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Finding Efficient Solutions for Multicriteria Optimization Problems with

SOS-convex Polynomials

Jae Hyoung Lee and Liguo Jiao*

Abstract. In this paper, we focus on the study of finding efficient solutions for a

multicriteria optimization problem (MP), where both the objective and constraint

functions are SOS-convex polynomials. By using the well-known ε-constraint method

(a scalarization technique), we substitute the problem (MP) to a class of scalar ones.

Then, a zero duality gap result for each scalar problem, its sum of squares polynomial

relaxation dual problem, the semidefinite representation of this dual problem, and the

dual problem of the semidefinite programming problem, is established, under a suitable

regularity condition. Moreover, we prove that an optimal solution of each scalar

problem can be found by solving its associated semidefinite programming problem.

As a consequence, we show that finding efficient solutions for the problem (MP) is

tractable by employing the ε-constraint method. A numerical example is also given to

illustrate our results.

1. Introduction

Convex optimization has applications in a wide range of disciplines, such as estimation

and signal processing, automatic control systems, finance, and statistics; see, for exam-

ple, [5, 8] and the references therein. With recent developments and improvements in

computing and optimization theory, some convex minimization problems, for instance,

linear programming problems, second-order cone programming problems and semidefinite

programming problems, are showed to be poly-time solvable by interior points methods.

However, we mention here that a convex optimization problem is still NP-hard from the

complexity point of view. Mathematically speaking, a convex optimization problem ad-

mits the following form:

(CP) min f0(x) subject to fi(x) ≤ 0, i = 1, . . . ,m,

where fi, i = 0, 1, . . . ,m are convex functions. In particular, if fi, i = 0, 1, . . . ,m are

SOS-convex polynomials (see Definition 2.1), then problem (CP) enjoys an exact SDP-

relaxation in the light that the optimal values of problem (CP) and its relaxation dual
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problem are equal; furthermore, the relaxation dual problem attains its optimum under

Slater’s condition; see [24, 26]. The notion of SOS-convex polynomials attracts much

attention; see, for example, [1,2,19,22–25] and the references therein, according to its many

nice properties. For example, the class of SOS-convexity polynomials is a numerically

tractable subclass of convex polynomials; moreover, the SOS-convexity of a polynomial

can be tractably checked by solving a semidefinite programming problem; see [26–28].

Besides, the class of SOS-convex polynomials contains the classes of separable convex

polynomials and convex quadratic functions; in addition, Helton and Nie [19] studied

some other examples of SOS-convex polynomials.

On the other hand, a multicriteria optimization problem (for short, MOP) is a problem

that involves more than one objective function to be optimized simultaneously. The

MOPs have been applied in many fields of science, such as engineering, economics and

logistics [9,10,12]. It is worth noting that for an MOP, usually no single solution exists that

simultaneously optimizes every objective function. In that case, the objective functions

are actually conflicted, and there exists a (possibly infinite) number of efficient solutions

(see Definition 3.1). In particular, if the involving functions in MOPs are linear, then

we say MOPs as linear multicriteria optimization problems, one can refer [4, 7, 11, 13,

14, 30] for a deep study; if the involving functions in MOPs are convex, then we say

MOPs as multicriteria convex optimization problems, some related results are referred to

the literatures [12, 15]. This paper aims to contribute a new result, i.e., the process of

finding efficient solutions in multicriteria convex optimization problem with SOS-convex

polynomials, notwithstanding the fact that the involving functions are limited.

More precisely, in this paper, we consider a multicriteria optimization problem with

SOS-convex polynomials. By using the well-known ε-constraint method (a scalarization

technique), we substitute the multicriteria optimization problem to a class of scalar objec-

tive problems. First, we give a zero duality gap result for each scalar problem, its sum of

squares polynomial relaxation dual problem, the semidefinite representation of this dual

problem, and the dual problem of the semidefinite programming problem under a suitable

regularity condition. Then, we show that an optimal solution of each scalar problem can

be found by solving its associated semidefinite programming problem. Finally, we observe

that finding efficient solutions for the considered multicriteria optimization problem is

tractable by employing the ε-constraint method.

The rest of the paper is organized as follows. Section 2 gives some basic notations and

preliminaries that will be used in this paper. In Section 3, we give our main results, i.e.,

the method on how to find efficient solutions of the considered multicriteria optimization

problem by the ε-constraint method. A numerical example is also given to illustrate our

main results. Finally, we propose the conclusion in Section 4.
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2. Preliminaries

We begin this section by fixing notation and preliminaries. We suppose 1 ≤ n ∈ N (N is

the set of nonnegative integers) and abbreviate (x1, x2, . . . , xn) by x. The Euclidean space

Rn is equipped with the usual Euclidean norm ‖ · ‖. The nonnegative orthant of Rn is

denoted by Rn+.

A function f : Rn → R is said to be convex if for all µ ∈ [0, 1],

f((1− µ)x+ µy) ≤ (1− µ)f(x) + µf(y)

for all x, y ∈ Rn. We say that a real polynomial f is sum of squares if there exist real

polynomials ql, l = 1, . . . , r, such that f =
∑r

l=1 q
2
l . The set consisting of all sum of

squares real polynomial is denoted by Σ2. In addition, the set consisting of all sum of

squares real polynomial with degree at most d is denoted by Σ2
d. For a multi-index α ∈ Nn,

let |α| :=
∑n

i=1 αi, and let Nnd := {α ∈ Nn : |α| ≤ d}. xα denotes the monomial xα1
1 · · ·xαn

n .

The canonical basis of R[x]d is denoted by

vd(x) = (xα)α∈Nn
d

= (1, x1, . . . , xn, x
2
1, x1x2, . . . , x

2
n, . . . , x

d
1, . . . , x

d
n)T ,

which has dimension s(n, d) :=
(
n+d
n

)
. The space of all real polynomials on Rn is denoted

by R[x]. Moreover, the space of all real polynomials on Rn with degree at most d is

denoted by R[x]d. The degree of a polynomial f is denoted by deg f .

Let Sn be the set of n×n symmetric matrices. For X ∈ Sn, X is positive semidefinite

denoted by X � 0, if zTXz ≥ 0 for any z ∈ Rn. Let Sn+ be the set of n × n symmetric

positive semidefinite matrices. For M,N ∈ Sn, 〈M,N〉 := tr(MN), where “tr” denotes

the trace (sum of diagonal elements) of a matrix.

We now recall the notion of SOS-convex polynomials.

Definition 2.1. [1,2,19] A real polynomial f on Rn is called SOS-convex, if there exists

a matrix polynomial F (x) such that ∇2f(x) = F (x)F (x)T , equivalently,

f(x)− f(y)−∇f(y)T (x− y)

is a sum of squares polynomial in R[x; y] (with respect to variables x and y).

It is clearly that an SOS-convex polynomial is convex; but the converse is not true,

which means that there exists a convex polynomial which is not SOS-convex [1, 2].

The following lemma, which plays a key role for our main result in the paper, shows

an useful existence result of solutions of convex polynomial programs.

Lemma 2.2. [3] Let f, g1, . . . , gm be convex polynomials on Rn. Let K := {x ∈ Rn :

gi(x) ≤ 0, i = 1, . . . ,m}. Suppose that infx∈K f(x) > −∞. Then, argminx∈K f(x) 6= ∅.
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Proposition 2.3. [27] A polynomial f ∈ R[x]2d is a sum of squares if and only if there

exists a matrix Q ∈ Ss(n,d)
+ such that f(x) = 〈vd(x)vd(x)T , Q〉 for all x ∈ Rn.

Let vd(x)vd(x)T :=
∑

α∈Nn
2d
xαBα, where Bα are s(n, d) × s(n, d) real symmetric ma-

trices. Then, f(x) :=
∑

α∈Nn
2d
fαx

α is a sum of squares if and only if solving the following

semidefinite feasibility problem [27]:

Find Q ∈ Ss(n,d)
+ such that 〈Q,Bα〉 = fα, ∀α ∈ Nn2d.

3. Multicriteria SOS-convex polynomial optimization problems: Finding efficient

solutions

Consider the following multicriteria optimization problem with SOS-convex polynomials:

(MP) min (f1(x), . . . , fp(x)) subject to gi(x) ≤ 0, i = 1, . . . ,m,

where fj , j = 1, . . . , p, and gi : Rn → R, i = 1, . . . ,m, are SOS-convex polynomials. Let

2d := max{deg f1, . . . ,deg fp,deg g1, . . . ,deg gm}. Let K := {x ∈ Rn : gi(x) ≤ 0, i =

1, . . . ,m} be the feasible set of (MP).

Below, we recall the concept of an efficient solution of (MP).

Definition 3.1. A point x ∈ K is said to be an efficient solution of (MP) if

f(x)− f(x) /∈ −Rp+ \ {0}, ∀x ∈ K,

where f(x) := (f1(x), . . . , fp(x)).

Actually, there are many methods studying the multicriteria optimization problem (the

assumptions on the involving functions are not necessary to be SOS-convex polynomials);

among them, the scalarization method (such as the weighted-sum method and the ε-

constraint method) is showed to be an important one. The relevance of using scalarization

methods to solve multicriteria optimization problems is that scalar problems can have more

effective means of finding optimal solutions than multicriteria problems. For more details,

the reader is referred to the books [10, 12, 21] and the papers [20, 29] and the references

therein.

In our research, we are interested in the ε-constraint method, which was minutely intro-

duced by Chankong and Haimes [10]. The ε-constraint method is based on a scalarization,

where one of the objective functions is minimized while all the other objective functions

are bounded from above by means of additional constraints:

(Pj(ε)) min fj(x) subject to fk(x) ≤ εk, gi(x) ≤ 0, k 6= j, i = 1, . . . ,m,
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where ε = (ε1, . . . , εj−1, εj+1, . . . , εp) ∈ Rp−1 is given. For each j = 1, . . . , p, let Kj(ε) :=

{x ∈ K : fk(x) ≤ εk, k 6= j} be the feasible set of (Pj(ε)), which is assumed to be nonempty

for the given ε. Besides, let v(·) be the optimal value of the problem (·), correspondingly.

For example, v(Pj(ε)) stands for the optimal value of the problem (Pj(ε)).

It is worth noting that the ε-constraint method has several advantages over the weighted-

sum method. For example, along with the ε-constraint method, we can control the number

of the generated efficient solutions by properly adjusting the number of grid points in each

one of the objective function ranges, however this may not so easy with the weighted-sum

method, even if it may take an increased solution time to use the ε-constraint method

rather than the weighted-sum method, for problems with several (more than two) objec-

tive functions; see [31, Section 2] for more details.

On the other hand, for each given j ∈ {1, . . . , p}, the problem (Pj(ε)) can be solved

(such as gradient methods, see [6]) by means of approximating its exact solutions. However,

we aim to find efficient solutions of (MP) by solving (Pj(ε)), and the exact solutions of

(Pj(ε)) are essential. To this end, motivated by [23–25], we consider the following dual

relaxation problems of the problem (Pj(ε)), since solving its SDP relaxation problems can

provide exact solutions of problem (Pj(ε)).

Let j ∈ {1, . . . , p} be any fixed. Then, the Lagrangian dual problem (Dj(ε)) for (Pj(ε))

is given by

(Dj(ε)) sup
γj∈R

µk≥0,λi≥0

{
γj : fj(x) +

∑
k 6=j

µk(fk(x)− εk) +
m∑
i=1

λigi(x)− γj ≥ 0,∀x ∈ Rn
}
.

A sum of squares relaxation problem of (Dj(ε)) is stated as follows:

(Dj(ε)
sos) sup

γj∈R
µk≥0,λi≥0

{
γj : fj +

∑
k 6=j

µk(fk − εk) +

m∑
i=1

λigi − γj ∈ Σ2
2d

}
.

According to Proposition 2.3, it is clear that the constraints of problem (Dj(ε)
sos), i.e.,

fj +
∑
k 6=j

µk(fk − εk) +
m∑
i=1

λigi − γj ,

which is a sum of squares polynomial, can be rewritten as solving the following semidefinite

feasibility problem: Find X ∈ Ss(n,d)
+ such that

(fj)0 +
∑
k 6=j

µk((fk)0 − εk) +

m∑
i=1

λi(gi)0 − γj = 〈B0, X〉,

(fj)α +
∑
k 6=j

µk((fk)α − εk) +
m∑
i=1

λi(gi)α = 〈Bα, X〉, α 6= 0.
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In other words, problem (Dj(ε)
sos) is equivalent to the following semidefinite programming

problem:

sup
γj ,X,µ,λ

γj subject to

(fj)0 +
∑
k 6=j

µk((fk)0 − εk) +
m∑
i=1

λi(gi)0 − γj = 〈B0, X〉,

(fj)α +
∑
k 6=j

µk((fk)α − εk) +

m∑
i=1

λi(gi)α = 〈Bα, X〉, α 6= 0,

γj ∈ R, X ∈ Ss(n,d)
+ , µk ≥ 0, k 6= j, λi ≥ 0, i = 1, . . . ,m.

(SDDj(ε))

The dual problem of (SDDj(ε)) is the following semidefinite programming problem:

inf
y∈Rs(n,2d)

∑
α∈Nn

2d

(fj)αyα subject to

∑
α∈Nn

2d

(fk)αyα − εk ≤ 0, k 6= j,

∑
α∈Nn

2d

(gi)αyα ≤ 0, i = 1, . . . ,m,

∑
α∈Nn

2d

yαBα � 0, y0 = 1.

(SDPj(ε))

Definition 3.2. For each fixed j = 1, . . . , p, we say that Slater condition holds for (Pj(ε)),

if there exists x̂ ∈ Rn such that fk(x̂)− εk < 0, k 6= j, and gi(x̂) < 0, i = 1, . . . ,m.

The perturbation function wj(·), which is associated with (Pj(ε)), is defined on Rp−1×
Rm as

wj(z, z
′) = inf

x∈Rn
{fj(x) : fk(x)− εk ≤ zk, k 6= j, gi(x) ≤ z′i, i = 1, . . . ,m}.

Note that wj(0) is the optimal value of (Pj(ε)).

Definition 3.3. [16] For each fixed j = 1, . . . , p, we say that (Pj(ε)) is stable, if wj(0) is

finite and there exists M > 0 such that for all (z, z′) 6= 0,

wj(0)− wj(z, z′)
||(z, z′)||

≤M.

Lemma 3.4. [16, Theorem 6] For each fixed j = 1, . . . , p, if v(Pj(ε)) is finite and (Pj(ε))

satisfies the Slater condition, then (Pj(ε)) is stable.

We now give a zero duality gap result for (Pj(ε)), (Dj(ε)
sos), (SDDj(ε)) and (SDPj(ε)).
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Theorem 3.5. For each fixed j = 1, . . . , p, if (Pj(ε)) is stable, then

v(Pj(ε)) = v(Dj(ε)
sos) = v(SDDj(ε)) = v(SDPj(ε)).

Proof. Let j ∈ {1, . . . , p} be any fixed. Since (Pj(ε)) is stable, by [16, Theorem 3],

v(Pj(ε)) = v(Dj(ε)), and (Dj(ε)) attaints its supremum. Let (γj , µ, λ) ∈ R × Rp−1
+ × Rm+

be any feasible for (Dj(ε)). Then, fj(x) +
∑

k 6=j µk(fk(x) − εk) +
∑m

i=1 λigi(x) − γj ≥ 0

for all x ∈ Rn. As fl, l = 1, . . . , p, and gi, i = 1, . . . ,m, are SOS-convex ploynomials,

fj(x)+
∑

k 6=j µk(fk(x)−εk)+
∑m

i=1 λigi(x)−γj is also SOS-convex, which takes nonnegative

values. Hence, it follows from [24, Remark 2.3] that fj +
∑

k 6=j µk(fk−εk)+
∑m

i=1 λigi−γj
is a sum of squares in R[x]2d. Thus, we have

v(Dj(ε)) = v(Dj(ε)
sos).

Moreover, v(Dj(ε)
sos) = v(SDDj(ε)) obviously holds by the construction of (Dj(ε)

sos) and

(SDDj(ε)).

We now claim that v(SDDj(ε)) ≤ v(SDPj(ε)). Let (γ,X, µ, λ) and y be any feasible

points of (SDDj(ε)) and (SDPj(ε)), respectively. Then, we have

γj = (fj)0 +
∑
k 6=j

µk((fk)0 − εk) +
m∑
i=1

λi(gi)0 − 〈B0, X〉

≤ (fj)0 +
∑
k 6=j

µk((fk)0 − εk) +
m∑
i=1

λi(gi)0 +

〈∑
α 6=0

yαBα, X

〉

=
∑
α∈Nn

2d

(fj)αyα +
∑
k 6=j

µk

( ∑
α∈Nn

2d

(fk)αyα − εk
)

+

m∑
i=1

λi
∑
α∈Nn

2d

(gi)αyα

≤
∑
α∈Nn

2d

(fj)αyα.

Therefore, v(SDDj(ε)) ≤ v(SDPj(ε)).

To complete the proof of this theorem, it remains to show that v(Pj(ε)) ≥ v(SDPj(ε)).

Let x̃ be any feasible for (Pj(ε)). Then, fk(x̃) ≤ εk, k 6= j, and gi(x̃) ≤ 0, i = 1, . . . ,m.

Let ỹ := (1, x̃1, . . . , x̃n, x̃
2
1, x̃1x̃2, . . . , x̃

2d
1 , . . . , x̃

2d
n ). Then, we have

fk(x̃) =
∑
α∈Nn

2d

(fk)αx̃
α =

∑
α∈Nn

2d

(fk)αỹα ≤ εk, k 6= j

and

gi(x̃) =
∑
α∈Nn

2d

(gi)αx̃
α =

∑
α∈Nn

2d

(gi)αỹα ≤ 0, i = 1, . . . ,m.

Moreover, since ỹỹT =
∑

α∈Nn
2d
ỹαBα � 0 with y0 = 1, ỹ is feasible for (SDPj(ε)). Hence,

it follows that

fj(x̃) =
∑
α

(fj)αx̃
α =

∑
α∈Nn

2d

(fj)αỹα ≥ v(SDPj(ε)).
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Since x̃ is any feasible point of (Pj(ε)), we have v(Pj(ε)) ≥ v(SDPj(ε)). Thus, we obtain

the desired result.

In what follows, we give a relationship of the optimal solutions of (Pj(ε)) and (SDPj(ε)).

Theorem 3.6. For each fixed j = 1, . . . , p, if (Pj(ε)) is stable, then the following state-

ments are equivalent:

(i) x is an optimal solution of (Pj(ε));

(ii) the vector

(3.1) y := (x1, . . . , xn, x
2
1, x1x2, . . . , x

2d
1 , . . . , x

2d
n )

is an optimal solution of (SDPj(ε)).

Proof. (i) ⇒ (ii). Let j ∈ {1, . . . , p} be any fixed. Assume that x is an optimal so-

lution of (Pj(ε)). Then fk(x) ≤ εk, k 6= j, and gi(x) ≤ 0, i = 1, . . . ,m. Let y =

(yα)α∈Nn
2d

= (x1, . . . , xn, x
2
1, x1x2, . . . , x

2d
1 , . . . , x

2d
n ). Then, fk(x) =

∑
α∈Nn

2d
(fk)αx

α =∑
α∈Nn

2d
(fk)αyα ≤ εk, k 6= j, and gi(x) =

∑
α∈Nn

2d
(gi)αx

α =
∑

α∈Nn
2d

(gi)αyα ≤ 0, i =

1, . . . ,m. Moreover, yyT =
∑

α∈Nn
2d
yαBα � 0 with y0 = 1. So, y is feasible for (SDPj(ε)).

Since

v(Pj(ε)) = fj(x) =
∑
α∈Nn

2d

(fj)αyα = v(SDPj(ε))

by Theorem 3.5, y is an optimal solution of (SDPj(ε)).

(ii)⇒ (i). Let j ∈ {1, . . . , p} be any fixed. Assume that y in (3.1) is an optimal solution

of (SDPj(ε)). Then
∑

α∈Nn
2d

(fk)αyα ≤ εk,
∑

α∈Nn
2d

(gi)αyα ≤ 0 and
∑

α∈Nn
2d
yαBα � 0. It

means that

0 ≥
∑
α∈Nn

2d

(fk)αyα − εk =
∑
α∈Nn

2d

(fk)αx
α − εk = fk(x)− εk, k 6= j,

0 ≥
∑
α∈Nn

2d

(gi)αyα =
∑
α∈Nn

2d

(gi)αx
α = gi(x), i = 1, . . . ,m.

So, x is feasible for (Pj(ε)). It follows from Theorem 3.5 that

v(SDPj(ε)) =
∑
α∈Nn

2d

(fj)αyα =
∑
α∈Nn

2d

(fj)αx
α = fj(x) = v(Pj(ε)).

Thus, x is an optimal solution of (Pj(ε)).

Proposition 3.7. [12] A feasible solution x ∈ K is an efficient solution of (MP) if and

only if there exists ε ∈ Rp such that x is an optimal solution of (Pj(ε)) for all j = 1, . . . , p,

where ε = (ε1, . . . , εj−1, εj+1, . . . , εp) ∈ Rp−1.
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The following theorem shows that how to find efficient solutions of (MP) by the ε-

constraint method.

Theorem 3.8. Let fj : Rn → R, j = 1, . . . , p, and gi : Rn → R, i = 1, . . . ,m, be convex

polynomials. Let x(0) ∈ K be any given, and for j = 1, . . . , p, let

x(j) ∈ argmin
x∈Kj(ε(j))

fj(x),

where (ε(j))k = fk(x(j−1)), k 6= j. Assume that for each j = 1, . . . , p, (Pj(ε(j))) has a finite

optimal value. Then, the following statements are equivalent:

(i) x ∈ K is an efficient solution of (MP);

(ii) x is an optimal solution of (Pj(ε(p))), j = 1, . . . , p.

Proof. Let x(0) ∈ K be any given. We first claim that for each j = 1, . . . , p,

argmin
x∈Kj(ε(j))

fj(x) 6= ∅.

Note that fl, l = 1, . . . , p, and gi, i = 1, . . . ,m, are convex polynomials, and for each j =

1, . . . , p, infx∈Kj(ε(j)) fj(x) > −∞. It follows from Lemma 2.2 that argminx∈Kj(ε(j))
fj(x) 6=

∅, j = 1, . . . , p.

For j = 1, . . . , p, let x(j) ∈ argminx∈Kj(ε(j))
fj(x). Note that for each j = 1, . . . , p, the

feasible set of (Pj(ε(j))) is as follows:

Kj(ε(j)) := {x ∈ K : fk(x) ≤ fk(x(j−1)), k 6= j}.

Since for each j = 1, . . . , p, x(j) ∈ Kj(ε(j)),

(3.2) fk(x(j)) ≤ fk(x(j−1)), k 6= j.

Moreover, since for each j = 1, . . . , p, x(j) ∈ argminx∈Kj(ε(j))
fj(x)

(3.3) fj(x(j)) ≤ fj(x)

for any x ∈ Kj(ε(j)). Since for each j = 1, . . . , p, x(j−1) ∈ Kj(ε(j)), from (3.3), we see that

(3.4) fj(x(j)) ≤ fj(x(j−1)), j = 1, . . . , p.

So, by (3.2) and (3.4), we obtain

(3.5) fj(x(p)) ≤ fj(x(p−1)) ≤ · · · ≤ fj(x(1)) ≤ fj(x(0)), j = 1, . . . , p.
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Hence, we see that for each j = 1, . . . , p, x(p) ∈ Kj(ε(p)) ⊆ Kj(ε(j)). So, we have for each

j = 1, . . . , p,

fj(x(p)) ≥ min
x∈Kj(ε(p))

fj(x) ≥ min
x∈Kj(ε(j))

fj(x) = fj(x(j)).

Since, by (3.5), for each j = 1, . . . , p, fj(x(p)) ≤ fj(x(j)), we have for each j = 1, . . . , p,

fj(x(p)) = fj(x(j)) and x(p) ∈ argmin
x∈Kj(ε(p))

fj(x).

So, x := x(p) is an optimal solution of (Pj(ε(p))) for all j = 1, . . . , p. Thus, by Proposi-

tion 3.7, we obtain the desired result.

Remark 3.9. Note that in the proof of Theorem 3.8, the assumption of convexity (SOS-

convexity is not necessary) ensures the existence of solutions of (Pj(ε(j))), j = 1, . . . , p,

based on Lemma 2.2. Moreover, it is obvious that Theorem 3.8 still holds whenever the

involving functions are SOS-convex polynomials.

By Theorems 3.6 and 3.8, we obtain the following theorem.

Theorem 3.10. Let x(0) ∈ K be any given, and for j = 1, . . . , p, let

x(j) ∈ argmin
x∈Kj(ε(j))

fj(x),

where (ε(j))k = fk(x(j−1)), k 6= j. For each fixed j = 1, . . . , p, if (Pj(ε(j))) is stable, then

the following statements are equivalent:

(i) x ∈ K is an efficient solution of (MP);

(ii) the vector

y := (x1, . . . , xn, x
2
1, x1x2, . . . , x

2d
1 , . . . , x

2d
n )

is an optimal solution of (SDPj(ε(p))) for all j = 1, . . . , p.

We finish the section by giving an example, which aims to illustrate Theorem 3.10.

Example 3.11. Consider the following multicriteria problem:

(MP1) min (f1(x1, x2), f2(x1, x2)) subject to g1(x1, x2) ≤ 0,

where f1(x1, x2) = x8
1 + x2

1 + x1x2 + x2
2, f2(x1, x2) = x4

1 − x2 and g1(x1, x2) = x2
1 + x2

2 − 1.

Clearly, f1(x1, x2) is an SOS-convex polynomial (since x8
1 is SOS-convex and the Hessian of

x2
1 +x1x2 +x2

2 is SOS, and hence sum of x8
1 and x2

1 +x1x2 +x2
2 is SOS-convex polynomial);

see also [18, 23, 25]. Observe that K = {(x1, x2) ∈ R2 : g1(x1, x2) ≤ 0} is the feasible set

of (MP1).
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We substitute the above problem (MP1) by the ε-constraint problems as follows:

min f1(x1, x2) subject to f2(x1, x2) ≤ ε(1), (x1, x2) ∈ K,(P1(ε(1)))

min f2(x1, x2) subject to f1(x1, x2) ≤ ε(2), (x1, x2) ∈ K,(P2(ε(2)))

where for each j = 1, 2, ε(j) is given by ε(1) = f2(x(0)) and ε(2) = f1(x(1)). Here, x(0) ∈ K
is any given, and x(1) ∈ argminx∈K1(ε(1))

f1(x).

Now, we formulate the sum of squares relaxation dual problem for (Pj(ε(j))) as follows:

(Dj(ε(j))
sos) sup

γj∈R
µk≥0,λ1≥0

{γj : fj + µk(fk − εk) + λ1g1 − γj ∈ Σ2
8}.

Invoking Proposition 2.3, there exists X ∈ Ss(2,4)
+ (= S15

+ ) such that

(3.6) fj(x) + µk(fk(x)− ε(j)) + λ1h1(x)− γj = 〈v4(x)v4(x)T , X〉

for all x ∈ R2. Then, from [32, Theorem 1], we can reduce the dimension of v4(x) to 6,

and so X ∈ S6
+. In more detail, v4(x) = (1, x1, x2, x

2
1, x

3
1, x

4
1)T in (3.6). With this fact,

for each j = 1, 2, (Dj(ε(j))
sos) can be rewritten as the following semidefinite programming

problems:

sup
γ1,X,µ2,λ1

γ1 subject to

− µ2ε(1) − λ1 − γ1 = X11, −µ2 = 2X13, 1 = 2X23,

1 + λ1 = 2X14 +X22 = X33, µ2 = 2X16 + 2X25 +X44,

1 = X66, 0 = X12 = X34 = X35 = X36,

0 = X15 +X24 = X26 +X45 = 2X46 +X55 = X56,

γ1 ∈ R, X ∈ S6
+, µ2 ≥ 0, λ1 ≥ 0,

(SDD1(ε(1)))

sup
γ2,X,µ1,λ1

γ2 subject to

− µ1ε(2) − λ1 = X11, −1 = 2X13, µ1 = 2X23,

µ1 + λ1 = 2X14 +X22 = X33, 1 = 2X16 + 2X25 +X44,

µ1 = X66, 0 = X12 = X34 = X35 = X36,

0 = X26 +X45 = X15 +X24 = 2X46 +X55 = X56,

γ2 ∈ R, X ∈ S6
+, µ1 ≥ 0, λ1 ≥ 0.

(SDD2(ε(2)))

Solving the above semidefinite programming problems using the MATLAB optimization

package CVX [17] together with the SDP-solver SDPT3 [33], we can find the optimal

solutions of (SDPj(ε)), j = 1, 2. For example, let x∗(0) = (1, 0) and ε(1) = f2(x(0)) = 1.
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Observe that the Slater condition for (P1(ε(1))) holds, and so, (P1(ε(1))) is stable. Solving

(SDD1(ε(1))) with CVX [17], we find the dual variable of (SDD1(ε(1))), which is an optimal

solution of (SDP1(ε(1))), as follows:

y = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

No. x(0) ε(1) x(1) ε(2) x : efficient sol.

1 (1.0000, 0.0000) 1.0000 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

2 (0.9877, 0.1564) 0.7952 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

3 (0.9511, 0.3090) 0.5091 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

4 (0.8910, 0.4540) 0.1763 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

5 (0.8090, 0.5878) −0.1594 (−0.0795, 0.1594) 0.0254 (−0.0916, 0.1840)

6 (0.7071, 0.7071) −0.4571 (−0.2155, 0.4593) 0.2048 (−0.2389, 0.5220)

7 (0.5878, 0.8090) −0.6897 (−0.2926, 0.6970) 0.4531 (−0.3109, 0.7723)

8 (0.4540, 0.8910) −0.8485 (−0.3292, 0.8603) 0.6737 (−0.3428, 0.9365)

9 (0.3090, 0.9511) −0.9419 (−0.3090, 0.9511) 0.8017 (−0.2025, 0.9793)

10 (0.1564, 0.9877) −0.9871 (−0.1564, 0.9877) 0.8700 (−0.1312, 0.9914)

11 (0.0000, 1.0000) −1.0000 (−0.0003, 1.0000) 0.9997 (−0.0003, 1.0000)

12 (−0.1564, 0.9877) −0.9871 (−0.1564, 0.9877) 0.8700 (−0.1312, 0.9914)

13 (−0.3090, 0.9511) −0.9419 (−0.3090, 0.9511) 0.8017 (−0.2025, 0.9793)

14 (−0.4540, 0.8910) −0.8485 (−0.3292, 0.8603) 0.6737 (−0.3428, 0.9365)

15 (−0.5878, 0.8090) −0.6897 (−0.2926, 0.6970) 0.4531 (−0.3109, 0.7723)

16 (−0.7071, 0.7071) −0.4571 (−0.2155, 0.4593) 0.2048 (−0.2389, 0.5220)

17 (−0.8090, 0.5878) −0.1594 (−0.0795, 0.1594) 0.0254 (−0.0916, 0.1840)

18 (−0.8910, 0.4540) 0.1763 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

19 (−0.9511, 0.3090) 0.5091 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

20 (−0.9877, 0.1564) 0.7952 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

21 (−1.0000, 0.0000) 1.0000 (0.0000, 0.0000) 0.0000 (0.0000, 0.0000)

Table 3.1: We give 21 points x(0) = (cos θ, sin θ) ∈ K, 0 ≤ θ ≤ π. If x(0) = (cos θ, sin θ) ∈
K, where π ≤ θ ≤ 2π, then all of efficient solutions of (MP1) are (0, 0).

It means that (x1, x2) = (0, 0) is an optimal solution of (P1(ε(1))). Now, let ε(2) =

f1(x(1)) = 0. Then, we can see that (P2(ε(2))) is not stable. On the other hand, the
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feasible set K2(ε(2)) of (P2(ε(2))) is {(0, 0)}, which is a singleton, so (0, 0) is an optimal

solution of (P2(ε(2))), notwithstanding the fact that the stability of (P2(ε(2))) fails. It

follows from Theorem 3.8 that (x1, x2) = (0, 0) is an efficient solution of (MP1).

In order to find more efficient solutions of (MP1), we give 21 points x(0) = (cos θ, sin θ) ∈
K, 0 ≤ θ ≤ π, and then we get the efficient solutions of (MP1) in Table 3.1. An illustration

of the found efficient solutions of (MP1) is given in Figure 3.1. Moreover, we give 1000

points x(0) (not only the boundary points but also the interior points) in K. The efficient

solutions of (MP1) for above points x(0) described in Figure 3.2.
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Figure 3.1: Efficient solutions of

(MP1) at Table 3.1.
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Figure 3.2: Efficient solutions of

(MP1) for given 1000 points.

4. Conclusions

The main techniques adopted in this paper are actually two, one is the discovery that the

optimal value and optimal solutions of an SOS-convex optimization problem can be found

by solving a single semidefinite programming problem; another is a powerful scalarization

method, i.e., the ε-constraint method. As a consequence, we obtained our main results

(Theorems 3.8 and 3.10) on finding efficient solutions for a multicriteria optimization

problem with SOS-convex polynomials by using the ε-constraint method. The observation

in this paper seems new in the literature [4, 7, 11,13–15].
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