Nonseparating Independent Sets of Cartesian Product Graphs

Fayun Cao and Han Ren*

Abstract

A set of vertices S of a connected graph G is a nonseparating independent set if S is independent and $G-S$ is connected. The nsis number $\mathcal{Z}(G)$ is the maximum cardinality of a nonseparating independent set of G. It is well known that computing the nsis number of graphs is NP-hard even when restricted to 4-regular graphs. In this paper, we first present a new sufficient and necessary condition to describe the nsis number. Then, we completely solve the problem of counting the nsis number of hypercubes Q_{n} and Cartesian product of two cycles $C_{m} \square C_{n}$, respectively. We show that $\mathcal{Z}\left(Q_{n}\right)=2^{n-2}$ for $n \geq 2$, and $\mathcal{Z}\left(C_{m} \square C_{n}\right)=n+\lfloor(n+2) / 4\rfloor$ if $m=4$, $m+\lfloor(m+2) / 4\rfloor$ if $n=4$ and $\lfloor m n / 3\rfloor$ otherwise. Moreover, we find a maximum nonseparating independent set of Q_{n} and $C_{m} \square C_{n}$, respectively.

1. Introduction

Graphs considered in this paper are connected and simple. Throughout the paper, the letter G denotes a graph, and the cycle with n vertices is denoted by C_{n}. For $W \subseteq V(G)$, by $G-W$ and $G[W]$ we mean the subgraphs induced by $V(G)-W$ and W, respectively.

It is expected that the reader is somewhat familiar with topological graph theory. For general background, see Gross and Tucker [4], or Mohar and Thomassen [8].

An independent set of a graph is a set of vertices in which no two of them are adjacent. A maximum independent set is an independent set of largest possible size for a given graph. This size is called the independence number of G and denoted $\alpha(G)$. We say that a set $S \subseteq V(G)$ is a nonseparating independent set (or nsis in short) of a graph G if S is independent and $G-S$ is connected. The maximum cardinality of a nsis of G is called the nsis number of G and is denoted by $\mathcal{Z}(G)$. Furthermore, we call a nsis containing exactly $\mathcal{Z}(G)$ vertices a \mathcal{Z}-set. Finding a \mathcal{Z}-set of graphs is called the nsis problem.

A set $S \subseteq V(G)$ is a vertex cover of G if for every edge $u v$ of $E(G), u \subseteq S$ or $v \subseteq S$. The connected vertex cover (or cvc in brief) problem is the variation of the vertex cover

[^0]problem, where given a graph G, we find a vertex cover $S \subseteq V(G)$ of minimum cardinality such that the induced subgraph $G[S]$ is connected. In fact, the cvc problem is a classic problem in combinatorial optimization and operation research having many important applications in many fields. For example, in the field of wireless network design [9], the vertices and the edges represent the network nodes and transmission links, respectively. Some relay stations will be placed on some network nodes such that they form a connected subnetwork and every transmission link is incident to a relay station. People want to minimize the number of relay stations. This is exactly the cvc problem. In theory, the nsis problem is closely related with cvc problem. One may easily observe that S is a cvc if and only if $V(G)-S$ is a nsis.

In recent years, the nsis problem has been intensively studied from the algorithmic perspective because of their extensive applications. Garey and Johnson [3] had shown that this problem is NP-hard even for planar graphs with no degree exceeding 4. In particular, counting the nsis number of a 4-regular graph is also very hard [6]. Since then, researchers proved that it is also NP-complete in planar bipartite graphs of maximum degree 4 [2] and 3-connected graphs [12]. On the other hand, Ueno et al. [11] proved that this problem can be solved in polynomial time for graphs with no vertex degree exceeding 3. In addition, Escoffier et al. (1) showed that this problem is polynomial-time solvable in chordal graphs. From the literature, one may see that researchers only went an initial step towards the research of nsis problem. In fact, determining the nsis number of many certain graphs has been little studied. There is still much revolutionary work to do in the future.

In this paper, we shall determine the nsis numbers of hypercubes and Cartesian products of two cycles. As we will see in Sections 3 and 4 , a maximum nsis of hypercubes and Cartesian products of two cycles is constructed, respectively. Therefore, a minimum cvc follows.

We first introduce a sufficient and necessary condition which is viewed to be a new way to describe the nsis number. Let T be a spanning tree of a graph G, we denote by $\alpha_{1}(T)$ the independence number of the subgraph induced by its leaves (i.e., those of degree 1) of T. Then, we have the following result.

1. $\mathcal{Z}(G)=\max _{T}\left\{\alpha_{1}(T): T\right.$ is a spanning tree of $\left.G\right\}$, where the "max" is taken among all the possible spanning trees in G.

A spanning tree T attaining the "max" is called an optimal tree of G. It is easy to see that finding optimal trees for general graphs is NP-hard. Computationally, this implies that determining the nsis number is a very hard problem for general graphs. However, it may work well for some types of graphs such as cubic graphs and hypercubes Q_{n}. Based on the result above, we deduce that
2. $\mathcal{Z}\left(Q_{n}\right)=2^{n-2}$ for $n \geq 2$.

Finally, by construction of a \mathcal{Z}-set of the Cartesian product of two cycles $C_{m} \square C_{n}$. We obtain that
3.

$$
\mathcal{Z}\left(C_{m} \square C_{n}\right)= \begin{cases}n+\lfloor(n+2) / 4\rfloor & \text { if } m=4 \\ m+\lfloor(m+2) / 4\rfloor & \text { if } n=4 \\ \lfloor m n / 3\rfloor & \text { otherwise }\end{cases}
$$

2. Sufficient and necessary condition

In this section, we shall establish a new description for the nsis number of general graphs, as the following theorem shows.

Theorem 2.1. For any graph G,

$$
\mathcal{Z}(G)=\max _{T}\left\{\alpha_{1}(T): T \text { is a spanning tree of } G\right\} .
$$

Proof. Let S be a \mathcal{Z}-set of G. Then $G-S$ is connected. Therefore, there is a spanning tree T_{s} of $G-S$. Since G is connected and S is independent, every vertex of S has a neighbor in T_{s}. Thus, we can construct a spanning tree of T^{\prime} such that each vertex of S is a leaf of T^{\prime}. It follows that

$$
\mathcal{Z}(G) \leq \alpha_{1}\left(T^{\prime}\right) \leq \max _{T} \alpha_{1}(T)
$$

Now we prove the converse inequality. Select an arbitrary spanning tree T_{0} of G. Suppose that S_{0} is a maximum independent set of the subgraph induced by leaves of T_{0}. One may easily verify that S_{0} is a nsis of G. Thus, $\mathcal{Z}(G) \geq \alpha_{1}\left(T_{0}\right)$. Based on the arbitrariness of T_{0}, we conclude that

$$
\mathcal{Z}(G) \geq \max _{T} \alpha_{1}(T)
$$

This finishes the proof.
Theorem 2.1 reveals a new relation between the nsis number and spanning trees. In other words, finding a spanning tree T of G such that $\alpha_{1}(T)$ achieves its maximum is crucial in computing the nsis number of G.

It is possible to find an optimal tree T (i.e., $\alpha_{1}(T)=\mathcal{Z}(G)$) for some types of graphs such as cubic graphs. Here, we have to introduce some notations and results about topological graphs.

A surface is a compact connected 2-dimensional manifold without boundary. Surfaces are partitioned into two classes: orientable surfaces and nonorientable surfaces. The
orientable surface S_{g} can be obtained from the sphere with $2 g$ pairwise disjoint holes attached with g tubes such that each tube welds two holes. The nonorientable surface $N_{k}(k \geq 1)$ can be obtained from the sphere with k pairwise disjoint discs replaced by k Möbius bands. Recall that g and k are called the genus of S_{g} and N_{k}, respectively. A graph is said to be embeddable on a surface if it can be drawn on that surface in such a way that no two edges cross. Such a drawing is called an embedding. An embedding Π of G in a surface S is called a 2 -cell embedding if each component of $S-\Pi$ is homeomorphic to an open disc. The maximum genus $\gamma_{M}(G)$ of G is defined to be the maximum integer k such that there exists a cellular embedding of G into an orientable surface of genus k.

Given a spanning tree T of a graph G, the subgraph $G-E(T)$ is called a co-tree of G. A component of a co-tree $G-E(T)$ is called odd if it contains odd number of edges. We use $w(T ; G)$ to denote the number of odd components of $G-E(T)$. The Betti deficiency $\xi(G)$ is defined to be the minimum $w(T ; G)$ over all spanning trees. A spanning tree T of G such that $w(T ; G)=\xi(G)$ is said to be a Xuong-tree of G. The following results shows a relation between spanning tree and maximum genus.
(1) To compute the maximum genus of graphs, Xuong [13 gave the following edgepartition of co-trees. Let G be a connected graph with a Xuong-tree T_{X}. Then there exists an edge-partition of $G-E\left(T_{X}\right)$ as follows:

$$
E(G)-E\left(T_{X}\right)=\left\{e_{1}, e_{2}\right\} \cup\left\{e_{3}, e_{4}\right\} \cup \cdots \cup\left\{e_{2 m-1}, e_{2 m}\right\} \cup\left\{f_{1}, f_{2}, \ldots, f_{s}\right\}
$$

where (a) $m=\gamma_{M}(G), s=\xi(G)$; (b) for any i with $1 \leq i \leq m, e_{2 i-1} \cap e_{2 i} \neq \emptyset$ and $\left\{f_{1}, f_{2}, \ldots, f_{s}\right\}$ is a matching of G.

An edge-partition of K_{4} is shown in Figure 2.1.

Figure 2.1: An edge-partition of K_{4}.
(2) Huang and Liu [5], and Ren and Long [7], respectively, proved that $\mathcal{Z}(G)=\gamma_{M}(G)$ holds for each cubic graph G.

Let T_{X} be a Xuong-tree of a cubic graph G with edge-partition as described in (1). Then the vertex set $\left\{u_{i}: u_{i} \in e_{2 i-1} \cap e_{2 i}, 1 \leq i \leq \gamma_{M}(G)\right\}$ is an independent set of G. Furthermore, for every i with $1 \leq i \leq \gamma_{M}(G), u_{i}$ is a leaf of T_{X}. Thereby, $S=$ $\left\{u_{1}, u_{2}, \ldots, u_{\gamma_{M}(G)}\right\}$ is a nsis of G. Together with (2), these imply that S is a \mathcal{Z}-set. It follows that the Xuong-tree T_{X} is an optimal tree of G.

It follows from the above statement that, for a cubic graph G, computing its maximum genus, computing its nsis number $\mathcal{Z}(G)$ and fining a Xuong-tree are mutually equivalent. In Section 3, we will show spanning trees like Xuong-trees also play an important role in solving the nsis problem of hypercubes.

3. Hypercubes

In this section, we shall solve the nsis problem of hypercubes. Before proving our theorems, we need to introduce some basic terminologies and notations.

The Cartesian product $G \square H$ of two disjoint graphs G and H is the graph with the vertex set $V(G) \times V(H)$ and for which $(x, u)(y, v)$ is an edge if $x=y$ and $u v \in E(H)$, or $x y \in E(G)$ and $u=v$. The hypercube, denoted by Q_{n}, of dimension $n(\geq 1)$ is a graph obtained by taking Cartesian product of the complete graph K_{2} with itself n times; that is, $Q_{n}=K_{2} \square K_{2} \cdots \square K_{2}$ (n times) (see Figure 3.1 for instance). Apparently, $Q_{n}=K_{2} \square Q_{n-1}$ and Q_{n} is an n-regular, n-connected, bipartite graph with 2^{n} vertices. It is one of the most popular interconnection network topologies.

Figure 3.1: Q_{2} and Q_{3}.

Before stating our result, we should calculate the independence number $\alpha\left(Q_{n}\right)$.
Lemma 3.1. $\alpha\left(Q_{n}\right)=2^{n-1}$ for $n \geq 1$.
Proof. Since every hypercube is bipartite, $\alpha\left(Q_{n}\right) \geq\left|V\left(Q_{n}\right)\right| / 2$. That is

$$
\begin{equation*}
\alpha\left(Q_{n}\right) \geq 2^{n} / 2=2^{n-1} \tag{3.1}
\end{equation*}
$$

We prove the converse inequality by induction on n. There is nothing to prove for $n \leq 2$. Suppose that $n \geq 3$. Recall that Q_{n} is obtained from two copies of Q_{n-1}, say Q_{n-1}^{1}, Q_{n-1}^{2}. Let S be an independent set of Q_{n}. Then the sets $S \cap V\left(Q_{n-1}^{1}\right)$ and $S \cap V\left(Q_{n-1}^{2}\right)$ are independent sets of Q_{n-1}^{1} and Q_{n-1}^{2}, respectively. It follows that $\left|S \cap V\left(Q_{n-1}^{1}\right)\right| \leq \alpha\left(Q_{n-1}^{1}\right)$ and $\left|S \cap V\left(Q_{n-1}^{2}\right)\right| \leq \alpha\left(Q_{n-1}^{2}\right)$. By the induction hypothesis,

$$
\begin{equation*}
|S|=\left|S \cap V\left(Q_{n-1}^{1}\right)\right|+\left|S \cap V\left(Q_{n-1}^{2}\right)\right| \leq 2 \cdot \alpha\left(Q_{n-1}\right) \leq 2 \cdot 2^{n-2}=2^{n-1} \tag{3.2}
\end{equation*}
$$

Using (3.1) and (3.2), we get that $|S|=\alpha\left(Q_{n}\right)=2^{n-1}$.

We now put all of the above together to count the value of $\mathcal{Z}\left(Q_{n}\right)$.
Theorem 3.2. $\mathcal{Z}\left(Q_{n}\right)=\alpha\left(Q_{n-1}\right)=2^{n-2}$ for $n \geq 2$.
Proof. We use Q_{n-1}^{1} and Q_{n-1}^{2} to denote the two copies of Q_{n-1} which constitute Q_{n}. Let T_{n-1} be a spanning tree of Q_{n-1}^{1}. Then, we get a spanning tree T_{n} of Q_{n} by adding the edges between the corresponding vertices in Q_{n-1}^{1} and Q_{n-1}^{2} (see Figure 3.2 for Q_{4} and T_{4}). Note that the leaves of T_{n} consist of the vertices of Q_{n-1}^{1}. Using Theorem 2.1. one may see that

$$
\mathcal{Z}\left(Q_{n}\right) \geq \alpha_{1}(T)=\alpha\left(Q_{n-1}\right)
$$

Figure 3.2: Q_{4} and T_{4}.

To prove the converse inequality, we use induction n. The inequality is true for $n=2$. So, assume that $n \geq 3$ and S a \mathcal{Z}-set of Q_{n}. Suppose that $S=A_{1} \cup C_{2}$, where $A_{1} \subseteq$ $V\left(Q_{n-1}^{1}\right)$ and $C_{2} \subseteq V\left(Q_{n-1}^{2}\right)$. Denote by C_{1} the copy of C_{2} in $V\left(Q_{n-1}^{1}\right)$. Then $V\left(Q_{n-1}^{1}\right)$ is divided into three parts A_{1}, B_{1}, C_{1}, in other words, $V\left(Q_{n-1}^{1}\right)=A_{1} \cup B_{1} \cup C_{1}$, where $B_{1}=V\left(Q_{n-1}^{1}\right)-\left(A_{1} \cup C_{1}\right)$. Analogously, $V\left(Q_{n-1}^{2}\right)=A_{2} \cup B_{2} \cup C_{2}$ (for an intuitive perception, see Figure 3.3).

Figure 3.3: A partition of Q_{n}.
We claim that A_{1} is a nsis of Q_{n-1}^{1}. To see its validity, it suffices to prove that $Q_{n-1}^{1}\left[B_{1} \cup\right.$ $\left.C_{1}\right]$ is a connected subgraph of Q_{n-1}^{1}. Since $Q_{n}\left[B_{1} \cup C_{1} \cup A_{2} \cup B_{2}\right]$ is connected, and edges between $Q_{n-1}^{1}\left[B_{1} \cup C_{1}\right]$ and $Q_{n-1}^{2}\left[A_{2} \cup B_{2}\right]$ are those joining B_{1} and $B_{2}, Q_{n-1}^{1}\left[B_{1} \cup C_{1}\right]$ is connected. Similarly, C_{2} is a nsis of Q_{n-1}^{2}. This means that

$$
\mathcal{Z}\left(Q_{n}\right)=|S|=\left|A_{1}\right|+\left|C_{2}\right| \leq \mathcal{Z}\left(Q_{n-1}^{1}\right)+\mathcal{Z}\left(Q_{n-1}^{2}\right)=2 \cdot \mathcal{Z}\left(Q_{n-1}\right)
$$

By the induction hypothesis,

$$
\mathcal{Z}\left(Q_{n}\right) \leq 2 \cdot \mathcal{Z}\left(Q_{n-1}\right) \leq 2 \cdot \alpha\left(Q_{n-2}\right)
$$

Using Lemma 3.1, we derive that $\mathcal{Z}\left(Q_{n}\right) \leq \alpha\left(Q_{n-1}\right)$. The proof is completed.
Remark 3.3. By virtue of the proof of Theorem 3.2, we obtain that every maximum independent set of Q_{n-1} is a maximum nsis of Q_{n}. Note that Q_{n-1} is balanced bipartite, which together with Lemma 3.1 implies that each part of the bipartition of Q_{n-1} is a maximum independent set of Q_{n-1}, as well as a maximum nsis of Q_{n}.

Recalling Theorem 2.1, there exists a spanning tree T of Q_{n} such that $\alpha_{1}(T)=2^{n-2}$. In fact, some Xuong-tree of Q_{n} could be chosen as such a tree T. In order to find the Xuong-tree more effectively, we need to character the value of $\xi\left(Q_{n}\right)$.

Proposition 3.4. $\xi\left(Q_{n}\right)=1$ for $n \geq 2$.
Proof. We prove it by induction on n. Clearly, $\xi\left(Q_{2}\right)=1$. Now, we assume that $n \geq 3$. Also, we use Q_{n-1}^{1} and Q_{n-1}^{2} to denote the two copies of Q_{n-1} which constitute Q_{n}. Let T_{n-1} be a Xuong-tree of Q_{n-1}^{1}, i.e., $w\left(T_{n-1} ; Q_{n-1}^{1}\right)=1$. Then, we could construct a spanning tree T_{n} of Q_{n} by adding the edges between the corresponding vertices in Q_{n-1}^{1} and Q_{n-1}^{2}. Since the number of edges in Q_{n-1}^{2} is even, $w\left(T_{n} ; Q_{n}\right)=1$. It means that T_{n} is a Xuong-tree of Q_{n}. Therefore, $\xi\left(Q_{n}\right)=1$. We finish the proof.

In Proposition 3.4, one may easily deduce that $\alpha_{1}\left(T_{n}\right)=2^{n-2}$. That is to say, the Xuong-tree T_{n} is an optimal tree of Q_{n}.

4. Cartesian product of two cycles

In this section, we shall solve the nsis problem of $C_{m} \square C_{n}$. The general idea of the proof is as follows. First, we establish an upper bound on the nsis number in $C_{m} \square C_{n}$. Second, we construct nonseparating independent sets (nsiss for short) achieving this bound.

Figure 4.1: $C_{3} \square C_{5}$.

We use the following standard labeling for the vertices of $C_{m} \square C_{n}$ and choose one that corresponds to matrix notation: the i-th vertex in the j-th copy of C_{m} will be denoted by
$u_{i, j}$. For example, in Figure 4.1 the vertex labelled by "•" is denoted by $u_{2,3}$. Carrying the matrix analogy further, we sometimes also speak of the copies of C_{m} and C_{n} as the columns and rows, respectively, of $C_{m} \square C_{n}$. In order to recognize the nsis more easily in our figures, we only show the vertices to be explicitly removed.

Before going into details, we lay out a useful result, due to Pike and Zou [10], about the decycling number $\nabla(G)$ of a graph G, namely, the minimum number of vertices that have to be deleted in order to turn G into a forest.

Theorem 4.1. 10

$$
\nabla\left(C_{m} \square C_{n}\right)= \begin{cases}\lceil 3 n / 2\rceil & \text { if } m=4, \\ \lceil 3 m / 2\rceil & \text { if } n=4, \\ \lceil(m n+2) / 3\rceil & \text { otherwise }\end{cases}
$$

Based on the above theorem, we build an upper bound on the nsis number of $C_{m} \square C_{n}$.

Lemma 4.2.

$$
\mathcal{Z}\left(C_{m} \square C_{n}\right) \leq \begin{cases}n+\lfloor(n+2) / 4\rfloor & \text { if } m=4 \\ m+\lfloor(m+2) / 4\rfloor & \text { if } n=4 \\ \lfloor m n / 3\rfloor & \text { otherwise }\end{cases}
$$

Proof. Let S be a \mathcal{Z}-set of $C_{m} \square C_{n}$. For brevity, suppose that $|S|=k$. Then,

$$
4 k+(m n-k-1+c)=2 m n
$$

where $4 k$ is the number of edges incident to $S, 2 m n$ is the number of edges of $C_{m} \square C_{n}$ and $m n-k-1$ is the number of edges of a spanning tree in $C_{m} \square C_{n}-S$, and $c \geq 0$ is a parameter. This implies that

$$
\begin{equation*}
3 k=m n+1-c . \tag{4.1}
\end{equation*}
$$

Notice that for any graph, its $j(\geq 0)$ edges can be covered by at most j vertices. Let T be a spanning tree of $C_{m} \square C_{n}-S$. Then, c is the number of edges in the co-tree $\left(C_{m} \square C_{n}-S\right)-E(T)$. Thus, we can choose a set of vertices S_{c} of $C_{m} \square C_{n}-S$ such that S_{c} covers the edges of $\left(C_{m} \square C_{n}-S\right)-E(T)$ with $\left|S_{c}\right| \leq c$. It is straightforward to verify that the deletion S_{c} from $C_{m} \square C_{n}-S$ leads to a forest. Now we deal with the following cases.

Case 1: $m=4$. Applying the definition of the decycing number and Theorem 4.1, we deduce that

$$
\begin{equation*}
k+c \geq\left|S \cup S_{c}\right| \geq\left\lceil\frac{3 n}{2}\right\rceil \geq \frac{3 n}{2} \tag{4.2}
\end{equation*}
$$

Putting (4.1) and (4.2) together, we obtain that

$$
(4 n+1-c)+(k+c) \geq 3 k+\frac{3 n}{2} .
$$

Therefore, $2 k \leq 4 n+1-3 n / 2$, and so $k \leq n+(n+2) / 4$. Since k is a positive integer, $k \leq n+\lfloor(n+2) / 4\rfloor$.

Case 2: $n=4$. By the symmetry of $C_{m} \square C_{n}$ and Case 1, it is easily seen that $k \leq m+\lfloor(m+2) / 4\rfloor$.

Case 3: $m \neq 4$ and $n \neq 4$. Under this case, we claim that $c \geq 1$. Suppose on the contrary that $c=0$. Then S is decycling set with size $(m n+1) / 3$. This is contradictory to Theorem 4.1. Hence, $k \leq\lfloor m n / 3\rfloor$.

Observing Lemma 4.2, the result in $C_{4} \square C_{n}$ is different from other cases. Therefore, we first deal with this case.

Lemma 4.3. $\mathcal{Z}\left(C_{4} \square C_{n}\right)=n+\lfloor(n+2) / 4\rfloor$.
Proof. By Lemma 4.2, $\mathcal{Z}\left(C_{4} \square C_{n}\right) \leq n+\lfloor(n+2) / 4\rfloor$. We now construct nsiss with that size. Let $r=\lfloor n / 4\rfloor$ and

$$
M=\bigcup_{i=1}^{r}\left\{u_{1,4 i-3}, u_{3,4 i-3}, u_{2,4 i-2}, u_{1,4 i-1}, u_{3,4 i-1}\right\}
$$

Then, M is a nsis of $C_{4} \square C_{n}$, when $n \equiv 0(\bmod 4) ; M \cup\left\{u_{4, n-1}\right\}$ is a nsis of $C_{4} \square C_{n}$, when $n \equiv 1(\bmod 4) ; M \cup\left\{u_{4, n-2}, u_{1, n-1}, u_{3, n-1}\right\}$ is a nsis of $C_{4} \square C_{n}$, when $n \equiv 2(\bmod 4)$; $M \cup\left\{u_{1, n-2}, u_{3, n-2}, u_{2, n-1}, u_{4, n-1}\right\}$ is a nsis of $C_{4} \square C_{n}$, when $n \equiv 3(\bmod 4)$ (as depicted in Figure 4.2 for $n=15$).

Figure 4.2: A \mathcal{Z}-set of $C_{4} \square C_{15}$.
It is not hard to check that each nsis above has size $n+\lfloor(n+2) / 4\rfloor$. Thus, the proof is finished.

In the rest part of this section, we devote to general cases, starting with several specific cases. By the symmetry of $C_{m} \square C_{n}$, from now on, we assume that $4 \notin\{m, n\}$.

First, we treat the cases $C_{3} \square C_{n}$ and $C_{8} \square C_{n}$.
Lemma 4.4. $\mathcal{Z}\left(C_{3} \square C_{n}\right)=n$.

Proof. By Lemma 4.2, $\mathcal{Z}\left(C_{3} \square C_{n}\right) \leq n$. Let $k=\lfloor n / 3\rfloor$ and $M=\bigcup_{i=1}^{k}\left\{u_{1,3 i-2}, u_{2,3 i-1}\right.$, $\left.u_{3,3 i}\right\}$. It is not hard to verify that $S=M$ is a nsis of $C_{3} \square C_{n}$, where $n \equiv 0(\bmod 3)$; $S=M \cup\left\{u_{2, n}\right\}$ is a nsis of $C_{3} \square C_{n}$, where $n \equiv 1(\bmod 3)$ (see Figure 4.3 for $C_{3} \square C_{10}$); $S=M \cup\left\{u_{1, n-1}, u_{2, n}\right\}$ is a nsis of $C_{3} \square C_{n}$, where $n \equiv 2(\bmod 3)$.

Figure 4.3: $\mathrm{A} \mathcal{Z}$-set of $C_{3} \square C_{10}$.

In each case, $|S|=n$. So, S is a \mathcal{Z}-set of $C_{3} \square C_{n}$. This lemma is proved.
Lemma 4.5. $\mathcal{Z}\left(C_{8} \square C_{n}\right)=\lfloor 8 n / 3\rfloor$.
Proof. Again by Lemma 4.2, $\mathcal{Z}\left(C_{8} \square C_{n}\right) \leq\lfloor 8 n / 3\rfloor$. We further construct nsiss which achieve this bound. Let $k=\lfloor n / 3\rfloor$ and

$$
M=\bigcup_{i=1}^{k}\left\{u_{1,3 i-2}, u_{4,3 i-2}, u_{7,3 i-2}, u_{2,3 i-1}, u_{5,3 i-1}, u_{3,3 i}, u_{6,3 i}, u_{8,3 i}\right\} .
$$

For $n \equiv 0(\bmod 6),\left(M-\left\{u_{2, n-1}, u_{3, n}\right\}\right) \cup\left\{u_{3, n-1}, u_{2, n}\right\}$ is a nsis. For $n \equiv 1(\bmod 6), M \cup$ $\left\{u_{2, n}, u_{5, n}\right\}$ is a nsis. For $n \equiv 2(\bmod 6),\left(M-\left\{u_{3, n-2}, u_{6, n-2}, u_{8, n-2}\right\}\right) \cup\left\{u_{1, n-2}, u_{4, n-2}\right.$, $\left.u_{7, n-2}, u_{2, n-1}, u_{6, n-1}, u_{8, n-1}, u_{3, n}, u_{5, n}\right\}$ is a nsis. For $n \equiv 3(\bmod 6), M$ is a nsis. For $n \equiv 4(\bmod 6),\left(M-\left\{u_{3, n-1}, u_{6, n-1}, u_{8, n-1}\right\}\right) \cup\left\{u_{1, n-1}, u_{4, n-1}, u_{7, n-1}, u_{2, n}, u_{6, n}\right\}$ is a nsis. For $n \equiv 5(\bmod 6), M \cup\left\{u_{2, n-1}, u_{5, n-1}, u_{7, n-1}, u_{3, n}, u_{8, n}\right\}$ is a nsis.

Note that all of these nsiss have size $\lfloor 8 n / 3\rfloor$. Thus, we build the lemma.
Next, we give a result that will be frequently used later.
Lemma 4.6 (Double Expanding Lemma). Suppose that S is a nsis of $C_{m} \square C_{n}$. Let $T=\left\{u_{2 i, 2 j}: i=1,2, \ldots, m, j=1,2, \ldots, n\right\}$ and $S^{\prime}=\left\{u_{2 i-1,2 j-1}: u_{i, j} \in S\right\}$. Then $T \cup S^{\prime}$ is a nsis of $C_{2 m} \square C_{2 n}$.

Proof. Obviously, $C_{2 m} \square C_{2 n}-T$ is homeomorphic to a subdivision of $C_{m} \square C_{n}$. Hence, $C_{2 m} \square C_{2 n}-T-S^{\prime}$ is connected. Note that $u_{2 i, 2 j}$ is not adjacent to $u_{2 k-1,2 h-1}$ for any $i, j, k, h \geq 1$. It follows that $T \cup S^{\prime}$ is independent. We conclude that $T \cup S^{\prime}$ is a nsis of $C_{2 m} \square C_{2 n}$.

Figure 4.4 shows the expansion from $C_{3} \square C_{3}$ to $C_{6} \square C_{6}$.

\longrightarrow

Figure 4.4: The expansion from $C_{3} \square C_{3}$ to $C_{6} \square C_{6}$.

Based on Lemmas 4.4, 4.5 and 4.6, the case $m \equiv 0(\bmod 3)$ turns out to be easy.
Lemma 4.7. $\mathcal{Z}\left(C_{m} \square C_{n}\right)=r n$, where $m=3 r$.
Proof. According to Lemma 4.2, $\mathcal{Z}\left(C_{m} \square C_{n}\right) \leq r n$. If n is odd, we define

$$
M=\bigcup_{i=1}^{r}\left(\left\{u_{3 i-2,1}\right\} \cup \bigcup_{j=1}^{k}\left\{u_{3 i-1,2 j}, u_{3 i, 2 j+1}\right\}\right),
$$

where $n=2 k+1$ (see Figure 4.5 for $C_{6} \square C_{7}$). Considering the subgraph $\left(C_{3 r} \square C_{n}\right)-M$, rows $3 i-2,3 i-1$ and $3 i$ have a path from $u_{3 i-2,2}$ to $u_{3 i, 2}$, for each $1 \leq i \leq r$. By joining these paths we have a cycle C. Each vertex beyond the cycle C and M has one neighbor in C. So, $\left(C_{3 r} \square C_{n}\right)-M$ is connected. It is clear that M is a nsis.

Figure 4.5: A \mathcal{Z}-set of $C_{6} \square C_{7}$.

If n is even and r is odd, set

$$
M=\bigcup_{i=1}^{r}\left(\left\{u_{3 i-2,1}, u_{3 i-2, n-2}, u_{3 i, n-1}, u_{3 i-1, n}\right\} \cup \bigcup_{j=1}^{k}\left\{u_{3 i, 2 j}, u_{3 i-1,2 j+1}\right\}\right)
$$

where $n=2 k+4$. By an argument similar to above discussion, we have that M is a nsis. In both cases above, $|M|=r n$.

Now suppose that both of r and n are even and k the minimum nonegative integer such that $r / 2^{k}$ or $n / 2^{k}$ is odd, or $n / 2^{k}$ equals 8 . Let $m_{i}=m / 2^{k-i}$ and $n_{i}=n / 2^{k-i}$ for
each $i=0,1, \ldots, k$. By means of Lemma 4.5 and the discussion above, we may obtain a nsis with size $r n / 2^{2 k}$ in $C_{m_{0}} \square C_{n_{0}}$. Now for each $i=0,1, \ldots, k-1$, by using Lemma 4.6 we could construct a nsis with size $\mathcal{Z}\left(C_{m_{0}} \square C_{n_{0}}\right)+\frac{m n}{2^{2 k}} \sum_{j=0}^{i} 4^{j}$ in $C_{m_{i+1}} \square C_{n_{i+1}}$. Finally, after a sequence of construction, we get a nsis with size $r n$ of $C_{m} \square C_{n}$. As a consequence, $\mathcal{Z}\left(C_{m} \square C_{n}\right)=r n$.

In the rest, we devote to the other cases. Since we have already handled the case $m \equiv 0$ $(\bmod 3)$, we only need to consider the cases $m \equiv i(\bmod 6), i=1,2,4,5$. By Lemma 4.7 and the symmetry of $C_{m} \square C_{n}$, we don't have to consider the case $n \equiv 0(\bmod 3)$ for any m.

Now, we start to deal with $C_{6 r+1} \square C_{n}, r \geq 1$. First, we turn our attention to $C_{7} \square C_{n}$.
Lemma 4.8. $\mathcal{Z}\left(C_{7} \square C_{n}\right)=\lfloor 7 n / 3\rfloor$.
Proof. By Lemma 4.2, $\mathcal{Z}\left(C_{7} \square C_{n}\right) \leq\lfloor 7 n / 3\rfloor$. Let $k=\lfloor n / 3\rfloor$.
For $n \equiv 1(\bmod 3), S_{1}^{1}=\bigcup_{i=1}^{k-1}\left\{u_{2,3 i-2}, u_{6,3 i-2}, u_{3,3 i-1}, u_{5,3 i-1}, u_{7,3 i-1}, u_{1,3 i}, u_{4,3 i}\right\} \cup$ $\left\{u_{3, n-3}, u_{7, n-3}, u_{2, n-2}, u_{5, n-2}, u_{1, n-1}, u_{3, n-1}, u_{6, n-1}, u_{4, n}, u_{7, n}\right\}$ is a nsis.

For $n \equiv 2(\bmod 3), S_{1}^{2}=\bigcup_{i=1}^{k}\left\{u_{1,3 i-2}, u_{5,3 i-2}, u_{2,3 i-1}, u_{4,3 i-1}, u_{7,3 i-1}, u_{3,3 i}, u_{6,3 i}\right\} \cup$ $\left\{u_{1, n-1}, u_{4, n-1}, u_{3, n}, u_{6, n}\right\}$ is a nsis.

Furthermore, both of S_{1}^{1} and S_{1}^{2} have size $\lfloor 7 n / 3\rfloor$. Thus, the proof is finished.
In Figure 4.6, we depicts a nsis of $C_{7} \square C_{7}$ and $C_{7} \square C_{8}$, respectively.

Figure 4.6: \mathcal{Z}-sets of $C_{7} \square C_{7}$ and $C_{7} \square C_{8}$.

Next, we construct a \mathcal{Z}-set of $C_{6 r+1} \square C_{n}$ for $r \geq 2$.
Lemma 4.9. If $m=6 r+1$, then $\mathcal{Z}\left(C_{m} \square C_{n}\right)=2 r n+\lfloor n / 3\rfloor$.
Proof. If $r=1$, then the result follows from Lemma 4.8. For $r>1$, we construct a \mathcal{Z}-set by employing the idea as follows. We first choose the \mathcal{Z}-set of $C_{7} \square C_{n}$ as described in Lemma 4.8, and then add additional 6 new rows to $C_{7} \square C_{n}$ and select $2 n$ vertices from these 6 new rows to add to the chosen \mathcal{Z}-set as a new \mathcal{Z}-set of $C_{7+6} \square C_{n}$. Repeat this operation until we get a \mathcal{Z}-set with size $2 r n+\lfloor n / 3\rfloor$ in $C_{m} \square C_{n}$. The detailed operation is depicted as follows.

We further consider two cases.
(a) $n \equiv 1(\bmod 3)$. Let $n=3 t+1$. We start with the \mathcal{Z}-set S_{1}^{1} of $C_{7} \square C_{n}$ as described in Lemma 4.8. We say that a row is type- 5 if its deleted vertices are in the same columns as those of the fifth row of $C_{7} \square C_{n}$ in Lemma 4.8. Type- 6 and type-7 rows are defined analogously. Focusing on the three consecutive rows: type- $5,6,7$ in $C_{7} \square C_{n}$, we now illustrate how to insert six new rows and obtain a \mathcal{Z}-set of $C_{7+6} \square C_{n}$. Following the row of type- 5 in $C_{7} \square C_{n}$, we insert three new rows, the first two being of type- 6 and type7 , respectively. For the third, we select the vertices in columns $3 i(i=1,2, \ldots, t-1)$ and $n-2$ to add to S_{1}^{1}. Now, following the original type- 6 row, we insert another three new rows. For the first of these three new rows, we select the vertices in columns $3 i$ $(i=1,2, \ldots, t-1), n-2$ and n. For the second row, we select the vertices in columns $3 i-1(i=1,2, \ldots, t-1)$ and $n-3$ to add to S_{1}^{1}. We select the type- 6 row as the third row. Thus, we have a nsis S_{2} of $C_{7+6} \square C_{n}$. Obviously, $\left|S_{2}\right|=4 n+\lfloor n / 3\rfloor$. Hence, S_{2} is a \mathcal{Z}-set of $C_{7+6} \square C_{n}$. Note that the new graph $C_{7+6} \square C_{n}$ contains three consecutive rows that are of type-5, 6, 7 (Figure 4.7 shows the insertion process for $n=13$).

Figure 4.7: $n=13$.

So, the insertion process may be repeated until we get a \mathcal{Z}-set of $C_{m} \square C_{n}$ whose size is $2 r n+\lfloor n / 3\rfloor$.
(b) $n \equiv 2(\bmod 3)$. Let $n=3 t+2$. As before, we begin with the \mathcal{Z}-set S_{1}^{2} of $C_{7} \square C_{n}$. A row is type-4 if its deleted vertices are in the same columns as those of the fourth row of $C_{7} \square C_{n}$. Similarly, a row is type- 5 (resp. type-6) if its deleted vertices are in the same columns as those of the fifth (resp. sixth) row of $C_{7} \square C_{n}$.

Figure 4.8: $n=14$.

Focusing on the three consecutive rows: type- $4,5,6$ in $C_{7} \square C_{n}$, we are ready to insert six new rows and obtain a \mathcal{Z}-set of $C_{7+6} \square C_{n}$. Following the row of type- 4 in $C_{7} \square C_{n}$, we insert three new rows, being of type-5, type-4, and type-6 in that order. Following the original type- 5 row, we insert another three new rows, being of type- 6 , type- 4 , and type- 5 in that order. After the insertion, we obtain a nsis S_{2} of $C_{7+6} \square C_{n}$. Of course, $\left|S_{2}\right|=4 n+\lfloor n / 3\rfloor$ (see Figure 4.8 for an example of the case $n=14$). That is to say, S_{2} is a \mathcal{Z}-set of $C_{7+6} \square C_{n}$. Note that the new graph, $C_{7+6} \square C_{n}$ contains three consecutive rows that are of type-4,5, 6 in that order. Hence we can repeat insertion procedure. Finally, we get a \mathcal{Z}-set of $C_{m} \square C_{n}$ with size $2 r n+\lfloor n / 3\rfloor$.

A similar argument can be used to count $\mathcal{Z}\left(C_{6 r+5} \square C_{n}\right), r \geq 1$. Also, we first treat $\mathcal{Z}\left(C_{5} \square C_{n}\right)$.

Lemma 4.10. $\mathcal{Z}\left(C_{5} \square C_{n}\right)=\lfloor 5 n / 3\rfloor$.
Proof. Making use of Lemma 4.2, one may have that $\mathcal{Z}\left(C_{5} \square C_{n}\right) \leq\lfloor 5 n / 3\rfloor$. Let $k=\lfloor n / 3\rfloor$ and

$$
M=\bigcup_{i=1}^{k}\left\{u_{1,3 i-2}, u_{3,3 i-2}, u_{2,3 i-1}, u_{4,3 i-1}, u_{5,3 i}\right\}
$$

Then $S_{1}^{1}=M \cup\left\{u_{4, n}\right\}$ is a nsis for $n \equiv 1(\bmod 3)$ and $S_{1}^{2}=M \cup\left\{u_{1, n-1}, u_{3, n-1}, v_{4, n}\right\}$ is a nsis for $n \equiv 2(\bmod 3)$. Notice that both of the nsiss above have size $\lfloor 5 n / 3\rfloor$. The proof is finished.

Lemma 4.11. If $m=6 r+5$, then $\mathcal{Z}\left(C_{m} \square C_{n}\right)=2 r n+\lfloor 5 n / 3\rfloor$.
Proof. The proof is similar to that of Lemma 4.9. We start with $C_{5} \square C_{n}$ and repeatedly insert 6 new rows each time. There are two cases to be handled.
(a) $n \equiv 1(\bmod 3)$. Let $n=3 t+1$. We start from the \mathcal{Z}-set S_{1}^{1} of $C_{5} \square C_{n}$. A row is type- 3 if its deleted vertices are in the same columns as those of the third row of $C_{5} \square C_{n}$. Type- 4 and type- 5 rows are defined in a similar way. We now insert three new rows following the type- 3 row in $C_{5} \square C_{n}$, being of type-4, type- 5 and type- 3 in that order. Following the original type- 4 row, we insert another three new rows. For the first of these rows, we select the vertices in columns $3 i+1(i=1,2,3, \ldots, t-1)$ and $3 t$. For the second row, we select the vertices in columns 1 and $3 i(i=1,2,3, \ldots, t-1)$. For the third row, use the type- 4 row. Thus, we get a nsis S_{2} with size $2 n+\lfloor 5 n / 3\rfloor$ in $C_{5+6} \square C_{n}$. In other words, S_{2} is a \mathcal{Z}-set of $C_{5+6} \square C_{n}$. Note that the new graph $C_{5+6} \square C_{n}$ contains three consecutive rows that are of type-3, 4, 5 (Figure 4.9 depicts the insertion process for the case $n=10$). Therefore we repeated the insertion process until we obtain a \mathcal{Z}-set of $C_{m} \square C_{n}$ whose size is $2 r n+\lfloor 5 n / 3\rfloor$.

Figure 4.9: $n=10$.
(b) $n \equiv 2(\bmod 3)$. Let $n=3 t+2$. As before, we begin with the \mathcal{Z}-set S_{1}^{2} of $C_{5} \square C_{n}$. A row is type-2 if its deleted vertices are in the same columns as those of the second row of $C_{5} \square C_{n}$. Type-3 and type-4 rows are defined analogously. We now start to insert new rows. Following the type-2 row, we insert three new rows, the first two being type- 3 and type-4, respectively. For the third, we select the vertices in columns $3 i(i=1,2,3, \ldots, t)$ to add to S_{1}^{2}. Then, after the original type-3 row, we insert another three new rows. For the first, we select the vertices in columns $3 i(i=1,2,3, \ldots, t)$ and n. The second and third are type- 2 and type- 3 , respectively. We now have a \mathcal{Z}-set of $C_{5+6} \square C_{n}$ (The insertion operation for $n=11$ is illustrated in Figure 4.10).

Figure 4.10: $n=11$.

Here, the new graph $C_{5+6} \square C_{n}$ contains three consecutive rows that are of type-2, 3, 4. Therefore we can repeatedly perform the insertion procedure to obtain a \mathcal{Z}-set of size $2 r n+\lfloor 5 n / 3\rfloor$ in $C_{m} \square C_{n}$.

For the remaining cases, both m and n are even. In such cases, we employ the Double Expanding Lemma (i.e., Lemma 4.6).

Lemma 4.12. If $m \equiv 2$ or $4(\bmod 6)$, and $n \equiv 2$ or $4(\bmod 6)$, then $\mathcal{Z}\left(C_{m} \square C_{n}\right)=$ $\lfloor m n / 3\rfloor$.

Proof. Let k be the minimum nonnegative integer such that $m / 2^{k}$ or $n / 2^{k}$ is odd, or equals 8 and let $m_{i}=m / 2^{k-i}, n_{i}=n / 2^{k-i}$ for each $i=0,1, \ldots, k$. Then we can find a nsis S_{0} of
cardinality $\left\lfloor m_{0} n_{0} / 3\right\rfloor$ in $C_{m_{0}} \square C_{n_{0}}$. Now, for each $i=0,1, \ldots, k-1$, applying Lemma 4.6 to $C_{m_{i}} \square C_{n_{i}}$ to construct a nsis S_{i+1} of size $\mathcal{Z}\left(C_{m_{0}} \square C_{n_{0}}\right)+\frac{m n}{2^{2 k}} \sum_{j=0}^{i} 4^{j}$ in $C_{m_{i+1}} \square C_{n_{i+1}}$. Consequently, we can construct a nsis of $C_{m} \square C_{n}$ with size $\lfloor m n / 3\rfloor$.

Putting results above together, we are now in a position to state our main result in this section.

Theorem 4.13.

$$
\mathcal{Z}\left(C_{m} \square C_{n}\right)= \begin{cases}n+\lfloor(n+2) / 4\rfloor & \text { if } m=4 \\ m+\lfloor(m+2) / 4\rfloor & \text { if } n=4 \\ \lfloor m n / 3\rfloor & \text { otherwise }\end{cases}
$$

Acknowledgments

The authors would like to thank the handling editor for the help in the processing of the paper. The authors thank sincerely the anonymous referees for their valuable comments, which help considerably on improving the presentation of this paper.

References

[1] B. Escoffier, L. Gourvès and J. Monnot, Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs, J. Discrete Algorithms 8 (2010), no. 1, 36-49.
[2] H. Fernau and D. F. Manlove, Vertex and edge covers with clustering properties: complexity and algorithms, J. Discrete Algorithms 7 (2009), no. 2, 149-167.
[3] M. R. Garey and D. S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM J. Appl. Math. 32 (1977), no. 4, 826-834.
[4] J. L. Gross and T. W. Tucker, Topological Graph Theory, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley \& Sons, New York, 1987.
[5] Y. Huang and Y. Liu, Maximum genus and maximum nonseparating independent set of a 3-regular graph, Discrete Math. 176 (1997), no. 1-3, 149-158.
[6] Y. Li, Z. Yang and W. Wang, Complexity and algorithms for the connected vertex cover problem in 4-regular graphs, Appl. Math. Comput. 301 (2017), 107-114.
[7] S. Long and H. Ren, The decycling number and maximum genus of cubic graphs, J. Graph Theory 88 (2018), no. 3, 375-384.
[8] B. Mohar and C. Thomassen, Graphs on Surfaces, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2001.
[9] H. Moser, Exact algorithms for generalizations of vertex cover, Fakulätfür Mathematik und Informatik, Friedrich-Schiller-Universität Jena, 2005 Mas-ters thesis.
[10] D. A. Pike and Y. Zou, Decycling Cartesian products of two cycles, SIAM J. Discrete Math. 19 (2005), no. 3, 651-663.
[11] S. Ueno, Y. Kajitani and S. Gotoh, On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three, Discrete Math. 72 (1988), no. 1-3, 355-360.
[12] T. Wanatabe, S. Kajita and K. Onaga, Vertex covers and connected vertex covers in 3-connected graphs, in: 1991., IEEE International Sympoisum on Circuits and Systems, (1991), 1017-1020.
[13] N. H. Xuong, How to determine the maximum genus of a graph, J. Combin. Theory Ser. B 26 (1979), no. 2, 217-225.

Fayun Cao and Han Ren
School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China
Normal University, Shanghai, 200241, P. R. China
E-mail address: caofayun@126.com, hren@math.ecnu.edu.cn

[^0]: Received November 16, 2018; Accepted March 24, 2019.
 Communicated by Daphne Der-Fen Liu.
 2010 Mathematics Subject Classification. 05C05, 05C69, 05C70.
 Key words and phrases. nonseparating independent set, connected vertex cover, hypercube, Cartesian product of two cycles, spanning tree, Xuong-tree.
 This work is supported by the Science and Technology Commission of Shanghai Municipality (STCSM) under Grant No. 13dz2260400.
 *Corresponding author.

