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Quasi-periodic Solutions of Wave Equations with the Nonlinear Term

Depending on the Time and Space Variables

Yi Wang* and Jie Rui

Abstract. This article is devoted to the study of a wave equation with a constant

potential and an x-periodic and t-quasi-periodic nonlinear term subject to periodic

boundary conditions. It is proved that the equation admits small amplitude, linear

stable and t-quasi-periodic solutions for any constant potential and most frequency

vectors.

1. Introduction

In this paper, a wave equation with an x-periodic and t-quasi-periodic nonlinear term

(1.1) utt − uxx + µu+ εg(ωt, x)u3 = 0, x ∈ [0, 2π]

under periodic boundary conditions

(1.2) u(t, x) = u(t, x+ 2π)

is considered, where µ > 0; ε is a small positive parameter; m ≥ 2 is an integer; ω =

(ω1, ω2, . . . , ωm) ∈ [%, 2%]m is a frequency vector with % > 0; and the function g(ωt, x) =

g(ϑ, x), (ϑ, x) ∈ Tm × [0, 2π], is real analytic in (ϑ, x) and quasi-periodic in t. We aim

to explore that whether these equations have analytic and linearly stable quasi-periodic

solutions.

The existence of quasi-periodic solutions for nonlinear wave equation has been studied

by many authors. Currently there are relatively less method to find a quasi-periodic

solution of nonlinear wave equations. Since the quasi-periodic solutions constructed via

the KAM method can provide some dynamics information, such as linearly stability and

zero Lyapunov exponent, we apply the KAM method in this paper.
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In the 90’s, the KAM theory has been successfully extended to infinite dimensional

settings, including the wave equations. In [8,11,15], the KAM theory has been generalized

to prove the existence of quasi-periodic solutions for the nonlinear wave equations subject

to Dirichlet or Neumann boundary conditions. Chierchia and You [4] showed that non-

linear wave equations with periodic boundary conditions admit quasi-periodic solutions.

Yuan [16] considered the existence of quasi-periodic solutions of the completely resonant

nonlinear wave equation. In [17], he proved there are many quasi-periodic solutions for the

nonlinear wave equations with a prescribed potential. Bambusi, Berti, and Magistrelli [1]

dealt with degenerate KAM theory for lower dimensional elliptic tori of infinite dimen-

sional Hamiltonian system. An application to nonlinear wave equation was given in [1].

Geng and Ren [7] proved that the nonlinear wave equation admits quasi-periodic solutions

with b-dimensional Diophantine frequencies. In particular, these Diophantine frequencies

are the small dilation of a prescribed Diophantine vector. Zhang and Si [18], and Si [13]

proved existence of quasi-periodic solutions for non-autonomous, quasi-periodically forced

nonlinear wave equations. Berti, Biasco, and Procesi [2] considered the existence and

stability of quasi-periodic solutions for reversible derivative wave equations. Gao, Zhang,

and Ji [6] obtained the existence of quasi-periodic solutions for nonlinear wave equation

under the general boundary conditions.

For the research about the existence of quasi-periodic solutions for nonlinear wave

equations, Berti and Bolle [3] considered a wave equation with a quasi-periodic-in-time

nonlinearity. In [3], the condition ker(−∆ +V (x)) = {0} was supposed and they obtained

the C∞ solutions not analytic solutions, where V is the potential. Montalto [9], Corsi and

Montalto [5] researched forced Kirchoff equations

∂ttv −
(

1 +

∫
Td
|∇v|2 dx

)
∆v = δf(ωt, x)

with periodic boundary conditions, where δ > 0 is a small parameter, ω is a parameter

vector, f is a sufficiently smooth function with zero average, and f is not dependent of

v. The existence of quasi-periodic solutions were proved and the problem of multiple

eigenvalues is overcome. The proofs in [3,5,9] are based on Nash-Moser iterative schemes

not the KAM method. In this paper, we suppose that the potential is a positive constant,

and the nonlinear term u3 depends on ωt and x. We use the KAM method to study the

wave equation, find out real analytic quasi-periodic solutions, and give the expression of

solutions.

Factually, in order to use the KAM iteration, it is required to transform the Hamil-

tonian into its Birkhoff normal form. To find real analytic quasi-periodic solutions, this

symplectic transformation should be real analytic. This transformation can be constructed

through the time-1-map of the flow of a Hamiltonian vector-field.
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Unfortunately, the Hamiltonian contains small divisors. It is necessary to ensure that

the measure of parameters making the denominators zero is small. Since the nonlinear

term depends on the space variable, one must estimate the measure of infinitely many

small divisors. The reference [2] remarked that when the nonlinear term of a PDE is

x-independent, “all the monomials of the corresponding vector field X have momentum

equal to zero”. In [2], it is introduced a weighted majorant norm for vector fields to

overcome the “non-conservation of the momentum” problem. While in this paper, we

only assume g is bounded.

To overcome the multiple spectrum problem, we construct the even solutions and

separately calculate the 0th-eigenvalue part. But the estimate of measure is still meticulous

and complex, which is the main work of this paper. In addition, since the equation is

forced, the symplectic transformation is variant-coefficient. It is difficult to prove the

regularity of the symplectic transformation. We introduce a symmetry integer set, divide

the vector-field into the mean value part and the other part, and deal with the two parts

in different ways.

The paper is organized as follows. In Section 2, we give the main result and transform

the equation to an infinite dimensional Hamiltonian system. Section 3 is devoted to

a Birkhoff normal form. In Section 4, we state a KAM theorem for nonlinear partial

differential equations. Using this theorem, we complete the proof of our main theorem.

Two lemmas are proved in the last section.

2. Main result and Hamiltonian setting

For ε = 0, the equation (1.1) becomes

(2.1) utt − uxx + µu = 0.

The operator A = − d2

dx2
+ µ with periodic boundary conditions has eigenvalues {λj =

j2 + µ, j ∈ Z} and the corresponding eigenfunctions

φj(x) =


1√
π

cos jx if j > 0,

1√
π

sin jx if j < 0,

1√
2π

if j = 0.

Since the eigenfunctions φj(x) (j ≥ 0) are a completely orthogonal basis of the subspace

consisting of all even functions of L2[0, 2π], we restrict ourselves to find some solutions

which are even in x so that we can avoid the trouble caused by the double eigenvalues.

Every solution of the linear wave equation (2.1) can be written as a super-position of
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the basic modes φj , namely, for any subset J of Z,

u(t, x) =
∑
j∈J

qj(t)φj(x), qj(t) = Ij cos(
√
λjt+ ϕ0

j )

with amplitudes Ij ≥ 0 and initial phases ϕ0
j .

We first make some assumptions and give some notations. Define D1(σ1) := {ϑ |
| Imϑ| < σ1}, D2(2a) := {x | | Imx| < 2a}, |g(ϑ, x)|D1(σ1)×D2(2a) := sup(ϑ,x)∈D1(σ1)×D2(2a)

|g(ϑ, x)| and |g(ϑ, x)|D2(2a) := supx∈D2(2a) |g(ϑ, x)| for every fixed ϑ ∈ D1(σ1). Throughout

this paper, we suppose that

(H1) g even extends to a 2π-periodic function in x whose Fourier series satisfies g(ϑ, x) =

g0 +
∑

k∈Zm\{0} gk(x)ei〈k,ϑ〉, 0 6= g0 ∈ R, where i =
√
−1 and 〈 · , · 〉 is the standard

inner product in Cm.

(H2) For some σ1 > 0 and a > 0, g analytically in ϑ, x extends to the domain D1(σ1)×
D2(2a) and g is bounded in D1(σ1)×D2(2a) with finite norm |g(ϑ, x)|D1(σ1)×D2(2a).

Theorem 2.1. Assume (H1) and (H2) hold. For each 1 ≤ n < ∞ and each index set

J = {j0 < j1 < j2 < · · · < jn} ⊂ N := {0, 1, 2, . . .} satisfying min0≤i<n(ji+1 − ji) ≤ n

for any µ > 0 and for any 0 < ε < ε∗, where ε∗ is sufficiently small, there exist a subset

Ω ⊂ [%, 2%]m with meas Ω > 0 and a subset Σε ⊂ Σ := Ω×[0, 1]n+1 with meas(Σ\Σε) < ε1/3

which satisfies that for any ξ = (ω1, ω2, . . . , ωm, ξ̃j0 , ξ̃j1 , . . . , ξ̃jn) ∈ Σε, the boundary value

problem (1.1)–(1.2) has a quasi-periodic and even solution in x. Furthermore, if j0 = 0,

u(t, x) =

√
εξ̃j0 +O(ε8/3)

π
√
µ

cos ω̃j0t+
∑

ji∈J\{j0}

√
2(εξ̃ji +O(ε8/3))

π
√
λji

cos ω̃jit cos jix+O(ε5/3),

and if j0 > 0,

u(t, x) =
∑
ji∈J

√
2(εξ̃ji +O(ε8/3))

π
√
λji

cos ω̃jit cos jix+O(ε5/3),

where

|ω̃ji(ξ)−
√
λji | < cε2 for all ji ∈ J .

Remark 2.2. The equation (1.1) has a large Cantor family of rotational (m + n + 1)-

dimensional tori with frequency vectors ω̃, where ω̃ = (ω1, ω2, . . . , ωm, ω̃j0 , ω̃j1 , . . . , ω̃jn).

Remark 2.3. The function g can be described as an analytic even function, which is

periodic in x and quasi-periodic in t. Moreover, the mean value of g is not zero. For

example, g(x, t) = 2 + cosx(cos t+ cos
√

3t).
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Remark 2.4. To avoid the double eigenvalues, we restrict ourselves to choose an even

complete orthogonal basis φj(x) (j ≥ 0), which leads to the even solution.

Remark 2.5. The function g can be defined in any strip D2(â) as long as â > a. The fixed

positive a is used to define the Hilbert space la,s below.

Remark 2.6. Theorem 2.1 holds true for m = 1.

We comment on the result as follows:

1. x-dependence. The nonlinearity g in (1.1) can explicitly contain the space variable

x, which implies that this equation is variant under x translations. Thus the so-

called “compact form” condition or “zero momentum” condition are not satisfied.

The measure estimate is more complex than that in [2, 7, 13, 16, 18]. The decay

property plays an important role, e.g. (2.6).

2. quasi-periodical forcing. The equation (1.1) is quasi-periodically forced. So a

quasi-periodic symplectic transform is required (see the proof of Proposition 3.6),

which can transform the Hamiltonian into its normal form.

3. The frequency ω̃ of the solution. Since extra parameters are added in the proof,

we obtain quasi-periodic solutions with additional frequencies but not those with

the same frequency ω as g.

4. The parameter µ. The result holds true for all µ > 0. In addition, the discussion

about the completely resonant wave equations (namely µ = 0) may be more complex.

In this paper, C denotes a universal constant if we do not care its value. We rewrite

the wave equation (1.1) as follows:

(2.2) ∂tu = v, ∂tv +Au = −εg(ωt, x)u3,

where A = −d2/dx2 + µ, t ∈ R. It is well known that the equation (2.2) can be studied

as an infinite dimensional Hamiltonian system with coordinates u and v = ∂tu. The

Hamiltonian for (2.2) is then

H =
1

2
(v, v) +

1

2
(Au, u) + ε

∫ 2π

0
χ(u, x, ωt) dx,

where χ(u, x, ωt) = 1
4g(ωt, x)u4, and ( · , · ) denotes the scalar product in L2[0, 2π].

We introduce the coordinates q = (q0, q1, q2, . . .) and p = (p0, p1, p2, . . .) by setting

u(t, x) =
∑
j≥0

qj(t)
4
√
λj
φj(x), v(t, x) =

∑
j≥0

4
√
λjpj(t)φj(x).
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The coordinates are taken from some Hilbert space la,s (s > 1/2) of all real valued infinite

sequences

la,s = la,s(R)

:=

q = (q0, q1, q2, . . .), qi ∈ R, i ≥ 0 s.t. (‖q‖a,s)2 = |q0|2 +
∑
i≥1

|qi|2i2se2ai <∞

 .

Thus, we obtain the Hamiltonian H = Λ + εG, where

Λ =
1

2

∑
j≥0

√
λj(q

2
j + p2

j ) and G =
1

4

∫ 2π

0
g(ωt, x)

∑
j≥0

qj(t)
4
√
λj
φj(x)

4

dx.

The corresponding equations of motion are

(2.3) q̇j =
∂H

∂pj
=
√
λjpj , ṗj = −∂H

∂qj
= −

√
λjqj − ε

∂G

∂qj
, j ≥ 0

with respect to the symplectic structure
∑
dqi ∧ dpi on la,s× la,s. According to [11,13], u

is a classical solution of (1.1) and the following lemma holds true.

Lemma 2.7. If I ⊆ R is an interval and a curve I → (p(t), q(t)) is a real analytic solution

of (2.3), then

u(t, x) =
∑
j≥0

qj(t)
4
√
λj
φj(x)

is a classical solution of (1.1) that is real analytic on I × [0, 2π].

By introducing a pair of action-angle variables (J, ϑ) ∈ Rm × Tm (Tm := Rm/2πZm),

one can obtain an equivalent Hamiltonian that does not depend on the time variable t.

So an autonomous formulation of our problem is reached as follows:

q̇j =
∂H

∂pj
, ṗj = −∂H

∂qj
, j ≥ 0, ϑ̇ = ω, J̇ = −ε∂G

∂ϑ
= −ε

∂
∫ 2π

0 χdx

∂ϑ
,

which is a Hamiltonian system (with respect to the symplectic structure dϑ∧dJ+
∑
dqi∧

dpi) with the Hamiltonian

(2.4) H = 〈ω, J〉+
1

2

∑
j≥0

√
λj(q

2
j + p2

j ) + εG(q, ϑ),

where 〈 · , · 〉 is the standard inner product in Cm.

To continue our investigation for the Hamiltonian (2.4), we need to establish the reg-

ularity of the nonlinear Hamiltonian vector field XG associated to G. Let l2b and L2,
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respectively, be the Hilbert spaces of all bi-infinite, square summated sequences with com-

plex coefficients and all square-integrable complex-valued functions on [0, 2π]. Suppose

that

F : l2b → L2, q 7→ Fq =
1√
2π

∑
j

qje
ijx

is the inverse discrete Fourier transform, which defines an isometry between the two spaces.

The subspaces la,sb ⊂ l2b consist, by definition, of all bi-infinite sequences with the finite

form

(‖q‖1a,s)2 = |q0|2 +
∑
i

|qi|2|i|2se2a|i|.

Through F they define subspaces W a,s[0, 2π] ⊂ L2[0, 2π] that are normed by setting

‖Fq‖1a,s = ‖q‖1a,s.
The following lemma has been proven in [11] and we only give the result.

Lemma 2.8. The space la,sb is a Hilbert algebra with respect to convolution of the sequences

(q ∗ p)j :=
∑

k qj−kpk, and

‖q ∗ p‖1a,s ≤ c‖q‖1a,s‖p‖1a,s,

where the constant c depends only on s. Consequently, W a,s is a Hilbert algebra with

respect to multiplication of functions.

Using the above lemma, we prove the following result.

Lemma 2.9. The gradient ∂qG is real analytic as a map from some neighborhood of origin

in la,s into la,s+1, with ‖∂qG‖a,s+1 = O(‖q‖a,s)3.

Proof. Let q ∈ la,s. Consider as a function on [0, 2π], u =
∑

j≥0
qj(t)
4
√
λj
φj(x) is in W a,s+1/2

with

(2.5) ‖u‖1a,s+1/2 ≤ c‖q‖a,s.

For every ϑ ∈ D1(σ1), we expand g in a Fourier series g(ϑ, x) = 1√
2π

∑
j gj(ϑ)eijx. By

using of Lemma A.1 in [12], for every j ∈ Z,

(2.6) |gj(ϑ)| ≤ C|g(ϑ, x)|D2(2a)e
−2a|j|

holds. So

(‖g‖1a,s+1/2)2 = |g0(ϑ)|2 +
∑
j 6=0

|gj(ϑ)|2|j|2s+1e2a|j|

< C
∑
|g(ϑ, x)|2D2(2a)e

−4a|j|[j]2s+1e2a|j|

< C|g(ϑ, x)|2D1(σ1)×D2(2a)

∑
j

e−2a|j|[j]2s+1 <∞.
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Therefore, g ∈W a,s+1/2[0, 2π]. It follows from (2.5) that, by Lemma 2.8 and the analytic-

ity of g and u3, the function g(ϑ, x)u3 also belongs toW a,s+1/2[0, 2π] with ‖g(ϑ, x)u3‖1a,s+1/2

≤ C(‖q‖a,s)3 in a sufficiently small neighborhood of the origin, where C depends on s, a,

σ1 and g. On the other hand, since

∂G

∂qj
=

1
4
√
λj

∫ 2π

0
g(ϑ, x)u3φj(x) dx,

the components of Gq are the Fourier coefficients of g(ϑ, x)u3, so Gq belongs to la,s, with

‖Gq‖a,s+1 ≤ C‖g(ϑ, x)u3‖1a,s+1/2 ≤ C(‖q‖a,s)3,

where the last C depends on s, a, µ, σ1 and g. The regularity of Gq follows from the

regularity of its component and its local boundedness.

3. Partial Birkhoff normal form

Since χ(u, x, ϑ) = 1
4g(ϑ, x)u4 and u =

∑
j

qj
4
√
λj
φj , we find that

G(q, ϑ) =
1

4

∑
i,j,d,l

1
4
√
λiλjλdλl

∫ 2π

0
g(ϑ, x)φiφjφdφl dxqiqjqdql.

From (H1),

(3.1) G(q, ϑ) =
1

4

∑
i,j,d,l

Gijdl
4
√
λiλjλdλl

qiqjqdql +
1

4

∑
|k|≥1,i,j,d,l

Gk,ijdl
4
√
λiλjλdλl

ei〈k,ϑ〉qiqjqdql,

where

(3.2) Gijdl = g0

∫ 2π

0
φiφjφdφl dx

and

(3.3) Gk,ijdl =

∫ 2π

0
gk(x)φiφjφdφl dx, |k| ≥ 1.

An easy computation shows that Gijdl = 0 unless i ± j ± d ± l = 0 for at least one

combination of plus and minus signs. In particular, we have

(3.4) Gijij =
g0

4π
(2 + δij) where δij =


1 if i = j 6= 0,

0 if i = j = 0,

0 if i 6= j.
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We switch to the complex coordinates

zi =
qi + ipi√

2
, zi =

qi − ipi√
2

that live in the now complex Hilbert space la,s = la,s(C). Then, the Hamiltonian (with

respect to the symplectic structure dϑ ∧ dJ + i
∑

i dzi ∧ dzi) is given by

(3.5) H = Λ + εG,

where

Λ = 〈ω, J〉+
∑
j

√
λjzjzj , G =

1

4

∫ 2π

0
g(ϑ, x)

∑
j≥0

zj + zj
4
√

4λj
φj(x)

4

dx.

Moreover, from (3.1), (3.2) and (3.3), we have

G =
1

16

∑
i,j,d,l,i±j±d±l=0

Gijdl
4
√
λiλjλdλl

(zi + zi)(zj + zj)(zd + zd)(zl + zl)

+
1

16

∑
|k|≥1,i,j,d,l

Gk,ijdl
4
√
λiλjλdλl

ei〈k,ϑ〉(zi + zi)(zj + zj)(zd + zd)(zl + zl).

Next we transform the Hamiltonian (3.5) into some partial Birkhoff form of order four

so that it may serve as a small perturbation of some nonlinear integrable system in a

sufficiently small neighborhood of the origin.

Assume Z′ = {. . . ,−2,−1,−0, 0, 1, 2, . . .} and 1 ≤ n <∞ fixed. Let Ln = {(i, j, d, l) ∈
Z′4 : min(|i|, |j|, |d|, |l|) ≤ n} and Nn ⊂ Ln be the subset of all (i, j, d, l) ≡ (p,−p, q,−q).
That is, they are of the form (p,−p, q,−q) or some permutation of it. We write

λ′i := sgn i ·
√
λ|i|.

Remark 3.1. In the set Z′, we set 0 and −0 to be two different indices, which can prevent

z0 and z0 from applying the same coordinate symbol in the proof of Proposition 3.6.

The following lemmas are necessary and important. We use them to prove Proposi-

tion 3.6. The proofs of Lemmas 3.3 and 3.5 can be found in [14]. The proofs of Lemmas 3.2

and 3.4 are shown in Appendix.

Lemma 3.2. If (i, j, d, l) ∈ Ln/Nn and

(3.6) |i| ± |j| ± |d| ± |l| = 0,

then there exists a constant c depending on µ and n such that

(3.7) |λ′i + λ′j + λ′d + λ′l| ≥ c > 0

holds for every compact µ-interval in (0,∞).
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Lemma 3.3. There is a subset Ω ⊂ [%, 2%]m such that every ω ∈ Ω satisfies that

|〈k, ω〉| ≥ %ε1/3

|k|m+1
for all 0 6= k ∈ Zm

and meas Ω ≥ (1 − C1ε
1/3)%m, where the constant C1 depends on m and meas denotes

Lebesgue measure for sets.

Lemma 3.4. Assume that (i, j, d, l) ∈ Ln and k 6= 0. Then, when ε is small enough, there

is a subset Ω ⊂ [%, 2%]m satisfying that, for any ω ∈ Ω and λ′i + λ′j + λ′d + λ′l 6= 0,

|λ′i + λ′j + λ′d + λ′l + 〈k, ω〉| ≥ %ε1/3

|k|m+3
.

Moreover, meas Ω ≥ %m(1−C2ε
1/3), where C2 is a constant depending on n, m, % and µ.

Lemma 3.5. For xk ∈ C and k ∈ Zm, if the series
∑

k[k]2m+1|xk|2 converges, then the

inequality
∣∣∑

k xk
∣∣2 ≤ c∑k[k]2m+1|xk|2 holds, where [k] = max{|k|, 1}, |k| = |k1|+ |k2|+

· · ·+ |km| and c is a constant depending on m.

Consider the Hamiltonian (3.5). For each fixed subset Ln and µ > 0, the following

Proposition 3.6 holds. In the following, A (la,s, la,s) denotes the class of all real analytic

maps from some neighborhood of the origin in la,s to la,s.

Proposition 3.6. When ε is small enough, there exists a subset Ω ⊂ [%, 2%]m with

meas Ω > 0 and for every ω ∈ Ω, there is a real analytic, symplectic change of coor-

dinates Ψ which can transform the Hamiltonian (3.5) into its Birkhoff normal form, i.e.,

H ◦Ψ = Λ + εG+ εǦ+ ε2K,

where XǦ, XG, XK ∈ A(la,s, la,s+1), |Ǧ| = O((‖Z‖a,s)4), ε1/3|K| = O((‖z‖a,s)6) and

(3.8) G(z, z) =
1

2

∑
min{i,j}≤n

Gij |zi|2|zj |2

with uniquely determined coefficients

(3.9) Gij =


3g0

4π
√
λiλj

if i 6= j,

9g0
16πλi

if i = j 6= 0,

3g0
8πλ0

if i = j = 0.

Here Z = (zn+1, zn+2, . . .) and z = (z0, z1, z2, . . .). Moreover, the transformation Ψ is

defined in a complex neighborhood D1(σ1/2) := {ϑ | | Imϑ| < σ1/2} of the tour Tm and a

neighborhood of the origin in la,s.
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Proof. For convenience, we introduce another coordinates (. . . , w−2, w−1, w−0, w0, w1, w2,

. . .) in l̂a,sb by letting z0 = w0, z0 = w−0, zj = wj , zj = w−j (j ≥ 1), where the space

l̂a,sb = l̂a,sb (C) := {(. . . , w−1, w−0, w0, w1, . . .), wi ∈ C s.t. (‖w‖2a,s)2 < ∞} and (‖w‖2a,s)2 =

|w−0|2 + |w0|2 +
∑∞
|i|=1 |wi|2|i|2se2a|i|. So we have

H = 〈ω, J〉+
∑
j≥0

√
λjwjw−j +

ε

16

∑′

i,j,d,l
|i|±|j|±|d|±|l|=0

gijdlwiwjwdwl

+
ε

16

∑
|k|≥1

∑′

i,j,d,l

gk,ijdle
i〈k,ϑ〉wiwjwdwl,

where

(3.10) gijdl =
G|i||j||d||l|

4
√
λ|i|λ|j|λ|d|λ|l|

, gk,ijdl =
Gk,|i||j||d||l|

4
√
λ|i|λ|j|λ|d|λ|l|

,

and the prime symbols indicate that the subscripted indices run through Z′. Since Gijdl =

0 unless i± j ± d± l = 0 for at least one combination of plus and minus signs,

(3.11) gijdl = 0 unless |i| ± |j| ± |d| ± |l| = 0.

Step 1. We construct the symplectic transformation. Consider a Hamiltonian function

F = εF = ε
∑′

i,j,d,l

Fijdlwiwjwdwl + ε
∑
|k|≥1

∑′

i,j,d,l

Fk,ijdle
i〈k,ϑ〉wiwjwdwl

with coefficients

iFijdl =


gijdl

16(λ′i+λ
′
j+λ

′
d+λ′l)

if (i, j, d, l) ∈ Ln \ Nn and |i| ± |j| ± |d| ± |l| = 0,

0 otherwise,

and for k 6= 0,

iFk,ijdl =


gk,ijdl
16〈k,ω〉 if (i, j, d, l) ∈ Ln, λ′i + λ′j + λ′d + λ′l = 0 and |k| ≥ 1,

gk,ijdl
16(λ′i+λ

′
j+λ

′
d+λ′l+〈k,ω〉)

if (i, j, d, l) ∈ Ln, λ′i + λ′j + λ′d + λ′l 6= 0 and |k| ≥ 1,

0 otherwise.

Let Ψ = X1
F be the time-1 map of the vector field of the Hamiltonian F . Expanding

at t = 0 and using Taylor’s formula we obtain

H ◦Ψ = H + {H,F}+

∫ 1

0
(1− t){{H,F},F} ◦Xt

F dt

= Λ + εG+ ε{Λ, F}+ ε2{G,F}+ ε2

∫ 1

0
(1− t){{H,F}, F} ◦Xt

F dt.

(3.12)
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Now we compute G+ {Λ, F}. If we let

Iijdl :=

[
1

16
gijdl − i(λ′i + λ′j + λ′d + λ′l)Fijdl

]
wiwjwdwl

and

Ik,ijdl :=

[
1

16
gk,ijdl − i(λ′i + λ′j + λ′d + λ′l + 〈k, ω〉)Fk,ijdl

]
ei〈k,ϑ〉wiwjwdwl,

then, from (3.11),

G+ {Λ, F} =
∑′

i,j,d,l
|i|±|j|±|d|±|l|=0

Iijdl +
∑
|k|≥1

∑′

i,j,d,l

Ik,ijdl

=

 ∑′

(i,j,d,l)∈Nn

Iijdl +
∑′

(i,j,d,l)∈Ln\Nn
|i|±|j|±|d|±|l|=0

Iijdl +
∑′

(i,j,d,l)/∈Ln
|i|±|j|±|d|±|l|=0

Iijdl


+

 ∑′

(i,j,d,l)∈Ln

∑
|k|≥1

Ik,ijdl +
∑′

(i,j,d,l)/∈Ln

∑
|k|≥1

Ik,ijdl

 .

(3.13)

By using of the definition of F , we have that∑′

(i,j,d,l)∈Ln\Nn
|i|±|j|±|d|±|l|=0

Iijdl =
∑′

(i,j,d,l)∈Ln

∑
|k|≥1

Ik,ijdl = 0,(3.14)

Iijdl =
1

16
gijdlwiwjwdwl, (i, j, d, l) /∈ Ln

and

Ik,ijdl =
1

16
gk,ijdle

i〈k,ϑ〉wiwjwdwl, (i, j, d, l) /∈ Ln, |k| ≥ 1

hold. The last two equalities yield that∑′

(i,j,d,l)/∈Ln
|i|±|j|±|d|±|l|=0

Iijdl +
∑′

(i,j,d,l)/∈Ln

∑
|k|≥1

Ik,ijdl

=
∑′

(i,j,d,l)/∈Ln

∑
|k|≥1

1

16
gk,ijdle

i〈k,ϑ〉wiwjwdwl

:= Ǧ,

(3.15)

where we define g0,ijdl := gijdl. So, it derives from (3.13), (3.14) and (3.15) that

(3.16) G+ {Λ, F} = G+ Ǧ,
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where

G :=
∑′

(i,j,d,l)∈Nn

Iijdl.

From (3.10) and (3.4), (3.8) and (3.9) are satisfied. Therefore, using (3.12) and (3.16),

H ◦Ψ = Λ + εG+ εǦ+ ε2{G,F}+ ε2

∫ 1

0
(1− t){{H,F}, F} ◦Xt

F

holds true.

Step 2. We prove that Ψ is real analytic.

Claim. The vector-field of the Hamiltonian XF is real analytic in a complex neighborhood

ϑ ∈ D1(σ1/2) of Tm and some neighborhood of the origin in l̂a,sb . Furthermore, it satisfies

(3.17)

∥∥∥∥∂F∂w
∥∥∥∥2

a,s+1

≤ C

ε2/3
(‖w‖2a,s)3.

In fact, letting w ∈ l̂a,sb , ϑ ∈ D1(σ1), and from (3.2), (3.7) and (3.10), we have that

(3.18) |Frjdl| =

∣∣∣∣∣ grjdl
16(λ′r + λ′j + λ′d + λ′l)

∣∣∣∣∣ ≤ C|g0|
(λrλjλdλl)1/4

holds for all r, j, d, l ∈ Z′, where the constant C depends on g, n and µ. On the other

hand, we can get the Fourier expansion of gk, i.e.,

(3.19) gk(x) =
∑
τ∈Z

gτke
iτx.

So, fixing r, j, d and l ∈ Z′, it follows from (3.3) that

Gk,|r||j||d||l| =
∑
τ∈Z

gτk

∫ 2π

0
eiτxφ|r|φ|j|φ|d|φ|l| dx

=
∑
τ∈Z

gτk

∫ 2π

0
cos τxφ|r|φ|j|φ|d|φ|l| dx.

(3.20)

Easy computations show that

(3.21)

∫ 2π

0
cos τxφ|r|φ|j|φ|d|φ|l| dx = 0 unless τ ± |r| ± |j| ± |d| ± |l| = 0

holds for at least one combination of plus and minus signs and

(3.22)

∣∣∣∣∫ 2π

0
cos τxφ|r|φ|j|φ|d|φ|l| dx

∣∣∣∣ ≤ 2

π

holds for all τ ∈ Z and r, j, d, l ∈ Z′.
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According to Lemmas 3.3 and 3.4, now we suppose that Ω = Ω∩Ω. It is obvious that

meas Ω ≥ %m(1 − C1ε
1/3 − C2ε

1/3). So meas Ω > 0 when ε is small enough. Therefore,

when ω ∈ Ω, by the definition of Fk,rjdl, from Lemmas 3.3 and 3.4, for |k| ≥ 1,

|Fk,rjdl| ≤
|k|m+3

16%ε1/3
|gk,rjdl|.

It follows from (3.10) that

|Fk,rjdl| ≤ C
|k|m+3

ε1/3(λrλjλdλl)1/4
|Gk,|r||j||d||l||,

which together with (3.20), (3.21) and (3.22) yield that

(3.23) |Fk,rjdl| ≤ C
|k|m+3

ε1/3(λrλjλdλl)1/4

∑
τ,τ±|r|±|j|±|d|±|l|=0

|gτk |,

where C is dependent on % and µ. In addition, supposing that

F0r =

∣∣∣∣∣∣∣∣
∑′

j,d,l
|r|±|j|±|d|±|l|=0

Frjdlwjwdwl

∣∣∣∣∣∣∣∣ and F1r =

∣∣∣∣∣∣
∑
|k|≥1

∑′

j,d,l

Fk,rjdle
i〈k,ϑ〉wjwdwl

∣∣∣∣∣∣ ,
it is clear that

(3.24)

∣∣∣∣ ∂F∂wr
∣∣∣∣2 ≤ C(F0r)

2 + C(F1r)
2.

Now we calculate (F0r)
2 and (F1r)

2, respectively.

First, we estimate (F0r)
2. From (3.18),

F0r ≤ C
∑′

j,d,l
|r|±|j|±|d|±|l|=0

|wjwdwl|
(λrλjλdλl)1/4

.

When r = 0 or −0, we have that

F00, F0−0 ≤
C

λ
1/4
0

∑′

j,d,l
±|j|±|d|±|l|=0

|wjwdwl|
(λjλdλl)1/4

≤ C

λ
1/4
0

[
|w0|3 + |w−0|3 + 3|w2

0w−0|+ 3|w0w
2
−0|

λ
3/4
0

+ 3

(
|w0|+ |w−0|

λ
1/4
0

)

×
∑′

j,d6=0 and −0
±|j|±|d|=0

|wjwd|
(λjλd)1/4

+
∑′

j,d,l 6=0 and −0
±|j|±|d|±|l|=0

|wjwdwl|
(λjλdλl)1/4

]
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≤ C

λ
1/4
0

[(
|w0|+ |w−0|

λ
1/4
0

)3

+

(
|w0|+ |w−0|

λ
1/4
0

) ∑′

j,d6=0 and −0
±|j|±|d|=0

|wjwd|
(λjλd)1/4

+
∑′

j,d,l 6=0 and −0
±|j|±|d|±|l|=0

|wjwdwl|
(λjλdλl)1/4

]
.

So

F 2
00, F

2
0−0 ≤

C

λ
1/2
0

[(
|w0|+ |w−0|

λ
1/4
0

)6

+

(
|w0|+ |w−0|

λ
1/4
0

)2( ∑′

j,d6=0 and −0
±|j|±|d|=0

|wjwd|
(λjλd)1/4

)2

+

( ∑′

j,d,l 6=0 and −0
±|j|±|d|±|l|=0

|wjwdwl|
(λjλdλl)1/4

)2
]
.

Assume

(3.25) w̃j :=
|wj |+ |w−j |

λ
1/4
j

, j ∈ Z.

Clearly, ω̃ ∈ la,s+1/2
b . It follows that

F 2
00, F

2
0−0 ≤

C

λ
1/2
0

[
w̃6

0 + w̃2
0

( ∑
j,d6=0,j+d=0

w̃jw̃d

)2

+

( ∑
j,d,l 6=0,j+d+l=0

w̃jw̃dw̃l

)2
]

=
C

λ
1/2
0

[
w̃6

0 + w̃2
0(w̃ ∗ w̃)2

0 + (w̃ ∗ w̃ ∗ w̃)2
0

]
=

C

λ
1/2
0

[
|w̃0|6 + |w̃0|2|(w̃ ∗ w̃)0|2 + |(w̃ ∗ w̃ ∗ w̃)0|2

]
.

(3.26)

When r 6= 0 and −0, we have that

F0r ≤
C

λ
1/4
r

[(
|w0|2 + |w−0|2 + 2|w0w−0|

λ
1/2
0

) ∑′

j 6=0 and −0
|r|±|j|=0

|wj |
λ

1/4
j

+

(
|w0|+ |w−0|

λ
1/4
0

) ∑′

j,d6=0 and −0
|r|±|j|±|d|=0

|wjwd|
(λjλd)1/4

+
∑′

j,d,l 6=0 and −0
|r|±|j|±|d|±|l|=0

|wjwdwl|
(λjλdλl)1/4

]
.
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So, by using of (3.25),

F 2
0r ≤

C

λ
1/2
r

[(
|w0|+ |w−0|

λ
1/4
0

)4( ∑′

j 6=0 and −0
|r|±|j|=0

|wj |
λ

1/4
j

)2

+

(
|w0|+ |w−0|

λ
1/4
0

)2( ∑′

j,d6=0 and −0
|r|±|j|±|d|=0

|wjwd|
(λjλd)1/4

)2

+

( ∑′

j,d,l 6=0 and −0
|r|±|j|±|d|±|l|=0

|wjwdwl|
(λjλdλl)1/4

)2
]

≤ C

λ
1/2
r

[
|w̃0|4|w̃r|2 + |w̃0|2|(w̃ ∗ w̃)r|2 + |(w̃ ∗ w̃ ∗ w̃)r|2

]
.

(3.27)

Second, we estimate F 2
1r. By using of Lemma 3.4,

F 2
1r ≤ C

∑
|k|≥1

[k]2m+1

∣∣∣∣∣∣
∑′

j,d,l

Fk,rjdle
i〈k,ϑ〉wjwdwl

∣∣∣∣∣∣
2

≤ C
∑
|k|≥1

[k]2m+1

∑′

j,d,l

|Fk,rjdl|
∣∣ei〈k,ϑ〉∣∣|wjwdwl|

2

= C
∑
|k|≥1

[k]2m+1
∣∣ei〈k,ϑ〉∣∣2∑′

j,d,l

|Fk,rjdl||wjwdwl|

2

.

It follows from (3.23) that

(3.28)

F 2
1r ≤

C

ε2/3(λr)1/2

∑
|k|≥1

[k]4m+7
∣∣ei〈k,ϑ〉∣∣2∑′

j,d,l

∑
τ,τ±|r|±|j|±|d|±|l|=0

|gτk |
|wjwdwl|

(λjλdλl)1/4

2

.

However, when r = 0 or −0,∑′

j,d,l

∑
τ,τ±|r|±|j|±|d|±|l|=0

|gτk |
|wjwdwl|

(λjλdλl)1/4

=

(
|w0|+ |w−0|

λ
1/4
0

)3

|g0
k|+

(
|w0|+ |w−0|

λ
1/4
0

)2 ∑′

j 6=0 and −0

∑
τ,τ±|j|=0

|gτk |
|wj |
λ

1/4
j

+

(
|w0|+ |w−0|

λ
1/4
0

) ∑′

j,d6=0 and −0

∑
τ,τ±|j|±|d|=0

|gτk |
|wjwd|

(λjλd)1/4

+
∑′

j,d,l 6=0 and −0

∑
τ,τ±|j|±|d|±|l|=0

|gτk |
|wjwdwl|

(λjλdλl)1/4
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holds. Thus, it follows from (3.28) that

F 2
10, F

2
1−0 ≤

C

ε2/3λ
1/2
0

∑
|k|≥1

[k]4m+7
∣∣ei〈k,ϑ〉∣∣2

×

[(
|w0|+ |w−0|

λ
1/4
0

)6

|g0
k|2 +

(
|w0|+ |w−0|

λ
1/4
0

)4( ∑′

j 6=0 and −0

∑
τ,τ±|j|=0

|gτk |
|wj |
λ

1/4
j

)2

+

(
|w0|+ |w−0|

λ0

)2( ∑′

j,d6=0 and −0

∑
τ,τ±|j|±|d|=0

|gτk |
|wjwd|

(λjλd)1/4

)2

+

( ∑′

j,d,l 6=0 and −0

∑
τ,τ±|j|±|d|±|l|=0

|gτk |
|wjwdwl|

(λjλdλl)1/4

)2
]
.

(3.29)

We define g̃τk := |gτk |+ |g
−τ
k | for 0 6= τ ∈ Z, g̃0

k := 2|g0
k|, and

g̃k := {. . . , g̃2
k, g̃
−1
k , g̃0

k, g̃
1
k, g̃

2
k, . . .}

for every 0 6= k ∈ Zm. For every 0 6= k ∈ Zm, by Lemma A.1 in [12], from (H1), (H2) and

(3.19),

|grk| < |g(ϑ, x)|D1(σ1)×D2(2a)e
−|k|σ1e−2a|r|

is always true for r ∈ Z. Hence, for all (ϑ, x) ∈ D1(σ1)×D2(2a),

(
‖g̃k‖1a,s+1/2

)2
=
(
g̃0
k

)2
+
∑
|r|≥1

(
g̃rk
)2
e2a|r||r|2s+1

≤
(
|g(ϑ, x)|D1(σ1)×D2(2a)

)2
e−2|k|σ1

1 +
∑
|r|≥1

e−2a|r||r|2s+1

 .

Since the series
∑
|r|≥1 e

−2a|r||r|2s+1 is convergent, the above inequality is bounded and

(3.30)
(
‖g̃k‖1a,s+1/2

)2 ≤ Ce−2|k|σ1

holds, where the constant C depends on g, σ1, a and s. Thus, for fixed k ∈ Z, g̃k ∈ l
a,s+1/2
b .

It derives from (3.29) and (3.25) that

F 2
10, F

2
1−0 ≤

C

ε2/3λ
1/2
0

∑
|k|≥1

[k]4m+7
∣∣ei〈k,ϑ〉∣∣2[|w̃0|6|g̃0

k|2 + |w̃0|4|(g̃k ∗ w̃)0|2

+ |w̃0|2|(g̃k ∗ w̃ ∗ w̃)0|2 + |(g̃k ∗ w̃ ∗ w̃ ∗ w̃)0|2
]
.

(3.31)
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When r 6= 0 and −0,∑′

j,d,l

∑
τ,τ±|r|±|j|±|d|±|l|=0

|gτk |
|wjwdwl|

(λjλdλl)1/4

=

(
|w0|+ |w−0|

λ
1/4
0

)3 ∑′

τ±|r|=0

|gτk |+

(
|w0|+ |w−0|

λ
1/4
0

)2 ∑′

j 6=0 and −0

∑
τ,τ±|r|±|j|=0

|gτk |
|wj |
λ

1/4
j

+

(
|w0|+ |w−0|

λ
1/4
0

) ∑′

j,d6=0 and −0

∑
τ,τ±|r|±|j|±|d|=0

|gτk |
|wjwd|

(λjλd)1/4

+
∑′

j,d,l 6=0 and −0

∑
τ,τ±|r|±|j|±|d|±|l|=0

|gτk |
|wjwdwl|

(λjλdλl)1/4
.

It follows from (3.28) and (3.25) that

F 2
1r ≤

C

ε2/3λ
1/2
r

∑
|k|≥1

[k]4m+7
∣∣ei〈k,ϑ〉∣∣2[( |w0|+ |w−0|

λ
1/4
0

)6( ∑′

τ±|r|=0

|gτk |
)2

+

(
|w0|+ |w−0|

λ
1/4
0

)4( ∑′

j 6=0 and −0

∑
τ,τ±|r|±|j|=0

|gτk |
|wj |

(λj)1/4

)2

+

(
|w0|+ |w−0|

λ
1/4
0

)2( ∑′

j,d6=0 and −0

∑
τ,τ±|r|±|j|±|d|=0

|gτk |
|wjwd|

(λjλd)1/4

)2

+

( ∑′

j,d,l 6=0 and −0

∑
τ,τ±|r|±|j|±|d|±|l|=0

|gτk |
|wjwdwl|

(λjλdλl)1/4

)2
]

≤ C

λ
1/2
r ε2/3

∑
|k|≥1

[k]4m+7
∣∣ei〈k,ϑ〉∣∣2(|w̃0|6|g̃rk|2 + |w̃0|4|(g̃k ∗ w̃)r|2

+ |w̃0|2|(g̃k ∗ w̃ ∗ w̃)r|2 + |(g̃k ∗ w̃ ∗ w̃ ∗ w̃)r|2
)
.

(3.32)

Third, we calculate (‖Fw‖a,s+1)2. On one hand, from (3.26) and (3.27), we obtain that

F 2
00 + F 2

0−0 +
∑
|r|≥1

F 2
0r|r|2s+2e2a|r|

≤ C
[
|w̃0|6 + |w̃0|2|(w̃ ∗ w̃)0|2 + |(w̃ ∗ w̃ ∗ w̃)0|2 + |w̃0|4

∑
|r|≥1

|w̃r|2|r|2s+1e2a|r|

+ |w̃0|2
∑
|r|≥1

|(w̃ ∗ w̃)r|2|r|2s+1e2a|r| +
∑
|r|≥1

|(w̃ ∗ w̃ ∗ w̃)r|2|r|2s+1e2a|r|
]

= C

[
|w̃0|4

(
|w̃0|2 +

∑
|r|≥1

|w̃r|2|r|2s+1e2a|r|
)

+ |w̃0|2
(
|(w̃ ∗ w̃)0|2 +

∑
|r|≥1

|(w̃ ∗ w̃)r|2|r|2s+1e2a|r|
)
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+

(
|(w̃ ∗ w̃ ∗ w̃)0|2 +

∑
|r|≥1

|(w̃ ∗ w̃ ∗ w̃)r|2|r|2s+1e2a|r|
)]

= C
[
|w̃0|4

(
‖w̃‖1a,s+1/2

)2
+ |w̃0|2

(
‖w̃ ∗ w̃‖1a,s+1/2

)2
+
(
‖w̃ ∗ w̃ ∗ w̃‖1a,s+1/2

)2]
holds. By using of Lemma 2.8, it follows that

F 2
00 + F 2

0−0 +
∑
|r|≥1

F 2
0r|r|2s+2e2a|r|

≤ C
[
|w̃0|4

(
‖w̃‖1a,s+1/2

)2
+ |w̃0|2

(
‖w̃‖1a,s+1/2

)4
+
(
‖w̃‖1a,s+1/2

)6]
≤ C

(
‖w̃‖1a,s+1/2

)6 ≤ C(‖w‖2a,s)6.

(3.33)

On the other hand, from (3.31) and (3.32), we obtain that

F 2
10 + F 2

1−0 +
∑
|r|≥1

F 2
1r|r|2s+2e2a|r|

≤ C

ε2/3

∑
|k|≥1

[k]4m+7
∣∣ei〈k,ϑ〉∣∣2[|w̃0|6

(
|g̃0
k|2 +

∑
|r|≥1

|g̃rk|2e2a|r||r|2s+1

)

+ |w̃0|4
(
|(g̃k ∗ w̃)0|2 +

∑
|r|≥1

|(g̃k ∗ w̃)r|2e2a|r||r|2s+1

)

+ |w̃0|2
(
|(g̃k ∗ w̃ ∗ w̃)0|2 +

∑
|r|≥1

|(g̃k ∗ w̃ ∗ w̃)r|2e2a|r||r|2s+1

)

+

(
|(g̃k ∗ w̃ ∗ w̃ ∗ w̃)0|2 +

∑
|r|≥1

|(g̃k ∗ w̃ ∗ w̃ ∗ w̃)r|2e2a|r||r|2s+1

)]

≤ C

ε2/3

∑
|k|≥1

[k]4m+7
∣∣ei〈k,ϑ〉∣∣2[|w̃0|6

(
‖g̃k‖1a,s+1/2

)2
+ |w̃0|4

(
‖g̃k ∗ w̃‖1a,s+1/2

)2
+ |w̃0|2

(
‖g̃k ∗ w̃ ∗ w̃‖1a,s+1/2

)2
+
(
‖g̃k ∗ w̃ ∗ w̃ ∗ w̃‖1a,s+1/2

)2]
.

By using of Lemma 2.8, we get

F 2
10 + F 2

1−0 +
∑
|r|≥1

F 2
1r|r|2s+2e2a|r|

≤ C

ε2/3

∑
|k|≥1

[k]4m+7
∣∣ei〈k,ϑ〉∣∣2[|w̃0|6

(
‖g̃k‖1a,s+1/2

)2
+ |w̃0|4

(
‖g̃k‖1a,s+1/2‖w̃‖

1
a,s+1/2

)2
+ |w̃0|2

(
‖g̃k‖1a,s+1/2‖w̃‖

1
a,s+1/2‖w̃‖

1
a,s+1/2

)2
+
(
‖g̃k‖1a,s+1/2‖w̃‖

1
a,s+1/2‖w̃‖

1
a,s+1/2‖w̃‖

1
a,s+1/2

)2]
.

It follows from (3.30) that, for all (ϑ, x) ∈ D1(σ1/2)×D2(2a),

(3.34) F 2
10+F 2

1−0+
∑
|r|≥1

F 2
1r|r|2s+2e2a|r| ≤ C

ε2/3

(
‖w̃‖1a,s+1/2

)6( ∑
|k|≥1

[k]4m+7e|k|σ1 ·e−2|k|σ1
)
.
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However, it is well known that the number

(3.35) ]{k ∈ Zm : |k| = l} ≤ 2mlm−1, l ∈ Z+ := {1, 2, . . .}.

Thus, by using of the convergence of the series
∑∞

1≤|k|=l 2
ml5m+6e−lσ1 ,

∑
|k|≥1

[k]4m+7e|k|σ1 · e−2|k|σ1 <
∞∑

1≤|k|=l

2mlm−1l4m+7e−lσ1 ≤ C,

where C is a bounded constant depending only on σ1 and m. It derives from (3.34) that

(3.36) F 2
10 + F 2

1−0 +
∑
|r|≥1

F 2
1r|r|2s+2e2a|r| ≤ C

ε2/3

(
‖w̃‖1a,s+1/2

)6 ≤ C

ε2/3
(‖w‖2a,s)6,

where the constant C depends on %, µ, g, σ1, n, a, m and s. By using of (3.24),(∥∥∥∥∂F∂w
∥∥∥∥2

a,s+1

)2

=

∣∣∣∣ ∂F∂w0

∣∣∣∣2 +

∣∣∣∣ ∂F∂w−0

∣∣∣∣2 +
∑
|r|≥1

∣∣∣∣ ∂F∂wr
∣∣∣∣2 e2a|r||r|2s+2

≤ C
(
F 2

00 + F 2
10 + F 2

0−0 + F 2
1−0 +

∑
|r|≥1

(F 2
0r + F 2

1r)|r|2s+2e2a|r|
)

= C

(
F 2

00 + F 2
0−0 +

∑
|r|≥1

(F 2
0r)|r|2s+2e2a|r|

)

+ C

(
F 2

10 + F 2
1−0 +

∑
|r|≥1

(F 2
1r)|r|2s+2e2a|r|

)

holds true. It follows from (3.33) and (3.36) that
(∥∥∂F

∂w

∥∥2

a,s+1

)2 ≤ C
ε2/3

(‖w‖2a,s)6, where

the constant C depends on %, n, µ, g, σ1, a, m and s. Therefore, (3.17) is true. The

analyticity of Fw follows from the analyticity of each component function and its local

boundedness. This completes proving the Claim.

Similarly, we can prove that, for all (ϑ, x) ∈ D1(σ1/2) × D2(2a), |Ǧ| ≤ C(‖Z‖a,s)4,

where C depends on µ, g, σ1, a and s.

Step 3. From (3.17), it follows that the time-1-map X1
F is well defined in a sufficiently

small neighborhood of the origin in la,s with the estimates

‖Ψ− id ‖a,s+1 = O(‖w‖3a,s), ‖DΨ− Id ‖op
a,s+1,s = O(‖w‖2a,s),

with the operator norm ‖A‖op
a,r,s = supw 6=0

‖Aw‖a,r
‖w‖a,s . Since

‖DΨ− Id ‖op
a,s+1,s+1 ≤ ‖DΨ− Id ‖op

a,s+1,s,

DΨ defines an isomorphism of la,s+1 in a sufficiently small neighborhood of the origin. It

follows that with XH ∈ A(la,s, la,s+1), also

Ψ∗XH = DΨ−1XH ◦Ψ = XH◦Ψ ∈ A(la,s, la,s+1).
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The same holds for the Lie bracket: the boundedness of ‖DXF ‖op
a,s+1,s implies that

[XF , XH ] = X{H,F} ∈ A(la,s, la,s+1).

These two facts show that XK ∈ A(la,s, la,s+1). The analogous claims for XG and XǦ are

obvious. Suppose that

K = {G,F}+

∫ 1

0
(1− t){{H,F}, F} ◦Xt

F dt.

By using of Lemma 2.9 and (3.17), and from the fact that

|{Λ, F}| = |G+ Ǧ−G| = O((‖w‖2a,s)4),

it results

|{G,F}| ≤ C

ε1/3
(‖w‖2a,s)6 and |{{Λ, F}, F}| ≤ C

ε1/3
(‖w‖2a,s)6.

Moreover,

|{{G,F}, F}| ≤ C

ε2/3
(‖w‖2a,s)8

and the fact that H = Λ+εG hold. Hence, |K| ≤ C
ε1/3

(‖w‖2a,s)6, i.e., ε1/3|K| = O(‖w‖2a,s)6

for ‖w‖2a,s ≤ 1. This completes the proof.

Now let J = {0, 1, . . . , n} first. The case of a more general set J really makes no

difference. We introduce the action-angle variables by setting

zj =


√
Ije
−iθj if 0 ≤ j ≤ n,

zj if j ≥ n+ 1.

The normal form becomes

Λ + εG = 〈ω, J〉+
∑

0≤j≤n

√
λjIj +

∑
j>n

√
λjzjzj +

ε

2
〈AI, I〉+ ε〈BI, Ẑ〉

with I = (I0, I1, . . . , In), A = (Gij)0≤i,j≤n, B = (Gij)0≤j≤n<i and Ẑ = (|zn+1|2, |zn+2|2, . . .).
Suppose that the parameter vector is ξ̃ = (ξ̃j)0≤j≤n and the new action variable ρ̃ =

(ρ̃j)0≤j≤n is as follows: Ij = εξ̃j + ρ̃j , ξ̃j ∈ [0, 1], |ρ̃j | < ε2, 0 ≤ j ≤ n, then the normal

form is changed into

Λ + εG = 〈ω, J〉+
∑

0≤j≤n

√
λj ρ̃j +

∑
j>n

√
λjzjzj

+
ε2

2

∑
0≤i,j≤n

Gij ρ̃iξ̃j +
ε2

2

∑
0≤i,j≤n

Gij ξ̃iρ̃j +
ε

2

∑
0≤i,j≤n

Gij ρ̃iρ̃j

+ ε2
∑

0≤i≤n<j
Gij ξ̃i|zj |2 + ε

∑
0≤j≤n<i

Gij ρ̃j |zi|2.
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Hence, the total Hamiltonian is

H = 〈ω, J〉+
∑

0≤j≤n

√
λj ρ̃j +

∑
j>n

√
λjzjzj +

ε2

2

∑
0≤i,j≤n

Gij ρ̃iξ̃j

+
ε2

2

∑
0≤i,j≤n

Gij ξ̃iρ̃j + ε2
∑

0≤j≤n<i
Gij ξ̃j |zi|2 + P,

(3.37)

where P = εĞ+ εǦ+ ε2K and

|Ğ| = O(|ρ̃|2) +O(|ρ̃|‖Ẑ‖a,s).

At the end of this section, we give the estimates of the perturbed term P . At first,

we introduce some notations from [10]. Assume that z = (z0, z1, z2, . . .) with ‖z‖a,s <∞;

la,sn+1 is the Hilbert space of all complex sequences Z = {zj ∈ C : j ≥ n + 1} with

‖Z‖a,s := ‖Z̃‖a,s, Z̃ = {z̃j ∈ C, j ≥ 0}, z̃j = 0 as 0 ≤ j ≤ n and z̃j = zj as j ≥ n + 1;

x′ = ϑ⊕ θ, y = J ⊕ ρ̃, ζ = ω ⊕ (ξ̃j)0≤j≤n, then the phase space is

Pa,s = T̂m+n+1 × Cm+n+1 × la,sn+1 × l
a,s
n+1 3 (x′, y, Z, Z),

and

D(σ, r) := {(x′, y, Z, Z) ∈ Pa,s : | Imx′| < σ, |y| < r2, ‖Z‖a,s + ‖Z‖a,s < r},

where θ = (θj)0≤j≤n, T̂m+n+1 is the complexification of the usual (m+n+1)-torus Tm+n+1,

σ > 0 and r > 0. We define the weighted phase norms

|W |r = |W |s,r = |x′|+ 1

r2
|y|+ 1

r
‖Z‖a,s +

1

r
‖Z‖a,s

forW = (x′, y, Z, Z) ∈ Pa,s, and for a map U : D(σ, r)×Σ→ Pa,s, define its Lipschitz semi-

norm |U |Lr := supξ 6=ζ
|∆ξζU |r
|ξ−ζ| , where Σ is the parameter set Ω× [0, 1]n+1, ∆ξζU = U( · , ξ)−

U( · , ζ), and the supremum is taken over Σ. Denote by XP the vector field corresponding

the Hamiltonian P with respect to the symplectic structure dx′ ∧ dy + idZ ∧ dZ, namely,

XP = (∂yP,−∂x′P,−i∇ZP, i∇ZP ). The proof of Lemma 3.7 can be found in [18]. Here,

we omit it.

Lemma 3.7. The perturbation P (x′, y, Z, Z; ζ) is real analytic for the real argument

(x′, y, Z, Z) ∈ D(2σ, 2r) and some given σ, r > 0. And P is Lipschitz for the parame-

ter ζ ∈ Σ. For each ζ ∈ Σ, the gradients of P with respect to Z, Z satisfy ∂ZP, ∂ZP ∈
A(la,sn+1, l

a,s+1/2
n+1 ). In addition, for the perturbed term P , we have the following estimates

supD(σ,r)×Σ |XP |r ≤ Cε8/3 and supD(σ,r)×Σ |∂ζXP |r ≤ Cε8/3, where σ = σ1/4 and r = ε/2.
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4. A KAM theorem with application to Hamiltonian (3.37)

In order to prove our main result (Theorem 2.1), we apply an existing KAM theorem [8,10]

which is stated below.

Consider the perturbations of a family of linear integrable Hamiltonian

H0 =

n′∑
j=1

ω̂j(ξ)yj +
1

2

∞∑
j=n′+1

Ω̂j(ξ)(u
2
j + v2

j ),

in n′-dimensional angle-action coordinates (x′, y) and infinite-dimensional Cartesian co-

ordinates (u, v) with symplectic structure
∑n′

j=1 dx
′
j ∧ dyj +

∑∞
j=n′+1 duj ∧ dvj , where

n′ > 0 is an integer. The tangent frequencies ω̂ = (ω̂1, . . . , ω̂n′) and normal ones Ω̂ =

(Ω̂n′+1, Ω̂n′+2, . . .) depend on n′ parameters ξ ∈ Π ⊂ Rn′
, with Π a closed bounded set of

positive Lebesgue measure.

For each ξ there is an invariant n′-torus T n′
0 = Tn′ × {0, 0, 0} with frequencies ω̂(ξ).

In its normal space described by the uv-coordinates the origin is an elliptic fixed point

with characteristic frequencies Ω̂(ξ). Hence T n′
0 is linear stable. The aim is to prove the

persistence of a large portion of this family of linearly stable rotational tori under small

perturbations H = H0 + P of H0. To this end the following assumptions are made.

Assumption A. (Non-degeneracy). The map ξ 7→ ω̂(ξ) is a Lipeomorphism between Π

and its image, that is, a homomorphism which is Lipschitz continuous in both directions.

Moreover, for all integer vectors (k, l) ∈ Zn′ × Z∞ with 1 ≤ |l| ≤ 2, meas{ξ : 〈k, ω̂(ξ)〉 +

〈l, Ω̂(ξ)〉 = 0} = 0 and 〈l, Ω̂(ξ)〉 6= 0 on Π.

Assumption B. (Spectral asymptotics and the Lipschitz property). There exist ς ≥ 1

and δ < ς − 1 such that Ω̂j(ξ) = jς + · · · + O(jδ), where the dots stand for fixed lower

order term in j, allowing also negative exponents. More precisely, there exists a fixed,

parameter-independent sequence Ω with Ωj = jς + · · · such that the tails Ω̂j − Ωj give

rise to a Lipschitz map Ω̂j −Ωj : Π→ l−δ∞ , where lp∞ is the space of all real sequences with

the finite norm |w|p = supj |wj |jp.

Assumption C. (Regularity). The perturbation P (x, y, u, v; ξ) is real analytic for real

argument (x, y, u, v) ∈ D(σ, r) for given σ, r > 0, and Lipschitz in the parameters ξ ∈ Π,

and for each ξ ∈ Π its gradients with respect to u, v satisfy

Pu, Pv ∈ A(la,p, la,p),

p ≥ p for ς > 1,

p > p for ς = 1.

We assume that

(4.1) |ω̂|LΠ + |Ω̂|L−δ,Π ≤M <∞, |(ω̂)−1|Lω̂(Π) ≤ L <∞.
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In addition, we introduce the notations 〈l〉ς = max
(
1,
∣∣∑

j j
ς lj
∣∣), Ak = 1 + |k|τ , where

τ > n′ + 1 is fixed. Finally, let Z = {(k, l) 6= 0, |l| ≤ 2} ⊂ Zn′ × Z∞.

Theorem 4.1. [10, Theorem A] Suppose that H = H0 + P satisfies Assumptions A, B,

and C, and

(4.2) ε = sup
D(σ,r)×Π

|XP |r + sup
D(σ,r)×Π

α

M
|XP |Lr ≤ γα,

where 0 < α ≤ 1 is a parameter, and γ depends on n′, τ , and σ. Then there is a Cantor

set Πα ⊂ Π with meas(Π \ Πα) → 0 as α → 0, a Lipschitz continuous family of torus

embedding Φ: Tn′ ×Πα → Pa,p, and a Lipschitz continuous map ω̃ : Πα → Rn′
, such that

for each ξ ∈ Πα the map Φ restricted to Tn′×{ξ} is a real analytic embedding of an elliptic

rotational torus with frequencies ω̃(ξ) for the Hamiltonian H at ξ.

Each embedding is real analytic on | Imx| < σ/2, and

|Φ− Φ0|r +
α

M
|Φ− Φ0|Lr ≤

cε

α
, |ω̃ − ω̂|+ α

M
|ω̃ − ω̂|L ≤ cε,

uniformly on that domain and Πα, where Φ0 : Tn′ ×Π→ T n′
0 is the trivial embedding, and

c ≤ γ−1 depends on the same parameters as γ.

Moreover, there exist Lipschitz maps µj and Λj on Π for j ≥ 0 satisfying µ0 = ω̂,

Λ0 = Ω̂ and

|µj − ω̂|+
α

M
|µj − ω̂|L ≤ cε, |Λj − Ω̂|−δ +

α

M
|Λj − Ω̂|L−δ ≤ cε,

such that Π \Πα ⊂
⋃
Rjk,l(α), where

Rjk,l(α) =

{
ξ ∈ Π : |〈k, µj(ξ)〉+ 〈l,Λj(ξ)〉| < α

〈l〉d
Ak

}
,

and the union is taken over all j ≥ 0 and (k, l) ∈ Z such that |k| > K12j−1 for j ≥ 1 with

a constant K1 ≥ 1 depending only on n′ and τ .

Theorem 4.2. [10, Theorem D] Suppose that in Theorem 4.1 the unperturbed frequencies

are affine functions of the parameters. Then there is a constant c̃ such that

meas(Π \Πα) ≤ c̃(diam Π)n
′−1αµ̃, µ̃ =

1 for ς > 1,

κ
κ+1−($/4) for ς = 1,

for all sufficiently small α, where $ is any number in [0,min(p − p, 1)), and in the case

ς = 1, κ is a positive constant such that
Ω̂i−Ω̂j
i−j = 1 +O(j−κ), i > j uniformly on Π.

Remark 4.3. By Remarks in [16], c̃ = c1L
n′
Mn′−1 where c1 is an absolute constant.
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In order to apply the above theorems to our problem, we need to introduce a new

parameter ω. For any ω− ∈ Ω fixed and ω ∈ Ω := {ω ∈ Ω | |ω − ω−| ≤ ε}, suppose

ω = ω− + εω, ω ∈ [0, 1]m. The Hamiltonian (3.37) becomes

(4.3) H = 〈ω̂(ξ), y〉+ 〈Ω̂(ξ), Ẑ〉+ P,

where

(4.4) ω̂(ξ) = ω ⊕ ω̆, Ω̂(ξ) = β̃ + ε2Bξ̃,

B = (Gij)0≤j≤n<i, ω̆ = α̃+ ε2Aξ̃, A = (Gij)0≤i,j≤n, ξ = ω ⊕ ξ̃, Ẑ = (|zn+1|2, |zn+2|2, . . .),
y = J ⊕ ρ̃, α̃ = (

√
λ0,
√
λ1, . . . ,

√
λn), and β̃ = (

√
λn+1,

√
λn+2, . . .). So ω̆j (0 ≤ j ≤ n)

can be written as

ω̆j =
√
λj + ε2

n∑
i=0

Ajiξ̃i and Aij =


3g0

4π
√
λiλj

if i 6= j,

9g0
16πλi

if i = j 6= 0,

3g0
8πλ0

if i = j = 0.

Furthermore, we calculate and get that

detA =
3g0

4πλ0λ1 · · ·λn
·

(
1 +

n∑
i=0

1

ai − 1

)
(a0 − 1)(a1 − 1) · · · (an − 1) 6= 0,

where a0 = 1/2 and ai = 3/4 (1 ≤ i ≤ n). The proof of the following lemma is as same as

Lemma 3.7.

Lemma 4.4. Setting Π = [0, 1]m+n+1, we have XP ∈ A(la,sn+1, l
a,s+1/2
n+1 ), supD(σ,r)×Π |XP |r ≤

Cε8/3 and supD(σ,r)×Π |∂ζXP |r ≤ Cε8/3.

We introduce zj = 1√
2
(uj + ivj). The normal form (4.3) becomes

(4.5) H = 〈ω̂(ξ), y〉+
1

2
〈Ω̂(ξ), u2 + v2〉+ P

with respect to the symplectic structure
∑

0≤j≤n+m dxj ∧ dyj +
∑

j≥n+m+1 duj ∧ dvj . We

only need to verify Assumptions A, B, and C for (4.5).

Note that detA 6= 0 and min0≤i<n |ji+1 − ji| ≤ n. According to the same method

in [18, p. 2205], the Assumption A is verified. Assumption B is fulfilled for Ω̂ with δ = −1

and ς = 1. Assumption C holds by using of Lemma 4.4, letting p = s + 1/2 and p = s.

Furthermore, from (4.4), (4.1) is satisfied letting M = Cε and L = Cε−1. Setting α = ε2

and by Lemma 4.4, the smallness condition (4.2) is verified. Due to κ = 2, we can take

µ̃ = 24/35.

Applying Theorems 4.1 and 4.2 for Hamiltonian (4.5), the proof of Theorem 2.1 is

completed.
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5. Appendix

Proof of Lemma 3.2. When i, j, d, l are all non-zero integers, from [11], (3.7) holds true.

Thus we only discuss the case that at least one of i, j, d, l is zero. Without loss of generality,

we assume that |i| ≤ |j| ≤ |d| ≤ |l|. Then, (3.6) reduces to |i| − |j| − |d| + |l| = 0 and

|i|+ |j|+ |d|− |l| = 0. Now we distinguish δ = λ′i+λ′j +λ′d+λ′l according to the number of

minus signs. For convenience, we let for example δ+++− = +
√
λ|i|+

√
λ|j|+

√
λ|d|−

√
λ|l|.

It is similar for all the other combinations of plus and minus signs.

Case 1. All of i, j, d, l are 0 or −0. Since (i, j, d, l) /∈ Nn, (i, j, d, l) 6≡ (0,−0, 0,−0).

So |λ′i + λ′j + λ′d + λ′l| = 4
√
µ or 2

√
µ.

Case 2. Three of i, j, d, l are 0 or −0. This case can reduce to Case 1 because of (3.6).

Case 3. Two of i, j, d, l are 0 or −0. Without loss of generality, we assume i and j

are 0 or −0.

Case 3.1. When (i, j) ≡ (0, 0), |d| = |l| because of (3.6). When d = −l, |λ′i + λ′j +

λ′d + λ′l| = 2
√
µ. When d = l > 0, |λ′i + λ′j + λ′d + λ′l| ≥ 2

√
µ+ 2

√
1 + µ. When d = l < 0,

|λ′i + λ′j + λ′d + λ′l| ≥ 2
√

1 + µ− 2
√
µ.

Case 3.2. When (i, j) ≡ (−0,−0), |d| = |l| because of (3.6). When d = −l, |λ′i + λ′j +

λ′d + λ′l| = 2
√
µ. When d = l > 0, |λ′i + λ′j + λ′d + λ′l| ≥ 2

√
1 + µ− 2

√
µ. When d = l < 0,

|λ′i + λ′j + λ′d + λ′l| ≥ 2
√
µ+ 2

√
1 + µ.

Case 3.3. When (i, j) ≡ (−0, 0), |d| = |l| because of (3.6). Since (i, j, d, l) /∈ Nn,

d 6= −l. So we only consider the case d = l. When d = l, |λ′i+λ′j +λ′d+λ′l| = 2
√
d2 + µ ≥

2
√

1 + µ.

Case 4. When one of i, j, d, l is 0 or −0, without loss of generality, we assume

(5.1) i = 0 or − 0, and 0 = |i| < 1 ≤ |j| ≤ |d| ≤ |l|.

By using of (5.1), (3.6) reduces to

(5.2) |l| = |j|+ |d|.

Now we discuss δ according to the number of minus signs.

Case 4.0. No minus sign. δ++++ ≥
√
µ+ 3

√
µ+ 1.

Case 4.1. One minus sign. It is clear that δ++−+, δ+−++ ≥
√

1 + µ+
√
µ and δ−+++ >

2
√

1 + µ hold. The remaining is δ+++−. We consider the function δ2(µ) =
√
µ+
√
j2 + µ+√

d2 + µ−
√
l2 + µ, where j, d ≥ 1. From (5.2), δ2(0) = 0 and

δ′2(µ) =
1

2

(
1
√
µ

+
1√
j2 + µ

+
1√
d2 + µ

− 1√
(j + d)2 + µ

)
≥ 1

2
√
µ
> 0.

Hence, δ2(µ) is strictly monotone increasing in µ and we have that

δ2(µ) =

∫ µ

0
δ′2(µ) dµ ≥

∫ µ

0

1

2
√
µ
dµ =

√
µ.
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Case 4.2. Two minus signs. Since δ−+−+, δ−−++ ≥ δ+−−+, |δ+−+−| = |δ−+−+|,
|δ++−−| = |δ−−++| and |δ−++−| = |δ+−−+|, it suffices to discuss the case δ+−−+. From

(5.2), δ+−−+ =
√
µ−

√
|j|2 + µ−

√
|d|2 + µ+

√
(|j|+ |d|)2 + µ, where j, d ≤ −1.

We suppose that fd(x) :=
√

(x+ |d|)2 + µ−
√
x2 + µ for x ≥ 0, where d ≤ −1 is fixed.

So

f ′d(x) =
(|d|+ x)

√
x2 + µ− x

√
(|d|+ x)2 + µ√

(|d|+ x)2 + µ
√
x2 + µ

.

Now we compare (|d|+ x)
√
x2 + µ with x

√
(|d|+ x)2 + µ. Since[

(|d|+ x)
√
x2 + µ

]2 − [x√(|d|+ x)2 + µ
]2 ≥ µd2 ≥ µ > 0,

(|d| + x)
√
x2 + µ > x

√
(|d|+ x)2 + µ holds true. This yields that f ′d > 0 for x ≥ 0. So,

fd is strictly monotone increasing as x ≥ 0 which implies that fd(|j|) ≥ fd(1) > fd(0) if

j ≤ −1. It follows that fd(|j|)− fd(0) ≥ fd(1)− fd(0) > 0, which means

(5.3) δ+−−+ = fd(|j|)− fd(0) ≥
√

(|d|+ 1)2 + µ−
√

1 + µ−
√
|d|2 + µ+

√
µ.

In addition, we assume that f1(x) =
√

(x+ 1)2 + µ−
√
x2 + µ. Similar to the above

discussion, we can prove that f1 is strictly monotone increasing as x ≥ 0. Thus, we have

that f1(|d|) > f1(1/2) > f1(0) as d ≤ −1. So f1(|d|)− f1(0) > f1(1/2)− f1(0) > 0 which

means that √
(|d|+ 1)2 + µ−

√
1 + µ−

√
|d|2 + µ+

√
µ

>
√

(3/2)2 + µ−
√

(1/2)2 + µ−
√

1 + µ+
√
µ > 0.

(5.4)

Therefore, it is derived from (5.3) and (5.4) that δ+−−+ >
√

(3/2)2 + µ−
√

(1/2)2 + µ−
√

1 + µ+
√
µ > 0 .

Case 4.3. Three minus signs. This case can be reduced to Case 4.1.

Case 4.4. Four minus signs. This case can be reduced to Case 4.0.

All of the above, these lower bounds give the claimed estimate. The proof is completed.

Proof of Lemma 3.4. Assume

R2
ijdl,k =

{
ω ∈ [%, 2%]m : |λ′i + λ′j + λ′d + λ′l + 〈k, ω〉| < %ε1/3

|k|m+3

}

and Ω2 =
⋃
|k|≥1

⋃
i,j,d,lR2

ijdl,k. Consider two hyperplanes λ′i + λ′j + λ′d + λ′l + 〈k, ω〉 =

± %ε1/3

|k|m+3 . We have

(5.5) measR2
ijdl,k ≤ m|k|−1(

√
2%)m−1 2%ε1/3

|k|m+3
≤ 2(

√
2)m−1mε1/3

|k|m+3|k|
%m ≤ C %mε1/3

|k|m+3|k|
,
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where C depends on m.

Assume λ′i + λ′j + λ′d + λ′l 6= 0, k 6= 0 and (i, j, d, l) ∈ Ln. Now we let |i| =

min{|i|, |j|, |d|, |l|}. The other cases can be discussed in the same way. It is evident

that 0 ≤ |i| ≤ n.

Case 1. If j, d, l have same sign, we can assume fjdl = sgn j ·
(√

λ|j|+
√
λ|d|+

√
λ|l|
)
.

Let

R2,1
ijdl,k =

{
ω ∈ [%, 2%]m : |fjdl + λ′i + 〈k, ω〉| < %ε1/3

|k|m+3

}
and Ω2,1 =

⋃
|k|≥1

⋃
i,j,d,lR

2,1
ijdl,k. Clearly,

|λ′i + 〈k, ω〉| ≤ 2
√
n2 + µ+ 2|k||ω|

by using of 0 ≤ |i| ≤ n. So, when |fjdl| > 3
√
n2 + µ+ 2|k||ω|, we have

|fjdl + λ′i + 〈k, ω〉| > |fjdl| − |λ′i + 〈k, ω〉| >
√
n2 + µ ≥ %ε1/3

|k|m+3
,

when ε is small enough. This implies that the set R2,1
ijdl,k is empty. Therefore, we only

need to consider the case that j, d, l ≤ 3
√
n2 + µ + 2|k||ω| in order to calculate Ω2,1. It

yields that, from (5.5) and (3.35),

meas Ω2,1 = meas
⋃
|k|≥1

⋃
i,j,d,l

R2,1
ijdl,k

= meas
⋃
|k|≥1

⋃
0≤|i|≤n

⋃
|j|,|d|,|l|≤3

√
n2+µ+2|k||ω|

R2
ijdl,k

≤
∑
|k|≥1

2(n+ 1)
(

6
√
n2 + µ+ 4%|k|+ 2

)3 C%mε1/3

|k|m+3|k|

≤ C%mε1/3
∑
|k|≥1

1

|k|m+1
≤ C%mε1/3

∑
|k|=l≥1

1

lm+1
2mlm−1

= C2m%mε1/3
∑
l≥1

1

l2
≤ C%mε1/3,

where the constant C depends on µ, n, % and m.

Case 2. Assume j, d and l have different signs. Without loss of generality, we let that

j, d have the same sign, and l have the different sign. So, fjdl = sgn j ·
(√

λ|j| +
√
λ|d| −√

λ|l|
)

:= f̃jd + sgn l ·
√
λ|l|. The other cases can be discussed in the same way. Now, it

suffices to consider the two cases as follows.

Case 2.1. Suppose that |i| ≤ |l| ≤ Ñ ,

R2,2
ijdl,k =

{
ω ∈ [%, 2%]m :

∣∣f̃jd + sgn l ·
√
λ|l| + λ′i + 〈k, ω〉

∣∣ < %ε1/3

|k|m+5
, |l| ≤ Ñ

}
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and Ω2,2 =
⋃
|k|≥1

⋃
i,j,d,lR

2,2
ijdl,k, where

Ñ = Ñ1|k|, Ñ1 =
√
n2 + µ+ 2%+ 2

√
µ+ 2.

Then ∣∣∣ sgn l ·
√
λ|l| + λ′i + 〈k, ω〉

∣∣∣ ≤ 3

√
Ñ2 + µ+ |k||ω|.

When |f̃jd| > 4

√
Ñ2 + µ+ |k||ω|, it follows that, as ε small enough,∣∣∣f̃jd + sgn l ·

√
λ|l| + λ′i + 〈k, ω〉

∣∣∣ > |f̃jd| − ∣∣∣ sgn l ·
√
λ|l| + λ′i + 〈k, ω〉

∣∣∣
≥
√
Ñ2 + µ > Ñ > 2 >

%ε1/3

|k|m+3
,

which implies that the set R2,2
ijdl,k is empty. Therefore, we only need to consider the case

that j, d ≤ 4

√
Ñ2 + µ+ |k||ω| in order to calculate Ω2,2. It yields that

meas Ω2,2 = meas
⋃
|k|≥1

⋃
i,j,d,l

R2,2
ijdl,k

= meas
⋃
|k|≥1

⋃
0≤|i|≤n

⋃
|l|≤Ñ

⋃
|j|,|d|≤4

√
Ñ2+µ+|k||ω|

R2,2
ijdl,k

≤
∑
|k|≥1

4(n+ 1)(Ñ + 1)

(
8

√
Ñ2 + µ+ 4%|k|+ 2

)2 %mε1/3

|k|m+3|k|

≤ C%mε1/3
∑
|k|≥1

1

|k|m+1
≤ C%mε1/3

∑
|k|=l≥1

1

lm+1
2mlm−1

= C2m%mε1/3
∑
l≥1

1

l2
≤ C%mε1/3,

where the constant C depends on µ, n, % and m.

Case 2.2. Suppose that |l| > Ñ ,

R2,3
ijdl,k =

{
ω ∈ [%, 2%]m :

∣∣∣f̃jd + sgn l ·
√
λ|l| + λ′i + 〈k, ω〉

∣∣∣ < %ε1/3

|k|m+3
, |l| > Ñ

}
and Ω2,3 =

⋃
|k|≥1

⋃
i,j,d,lR

2,3
ijdl,k. We divide this case into two cases (a) and (b) below.

Case (a). If |d| = |l|, then
√
λ|d| =

√
λ|l|. We have∣∣∣f̃jd + sgn l ·

√
λ|l| + λ′i + 〈k, ω〉

∣∣∣ =
∣∣∣ sgn j ·

√
λ|j| + λ′i + 〈k, ω〉

∣∣∣.
If |j| ≥

√
n2 + µ+ |k||ω|+ 1, then it follows that∣∣∣f̃jd + sgn l ·

√
λ|l| + λ′i + 〈k, ω〉

∣∣∣ ≥ ∣∣∣√λ|j|∣∣∣− ∣∣λ′i + 〈k, ω〉
∣∣

>
√
n2 + µ+ |k||ω|+ 1−

√
n2 + µ− |k||ω|

≥ 1 ≥ %ε1/3

|k|m+5
,
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when ε small enough. So, it is sufficient to consider the case |j| <
√
n2 + µ + |k||ω| + 1.

In fact,

meas Ω2,3 = meas
⋃
|k|≥1

⋃
|j|<
√
n2+µ+|k||ω|+1

⋃
0≤|i|≤n

R2,3
ijdl,k

≤
∑
|k|≥1

2(n+ 1)
(√

n2 + µ+ |k||ω|+ 2
) C%mε1/3

|k||k|m+3

≤ C%mε1/3
∑
|k|≥1

1

|k|m+3
≤ C%mε1/3

∑
|k|=l≥1

1

lm+3
2mlm−1

= C2m%mε1/3
∑
l≥1

1

l4
≤ C%mε1/3,

where the constant C depends on n, µ, % and m. In the same way, we can get the same

result in the case |j| = |l|.
Case (b). Suppose that |d| 6= |l| and |j| 6= |l|. It is evident that∣∣∣√λ|d| −√λ|l|∣∣∣ =

∣∣∣∣∣|d|+ µ√
d2 + µ+ |d|

− |l| − µ√
l2 + µ+ |l|

∣∣∣∣∣
≥

∣∣∣∣∣∣∣|d| − |l|∣∣−
∣∣∣∣∣ µ√

d2 + µ+ |d|
+

µ√
l2 + µ+ |l|

∣∣∣∣∣
∣∣∣∣∣

≥
∣∣∣∣|d| − |l|∣∣− 2

√
µ
∣∣.

If p =
∣∣|d| − |l|∣∣ > Ñ , then∣∣∣f̃jd + sgn l ·

√
λ|l| + λ′i + 〈k, ω〉

∣∣∣
≥
√
λ|d| −

√
λ|l| −

√
i2 + µ− 2%|k| > Ñ − 2

√
µ−

√
n2 + µ− 2%|k|

=
(√

n2 + µ+ 2%+ 2µ+ 2
)
|k| − 2

√
µ−

√
n2 + µ− 2%|k| ≥ 2 ≥ %ε1/3

|k|m+3
,

which implies that the set R2,3
ijdl,k is empty, when ε is small enough. In the same way, we

can get the same result if q =
∣∣|j| − |l|∣∣ > Ñ . So we only need to consider the case that

1 ≤ p ≤ Ñ and 1 ≤ q ≤ Ñ .

Case (b.1). Let 1 ≤ p ≤ Ñ , 1 ≤ q ≤ Ñ and |d| > (2Ñ1 + 1)|k|. It follows that∣∣∣f̃jd + sgn l ·
√
λ|l| + λ′i + 〈k, ω〉

∣∣∣
≥
√
λ|d| −

∣∣∣√λ|j| −√λ|l|∣∣∣− ∣∣λ′i + 〈k, ω〉
∣∣

> (2Ñ1 + 1)|k| − (Ñ1|k|+ 2
√
µ)−

√
n2 + µ− 2%|k|

=
(√

n2 + µ+ 2%+ 2
√
µ+ 3

)
|k| − 2

√
µ−

√
n2 + µ− 2%|k|

≥ 3 ≥ %ε1/3

|k|m+3
,
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which implies that the set R2,3
ijdl,k is empty, when ε is small enough. In the same way, we

can get the same result if 1 ≤ p ≤ Ñ , 1 ≤ q ≤ Ñ and |j| > (2Ñ1 + 1)|k| hold. So we only

leave the following case.

Case (b.2). Let 1 ≤ p ≤ Ñ , 1 ≤ q ≤ Ñ , 0 ≤ |d| ≤ (2Ñ1 + 1)|k| and 0 ≤ |j| ≤
(2Ñ1 + 1)|k|. In this case, it can be reduced that 0 ≤ |l| ≤ (3Ñ1 + 1)|k|. So,

meas Ω2,3 = meas
⋃
|k|≥1

⋃
0≤|l|≤(3Ñ1+1)|k|

⋃
0≤|j|,|d|≤(2Ñ1+1)|k|

⋃
0≤|i|≤n

R2,3
ijdl,k

≤
∑
|k|≥1

2(n+ 1)
(
(4Ñ1 + 2)|k|+ 1

)2(
(6Ñ1 + 2)|k|+ 1

) C%mε1/3

|k||k|m+3

≤ C%mε1/3
∑
|k|≥1

1

|k|m+1
≤ C%mε1/3

∑
|k|=l≥1

1

lm+1
2mlm−1

= C2m%mε1/3
∑
l≥1

1

l2
≤ C%mε1/3,

where the constant C depends on n, µ, % and m.

In the same way, we can get the similar results in the cases |j|, |d| or |l| = min{|i|, |j|,
|d|, |l|} wherein we can construct sets similar to Ω2,1, Ω2,2 and Ω2,3, etc. Assume Ω2 is

the union of all the sets (the number of the sets is obviously finite). Thus, there is a

constant C2 such that meas Ω2 ≤ C2%
mε1/3, where C2 depends on µ, n, % and m. Finally,

we suppose Ω = [%, 2%]m \Ω2, which satisfies that meas Ω ≥ (1−C2ε
1/3)%m. The proof is

completed.
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