a given traction acting on the boundary ∂Ω and n denotes the outward

unit normal vector to the boundary ∂Ω. The vector ψ denotes the displacement field,

σ = (σij)1≤i,j≤2 is the associated Cauchy stress tensor and e = (eij)1≤i,j≤2 is the linearized

strain given by

eij(ψ) =
1

2

(
∂ψi
∂xj

+
∂ψj
∂xi

)
, 1 ≤ i, j ≤ 2.

Note that σ and e are related by the Hooke constitutive law [26], the medium being
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assumed to be homogeneous and isotropic. Therefore,

σij(ψ) = 2µeij(ψ) + λδij

2∑
k=1

ekk(ψ), 1 ≤ i, j ≤ 2.

Above, δij is the Kronecker symbol and µ, λ are the Lamé coefficients related to Young’s

modulus E and the Poisson’s ratio ν via

µ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1− 2ν)
.

For the physical meaning of these parameters, see [38].

2.3. The inverse problem

We define the class of admissible geometries

Vad :=
{
B ⊂⊂ Ω : B is a simply connected open set, ∂B is of class C1,

dist(x, ∂Ω) ≥ ρ0 > 0, ∀x ∈ B and Ω \B is connected
}

with ρ0 being a small fixed parameter.

In this work, we focus on the reconstruction of the location and the shape of an

unknown rigid inclusion B∗ ∈ Vad immersed in the elastic body Ω from a single pair

of displacement and surface traction data on the boundary of Ω. Therefore, the inverse

problem that we consider here can be formulated as follows:

• Assume having an over-determined data on ∂Ω such as

◦ ϕ ∈ H−1/2(∂Ω) is a given traction field:

σ(ψ)n = ϕ on ∂Ω.

◦ Ud ∈ H1/2(∂Ω) is a measured displacement field:

ψ = Ud on ∂Ω.

• Reconstruct the unknown rigid inclusion B∗ ∈ Vad such that the displacement field ψ

in the presence of the rigid inclusion B∗ satisfies the following over-determined boundary

value problem

(2.2)



−div σ(ψ) = 0 in Ω \B∗,

σ(ψ)n = ϕ on ∂Ω,

ψ = Ud on ∂Ω,

ψ = 0 on ∂B∗.



Topological Sensitivity Analysis for Detecting a Rigid Inclusion 443

The data Ud for which this problem has a solution ψ is said to be compatible.

The theoretical aspect of the over-determined problem (2.2) has been the subject of

various researcher’s works. Particularly, one can consult [9, 49] for identifiability and

stability results. Alves and Martins in [9] discussed the question of the identification of

inclusions/cavities in an elastic body, using a single boundary measurement. Therefore,

we have the following uniqueness theorem from [9, Theorem 3]:

Theorem 2.1 (Uniqueness). Let B∗ ⊂ Ω ⊂ R2 be bounded and simply connected domains

with C 1-smooth boundaries such that the domain Ω \B∗ is connected. Let also the Neu-

mann and Dirichlet data ϕ ∈ H−1/2(∂Ω) and Ud ∈ H1/2(∂Ω). If Ud 6≡ 0 then a single

pair of Cauchy data (ϕ,Ud) determines uniquely the displacement field ψ∗ ∈ H1(Ω \B∗)

and the rigid inclusion B∗ satisfying the inverse problem is given by (2.2).

On the other hand, Morassi and Rosset in [49] established the uniqueness and a condi-

tional stability estimate of log-log type in determining a rigid inclusion inside an isotropic

elastic body, we have the following stability theorem from [49, Theorem 2.5]:

Theorem 2.2 (Stability). Let Bi, i = 1, 2, be two open subsets in the class of admissible

geometries Vad. Moreover, let Σ be an open portion of ∂Ω. Let ψi ∈ H1(Ω \Bi) be the

solution to (2.1), and let ϕ ∈ H1/2(∂Ω) when B = Bi, i = 1, 2. If for a given ε > 0 we

have

min
r∈R
‖(ψ1 − ψ2)− r‖L2(Σ) ≤ ρ

1/2
0 ε,

then

dH (∂B1, ∂B2) ≤ ρ0ω

 ε

ρ
1/2
0 ‖ϕ‖H−1/2(∂Ω)

 ,

where R denotes the linear space of the infinitesimal rigid displacements and ω is an

increasing continuous function on [0,∞) which satisfies

ω(t) ≤ C(log | log t|)−ι for all t, 0 < t < e−1,

and C, ι, C > 0, 0 < ι ≤ 1, are constants only depending on the a priori data.

From the above Theorems 2.1 and 2.2, we deduce that the solution of the inverse

problem (2.2) is unique and stable.

In order to solve the reconstruction problem (2.2), we rephrase the inverse problem

under consideration into an optimal design one. We propose a reconstruction approach

based on the Kohn-Vogelius formulation and the topological sensitivity analysis method.
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3. The reconstruction method

Our reconstruction approach is based on two main steps. The first one consists in deter-

mining the location and the shape of the unknown rigid inclusion B∗ using the Kohn-

Vogelius formulation. The idea is to minimize a misfit functional between the solutions

of two forward problems. One of them is associated to the Neumann data ϕ whereas the

other one contains information on the Dirichlet data Ud. In the second part, to minimize

this misfit functional, we resort to the topological sensitivity analysis.

3.1. The Kohn-Vogelius formulation

The Kohn-Vogelius formulation is a self regularization technique and reformulate the in-

verse problem into a shape optimization one. For an admissible rigid inclusion B ∈ Vad;

the Kohn-Vogelius formulation consists in splitting the over-determined boundary value

problem (2.2) in two auxiliary problems. The first one is called the Neumann problem and

associated to the traction field ϕ:

(PN ) Find ψN ∈ H1(Ω \B) solving


−div σ(ψN ) = 0 in Ω \B,

σ(ψN )n = ϕ on ∂Ω,

ψN = 0 on ∂B.

The second one is associated to the measured displacement Ud:

(PD) Find ψD ∈ H1(Ω \B) solving


−div σ(ψD) = 0 in Ω \B,

ψD = Ud on ∂Ω,

ψD = 0 on ∂B.

For some results concerning the existence and uniqueness of solutions of problems (PN )

and (PD), we refer to [16].

We remark here that if the admissible rigid inclusion B coincides with the actual one

B∗ then the misfit between the solutions vanishes ψN = ψD in Ω \ B∗. According to

this observation, the given inverse problem can be formulated as a shape optimization one

where the unknown inclusion B∗ can be characterized as a solution to the following shape

optimization problem:

(Pop) Find B∗ ⊂ Ω such that K (Ω \B∗) = min
B∈Vad

K (Ω \B),

where K is a shape function defined as

K (Ω \B) = J (ψN , ψD)



Topological Sensitivity Analysis for Detecting a Rigid Inclusion 445

with J a given cost functional defined on H1(Ω \B), measuring the difference between

the Dirichlet and Neumann problem solutions.

In this work, we will use the following Kohn-Vogelius type cost functional,

J (ψN , ψD) =

∫
Ω\B

σ(ψN − ψD) : e(ψN − ψD) dx, ∀B ∈ Vad.

This function is positive and vanishes only if ψN = ψD, which is the case when the

parameter B fits the inclusion. We can notice that, integrating by parts the expression of

J (ψN , ψD), we have:

J (ψN , ψD) =

∫
∂Ω

(ψN −Ud) · (ϕ− σ(ψD)n) ds.

The above equality give a boundary expression of K .

This kind of cost function was originally introduced by Wexler et al. in [57] proposed

a procedure to reconstruct the unknown impedance from the knowledge of solution on

the boundary of the domain. Then Khon and Vogelius in [42] suggested a modification

of Wexler’s procedure to make it an alternating direction one by proposing a new misfit

cost functional. Since then, this formulation has been proved to be extremely useful in

the treatment of various inverse problems [13,18,22,28,35], and so on.

Regarding the minimizer of (Pop), we now show the following uniqueness result.

Proposition 3.1. Let (ϕ,Ud) ∈ H−1/2(∂Ω)×H1/2(∂Ω) be given nontrivial Cauchy data.

We assume that there exists B∗ ∈ Vad such that the problem (2.2) has a solution then B∗

is the unique minimum of the shape functional K :

B∗ = arg min
B∈Vad

K (Ω \B).

Proof. If B∗ ∈ Vad is the solution of the inverse problem (2.2), then ψN (B∗) = ψD(B∗)

and B∗ is the minimum of the functional K with K (Ω \ B∗) = 0. Let B ∈ Vad be

another minimizer of K . Then ψN (B) verifies the problem (2.1) with ψN (B) = Ud on

∂Ω. By using the uniqueness Theorem 2.1, we obtain B = B∗.

Next, to solve the shape optimization problem (Pop), we introduce the topological

sensitivity analysis method.

3.2. Topological sensitivity analysis

The main idea of the topological sensitivity consists in studying the variation of a shape

functional with respect to an infinitesimal singular domain perturbation, such as the in-

sertion of cavities, inclusions, source-terms or even cracks [5, 6, 12,14,17,19,23,24,34].
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Let us briefly browse the history of this method. Its main idea was first introduced

by Schumacher [54] in the context of compliance minimization. In the same context,

Sokolowski and Zochowski [56] gave some mathematical justifications in the plane stress

case and generalized it to various cost functions. A topological sensitivity framework us-

ing an adaptation of the adjoint method and truncation technique was then introduced by

Masmoudi [45] for the Laplace equation. It was generalized in [29] to the elasticity equa-

tions in the case of arbitrarily shaped holes. By using the adjoint method and the domain

truncation technique, the topological gradient has been calculated for several equations

such as Laplace [31], Stokes [32], quasi-Stokes [33], Navier-Stokes [11], elastodynamic [27],

Maxwell [46] and Helmholtz [53] and many other equations.

To present the idea of this method, let us consider a perturbation of Ω confined in a

small region Bz,ε of size ε and has the form Bz,ε = z + εC , where z ∈ Ω and C ⊂ R2

is a fixed open and bounded set containing the origin, whose boundary ∂C is connected

and piecewise of class C1. Then the topological sensitivity analysis leads to an asymptotic

expansion of the shape functional K on the form:

K (Ω \Bz,ε) = K (Ω) + ξ(ε)δK (z) + o(ξ(ε)), ∀ z ∈ Ω,

where

• ε 7→ ξ(ε) is a scalar positive function verifying limε→0 ξ(ε) = 0 and describes the

behavior of the variation K (Ω \Bz,ε)−K (Ω) with respect to ε.

• The function z 7→ δK (z) measures the sensitivity of the shape functional K with

respect to a geometry perturbation around the point z. The function δK is called the

“topological gradient”. Mathematically, δK can be expressed as

δK (z) := lim
ε→0

K (Ω \Bz,ε)−K (Ω)

ξ(ε)
.

• The shape functional K associated with the topologically perturbed domain Ω\Bz,ε

is written as

K (Ω \Bz,ε) =

∫
Ω\Bz,ε

σ(ψDε − ψNε ) : e(ψDε − ψNε ) dx,

with ψNε and ψDε solve respectively problems (Pε
N ) and (Pε

D).

(Pε
N ) Find ψNε ∈ H1(Ω \Bz,ε) solving


−div σ(ψNε ) = 0 in Ω \Bz,ε,

σ(ψNε )n = ϕ on ∂Ω,

ψNε = 0 on ∂Bz,ε
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and

(Pε
D) Find ψDε ∈ H1(Ω \Bz,ε) solving


−div σ(ψDε ) = 0 in Ω \Bz,ε,

ψDε = Ud on ∂Ω,

ψDε = 0 on ∂Bz,ε.

In the particular case, if ε = 0, we will consider as a convention that Bz,0 = ∅, and

consequently Ω\Bz,0 = Ω. Therefore, we denote by ψN0 and ψD0 respectively the solutions

to the following unperturbed problems:

Find ψN0 ∈ H1(Ω) solving

−div σ(ψN0 ) = 0 in Ω,

σ(ψN0 )n = ϕ on ∂Ω,
(P0

N )

Find ψD0 ∈ H1(Ω) solving

−div σ(ψD0 ) = 0 in Ω,

ψD0 = Ud on ∂Ω.
(P0

D)

Then the shape functional K associated to the unperturbed domain Ω is written as

(3.1) K (Ω) =

∫
Ω
σ(ψN0 − ψD0 ) : e(ψN0 − ψD0 ) dx.

In order to minimize the shape functional K , the best location to insert a small

inclusion Bz,ε in Ω is where δK is the most negative. In fact, if δK (z) < 0 we have

K (Ω \ Bz,ε) ≤ K (Ω) for small ε > 0. Particularly, the solution of the optimization

problem

min
Bz,ε∈Vad

K (Ω \Bz,ε)

is given by B∗z∗,ε = z∗ + εC where z∗ ∈ Ω such that δK (z∗) < 0 and δK (z∗) < δK (z),

∀ z ∈ Ω.

Remark 3.2. Notice that the solution ψN0 of the unperturbed Neumann problem (P0
N )

has a unique solution ψN0 up to an additive constant. In order to ensure uniqueness we

add the following normalization condition:

(3.2)

∫
∂Ω
ϕ · w ds = 0, ∀w ∈ V ,

where V denotes the rigid motions space of the domain Ω defined as

V = {v ∈ H1(Ω), e(v) = 0}.

In practice, to avoid the normalization condition (3.2), one can solve the following varia-

tional problem:∫
Ω
σ(ψN0 ) : e(w) dx+

∫
Ω
ςψN0 · w dx =

∫
∂Ω
ϕ · w ds, ∀w ∈ H1(Ω)

where ς is a small parameter (∼ 10−10).
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Remark 3.3. For the sake of simplicity in what follows we will work with an origin-centered

inclusion (i.e., z = 0). The general case comes from a linear change of coordinates. Then,

we denote by Bz,ε = B0,ε =: Bε also consider Ωε := Ω \B0,ε.

In the next section, we present the theoretical aspect of the proposed method. We

derive a topological sensitivity analysis for the linear elasticity operator. The obtained

results are valid for a Dirichlet and/or Neumann boundary condition on ∂Ω (see Propo-

sition 4.10). In Section 4.2, from the obtained results, we will deduce an asymptotic

expansion for the Kohn-Vogelius functional K (see Theorem 4.13).

4. Asymptotic analysis

4.1. General case

This section is devoted to the topological sensitivity analysis for the linear elasticity op-

erator with respect to the presence of a small inclusion Bε = εC inside the background

domain Ω. This question has been investigated in the past by Garreau et al. [29] and

Giusti et al. [30]. In the first reference they considered a Neumann boundary condition

on the small inclusion obtaining general results in two and three dimensional cases. They

established a topological sensitivity analysis based on the truncation technique and the

sensitivity analysis of the Dirichlet-to-Neumann operator. In the work of Giusti et al. they

obtained a topological derivative of inclusion in two dimensions in linear elasticity problem

using the Topological-Shape Sensitivity Method.

Here, we do not use the truncation technique and the Topological-Shape Sensitivity

Method, but we follow the simplified approach presented in [1] (see also [2,25]). However,

contrary to the problem studied in [29], we impose Dirichlet boundary conditions on the

interior boundary of Bε. We propose a simple and rigorous mathematical analysis based

on a preliminary estimate describing the influence of the geometric perturbation Bε on

the elasticity problem solution. In order to derive a topological sensitivity analysis valid

for the problems (Pε
N ) and (Pε

D), we introduce the following auxiliary problem:

(4.1)



−div σ(ψε) = 0 in Ωε,

σ(ψε)n = ϕn on Σ,

ψε = 0 on Γ,

ψε = 0 on ∂Bε,

where ϕn ∈ H−1/2(Σ) is a given data, with Σ and Γ form a non-overlapping decomposition

of the boundary ∂Ω: Σ and Γ are relatively open, ∂Ω = Σ ∪ Γ, and Σ ∩ Γ = ∅.
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In the absence of a rigid inclusion (i.e., ε = 0) Ω0 = Ω and ψ0 solves

(4.2)


−div σ(ψ0) = 0 in Ω,

σ(ψ0)n = ϕn on Σ,

ψ0 = 0 on Γ.

Remark 4.1. In the particular case Σ = ∂Ω (Γ = ∅), the problem (4.2) has a unique

solution ψ0, up to an additive constant. To ensure uniqueness, the boundary force ϕn

should satisfy the compatibility condition:∫
Σ
ϕn · w ds = 0, ∀w ∈ V .

Consider now the shape function

J (Ωε) =

∫
Ωε

σ(ψε) : e(ψε) dx.

The aim is to derive an asymptotic expansion of the shape function J with respect

to the presence of a small rigid inclusion Bε in Ω. More precisely, we study the variation

J (Ωε)−J (Ω) with respect to ε and establish an asymptotic formula of the form

J (Ωε)−J (Ω) = ξ(ε)δJ (0) + o(ξ(ε)).

We recall that we will determine the above asymptotic expansion of J only for the case

of an origin-centered inclusion (see Remark 3.3).

The variation of the shape function J reads

J (Ωε)−J (Ω) =

∫
Ωε

σ(ψε) : e(ψε) dx−
∫

Ω
σ(ψ0) : e(ψ0) dx

=

∫
Bε

σ(ψ0) : e(ψ0) dx+

∫
Ωε

σ(ψε − ψ0) : e(ψε − ψ0) dx

+ 2

∫
Ω
σ(ψ0) : e(ψε − ψ0) dx.

(4.3)

Remark 4.2. In the equality (4.3), the solution ψε of problem (4.1) is extended by zero

inside the region Bε. Its extension will be denoted by ψε throughout the rest of the paper.

Let us introduce an adjoint state ϑ0 solution to the following auxiliary variational

problem

Find ϑ0 ∈ H1
Γ(Ω), such that∫

Ω
σ(w) : e(ϑ0) dx = −2

∫
Ω
σ(ψ0) : e(w) dx, ∀w ∈ H1

Γ(Ω).
(4.4)
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The space H1
Γ(Ω) is defined as

H1
Γ(Ω) = {w ∈ H1(Ω);w = 0 on Γ}.

Then ϑ0 it can be interpreted as the solution to the following adjoint problem
−div σ(ϑ0) = −DJ0(ψ0) in Ω,

σ(ϑ0)n = 0 on Σ,

ϑ0 = 0 on Γ,

associated to the minimization problem

min
w∈H1

Γ(Ω)
J0(w),

with J0 being the cost functional defined by

J0(w) =

∫
Ω
σ(w) : e(w) dx, ∀w ∈ H1

Γ(Ω).

By taking w = ψε − ψ0 as a test function in (4.4) and using Remark 4.2, we deduce that

the last term of (4.3) can be rewritten as

2

∫
Ω
σ(ψ0) : e(ψε − ψ0) dx = −

∫
Ω
σ(ψε − ψ0) : e(ϑ0) dx

=

∫
Bε

σ(ψ0) : e(ϑ0) dx+

∫
Ωε

σ(ψ0 − ψε) : e(ϑ0) dx.

Consequently, the variation J (Ωε)−J (Ω) can be decomposed as:

J (Ωε)−J (Ω) =

∫
Bε

σ(ψ0) : e(ψ0) dx+

∫
Bε

σ(ψ0) : e(ϑ0) dx

+

∫
Ωε

σ(ψ0 − ψε) : e(ϑ0) dx+

∫
Ωε

σ(ψε − ψ0) : e(ψε − ψ0) dx.

(4.5)

In the next section, we will derive an estimate for each term on the right-hand side of

(4.5).

4.1.1. Preliminary estimates

The following lemma gives an estimate for the first term of (4.5).

Lemma 4.3. We have ∫
Bε

σ(ψ0) : e(ψ0) dx = O(ε2).
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Proof. We can write∫
Bε

σ(ψ0) : e(ψ0) dx = ε2|S|σ(ψ0)(0) : e(ψ0)(0)

+

∫
Bε

{σ(ψ0) : e(ψ0)− σ(ψ0)(0) : e(ψ0)(0)} dx.

We obtain by a change of variable x = εy that∫
Bε

{σ(ψ0) : e(ψ0)− σ(ψ0)(0) : e(ψ0)(0)} dx

= ε2

∫
C
{σ(ψ0)(εy) : e(ψ0)(εy)− σ(ψ0)(0) : e(ψ0)(0)}dy.

Since ψ0 is of C1 in a neighborhood of the origin, we obtain immediately with the help of

a Taylor expansion that∫
C
{σ(ψ0)(εy) : e(ψ0)(εy)− σ(ψ0)(0) : e(ψ0)(0)} dy = O(ε).

Hence, ∫
Bε

σ(ψ0) : e(ψ0) dx = O(ε2).

In a similar manner, we derive the following lemma. It describes an estimate of the

second term of right-hand side of (4.5).

Lemma 4.4. We have ∫
Bε

σ(ψ0) : e(ϑ0) dx = O(ε2).

To estimate the third term of (4.5), we will need two preliminary lemmas. The first

one concerns an estimate of the norm ‖ ·‖1/2,∂Bε
of an uniformly bounded function. In the

second lemma, we give an asymptotic expansion of the solution of the perturbed elasticity

problem (4.1).

Lemma 4.5. Let ε ∈ (0, 1/2). If ψ ∈ H1(Ω) is such that is restriction to B1 = C is C1,

then there exists a constant c > 0 independent of ε such that

‖ψ‖1/2,∂Bε
≤ c√

− log(ε)
.

Proof. Thanks to Theorem 7.3, there exists a constant c > 0 (independent of ε) such that

‖ψ‖1/2,∂Bε
≤ cε−1/2√

− log(ε)
‖ψ‖L2(∂Bε) + c

(∫∫
∂Bε×∂Bε

|ψ(x)− ψ(y)|2

|x− y|2
ds(x)ds(y)

)1/2

.
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Using the changes of variables x = εx1 and y = εy1 and Taylor formula, we have

ψ(εx1) = ψ(0) + ε∇ψ(ξx1)x1 with ξx1 ∈ Bε,

ψ(εy1) = ψ(0) + ε∇ψ(ξy1)y1 with ξy1 ∈ Bε.

Then there exists a constant c > 0 independent of ε such that(∫∫
∂Bε×∂Bε

|ψ(x)− ψ(y)|2

|x− y|2
ds(x)ds(y)

)1/2

=

(∫∫
∂C×∂C

ε2 |ε(∇ψ(ξx1)x1 −∇ψ(ξy1)y1)|2

ε2|x1 − y1|2
ds(x)ds(y)

)1/2

≤ cε.

Moreover, using the change of variable x = εy and that ψ is uniformly bounded on ∂Bε,

then there exists a constant c > 0 independent of ε such that

‖ψ‖L2(∂Bε) ≤ cε
1/2.

Consequently, we get

‖ψ‖1/2,∂Bε
≤ cε−1/2√

− log(ε)
ε1/2 + cε ≤ c√

− log(ε)
.

Before establishing the asymptotic expansion of ψε (solution of problem (4.1)) let us

recall the expression of the fundamental solution G to the linear elasticity system in R2

(4.6) G(x) = β log(‖x‖)I + γer
ter,

with er = x/‖x‖; that is −div σ(Gj) = δej , where Gj denotes the jth column of G, (ej)
2
j=1

is the canonical basis of R2 and δ is the Dirac distribution. The constants β and γ are

defined as

(4.7) β = − λ+ 3µ

4πµ(λ+ 2µ)
and γ =

λ+ µ

4πµ(λ+ 2µ)
(plane strain).

For plane stress, λ∗ = 2µλ/(λ+ 2µ) must be substituted for λ.

Lemma 4.6. The solution ψε of problem (4.1) admits the following asymptotic expansion:

ψε(x) = ψ0(x) + Tε(H (x)− ζ(x)) +OH1(Ωε)

(
1

− log(ε)

)
,

where ζ ∈ H1(Ω) solves the following linear elasticity problem

(4.8)

−div σ(ζ) = 0 in Ω,

ζ = H on Γ,
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with Tε = 1
− log(ε) and

H (x) =
−1

β
G(x)ψ0(0).

The notation OH1(Ωε)

(
1

− log(ε)

)
means that there exists a constant c > 0 (independent of

ε) and ε1 > 0 such that for all 0 < ε < ε1

‖ψε(x)− ψ0(x)− Tε(H (x)− ζ(x))‖1,Ωε ≤
c

− log(ε)
.

To prove Lemma 4.6, we need to establish the following lemma. We postpone its

technical proof in Section 7.

Lemma 4.7. Let ε > 0. For θN ∈ H−1/2(Σ), θD ∈ H1/2(Γ) and θ ∈ H1/2(∂Bz,ε), let

vε ∈ H1(Ω \Bz,ε) be the solution of the linear elasticity problem

−div σ(vε) = 0 in Ω \Bz,ε,

σ(vε)n = θN on Σ,

vε = θD on Γ,

vε = θ on ∂Bz,ε.

Then there exists a constant c > 0 (independent of ε) such that

‖vε‖1,Ω\Bz,ε
≤ c
(
‖θN‖−1/2,Σ + ‖θD‖1/2,Γ + ‖θ‖1/2,∂Bz,ε

)
.

Now, we turn to prove Lemma 4.6.

Proof of Lemma 4.6. In order to simplify the notations, let us define

rε = ψε − ψ0 − Tε(H − ζ),

where ψε and ψ0 solve respectively problem (4.1) and (4.2). One can easily remak that rε

is solution to the system

−div σ(rε) = 0 in Ωε,

σ(rε)n = 1
log(ε)(σ(H )n− σ(ζ)n) on Σ,

rε = 1
log(ε)(H − ζ) on Γ,

rε = −ψ0 − Tε(H − ζ) on ∂Bε.

Thanks to Lemma 4.7 that there exists a constant c > 0, independent of ε such that

‖rε‖1,Ωε ≤ c
{

1

− log(ε)

(
‖σ(H )n‖−1/2,Σ + ‖σ(ζ)n‖−1/2,Σ + ‖H ‖1/2,Γ + ‖ζ‖1/2,Γ

)
+ ‖ψ0 + Tε(H − ζ)‖1/2,∂Bε

}
.

(4.9)
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Next we will derive an estimate for each term on the right-hand side of (4.9).

• Estimate of the imposed boundary data on Σ. We have

(4.10) ‖σ(H )n‖−1/2,Σ ≤ c|H |1,Ω\B(0,1) and ‖σ(ζ)n‖−1/2,Σ ≤ c|ζ|1,Ωε .

Here and in the sequel, c > 0 is used to denote any constant (independent of ε), that may

have different values.

Let us first focus on the first estimate on the right-hand side of (4.10). For all ϑ ∈
H1/2(Σ) and all φ ∈ H1(Ω \B(0, 1)), extension of ϑ such that φ|Γ = 0, we have

〈σ(H )n, ϑ〉−1/2,1/2,Σ =

∫
Ω\B(0,1)

σ(H ) : e(φ) dx

=

∫
Ω\B(0,1)

2µe(H ) : e(ϑ) + λ div(H ) div(ϑ) dx

≤ c‖e(H )‖0,Ω\B(0,1)‖φ‖1,Ω\B(0,1)

≤ c|H |1,Ω\B(0,1)‖φ‖1,Ω\B(0,1).

We recall that the semi-norm | · |1,Ω is defined by (7.1) and the dual space H−1/2(Σ) is

equipped with the natural norm

‖w‖−1/2,Σ = sup
{
〈w, v〉−1/2,1/2,Σ; v ∈ H1/2(Σ), ‖v‖1/2,Σ = 1

}
.

Hence, choosing φ such that ‖φ‖1,Ω\B(0,1) = ‖ϑ‖1/2,Σ, we get

(4.11) ‖σ(H )n‖−1/2,Σ ≤ c|H |1,Ω\B(0,1).

For the second estimate in (4.10) we adopt the same analysis just by taking Ωε, instead

of Ω \B(0, 1) that we will use.

Now we need an estimate for the functions H and ζ. For H we will need a bound

for the term |H |1,Ω\B(0,1). To this end, notice that |∇H | = O(1/‖x‖) and let R > 0 such

that the domain Ω ⊂ B(0, R), then

|H |1,Ω\B(0,1) ≤ |H |1,B(0,R)\B(0,1)

≤ c

(∫
B(0,R)\B(0,1)

1

‖x‖2
dx

)1/2

= c(2π log(R))1/2.

For ζ, from (4.8), we have

‖ζ‖1,Ω ≤ c‖H ‖1/2,∂Ω.

Let r > 0 be such that the closed ball B(0, r) is included in Ω and Bε ⊂ B(0, r). By trace

theorem we deduce that

‖ζ‖1,Ω ≤ c‖H ‖1,Ω\B(0,r)
.
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Since H (x) = −1
β G(x)ψ0(0) which is bounded if x is away from zero. Then

(4.12) ‖ζ‖1,Ω ≤ c.

Consequently, from (4.10),

(4.13) ‖σ(H )n‖−1/2,Σ ≤ c and ‖σ(ζ)n‖−1/2,Σ ≤ c.

Using the same argument as the one used in the deduction of (4.12), we obtain

‖H ‖1/2,Γ ≤ c,(4.14)

‖ζ‖1/2,Γ ≤ c.

• Estimate of the imposed boundary data on ∂Bε. Using the change of variable x = εy,

we have

ψ0(x) + Tε(H (x)− ζ(x))

= ψ0(εy) +
1

− log(ε)

[(
log(ε‖y‖)I− γ

β
er
ter

)
· ψ0(0)− ζ(εy)

]
= ψ0(εy)− ψ0(0) +

1

− log(ε)

[(
log(‖y‖)I− γ

β
er
ter

)
· ψ0(0)− ζ(εy)

]
.

Using a Taylor expansion, we obtain ψ0(εy) = ψ0(0) + ε∇ψ0(ςy)y with ςy ∈ Bε. Then

ψ0(x) + Tε(H (x)− ζ(x))

= ε∇ψ0(ςy) +
1

− log(ε)

[(
log(‖y‖)− γ

β
er
ter

)
· ψ0(0)− ζ(εy)

]
.

Since ∇ψ0 is uniformly bounded on Bε and from the boundness of ζ, we get that

(4.15) ‖ψ0 + Tε(H − ζ)‖1/2,∂Bε
≤ c1ε+

c2

− log(ε)
≤ c

− log(ε)
.

Gathering (4.9), (4.13), (4.14) and (4.15), we have

‖ψε − ψ0 − Tε(H − ζ)‖1,Ωε ≤
c

− log(ε)
.

Resorting to Lemmas 4.5 and 4.6, we deduce the following estimate of the third term

of (4.5).

Lemma 4.8. We have∫
∂Bε

σ(ψ0 − ψε)n · ϑ0 ds =
1

− log(ε)

4πµ(µ+ η)

2µ+ η
ψ0(0) · ϑ0(0) + o

(
1

− log(ε)

)
,

where the constant η is defined by

(4.16) η =


µ(3λ+2µ)
λ+µ plane stress,

λ+ µ plane strain.
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Proof. We have∫
∂Bε

(σ(ψ0 − ψε)n) · ϑ0 ds

=

∫
∂Bε

(σ(ψ0 − ψε + Tε(H − ζ))n) · ϑ0 ds− Tε

∫
∂Bε

(σ(H − ζ)n) · ϑ0 ds.

(4.17)

Let us first focus on the estimate of the first term on the right-hand side of (4.17). We

have∣∣∣∣∫
∂Bε

(σ(ψ0 − ψε + Tε(H − ζ))n) · ϑ0 ds

∣∣∣∣ ≤ ‖σ(ψ0−ψε+Tε(H −ζ))n‖−1/2,∂Bε
‖ϑ0‖1/2,∂Bε

.

Using the same argument as the one used in the deduction of (4.10), we get

‖σ(ψ0 − ψε + Tε(H − ζ))n‖−1/2,∂Bε
≤ c‖ψ0 − ψε + Tε(H − ζ)‖1,Ωε .

Thanks to Lemma 4.6, one obtains

‖σ(ψ0 − ψε + Tε(H − ζ))n‖−1/2,∂Bε
≤ c

− log(ε)
.

Thus, from Lemma 4.5, we deduce that∣∣∣∣∫
∂Bε

(σ(ψ0 − ψε + Tε(H − ζ))n) · ϑ0 ds

∣∣∣∣ ≤ c

− log(ε)
‖ϑ0‖1/2,∂Bε

≤ c

(− log(ε))3/2
.

(4.18)

Now, we estimate the last term on the right-hand side of (4.17). We have

(4.19)

∫
∂Bε

(σ(H − ζ)n) · ϑ0 ds =

∫
∂Bε

(σ(H )n) · ϑ0 ds−
∫
∂Bε

(σ(ζ)n) · ϑ0 ds.

Firstly, we start by studying the integral
∫
∂Bε

(σ(H )n) · ϑ0 ds. Expanding

ϑ0(εy) = ϑ0(0) + ε∇ϑ0(τy) with τy ∈ Bε,

we obtain∫
∂Bε

(σ(H )n) · ϑ0 ds = ε

∫
∂Bε

(σ(H )n) · ∇ϑ0(τy) ds+

∫
∂Bε

(σ(H )n) · ϑ0(0) ds.

Since ∇ϑ0 is uniformly bounded in Bε, we see that∫
∂Bε

(σ(H )n) · ϑ0 ds =

(∫
∂Bε

(σ(H )n) ds

)
· ϑ0(0) +O(ε).

On the other hand, we have∫
∂Bε

(σ(H )n) ds = −
∫

Bε

−div σ(H ) dx =
−1

β
ψ0(0).
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Consequently,

(4.20)

∫
∂Bε

(σ(H )n) · ϑ0 ds =
−1

β
ψ0(0) · ϑ0(0) +O(ε).

Similarly, we obtain∫
∂Bε

(σ(ζ)n) · ϑ0 ds =

(∫
∂Bε

(σ(ζ)n) ds

)
· ϑ0(0) +O(ε).

From (4.8), we deduce that −div σ(ζ) = 0 in Bz,ε and using the Green’s formula, we

obtain ∫
∂Bε

σ(ζ)n ds =

∫
Bε

div σ(ζ) dx = 0.

Therefore,

(4.21)

∫
∂Bε

(σ(ζ)n) · ϑ0 ds = O(ε).

Inserting (4.20) and (4.21) into (4.19), we obtain

(4.22)

∫
∂Bε

(σ(H − ζ)n) · ϑ0 ds =
−1

β
ψ0(0) · ϑ0(0) +O(ε).

Gathering (4.17), (4.18) and (4.22) also from the definition of β (see (4.7)), we deduce the

claimed expansion:∫
∂Bε

σ(ψ0 − ψε)n · ϑ0 ds =
1

− log(ε)

4πµ(µ+ η)

2µ+ η
ψ0(0) · ϑ0(0) + o

(
1

− log(ε)

)
.

We present in the following lemma the asymptotic expansion of the last term on the

right-hand side of (4.5).

Lemma 4.9. The fourth term on the right-hand side of (4.5) admits the asymptotic

expansion∫
Ωε

σ(ψε − ψ0) : e(ψε − ψ0) dx =
1

− log(ε)

4πµ(µ+ η)

2µ+ η
|ψ0(0)|2 + o

(
1

− log(ε)

)
where the constant η is defined in (4.16).

Proof. One can easily remark that ψε−ψ0 is the solution to the following boundary value

problem: 

−div σ(ψε − ψ0) = 0 in Ωε,

ψε − ψ0 = 0 on Γ,

σ(ψε − ψ0)n = 0 on Σ,

ψε − ψ0 = −ψ0 on ∂Bε.
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Using Green formula, we have∫
Ωε

σ(ψε − ψ0) : e(ψε − ψ0) dx =

∫
∂Bε

(σ(ψ0 − ψε)n) · ψ0 dx.

Applying the same technique developed in the proof of Lemma 4.8, one can derive∫
∂Bε

(σ(ψ0 − ψε)n) · ψ0 dx =
1

− log(ε)

4πµ(µ+ η)

2µ+ η
|ψ0(0)|2 + o

(
1

− log(ε)

)
.

Therefore,∫
Ωε

σ(ψε − ψ0) : e(ψε − ψ0) dx =
1

− log(ε)

4πµ(µ+ η)

2µ+ η
|ψ0(0)|2 + o

(
1

− log(ε)

)
.

4.1.2. Asymptotic expansion

We are now ready to present the main results of this section. Based on the estimate

Lemmas 4.3, 4.4, 4.8 and 4.9, we deduce the following topological asymptotic expansion

of the shape functional J .

Proposition 4.10. We have

J (Ωε) = J (Ω) +
1

− log(ε)

4πµ(µ+ η)

2µ+ η

(
ψ0(0) · ϑ0(0) + |ψ0(0)|2

)
+ o

(
1

− log(ε)

)
.

4.2. Sensitivity analysis of the Kohn-Vogelius functional

In this section, we consider the Kohn-Vogelius functional K . Recall that K measures

the difference between the Dirichlet and Neumann solutions. In the presence of a small

inclusion Bz,ε in Ω, K is defined by

K (Ω \Bz,ε) =

∫
Ω\Bz,ε

σ(ψDε − ψNε ) : e(ψDε − ψNε ) dx,

where ψNε ∈ H1(Ω)/V and ψDε ∈ H1(Ω) solve respectively the problems (Pε
N ) and (Pε

D).

The aim here is to derive an asymptotic expansion for K with respect to the presence

of a small inclusion Bz,ε in Ω. In order to derive a topological asymptotic expansion for

the functional K , we start our analysis by the following simplified variation of K .

4.2.1. Variation of the Kohn-Vogelius functional

We present in this section the variation of the functional K with respect to the presence

of a small inclusion Bz,ε inside the domain Ω. We will derive a simplified expression of the

variation K (Ω\Bz,ε)−K (Ω). The obtained result is presented in the following theorem.
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Theorem 4.11. We have

K (Ω \Bz,ε)−K (Ω) = AN (ε) + AD(ε),

where

AN (ε) :=

∫
∂Bz,ε

(σ(ψNε − ψN0 )n) · ψN0 ds−
∫

Bz,ε

σ(ψN0 ) : e(ψN0 ) dx

and

AD(ε) := −3

∫
Bz,ε

σ(ψD0 ) : e(ψD0 ) dx−
∫
∂Bz,ε

(σ(ψDε − ψD0 )n) · ψD0 ds.

Proof. The Kohn-Vogelius functional K can be splitted into three terms

K (Ω \Bz,ε) = KDD(Ω \Bz,ε)− 2KND(Ω \Bz,ε) + KNN (Ω \Bz,ε),

where

KDD(Ω \Bz,ε) =

∫
Ω\Bz,ε

σ(ψDε ) : e(ψDε ) dx,

KND(Ω \Bz,ε) =

∫
Ω\Bz,ε

σ(ψNε ) : e(ψDε ) dx,

KNN (Ω \Bz,ε) =

∫
Ω\Bz,ε

σ(ψNε ) : e(ψNε ) dx.

• Variation of KDD. We have

KDD(Ω \Bz,ε)−KDD(Ω)

=

∫
Ω\Bz,ε

σ(ψDε ) : e(ψDε ) dx−
∫

Ω
σ(ψD0 ) : e(ψD0 ) dx

=

∫
Ω\Bz,ε

σ(ψDε − ψD0 ) : e(ψDε − ψD0 ) dx+ 2

∫
Ω\Bz,ε

σ(ψDε − ψD0 ) : e(ψD0 ) dx

−
∫

Bz,ε

σ(ψD0 ) : e(ψD0 ) dx.

Using Green’s formula in the two first integrals, we obtain∫
Ω\Bz,ε

σ(ψDε − ψD0 ) : e(ψDε − ψD0 ) dx = −
∫
∂Bz,ε

(σ(ψDε − ψD0 )n) · ψD0 ds,∫
Ω\Bz,ε

σ(ψDε − ψD0 ) : e(ψD0 ) dx =

∫
∂Bz,ε

(σ(ψD0 )n) · (ψDε − ψD0 ) ds

= −
∫
∂Bz,ε

(σ(ψD0 )n) · ψD0 ds

= −
∫

Bz,ε

σ(ψD0 ) : e(ψD0 ) dx.
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Then, it follows that

KDD(Ω \Bz,ε)−KDD(Ω) = −
∫
∂Bz,ε

(σ(ψDε − ψD0 )n) · ψD0 ds− 3

∫
Bz,ε

σ(ψD0 ) : e(ψD0 ) dx.

• Variation of KND. Again using Green formula on (Pε
N ) and (P0

N ), we get

KND(Ω \Bz,ε)−KND(Ω) =

∫
Ω\Bz,ε

σ(ψNε ) : e(ψDε ) dx−
∫

Ω
σ(ψN0 ) : e(ψD0 ) dx

=

∫
∂Ω

(σ(ψNε )n) · ψDε ds−
∫
∂Ω

(σ(ψN0 )n) · ψD0 ds.

• Variation of KNN . We have

KNN (Ω \Bz,ε)−KNN (Ω)

=

∫
Ω\Bz,ε

σ(ψNε ) : e(ψNε ) dx−
∫

Ω
σ(ψN0 ) : e(ψN0 ) dx

=

∫
Ω\Bz,ε

σ(ψNε − ψN0 ) : e(ψNε ) dx+

∫
Ωz,ε

σ(ψNε − ψN0 ) : e(ψNε ) dx

−
∫

Bz,ε

σ(ψN0 ) : e(ψN0 ) dx.

Moreover, using Green formula, we have

KNN (Ω \Bz,ε)−KNN (Ω) =

∫
∂Ω

(σ(ψNε − ψN0 )n) · ψNε ds+

∫
∂Ω

(σ(ψNε − ψN0 )n) · ψN0 ds

+

∫
∂Bz,ε

(σ(ψNε − ψN0 )n) · ψN0 ds−
∫

Bz,ε

σ(ψN0 ) : e(ψN0 ) dx.

Combining the variations of KDD, KND, and KNN the Kohn-Vogelius functional K

has the following variation

K (Ω \Bz,ε)−K (Ω)

=

∫
∂Bz,ε

(σ(ψNε − ψN0 )n) · ψN0 ds−
∫
∂Bz,ε

(σ(ψDε − ψD0 )n) · ψD0 ds

− 3

∫
Bz,ε

σ(ψD0 ) : e(ψD0 ) dx−
∫

Bz,ε

σ(ψN0 ) : e(ψN0 ) dx

− 2

∫
∂Ω

(σ(ψNε )n) · ψDε ds+ 2

∫
∂Ω

(σ(ψN0 )n) · ψD0 ds

+

∫
∂Ω

(σ(ψNε − ψN0 )n) · ψNε ds+

∫
∂Ω

(σ(ψNε − ψN0 )n) · ψN0 ds.

Since ψDε = ψD0 = Ud on ∂Ω and σ(ψNε )n = σ(ψN0 )n = ϕ on ∂Ω, we prove that∫
∂Ω

(σ(ψNε )n) · ψDε ds−
∫
∂Ω

(σ(ψN0 )n) · ψD0 ds =

∫
∂Ω
ϕ ·Ud ds−

∫
∂Ω
ϕ ·Ud ds = 0



Topological Sensitivity Analysis for Detecting a Rigid Inclusion 461

and ∫
∂Ω

(σ(ψNε − ψN0 )n) · ψNε ds = 0 and

∫
∂Ω

(σ(ψNε − ψN0 )n) · ψN0 ds = 0.

Then by combining the above equalities we obtain the desired result.

Remark 4.12. The variation of the terms KDD, KND and KNN can be calculated using

the established results in Section 4.1. But in this case the topological gradient expression

will be dependent on the solution of the adjoint state.

4.2.2. Asymptotic expansion of the Kohn-Vogelius functional

We are now in position to state the main result of this section. Based on the previous

variation of K , we derive a topological asymptotic expansion which is summarized in the

following theorem.

Theorem 4.13. For z ∈ Ω, the Kohn-Vogelius functional K admits the following asymp-

totic expansion:

(4.23) K (Ω \Bz,ε) = K (Ω) +
1

− log(ε)
δK (z) + o

(
1

− log(ε)

)
with δK being the topological gradient given by

δK (x) =
4πµ(µ+ η)

2µ+ η

(
|ψD0 (x)|2 − |ψN0 (x)|2

)
, ∀x ∈ Ω,

where ψN0 and ψD0 solve the problems (P0
N ) and (P0

D) respectively and the constant η is

defined in (4.16).

Proof. We recall that we will detail the proof only for the case of an origin-centered

inclusion (see Remark 3.3).

From Theorem 4.11, we have

K (Ω \Bε)−K (Ω) = AN (ε) + AD(ε).

Next, we will derive an asymptotic expansion of AN (ε) and AD(ε).

Asymptotic expansion of AN (ε): We have

AN (ε) =

∫
∂Bε

(σ(ψNε − ψN0 )n) · ψN0 ds−
∫

Bε

σ(ψN0 ) : e(ψN0 ) dx.

Now, we study each term of AN (ε) separately. Let us first focus on the first term of AN (ε).

We have∫
∂Bε

(σ(ψN0 − ψNε )n) · ψN0 ds =

∫
∂Bε

(σ(rNε )n) · ψN0 ds− Tε

∫
∂Bε

(σ(H N − ζN )n) · ψN0 ds
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with rNε = ψN0 − ψNε + Tε(H N − ζN ) where H N (x) = −1
β G(x)ψN0 (0) and ζN solve the

following value problem −div σ(ζN ) = 0 in Ω,

ζN = H N on ∂Ω.

Using the same technique described in the proof of Lemma 4.8, one can prove that∫
∂Bε

(σ(ψN0 − ψNε )n) · ψN0 ds =
1

− log(ε)

4πµ(µ+ η)

2µ+ η
|ψN0 (0)|2 + o

(
1

− log(ε)

)
.

For the other term, we know using elliptic regularity that ∇ψN0 is uniformly bounded in

Bε. Thus, ∫
Bε

σ(ψN0 ) : e(ψN0 ) dx ≤ c
∫

C
ε2 = O(ε2).

Therefore,

AN (ε) =
1

− log(ε)

4πµ(µ+ η)

2µ+ η
|ψN0 (0)|2 + o

(
1

− log(ε)

)
.

In a similar manner, we prove the following asymptotic expansion:

AD(ε) =
1

− log(ε)

4πµ(µ+ η)

2µ+ η
|ψD0 (0)|2 + o

(
1

− log(ε)

)
.

By combining the above equalities, we have

K (Ωε)−K (Ω) =
1

− log(ε)

4πµ(µ+ η)

2µ+ η

(
|ψD0 (0)|2 − |ψN0 (0)|2

)
+ o

(
1

− log(ε)

)
.

5. Numerical implementation

This section is concerned with some numerical investigations. We start this section by a

numerical validation of the topological asymptotic expansion established in Theorem 4.13.

After that, we give some reconstruction results obtained by a one-iteration algorithm show-

ing the efficiency and accuracy of our approach: only one iteration is needed to reconstruct

an unknown rigid inclusion immersed in an elastic material from over-determined bound-

ary measurements.

In our numerical examples, we use the following setting and parameters:

• The computational domain Ω is defined by the square Ω = (0, 1)× (0, 1).

• The measurement Ud is reconstructed using a synthetic data: we fix a shape B∗,

solve the linear elasticity problem (2.1) in Ω \B∗ and extract the measurement Ud

by computing ψ on ∂Ω.

• Concerning the mesh, we impose a fixed number of discretization points for the

boundary ∂Ω, that is 100 mesh points in each direction (i.e., h = 1/100).

The numerical simulations is implemented using the free software FreeFem++.
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5.1. Numerical validation

It is proved in Section 5.1 that the variation of the Kohn-Vogelius function K , with

respect to the presence of a small arbitrary shape of a rigid inclusion, admits the following

asymptotic expansion:

K (Ωz,ε)−K (Ω) =
1

− log(ε)
δK (z) + o

(
1

− log(ε)

)
,

where δK is the topological gradient defined by

(5.1) δK (z) =
4πµ(2µ+ λ)

3µ+ λ

(
|ψD0 (z)|2 − |ψN0 (z)|2

)
, ∀ z ∈ Ω.

Here, we give a numerical validation of this asymptotic behavior. To this end, we simulate

the variation of the following function:

∆z(ε) = K (Ωz,ε)−K (Ω) +
1

log(ε)
δK (z), ∀ z ∈ Ω(5.2)

with respect to −1/ log(ε) for some spherical inclusions Bzi,ε = zi + εB(0, 1), i = 1, . . . , 4,

created in the unit square Ω. The locations zi of the considered rigid inclusions Bzi,ε are

described in Table 5.1. We expect to prove numerically that ∆zi(ε) satisfies the obtained

theoretical estimate

∆zi(ε) = o

(
1

− log(ε)

)
.

Inclusion Bzi,ε Bz1,ε Bz2,ε Bz3,ε Bz4,ε

Location zi (0.4, 0.4) (0.5, 0.1) (0.7, 0.3) (0.9, 0.2)

Table 5.1: Coordinates the inclusions centers zi, i = 1, . . . , 4.

From the expression of ∆z(ε), we adopt the following numerical procedure.

Numerical validation algorithm:

• Step 1:

- Solve the problems (P0
D) and (P0

N ) in Ω.

- Compute K (Ω) (see (3.1)).

• Step 2: For each inclusion Bzi,ε = zi + εB(0, 1), i = 1, . . . , 4:

- Determine the variation δK (zi) defined in (5.2).

- Choose εi0 = max{ε > 0, such that zi + εi0B(0, 1) ⊂ Ω}.

- Compute an approximation of the function ε 7→ K (Ω \Bzi,ε), ε ∈ ]0, εi0].
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• Step 3: Deduce a numerical approximation of the function ε 7→ log(|∆zi(ε)|) with

respect to log(− log(ε)).

The obtained results are illustrated in Figure 5.1. For each inclusions Bzi,ε, i = 1, . . . , 4,

we numerically compute the variation of the function ε 7→ log(|∆zi(ε)|) with respect to

log(− log(ε)).

Figure 5.1: Variation of log(|∆zi(ε)|) with respect to log(− log(ε)), i = 1, . . . , 4.

Denoting by αi the unknown parameter describing the behavior of the function ε 7→
∆zi(ε) with respect to − log(ε), i.e.,

|∆zi(ε)| = O
(
(− log(ε))αi

)
.

Then, one can observe that αi can be characterized as the slope of the line approximating

the variation ε 7→ log(|∆zi(ε)|) with respect to log(− log(ε)).

From the presented curves in Figure 5.1, we deduce the slopes αi, i = 1, . . . , 4 (see

Table 5.2) describing the behavior of the function ε 7→ ∆z(ε) with respect to − log(ε).
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Inclusion Bzi,ε Bz1,ε Bz2,ε Bz3,ε Bz4,ε

The slope αi α1 = −1.65 α2 = −1.61 α3 = −1.78 α4 = −2.57

Table 5.2: The slopes αi, i = 1, . . . , 4 of the line approximating the variation of the

function log(|∆zi(ε)|) with respect to log(− log(ε)).

From Table 5.2, for each considered inclusion Bzi,ε, one can observe that the obtained

slope αi satisfies the inequality: αi < −1, i = 1, . . . , 4, which confirm the behavior pre-

dicted by the theoretical result

∆zi(ε) = o

(
1

− log(ε)

)
, i = 1, . . . , 4.

5.2. Reconstruction results

In this section, we propose an accurate and efficient non-iterative algorithm for recon-

structing an unknown rigid inclusion. The proposed procedure based on the asymptotic

expansion (4.23). The rigid inclusion B∗ is located and reconstructed using a level-set

curve of the topological gradient δK . The main steps of the proposed procedure are

described in the following algorithm.

The one-shot Algorithm.

1. Solve the unperturbed problems (P0
N ) and (P0

D) in Ω.

2. Compute the topological gradient δK defined in (5.1).

3. Determine the rigid inclusion B∗.

The location of the rigid inclusion B∗ is given by the point z∗ ∈ Ω where the topological

gradient δK is most negative. The size of B∗ is approximated using numerical simulation.

Let δmin = δK (z∗) ≤ δK (x), ∀x ∈ Ω, the rigid inclusion B∗ is approximated as follows

B∗ = {x ∈ Ω, δK (x) ≤ c∗δmin},

where c∗ ∈ (0, 1) such that

K (Ω \Bc∗) ≤ K (Ω \Bc), ∀ c ∈ (0, 1)

with Bc = {x ∈ Ω, δK (x) ≤ cδmin}.

Remark 5.1. The idea to determine the constant c is to calculate the minimum of the

Hausdorff distance dc between B∗ and Bc

dc(B
∗,Bc) =

meas(B∗ ∪Bc)−meas(B∗ ∩Bc)

meas(B∗)
,

where meas(E) denotes the Lebesgue measure of the set E ⊂ Ω.
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Next, we apply the proposed algorithm for solving some examples to demonstrate

the efficiency of the proposed algorithm. Examples 5.2–5.5 are free of noise, while in

Example 5.6 the measured data Ud is corrupted with noise.

Example 5.2 (Reconstruction of circular-shaped inclusion). In this example, we test

our reconstruction algorithm to reconstruct an inclusion having a circular shape centered

at (0.5, 0.5) with radius r∗ = 0.1. The obtained reconstruction results are presented in

Figure 5.2.

(a) Negative zone (zed

zone) of δK

(b) Iso-values of δK

Figure 5.2: Topological gradient δK in the presence of a circle shape.

In this first simulation, we show:

• The negative zone (red zone) described by the function x 7→ (x, δK (x)), ∀x ∈ Ω,

see Figure 5.2(a).

• The iso-values of the topological gradient function δK in the presence of the un-

known boundary ∂B∗ (circle black line), see Figure 5.2(b).

As one can observe in Figure 5.2, the unknown boundary ∂B∗ (circle centered at

(0.5, 0.5) with radius r∗ = 0.1) is located in the region where the topological gradient is

the most negative and it is approximated by a level set curve of the topological gradient.

The result is efficient and the reconstruction of circular shape is very close to the actual

rigid inclusion.

To reconstruct the exact geometry of the unknown inclusion in Figure 5.2(b) (disc

centered at (0.5, 0.5) with shared radius r∗ = 0.1), we minimize the error function of the

Hausdorff distance dc. In order to compute numerically an approximation of the minimum

of the error function dc, we divide the interval [0, 1] into M equal subintervals (i.e., of size

1/M). We denote by ci = i/M, 1 ≤ i ≤ M the (M + 1) endpoints of these intervals and we

take c∗ = arg minc∈{c1,...,cM} dc. The reconstruction results are illustrated in Figures 5.3

and 5.4.
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Figure 5.3: Variation of the error function dc with respect to c.

(a) Exact shape (b) Reconstruction

with c∗ = 0.85

Figure 5.4: Reconstruction of circular shaped inclusion.

Example 5.3 (Reconstruction of ellipse-shaped inclusion). In this example, we examine

the numerical reconstruction of unknown inclusion described by an ellipse centered at

(0.5, 0.5). We represent the reconstruction result in Figure 5.5 where we see that the

reconstruction is again efficient.

(a) Exact shape (b) Reconstruction

with c∗ = 0.065

Figure 5.5: Reconstruction of an elliptical shaped.

In the next example, we prove that the computation of the topological gradient does

not depend on the number of inclusions inside the domain Ω.

Example 5.4 (Reconstruction of multiple inclusions). In this example, we want to re-

construct three discs B∗1 , B∗2 and B∗3 centered respectively at (0.3, 0.7), (0.2, 0.2) and

(0.8, 0.8) with shared radius r∗ = 0.02. The obtained results are illustrated in Figure 5.6.
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Here again, as one can see in Figure 5.6, the one-shot algorithm gives quite efficient re-

construction result for location ,size and number of rigid inclusions.

(a) Exact shape (b) Reconstruction

with c∗ = 0.92

Figure 5.6: Reconstruction of multi-inclusions.

In conclusion of these first simulations, this approach permits to give us acceptable

knowledge of the number, location and shape of inclusions. Moreover, it is efficient to

detect different types of shapes such as circle and ellipse.

In the previous examples, we reconstructed an inclusion with a regular shape (circle

and ellipse). Next we test our algorithm to reconstruct more complicated geometry.

Example 5.5 (Shape with corners). In the previous example, the reconstruction seems to

be efficient to reconstruct simple rigid inclusions. We apply, now, the proposed algorithm

to detect more complicated geometry. Our aim is to reconstruct geometry containing

straight lines and corners from over-determined boundary data. More precisely, we want

to detect a small square B∗ = (0.4, 0.6)× (0.4, 0.6). We present the reconstruction results

in Figure 5.7. One can remark here, that the unknown rigid inclusion (square) is located

but the boundary ∂B∗ cannot be well approximated by any iso-value curve. Therefore, the

obtained result can serve as a good initial guess in level-sets-based methods, for instance.

(a) Exact shape (b) Reconstruction

with c∗ = 0.73

Figure 5.7: Reconstruction of an inclusion with corner.

Example 5.6 (Reconstruction with noisy data). Now the synthetic boundary measure-
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ment Ud is corrupted with noise. The noisy measurement is generated by

U ρ
d (x) = (1 + ρ× rand)×Ud(x), x ∈ ∂Ω,

where ρ indicates the noise level of the measurement and the function rand generates a

random number with the uniform distribution over (−1, 1). The idea is to test the stability

of the one-shot algorithm with respect to noisy data.

For this test, we reconstruct two ellipses B∗1 and B∗2 centered respectively at (0.15, 0.5)

and (0.85, 0.5). The obtained results are illustrated in Figure 5.8. From the reconstruction

results in Figure 5.8, we can notice that if the noise level ρ is no more than 10%, that our

algorithm is able to detect, with precision, the location and the shape of rigid inclusion,

whereas for a noise level larger than 15%, fictitious inclusions show up.

(a) Iso-values of δK

with ρ = 0%

(b) c∗ = 0.00082 and

ρ = 0%

(c) Iso-values of δK

with ρ = 5%

(d) c∗ = 0.00082 and

ρ = 5%

(e) Iso-values of δK

with ρ = 10%

(f) c∗ = 0.00082 and

ρ = 10%

(g) Iso-values of δK

with ρ = 15%

(h) c∗ = 0.00082 and

ρ = 15%

Figure 5.8: Reconstruction with noise data.

6. Conclusion

The presented paper concerns the detection of location and shape of a rigid inclusions

inside an elastic body from a single pair Cauchy data in two dimensional case. We have

proposed a non-iterative reconstruction algorithm based on the topological sensitivity

analysis method combined with the so-called Kohn-Vogelius type functional. The main

idea consists in reformulate the inverse problem as an optimization problem, where a

Kohn-Vogelius functional is minimized in the class of admissible geometries inclusions. A

topological sensitivity analysis is derived for the Kohn-Vogelius functional. The obtained
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an asymptotic formula valid for any arbitrary geometric perturbations. From these results,

a new non-iterative reconstruction algorithm has been devised. Particularly, we test the

efficiency and accuracy of the proposed procedure by some parameters such as the number,

the shape, the location, and the size of the inclusions.

7. Proofs

In this section, we prove Lemma 4.7. We start by presenting some definitions and prelim-

inary lemmas used to prove this lemma.

7.1. Definitions and notations

Definition 7.1. Let O be a bounded, connected, and open subset in Rd (d ∈ {2, 3}) with

a Lipschitz continuous boundary ∂O.

• The Sobolev space H1(O) is equipped with the norm

‖ψ‖21,O =

∫
O
σ(ψ) : e(ψ) + ψ · ψ dx,

which, due to the Korn’s inequality [36, Lemma 5.4.4], is equivalent to the usual norm.

We will also need the semi-norm defined by

(7.1) |ψ|21,O =

∫
O
σ(ψ) : e(ψ) dx.

Moreover, for a given function ψ ∈ H1(O), we define the function ψ̃ on Õ := O/ε by

ψ̃(y) = ψ(x), y = x/ε.

Using that eij(ψ) = 1
2

(∂ψi
∂xj

+
∂ψj
∂xi

)
and ∇xψ(x) = (∇yψ(y))/ε, we obtain

|ψ|21,O =

∫
O
σ(ψ) : e(ψ) dx =

1

ε2

∫
Õ
σ(ψ̃) : e(ψ̃)ε2 dy.

Hence,

(7.2) |ψ|1,O = |ψ̃|
1,Õ
.

Similarly, we have

(7.3) ‖ψ‖0,O = ε‖ψ̃‖
0,Õ
.

• The trace norm ‖ · ‖1/2,∂Bz,ε
is defined by

‖g‖1/2,∂Bz,ε
= inf

{
‖ψ‖H1(Ω\Bz,ε)

;ψ ∈ H1(O \Bz,ε), ψ = g on ∂Bz,ε

}
.
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In the following definition, we recall the weighted Sobolev spaces and we introduce the

weight function κ(x) := (2 + |x|2)1/2.

Definition 7.2. Let 1 < p < ∞. For each real number ρ and each open set O ⊂ Rd, we

set

Lpρ(O) :=
{
ψ ∈ D ′(O), κρψ ∈ Lp(O)

}
,

W1,p
ρ (O) :=


{
ψ ∈ D ′(O), ψ ∈ Lpρ−1(O),∇ψ ∈ Lpρ(O)

}
if d

p + ρ 6= 1,{
ψ ∈ D ′(O), ψ

log(ε) ∈ L
p
ρ−1(O),∇ψ ∈ Lpρ(O)

}
if d

p + ρ = 1.

We define now the space
◦

W1,p
ρ (O) =

{
ψ ∈ W1,p

ρ (O), ψ = 0 on ∂O
}

. The dual space of
◦

W1,p
ρ (O) is denoted by W−1,p′

−ρ (O), where p′ is such that 1/p+ 1/p′ = 1 (it is a subspace of

D ′(O)). Notice that Lpρ(O) and W1,p
ρ (O) are reflexive Banach spaces with respect to the

norms:

‖ψ‖Lpρ(O) := ‖κρψ‖Lp(O),

‖ψ‖
W1,p
ρ (O)

:=


(
‖ψ‖p

Lpρ−1(O)
+ ‖∇ψ‖p

Lpρ(O)

)1/p
if d

p + ρ 6= 1,(∥∥ ψ
log(κ)

∥∥p
Lpρ−1(O)

+ ‖∇ψ‖p
Lpρ(O)

)1/p
if d

p + ρ = 1.

We refer to [7] for more details about the previous Sobolev spaces.

Next, we recall a result concerning domains depending on a parameter.

7.2. Preliminary lemmas

Theorem 7.3. [47, Section 4.1.3, p. 214] Let Ω and C be two bounded simply connected

domains of Rd (d ∈ {2, 3}) of class C0,1. Let p ∈ (1,+∞), ε ∈ (0, 1/2) and Bz,ε = z+εC .

Let us assume that Bz,ε ⊂ Ω and that there exists a constant c > 0 depending only of d,

p, C and Ω such that dist(Bz,ε, ∂Ω) > cε. Then

〈·〉p,∂Bz,ε ∼ b(ε)‖ · ‖Lp(∂Bz,ε) + [·]p,∂Bz,ε

where

〈g〉p,∂Bz,ε = inf
{
‖ψ‖W1,p(Ω\Bz,ε)

;ψ ∈W1,p(Ω \Bz,ε), ψ = g on ∂Bz,ε

}
,

b(ε) =


ε(1−d)/p min(1, εd/p−1) if p < d,

ε(1−d)/p min(1, | log(ε)|(1−p)/p) if p = d,

ε(1−d)/p if p > d,
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and

[g]1,∂Bz,ε =
1

|∂Bz,ε|

∫∫
∂Bz,ε×∂Bz,ε

|g(x)− g(y)| ds(x)ds(y),

[g]p,∂Bz,ε =

(∫∫
∂Bz,ε×∂Bz,ε

|g(x)− g(y)|p

|x− y|d+p−2
ds(x)ds(y)

)1/p

for p ∈ (1,+∞).

The next lemma concerns the linear elasticity problem in the whole space R2.

Lemma 7.4. Let ψ be a solution of

(7.4) − div σ(ψ) = 0 in R2.

Then every solution which is a tempered distribution should be a polynomial.

Proof. Applying Fourier transform to (7.4) we immediately notice that the support of ψ̂

is contained in {0}. Therefore, those distributions should be a finite sum of Dirac deltas.

By the inverse Fourier transform we deduce that ψ is polynomial.

The next lemma gives a decomposition of the exterior linear elasticity problem.

Lemma 7.5. Let C be a Lipschitz open set of R2 and let γ ∈ H1/2(∂C ). We consider

ψ ∈W1,2
0 (R2 \ C ) the solution of the exterior elasticity problem

(7.5)

−div σ(ψ) = 0 in R2 \ C ,

ψ = γ on ∂C .

Then there exists a constant % ∈ R2 such that ψ = %+WC with WC (y) = O(1/r) and

|%| ≤ c‖γ‖1/2,∂C

with c > 0 is a constant.

Proof. Let φ ∈ D(R2), we have

〈− div σ(ψ), φ〉D ,D ′,R2 =

∫
∂C

[σ(ψ)n] · φ ds.

Then,

−div σ(ψ) = [σ(ψ)n]δ∂C := T in D ′(R2).

Now, let us define

u = G ∗ T,

where ∗ denotes the convolution product and G is the fundamental solution of the elasticity

problem given by (4.6). Therefore,

−div σ(u) = T in D ′(R2).
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Now notice that the variable w = ψ − u solve the problem (7.5), then by Lemma 7.4 the

solution w of (7.5) should be a polynomial. Therefore,

ψ = G ∗ T + % =

∫
∂C
l(x)G(y − x) ds(x) + P,

where P is polynomial and l(x) = σ(v)n(x).

Using a Taylor development of G, we obtain

G(y − x) = G(y)−∇G(ξ(y, x))x,

where ξ(y, x) = y − υx with υ ∈ (0, 1), then

ψ = G(y)

∫
∂C
l(x) ds(x)−

∫
∂C
l(x)∇G(ξ(y, x)) ds(x) + P.

On the other hand, we know that log /∈W1,2
0 (R2 \ C ), it follows that∫

∂C
l(x) ds(x) = 0.

Also, due to P ∈W1,2
0 (R2 \ C ), we must have

P = % with % is a constant in R2.

Therefore,

ψ(y) = %−
∫
∂C
l(x)∇G(ξ(y, x)) ds(x) = %+WC (y)

and ψ is bounded at infinity. Moreover, we have WC (y) = O(1/r) (see [26]) and there

exist c > 0 such that

|%| ≤ c‖γ‖1/2,∂C .

Lemma 7.6. Let θ ∈ H1/2(∂C ) such that
∫
∂C θ ds = 0, let ψ ∈ W1,2

0 (R2 \ C ) be the

solution to the problem −div σ(ψ) = 0 in R2 \ C ,

ψ = θ on ∂C .

From the previous lemma ψ decomposed as follow ψ = ρ+WC . Then there exist a constant

c > 0 and ε1 > 0 such that for all 0 < ε < ε1:

(7.6) ‖WC ‖0,ΩR/ε ≤ c‖θ‖1/2,∂C and |WC |1,ΩR/ε ≤ cε
2‖θ‖1/2,∂C .

Proof. Following the same lines as the proof in [29, Lemma 4.1] we can prove (7.6).

The next lemma is a particular case of Lemma 4.7.
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Lemma 7.7. Let ε > 0. For θN ∈ H−1/2(Σ), θD ∈ H1/2(Γ) and % ∈ R2, let vε ∈
H1(Ω \Bz,ε) be the solution of the linear elasticity problem

(7.7)



−div σ(vε) = 0 in Ω \Bz,ε,

σ(vε)n = θN on Σ,

vε = θD on Γ,

vε = % on ∂Bz,ε.

There exists a constant c > 0 (independent of ε) such that

‖vε‖1,Ω\Bz,ε
≤ c
(
‖θN‖−1/2,Σ + ‖θD‖1/2,Γ + |%|

)
.

Proof. For simplicity, we denote by Ωz,ε = Ω \Bz,ε. Let ε > 0 and vε ∈ H1(Ωz,ε) be the

solution of the value problem (7.7). Let Zε ∈ H1(Ωz,ε) be the solution of

(7.8)



−div σ(Zε) = 0 in Ωz,ε,

σ(Zε)n = 0 on Σ,

Zε = θD on Γ,

Zε = % on ∂Bz,ε.

Let ṽε and Z̃ε be the respective extensions of vε and Zε to Ω by %. From (7.7) and (7.8),

we have ∫
Ωz,ε

σ(vε − Zε) : e(Φ) dx = 〈θN ,Φ〉−1/2,1/2,Σ for all Φ ∈ H1
Γ(Ωz,ε),

where

H1
Γ(Ωz,ε) = {w ∈ H1(Ωz,ε), w = 0 on Γ and w = 0 on ∂Bz,ε}.

By taking Φ = vε − Zε as test function, we obtain∣∣ṽε − Z̃ε∣∣21,Ω = 〈θN , vε − Zε〉−1/2,1/2,Σ.

Then, from the trace theorem there exists a constant c > 0 (independent of ε) such that∣∣ṽε − Z̃ε∣∣21,Ω ≤ c‖θN‖−1/2,Σ‖vε − Zε‖1/2,Σ ≤ c‖θN‖−1/2,Σ

∥∥ṽε − Z̃ε∥∥1,Ω
.

Moreover, using that vε − Zε = 0 on Γ and Korn’s inequality we get∥∥ṽε − Z̃ε∥∥1,Ω
≤ c
∣∣ṽε − Z̃ε∣∣1,Ω.

Hence,

‖vε − Zε‖21,Ωz,ε =
∥∥ṽε − Z̃ε∥∥2

1,Ω
≤ c‖θN‖−1/2,Σ

∥∥ṽε − Z̃ε∥∥1,Ω

≤ c‖θN‖−1/2,Σ

∥∥vε − Zε∥∥1,Ωz,ε
.



Topological Sensitivity Analysis for Detecting a Rigid Inclusion 475

Therefore, we have

‖vε − Zε‖1,Ωz,ε ≤ c‖θN‖−1/2,Σ.

Now, we prove ‖Zε‖1,Ωz,ε ≤ c
(
‖θD‖1/2,Γ + |%|

)
. For a fixed ε0 > 0, the problem (7.7) is

well-posed and admits a unique solution Zε ∈ H1(Ωz,ε0) and there exists a constant c > 0

such that

‖Zε‖1,Ωz,ε0 ≤ c
(
‖θD‖1/2,Γ + ‖%‖1/2,∂Bz,ε0

)
.

Using Theorem 7.3, we get that

‖%‖1/2,∂Bz,ε0
∼ 1

(ε0(− log(ε0)))1/2
‖%‖L2(∂Bz,ε0 ) + [%]1/2,∂Bz,ε0

.

Using that % is constant and by a change of variables, we have

‖%‖1/2,∂Bz,ε0
∼ 1

(ε0(− log(ε0)))1/2
‖%‖L2(∂Bz,ε0 ) =

1

(− log(ε0))1/2
‖%‖L2(∂C ) = c|%|

with c being a constant depend of ε0 and ∂C .

Then, one can deduce

(7.9) ‖Zε‖1,Ωz,ε0 ≤ c
(
‖θD‖1/2,Γ + |%|

)
.

Let 0 < ε1 < ε0 such that Ωz,ε0 ⊂ Ωz,ε for all 0 < ε < ε1. We denote by Z̃ε0 the extension

of Zε0 to Ω by %. Notice that the solution Zε of the problem (7.7) can be considered as

the solution of the following minimization problem:

min
Z∈Θ

{
|Z|1,Ωz,ε

}
,

where the functional space Θ is defined as

Θ =
{
Z ∈ H1(Ωz,ε), Z = % on ∂Bz,ε, Z = θD on Γ

}
.

Therefore, for all 0 < ε < ε1, we have

(7.10) |Zε|1,Ωz,ε ≤ c|Z̃ε0 |1,Ωz,ε = c|Zε0 |1,Ωz,ε0 ≤ c‖Zε0‖1,Ωz,ε0 .

Inserting (7.9) into (7.10), we deduce

(7.11) |Zε|1,Ωz,ε ≤ c
(
‖θD‖1/2,Γ + |%|

)
.

Using the Korn’s inequality, it follows that

‖Zε‖0,Ωz,ε = ‖Z̃ε‖0,Ω ≤ ‖Z̃ε − Z0‖0,Ω + ‖Z0‖0,Ω ≤ c|Z̃ε − Z0|1,Ω + ‖Z0‖0,Ω
≤ c|Z̃ε|1,Ω + c‖Z0‖1,Ω ≤ c

(
|Zε|1,Ωz,ε + ‖Z0‖1,Ω

)
.

(7.12)
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Notice that Z0 satisfies

(7.13)


−div σ(Z0) = 0 in Ω,

σ(Z0)n = 0 on Σ,

Z0 = θD on Γ.

From the weak formulation of the value problem (7.13) and we take Z0 as test function,

we deduce

(7.14) ‖Z0‖1,Ω ≤ c‖θD‖1/2,Γ.

Inserting (7.11) and (7.14) into (7.12), we obtain

(7.15) ‖Zε‖0,Ωz,ε ≤ c
(
‖θD‖1/2,Γ + |%|

)
.

Then, by combining the equalities (7.11) and (7.15), we get

‖Zε‖1,Ωz,ε ≤ c
(
‖θD‖1/2,Γ + |%|

)
.

Therefore, we finally get

‖vε‖1,Ωz,ε ≤ ‖vε − Zε‖1,Ωz,ε + ‖Zε‖1,Ωz,ε ≤ c
(
‖θN‖−1/2,Σ + ‖θD‖1/2,Γ + |%|

)
.

Now, we are ready to prove Lemma 4.7.

7.3. Proof of Lemma 4.7

The proof of Lemma 4.7 is decomposed in the following two cases.

First case if θ is constant on ∂Bz,ε, the previous lemma gives the desired result.

Second case if θ is not constant. Let Z the solution of−div σ(Z) = 0 in R2 \Bz,ε,

Z = θ on ∂Bz,ε.

From Lemma 7.5, we have Z = % + WC with % ∈ R2 and WC (y) = O(1/r). We define

wε = vε −WC

(
x−z
ε

)
with y = (x− z)/ε. Notice that wε satisfies

−div σ(wε) = 0 in Ωz,ε,

σ(wε)n = θN − σ
(
WC

(
x−z
ε

))
n on Σ,

wε = θD −WC

(
x−z
ε

)
on Γ,

wε = % on ∂Bz,ε,
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where Ωz,ε = Ω\Bz,ε. Using the previous lemma there exists a constant c > 0 independent

of ε such that

‖wε‖1,Ωz,ε

≤ c
(∥∥∥∥θN − σ(WC

(
x− z
ε

))
n

∥∥∥∥
−1/2,Σ

+

∥∥∥∥θD −WC

(
x− z
ε

)∥∥∥∥
1/2,Γ

+ |%|
)

≤ c
(
‖θN‖−1/2,Σ +

∥∥∥∥σ(WC

(
x− z
ε

))
n

∥∥∥∥
−1/2,Σ

+ ‖θD‖1/2,Γ

+

∥∥∥∥WC

(
x− z
ε

)∥∥∥∥
1/2,Γ

+ ‖θ‖1/2,∂Bz,ε

)
.

(7.16)

Notice that we obtain, by an adaptation of the same technique used in (4.11):∥∥∥∥σ(WC

(
x− z
ε

))
n

∥∥∥∥
−1/2,Σ

≤ c
∥∥∥∥e(WC )

(
x− z
ε

)∥∥∥∥
0,ΩR

,

where ΩR = Ω \ B(z,R) with R > 0 such that Bz,ε ⊂ B(z,R) ⊂ Ω.

Using the change of variables y = (x− z)/ε, we get∥∥∥∥e(WC )

(
x− z
ε

)∥∥∥∥
0,ΩR

= ε

∥∥∥∥e(WC

(
x− z
ε

))∥∥∥∥
0,ΩR

= ε2‖e(WC )‖0,ΩR/ε ≤ cε
2|WC |1,ΩR/ε,

and from Lemma 7.6, we have

(7.17)

∥∥∥∥σ(WC

(
x− z
ε

))
n

∥∥∥∥
−1/2,Σ

≤ cε4‖θ‖1/2,∂C .

Now we estimate
∥∥WC

(
x−z
ε

)∥∥
1/2,Γ

. By trace theorem, we obtain∥∥∥∥WC

(
x− z
ε

)∥∥∥∥
1/2,Γ

≤ c
∥∥∥∥WC

(
x− z
ε

)∥∥∥∥
1,ΩR

≤ c
(∥∥∥∥WC

(
x− z
ε

)∥∥∥∥
0,ΩR

+

∥∥∥∥e(WC )

(
x− z
ε

)∥∥∥∥
0,ΩR

)
.

Using the same argument as in (7.17) and we apply (7.2) and (7.3) we deduce that

(7.18)

∥∥∥∥WC

(
x− z
ε

)∥∥∥∥
1/2,Γ

≤ c
(
ε‖θ(z + εy)‖1/2,∂C + ε4‖θ(z + εy)‖1/2,∂C

)
.

Combining (7.16), (7.17) and (7.18), we have

‖wε‖1,Ωz,ε
≤ c
(
‖θN‖−1/2,Σ + ‖θD‖1/2,Γ + ε‖θ(z + εy)‖1/2,∂C + ε4‖θ(z + εy)‖1/2,∂C + ‖θ‖1/2,∂Bz,ε

)
.

Then, for a small enough ε, we get

‖wε‖1,Ωz,ε ≤ c
(
‖θN‖−1/2,Σ + ‖θD‖1/2,Γ + ‖θ‖1/2,∂Bz,ε

)
.
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