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Abstract. In this paper, we first establish an analogue of Wiener-1t6 theorem on finite-
dimensional Gaussian spaces through the inverse S-transform, that is, the Gauss trans-
form on Segal-Bargmann spaces. Based on this point of view, on infinite-dimensional
abstract Wiener space (H, B), we apply the analyticity of the S-transform, which is
an isometry from the L2-space onto the Bargmann-Segal-Dwyer space, to study the
regularity. Then, by defining the Gauss transform on Bargmann-Segal-Dwyer space
and showing the relationship with the S-transform, an analytic version of Wiener-Ito

decomposition will be obtained.

1. Introduction

The Wiener-1t6 theorem is an important result concerning an orthogonal decomposition of
the Hilbert space of square integrable functions on a Gaussian space. It was first proved in
1938 by N. Wiener [19] in terms of homogeneous chaos. It is a natural question to find an
explicit description concerning homogeneous chaos. About this decomposition theorem,
K. It6 [§] in 1951 provided a different proof from N. Wiener. In that paper, It6 defined
multiple Wiener integrals, and shown that there is a one-to-one correspondence between
the homogeneous chaoses and multiple Wiener integrals.

In [11], Lee studied the regularity of the heat semigroup generated from the abstract
Wiener measure p; on an abstract Wiener space (AWS, in short) (H, B). It was shown
that the convolution p; * f is infinitely Fréchet differentiable for f € L% (B, p¢) with a > 1.
Further, Lee |12] applied the results concerning regularity of p;* f to show that there is one-
to-one correspondence between the homogeneous chaoses of order n and the space of the
Gauss transforms of n-linear continuous Hilbert-Schmidt operators on the complexification

H, of H. In that paper, Lee did not apply the analyticity of p; % f to study the regularity.
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In infinite-dimensional Gaussian analysis, the semigroup p; * f plays the role of the S-
transform of f, which provides an isometric link between the L?-space and the Bargmann-
Segal-Dwyer spaces. If H is finite-dimensional, a well-known fact is that the Taylor ex-
pansion of an Bargmann analytic function is an orthogonal decomposition with respect to
the Gauss measure on the complex Euclidean space. Then the Wiener-1t6 decomposition
is immediately achieved by taking the inverse S-transform, that is, the Gauss transform.

In this paper, we first study the relationship between the S-transform, the Gauss trans-
form and Hermite polynomials in order to establish the analogue of Wiener-1t6 theorem
on finite-dimensional Gaussian spaces in Section 2 Our basic idea is to consider the S-
transform of an L2-function, and then expand it into a Taylor series; finally the analogue
of Wiener-It6 decomposition is obtained by taking the Gauss transform. In Section 3| we
review some basic properties of AWS. For the S-transform and Gauss transform, we will
study in Sections [4| and |5} It is worth noting that every L?-function on a general infinite-
dimensional AWS can be regarded as an L2-limit of a sequence of cylinder functions by
taking the conditional expectation (see Lemma . Based on this point of view, we will
apply the results obtained in Section [2] to cylinder functions, and then use Lemma
to arrive at the desired Wiener-It6 theorem on (H, B) in Section And, by defining
the Gauss transform on Bargmann-Segal-Dwyer space and showing the relationship with
the S-transform, the Wiener-It6 decomposition will be expressed in terms of the Gauss

transform in Theorem [5.3]

Notations. Throughout this paper, we always use boldface to represent multi-indices,
and elements in multi-dimensional real or complex Euclidean spaces, or to emphasize
elements in the complexification of a real locally convex space. In addition, we list some

of shorthand notations that are often used in this paper.

(1) For a real locally convex space V, V. denotes its complexification. If V is a real
Hilbert space endowed with || - ||y-norm induced by the inner product ((-,-)v,
then V. is a complex Hilbert space with the || - |ly,-norm given by [|¢1 + i¢a||}, =
ng51||%/ + ||<;32H%/ induced by the inner product defined by {(¢1 + ip2, 1 + ihe)v, =
(o1, Y1) v + (D2, Y2))v + ({2, Y1) v — (b1, ¢2))v) for any ¢1, ¢2, 11 and ¢z in V.

In addition, we define (-,- )y, on V. x V. as a bilinear form given by

(91 +id2, v1 +iv2)v. = (1, v1)v — (@2, ¥2)v + ({2, Y1) v + (b1, ¥2))v).
If V = RF, V, = C* endowed with the dot product in this paper.

(2) If T is an n-linear operator on X X --- X X (n-times) (X =V or V), Txy- -2y
means T'(x1,...,zy) for x1,...,2, € X, and if 1 = --- = x,, = z, we write Tz ---x

as Tx".
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Let Ny be the set of all nonnegative integers. For any multi-index o« = (ny,...,ng) €
NK and z = (21,. .., 2;) € CF, define

(3) la| =ni + -+ np, @l =ny! -0y,

(4) 2™ =21 - 20

Similarly, we define the differential operator ((%)a by

() (%)% = ()" -+ (55)™ for x = (1, ,a0) €RF or C*.

2. Finite-dimensional Gaussian space

Let p1(du) be the standard Gaussian measure on (R, #(R)) with mean 0 and vari-
ance 1. Apply the orthogonalization procedure to the monomials {1, u,u?,...,u", ...} in
L2(R, j11), in this order, to get Hermite polynomials { Ho(u), Hy(u), ..., Hy(u),...}. Here
H,, is a polynomial of degree n with leading coefficient 1, and the generating function of

{H,} is given by

2. H,(u) 1

2

(2.1) Z n' Z'=e""2" VYueR, zeC.
— nl

And, by substituting the formula e = f_oooo e 1 (dv), i = v/—1 and z € C, into (2.1)),

we have

o

(2.2) Z Hn(u) 2" = Z %7: /_OO (u+iv)" py(dv), VYu,zeC.

=0

n=0
For other related properties, we refer the reader to |17].
Let p,.(dv), r > 0, be the Gausssian measure on (R, Z(R¥)) given by

. (dv) = ( 2777')*’“6*%""’ dv,

where dv denotes k-dimensional Lebesgue measure on R¥. Note that (R¥, B(RF), u,)
is the product measure space (R, Z(R),pu1) x --- x (R, Z(R), pu1). For any multi-index
o= (n1,...,n;) € NE and u = (ug,...,u;) € R¥, set the shorthand notation

Ho(u) = Hy (ur) -+ - Hy, (ug).
Comparing the coefficients on both sides of yields that
(2.3) Hg(u) = /Rk(u +iv)® py(dv), Vo e N, ueRF
and then, through direct calculation,

(2.4) [ Hal0)Ha(v) i (V) = b - e,

where 0o 3 = 1 as a = (3; otherwise, 0.
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2.1. The S-transform on L2(R¥, p;)

Let ¢ € L2(R* p,) be arbitrarily given. The S-transform S¢ of ¢ is a complex-valued
function on R* defined by S¢(u) = p; * ¢(u), u € R*, where p; * ¢ is the convolution of
¢ with p,. It is easily seen by checking their characteristic functions that p,(dv —u) =
evu—zlul® 1 (dv) for any u € R¥. Then we can immediately extend the definition of the
S-transform of ¢ to CF, still denoted by S¢, by

S¢o(z) = /Rk (ﬁ(v)e(v’z)*%(z’z) pi(dv), VzeCk

where (-,-) represents (-,-)cxt. By applying Hartogs’ theorem (see |2]), S¢(z) is a holo-
morphic function of z € CF; therefore, it enjoys the Taylor series expansion

z* [ 0\“
(2.5) S(z) = > (az> S¢(0), VzeCF

o!
aEN’g

For any u € R* and z € CF, it follows from (2.1)) that

(wz)—L(z2) _ Ha(u)
e\W? T3 = Z ol z.
aeNE

Let z € C* be fixed and consider both sides of the above formula as a function of u.
lz>|2

Observe that ZaeN’g —- = el= is finite. Then, by ([2.4),

) Linm z% )
6( 2) 2( ) = Z JHO( m Lg(Rk7“1)7

aGng
and thus

Za
(2:6) So(z) = D 7 | 6(w) Ha(u) p(du).

aENg R
Compare with to get that
(2.7) o) () ) = () 80(0). vare 1
Rk BZ

2.2. The Segal-Bargmann space of C*

A Bargmann analytic function defined on C*, introduced in [1], is a holomorphic func-
tion, which is square-integrable with respect to the Gausssian measure p,., r > 0, on
(Ck, (C*)), ,(dz) being given by

w,(dz) = ( ZWT)_ke_Tlrz'z dz,
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where dz denotes 2k-dimensional Lebesgue measure on C*. Denote the class of Bargmann
analytic functions defined above by K"(CF), called the Segal-Bargmann space of C* (see
[6]). One notes that K"(C*) is a complex separable Hilbert space with || - [l cr (cry-norm
induced by the inner product (-, ))xrcr) defined by

(F, Gier(cry = - F(2)G(2) p,(dz).

For any F' € K"(CF), it enjoys the Taylor expansion ZaeNk Oj (%)QF(O), and for r = 1/2,

we have, through direct calculation, that
(2.8) / z* 7P pi)2(dz) = 0ap-al, Vo,B€ NE,
(Ck

Then it immediately from (2.5), [2.7) and (2.8)) that S¢ € K'/2(C*), where

2
< +00.

1
(2.9) 1SOIE1 /2000y = D =

ol
aENlo“

[, ol Halw my (dw)
Rk

For any holomorphic function F on C* and n € N, let D" F(0) be the function defined
by

an
(zl,...,zn)G(Ckxn-x(Ckr—) F(&z1+ -+ &nzn).

851 T agn E1==£,=0

Then D"F(0) is a symmetric n-linear form (see [7]), and

z® [ 0\“ 1., n k
(2.10) > — <az> F(0) = —D"F(0)z", VzeCh,
aeNE |al=n
where z" means (z1,22,...,2,) wWith 21 = 29 = -+ = z,. By (2.8) and together with

[2.10)), we see that for any F,G € KY?(CF),

(F, G 12 oy = Z > 3', <§Z>a F(0) <§Z)a G(0)

n aeNE |al=n

_Z (D"F(0), D"G(0))xs,

(2.11)

where ((-, - ))ns means the Hilbert-Schmidt inner product (see [16] for the definition). In
particular, for any ¢ € L2(R¥, u,),

o0

1 n
(2.12) 156 1%1/2(cxy = D —1ID"S6(0) s,

n=0

where || - [[is denotes the Hilbert-Schmidt operator norm induced by (-, - )us-
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2.3. The Gauss transform on K/2(CF)

Let F € K'/2(CF) be given. The Gauss transform o(F) of F is a function on R* defined
by

o(F)(-) = / F(-+iv)p (dv) (if it exists).
Rk
It follows from (2.3) that for any a € N§ and u € R,
(213) 7)) = [ (w)% gy (dv) = Ha(u),
R

and therefore, by (2.6), So(z%) = z%*. Now, for any n € N, set

B 1 /9\° o | (by @13) 1 /o\°

aeNE |al<n aeNE |al<n

As n tends to infinity, since, by (2.11]),

> 2l(5) Fo

o EeNg

2
= ||F||/2c1/2((ck) < +o00,

it follows by (2.4) that 1, — ¢ in L2(R*, u,), where
(2.14) b= > —l3,) FO):Ha
n=0 aEN’g,|a|:n ’

Consequently, by (2.6), Sv = F.

2.4. Wiener-It6 decomposition of L2(R¥, u,)
Let ¢ € L2(R*, ;) be given. Combine with to get that
o0 1 /9\%

which implies that

(2.15) Sle-> > ;(i) Sp(0)- Hy | (2) =0, VzeCF
n=0 aeN§,|o|=n '

Then we need the following

Lemma 2.1. The S-transform on L2(RF, ) is injective.
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Proof. Let ¢ € L2(R*, ). If S1)(z) = 0 for any z € C*, then S¢(iu) = 0 for any u € R*.
Therefore
/ Y(V)EV Ty (dv) =0, VYVueRF
Rk

This implies that qp(v)e‘%""’ = 0 and hence (v) = 0 for almost every v € R* with
respect to Lebesgue measure my, on R¥. Since p, is absolutely continuous with respect to

my;, 1 = 0 almost everywhere on R* with respect to p1. The proof is complete. ]

Applying Lemma together with (2.3)), (2.10) and (2.15]), we see that

-y Y L (i)“5¢(0).Ha

n=0 qeN§ |a|=n

(2.16) =Y Y L (2) 5w [ vty

n=0 aeNk |a|=n

—Zn, D"SH(0)(- +iv)" py(dv) in L2(RF, py).

As an immediate consequence of the first equality of (2.16)), {(a!)™"/2Hy; a € NE} forms
a complete orthonormal basis (CONB, in short) of L2(R*, u,); therefore, the sum on the

right side of ( is exactly equal to H¢HL2 RF o)
Now, we sum up all arguments in this section toghther with (2.9)), (2.12)), (2.14]) and
(2.16) to obtain the following

Theorem 2.2. (i) The S-transform S is an isometry from L2(R*, uy) onto K'/?(CF).

(ii) (Wiener-Ité Theorem on L2(R* ) Let ¢ € L2(R* ;) be given. Then
o 1 n i .
0= o | PSSO+ V)" (dv) in LER ).
n=0

Moreover,
(o]

1
2 _ n 2
o072y = D D" S6(0)]3¢s-

n=0
Corollary 2.3. Let A\ > 1. For ¢ € L2(R*, ), if

o

)\’ﬂ
A(0) = 3 2 ID"S6(O)lfs < +oo
then the Wiener-Ito decomposition of @, that is the right-hand series of Theorem (ii),
is defined everywhere in C* and converges absolutely and uniformly on bounded subsets of
Ck.
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Proof. By using the Cauchy-Schwarz inequality,

Zn‘ /k D"S¢(0)(z +iv)"| py(dv) < /Ax(¢ / eax (lzl+vD)? py(dv),
R

from which the assertion follows. O

3. Abstract Wiener spaces

Let H be a real separable Hilbert space with | - |-norm induced by the inner product
(-,-),and || - || be an another norm defined on H which is weaker than the |- |-norm and
measurable on H. Then the triple (i, H, B) is called an abstract Wiener space (AWS, in
short), where B is the completion of H with respect to || - |-norm and ¢ is the canonical
embedding of H into B. The AWS was introduced by L. Gross in his celebrated paper [4].
Readers interested in details and other related results concerning AWS may consult [4,5.9).

As H is identified as a dense subspace of B, we also identify B*, the dual of B, as a
dense subspace of the dual H* of H under the adjoint operator i* of ¢ by the following
way: For any z € H and n € B*, (x,i*(n)) = (i(x),n), where (-,-) denotes the B-B* dual
pairing in the subsequent study. Applying the Riesz representation theorem to identify H*
with H, there are continuous inclusion maps B* C H C B. Then L. Gross [4] proved that
B carries a probability measure p;, known as the abstract Wiener measure with variance
parameter ¢ > 0, which is characterized as the unique Borel measure on B such that for

any n € B*,
(3.1) / @M p,(da) = e s,
B

Remark 3.1. If H = R¥, then B* = H = B. For any u,v € R¥, (u,v) = (u,v) = u-v,
and p; is exactly the Gaussian measure j; on (R¥, Z(R¥)) given by

pe(dv) = ( 27rt)_ke_2itv'v dv,
where dv denotes k-dimensional Lebesgue measure on R”.

From (3.1)), it follows that (-,7), n € B*, is a random variable on (B, %(B),p1),
distributed by the law of N(0, ||?). For any h € H, let {n,} be a sequence in B* such
that |n, — h| — 0 as n — oo. Then {(-,7,)} forms a Cauchy sequence in L2(B,p;), the
L?(B, p1)-limit of which is denoted by n(h). As h € B*, n(h) = (-, h), and for any h € H,
n(h) is independent of the choice of {1, } and distributed by the law of N (0, |h|?). Regard
n as a function from H into L?(B,p;). Then it can be further extended to H. by defining,
for any hi,he € H, n(hy +1ihg) = n(hy) +in(ha). It is easy to check that n is linear from
H,. into L%(B, p1), and for any h, k € H,,

(3.2) (b, k), = /B n(h)(z)n (k) (z) pi (dz).
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Example 3.2. Let C denote the Banach space, consisting of all real-valued continuous
functions z(t) in the unit interval [0, 1] with 2(0) = 0, endowed with the supremum norm
| - |- Let C" be the Cameron-Martin space which is a Hilbert space, consisting of all
absolutely continuous functions = € C with a square integrable derivative &, with the
norm |- |p induced by the inner product (-, -)o defined by (z,y)o = fo y(t) dt for any
x,y € C'. The space C’ is usually called the Cameron-Martin space and 1t is well-known
that (¢,C’,C) forms an AWS (see [4,[9]). The triple (i,C’,C) is known as the classical
Wiener space. As C' is a dense subspace of C, we identify the dual space C* of C as a
dense subspace of the dual space (C')* of C' under the adjoint operator i* of i. Then C* is
regarded as the set of all y € C’ satisfying the properties that g is right continuous and of
bounded variation with (1) = 0. Moreover, for any x € C and y € C*,

() = - / £(t) i (2),

where (-,-) is the C-C* pairing. Let u be the associated abstract Wiener measure. Then
a standard Brownian motion B(t) can be represented by B(t;x) = z(t) = (x, oy) for any
x €Cand 0 <t <1, where ay(s) = min{¢, s} Moreover, apply the integration by parts
formula to see that for any y € C* and x € C, fo t) dB(t; x), where the right-
hand integral is a Riemann-Stieltjes integral. From this equahty it immediately follows
that the random variable n(y) is the Wiener integral fo t) dB(t). For the further details,

we refer the reader to [9,/14].

Example 3.3. Let A = —(%)2 + 1 + u? be a densely defined self-adjoint operator on
L?(R,du) with respect to the Lebesgue measure du, and {h,;n € Ng} be a CONB for
L?(R, du), consisting of all Hermite functions on R, formed by the eigenfunctions of A
with corresponding eigenvalues 2n+2, n € Ny, where h,(u) = (\/W)_lHn(\/ﬁu)e_%“Q
Let § be the Schwartz space of real-valued, rapidly decreasing, and infinitely differentiable
functions on R with its dual &', the spaces of tempered distributions. For each p € R, let
S, denote the space of all functions f in S’ having ]f\]% =32 0 (2n+2)%P|(f, hy)|* < +o0,
where (-,-) always denotes the §'-S pairing. Then S,, p € R, forms a real Hilbert space
with the inner product (-,-), induced by |- [,. The dual space S, p € R, is unitarily

equivalent to S_,. Then we have the continuous inclusions:
Scs,cS,c L*Rydu)=ScS,CcS,CS,

where 0 < p < ¢ < +00. One notes that S is the projective limit of {Sy;p > 0}. In
fact, S is a nuclear space, and thus &’ is the inductive limit of {S_,;p > 0}. The well-
known Minlos theorem (see [3]) guarantees the existence of the white noise measure y on
(8, #(S")), the characteristic functional of which is given by

// @ y(dz) = =3 for all n € S.
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For p > 1/2, it is easy to see that (i,Sp, S—,) forms an AWS (see [10L(15]), the measurable
support of ;1 is contained in S_, and p coincides with the associated abstract Wiener
measure. The probability space (8, (S’), ) is known as the white noise space, and the
Brownian motion B = {B(t);t € R} on (§’, B(S’), 1) can be represented by

n(lpy)(z) ift>0,

B(t;z) =
—Il(]_[t70])(x) ift<0,z¢€ Sl,

where 14 means the indicator function of the set A. Moreover, for any n € Sp, n(h) is
exactly the Wiener integral [*_n(t) dB(t).

Next, assume that H is infinite-dimensional, and {e; € B*;j € N} is a CONB of H.
Then, for any h € H., we have
0o
n(h) = (h.e;)n(e;) in LX(B,p).
j=1

Let %, be the o-field generated by the random variables (-, e;) for j =1,2,..., k. Then
{P; k € N} is a filtration. It is worth noting that the o-field Boo = /oy P coincides
with Z(B) (see [9]). The following lemma plays an important role, which will enable us

to extend the results of Section [ from finite dimensions to infinite dimensions.

Lemma 3.4. For any f € L?(B,p1), E[f| %] converges to f in L?(B,p1) as k — oo,
where E[p| %] means the conditional expectation of ¢ relative to HBy;.

Proof. Let € > 0 be given. By applying the Carathéodory-Hahn extension theorem (see
[18]), there exists a simple function f. = > ', a;1p;, a;’s € C, such that Ej’s € J;Z, %
and ||f — fellp2(Bpy) < €/2. Let N € N such that Ej’s € #y. Then, for any k > N,
fe € By, and

1f = B2 250y < 2 (I = fol2agpn) + I1f- — ELf14] Hig(B,m)
=2 (I = JelB ey + VEL: — F126d B
<4f = flZampn < &

where the last inequality is obtained by Jensen’s inequality. The proof is complete. O

4. The S-transform on L?(B,p;)

In this and next section, (i, H, B) denotes a fixed but arbitrary AWS as given in Section
where H is always assumed to be infinitely dimensional. Roughly speaking, our basic

idea of deducing the relevant formulas in an infinite-dimensional space is to consider the
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cylinder functions in the beginning; then apply the results obtained in Section [2] to these
functions, and finally use Lemma [3.4] to arrive at the results by taking the limits. For
example, the arguments in and the procedure from ([5.1)) to is a typical process
of our basic idea.

Let f € L%(B,p1) be given. Define the S-transform S f of f be a function by
Soof(h) = p1 % f(h), h € H, where py % f is the convolution of f with p;. For any h € H,
define py(h, E) = p1(E — h), E € B(B). It is well-known (see [9]) that pi(dz) = p1(—dx)
and pi(h,-) is absolutely continuous with respect to p;, the associated Radon-Nikodym
derivative being given by en(W—3Ihf?, Then, for any h € H,

Suf ()= [ fla+hymlde) = [ )@ by o)
And, there is a natural extension of So f to H,, still denoted by S f, given by
S f(h / F)er™@=30B a0 b e H,.
In fact, if h € H., say h = hy + ihe € H, with hy, he € H, then

1 1
|Soo f(h |</ | f(z)| en(r) @)= §(Ih1|27\hz|2)p1(dx)§ ”fHL%(B,pl)'65‘h|27

which implies that Sy f is locally bounded in H,.. In addition, for any h,k € H,, it is
easily seen that the function z € C — S f(h + zk) is holomorphic. Then S f(h) is
an analytic function of h € H. (see [7]); therefore, Sy f is Fréchet differentiable in H.,,
and D"S. f(0), n € N, is a continuous symmetric n-linear form, where D is the Fréchet

derivative of Sy f. Moreover, Sy f enjoys the Taylor expansion:
- 1 n n
h) = Z%MD Seof(0)h™ Vhe H,.

Let {e; € B*j = 1,2,...} be a CONB of H. For any k € N, let S, be the S-
transform on L2(R* p,). Denote E[f|%%] by fi, where %y, is a Borel o-subfield of %(B)
defined as in the previous section. A well-known fact is that f; can be represented as
dr(n(er),...,n(ex)), where ¢y, € L2(R¥, p;). Here one notes that

p({(n(er).....n(ey)) € BY) = wy(E), VE € BRE).
For any k € N and z,y € B, define Py(x + iy) = Z?Zl((:c, e;) +i(y,ej))e; € B*, and
Zosigk = (n(e1)(@ +1y), .. ney) (@ + iy)) € CF.
Lemma 4.1. Let f and ¢ be given as above. Then, for any h € H., we have

D" S161(0)2}, . = D" S (0)(Pi(h))"



464 Yuh-Jia Lee and Hsin-Hung Shih

Proof. Observe that

"
&,
"
- dfﬁ £=0JRF

d / fi ()P EPL ) @)~ (EPL ) EPM) ey ()
£=0

D" Sy, (0)zf: ) = Skr(€zn,k)

(4.1) bk (v)eﬁ(WZh,k)Ck —262%(2n,k,20,k) ok oy (dv)

e

Since en(€Px0)(@)=3(EP(h) &P (M) m. jg ABj-measurable, (4.1)) can be transformed into
a
df“

/ E[f - ¢nEPe0) =3 (EPLM)EPLI) e | 2,1 (1) py (dr)

—den| [ )€ SR e (da) — DS, F(0)(Pu(h))",
£=0

The proof is complete. O
Applying Lemma the explicit formula of D™S., f(0) can be obtained as follows.

Proposition 4.2. For any f € L?(B,p1) and hy,..., h, € H,,
DS O, hy = [ o { 1L H 2) -+ in(hy)(y >>p1<dy>}p1<dx>.

Proof. First, we consider the case that hy =---=h,, =h € H\ {0}. By Lemma and
applying (2.3), (2.7) and (2.10)), one can see that
D"S f(0)h" = klim D"So f(0)(Pg(h))"
—00
= lim Dnsk(ﬁk(O)ZZk
k—o0 ’

. Zhk 0
_ ] § ’ )

a€N§,|a|:n

(42) = Jimonl 37 s | ok(w) Ha(w) pa(du)

aeNE |al=n

~ i [ o { /. zhk,u+w>cku1<dv>}m<du>
= jin [ a0 { [ @rin o mn

k—o0

= lim / f(x){/B(a:—l—iy,Pk(h))npl(dy)} p1(dz),

k—o0 B

where Tj, , = [5(- + iy, Pi(h))" p1(dy) is obviously %j-measurable. Note that

it = [Pu(h)[" Hi(( -, Pe(h)/|Pr(R)1)) ~ N (0, n| Pe(R)*").
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Let Ty(x) = [z(n(h)(z) +in(h)(y))" p1(dy), x € B. Then
Ty = |h[" Ha(n(h/|R])) ~ N(0,n![n]*").
As k — oo, since |Py(h)| — |h| and (-, Py(h)/|Pk(h)|) — n(h/|h]) in L*(B,p1), Th

. By
val)
the dominated convergence theorem, T}, — T}, in L?(B,p;). Then it follows from (4.2)

that

converges in probability to T}, and moreover |7} h7k||%2( B.py) Converges to 152, (

4y pseson = [ Jw { [ i) + in<h><y>>np1<dy>}pl<dx>.

By the uniqueness of analytic continuation, the formula (4.3)) still holds by replacing h by
hi1+zho, hi,he € H and z € C, especially by h € H.. Finally, by applying the polarization
formula (see Appendices of [15]), we complete the proof. O

Remark 4.3. In order to study the regularity of heat semigroup generated from p;, Lee [11]
has already achieved the same formula as in Proposition even for f € LY(B,p:) with
a > 1. In the course of derivation, Lee proved it by using induction and more sophisticated

calculation than the above proof.

5. Wiener-It6 theorem on abstract Wiener spaces

In this section, we would like to establish an analytic version of Wiener-It6 orthogonal
decomposition of LZ(B,p1). Let {e; € B*j = 1,2,...} be a CONB of H. For any
f € LA(B,p1), fr, én are defined as in Section 4l First, we observe by Theorem (ii)
and Lemma [£.1] that for any k € N,

fr(x) = dr(ug )
= 1 n . n
= Z o /Rk D" Sk (0)(uy k + iv)" py (dv)
n=0
= 1 n . n
(5.1) = Z ”!/BD Sk¢r(0)(ug i + iuy x)" p1(dy)
’ n=0

o0 1 . .
:,;)”!/BD Skdr(0)Zp, (4iy) 1 P1(AY)

=Y [ DS OB+ ) pildy) i L2(Bp)
n=0 B
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And, for any = € B, it follows by (2.3) and Lemma that
| DS fO) Pl + )" ()
B

_ Z D"S oof 611”' /H x—l—ly,e% p1(dy)

(52) 1<iy,.in <k

DS f(0)e” ...67.“3
=nly nl- .]ﬁg! e Hing ) (@i (@),

£ 1<51<<je<k
ni+--+ng=n

where
le ----- jz(x) = ((3:‘, ejl)?"'v($veje))v r € B.

Since, by (2.4) and (3.2)),
(5.3) {<a!)*1/2Ha(Qj1,...,je<->>; 1<ji<--<jnaeN,vie N}
is an orthonormal set in L2(B,p;), we combine (5.1)) and (5.2)) to obtain that

|D"Soo f(0)el - - - e|?

oo
IilZamon =222 20 e
Lc(szl) nllnzl

n=0 ¢ 1<j1<---<je<k
ni+-+ng=n

—Z ST D S f(0)es, e |

1<117 Lin<k

Letting k — oo, it follows by Lemma [3.4] that

1£1Z2(8.p0) = Z > D Swcf(0)e, €|

n=0 """ 1<i1,...,in€N

= Z mIID”Swf(O)II%s < +oo.

(5.4)

Then the following are immediate consequences by Proposition and (5.1)—(5.4).

Theorem 5.1. (i) {(a!)_l/QHa(th_”,je(-));1 <j1 < <jpaeN,VleN}isa
CONB of L?(B,p1).

(ii) Let f € L?(B,p1) be given. Then

> D"S.f e _
:ZZ Z nl!(.?.jﬁé] jeH”l, ST (Q]h Je()) mn LE(B7P1)'

n=0 ¢ 1<j1<---<je<k
ni+--+ng=n

Moreover,



An Analytic Version of Wiener-It6 Decomposition on Abstract Wiener Spaces 467

(§i1) [1£12205,,) = Sz sl D™ Soc f(0) 13-

Recall that, for r > 0, denote by F"(H.), the class of analytic functionals on H. with
|+ | 7r (zr.)-norm satisfying

X n
T
1E 131y = 3 51D FO) s,y < o0,
n=0

called the Bargmann-Segal-Dwyer space. Members of F"(H,) are called Bargmann-Segal
analytic functionals. We refer the interested reader to [13] and the references cited therein.
If H. = C*, we remark that F7(CF) = K"/2(CF) given as in Subsection Consequently,

it follows by Theorem iii) that Sef € FL(H,) with |Soo fll7r(r) = 1 £l L2(B,p1)-

In order to express the right-hand side of Theorem [5.1](ii) as an integral form shown
in ([2.16)), we need to introduce the Gauss transform A on F'(H,) as follows. For any
F € F1(H,), if F has an extension to B, the Gauss transform A(F) of F is defined as a

function on B such that for any « € B,
A(F)(z) = / F(z+1iy)pi(dy) (if it exists).
B

Let £™(B.) be the space of n-linear continuous operators from B, X - -+ X B, (n-times)
into C, and 5?2) (H.) the space of n-linear Hilbert-Schmidt operators from B, x --- X B,
(n-times) into C. Then, by applying Kuo’s theorem (see Corollary 4.4, p. 85, in [9]), the
restriction of T' € L™(B.) to H. x - -+ x H. is a member of Ll )( ¢). For T e L™(B,), let
fr be a function on H. given by fT( ) =Tx", x € B.. Then fr is obviously an analytic
function on B.; moreover, D" fr(0) = n!-sym(T") and D™ fr(0) = 0, if m # n. Hence
fr € FY(H.) and

Afr)(z) = /B sym(T)(x + iy)" pi(dy), =€ B,

where sym(7") denotes the symmetrization of T', and the existence of the right-hand in-
tegral is guaranteed by the Fernique theorem (see [9]). It is easy to check that A(fr) €
L?(B,p1). Moreover, we can apply Proposition to see that for any hy,... h,, € H,,

D" SO, h = [ An@] [ ] H )+ in(hy) () ) | ).

In fact, we have the following

Proposition 5.2. Let T' € L™(B.) be arbitrarily given. Then, for any m € N, D™ fp(0) =
m!-sym(T), if m =n; 0, if m # n, and for any hy,... h,, € H,

D" g0+ = [ @] [ ] H )+ in(hy) (1) ) ).
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Proof. Tt suffices to show that SocA(fr)(h) = sym(7)h™ for any h € H.. Observe that
AW = [ [ symT) b+ o+ i) 1 (A (o)
Define a function ¢ from C2 into C by
o) = [ [ smT)0+aw + 50" pi(dn)or a0
n2 /8”3
=nl ) / / sym(T)h"™ z"2y" p; (dy)p: (dz).

n1!nsns!
nit+nz2+nz=n 1:762:183°

Then g is holomorphic on C2. For any o, 3 € R,
9(a, B) = /B/B sym(T')(h +  + y)" paz2 (dy)pgz (dz)
= [ )b+ )" ()
= /Bsym )(h+ \/m " py(dx)
o Y WP [ e )

’I’L1!7’LQ!

(5.5)

ni+n2=n

2 2\n
=nl Z W/Bsym(T)hn1$2nl2 p1(d1‘),

| !
n+{(2nh)=n ni .(2n2).

where [z sym(T)h™ 2" pi(dex) = 0, if ny is an odd positive integer, since p;(dx)
p1(—dz). The sum in the last equality of (5.5 is also holomorphic as a function of
(o, B) € C% and coincides with g(a, 3) for any «, 3 € R. By the uniqueness of analytic

continuation, these two holomorphic functions are equal on C2. Substituting o = 1 and

B =1iinto (5.5)), the proof is complete.
By Theorem [5.1fi) and Proposition we obtain that for any T € L"(B,),
oo n
(5.6) A= 3 Teee, [ ]G+ mid)
i1,00rin=0 B
where the sum is convergent in L?(B,p;), and thus
(5.7) 1A 2 pr) = Vlllsym(T)l s

For T' e LT, )( ¢), one can take a sequence {T}} C L™(B.) such that T, — T in L, (H,
Then it follows from ) that

68 JmAGn) = > Tl [ TIC+ine) ),
j=1

i1 seeyin=0
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where the limit and sum are taken in L?(B,p;), and independent of the choice of {7}
and {e;}. Accordingly, we can extend the definition of the Gauss transform to Ly (Hc)
by defining A(fr) as the right-hand sum of (/5.6]).

By employing the Gauss transform, we now sum up all arguments concerning Theo-

rem [5.1} Proposition and (5.6)—(5.8) to give the following
Theorem 5.3. (i) Let f € L2(B,p1). Then

f:;;/BDnSoof(O)(""iy)nm(dy) in L2(B, p1),

where the integral means A(fprs. (0))-

(ii) For any Ty € Ly (H;) and Ty € .CE’QL)(HC),

/BA(le)(fC) A(fr,)(z) pr(dz) = bpm - ! (sym(T), sym(T2))ns,
where 0pm =1, if n =m; 0, if n # m.
(iii) For any T € E&) (H.), SoocA(fr) = sym(T) on H..

(iv) Let Ho = C, and for any n € N, let H,, = {A(fr);T € 5?2)(Hc)}- Then L2(B,p1)
is the orthogonal direct sum Y " o ®&H,.

The formula in Theorem [5.3|(i) is a reformulation of Theorem [5.1{ii), called an analytic
version of Wiener-It6 decomposition. The orthogonal direct sum in Theorem [5.3(iv) is
called the Wiener-It6 theorem on abstract Wiener spaces. From (5.8]), the homogeneous

chaos H,, of order n is the completion in L2(B, p1) of the span of Hermite polynomials of
{(-,e);i=1,2,...}.
Corollary 5.4. The S-transform Ss is an isometry from L2(B,p1) onto F'(H.).
Proof. By Theorem (iii), we have seen that S, is an isometry from L2(B,p;) into
FY(H,). To show S, is surjective, for any F' € F(H,), let

=1

f=> EA(JCD"F(O)) in L2(B,p1).

n=0 """

Then it immediately follows from Theorem m(iii) that Sef = F. The proof is complete.

O]

Remark 5.5. Let (H, B) be the white noise space (Sp, S—p) for p > 1/2 (see Example [3.3).
For f € L%(B,p1), the integral in Theorem (i), that is,

% /B D"Soo f(0)( - +iy)™ p1(dy),



470

Yuh-Jia Lee and Hsin-Hung Shih

is exactly the multiple Wiener integral I,,(f,) of order n with respect to the Brownian

motion B(t) given in Example where f,, € ZE(R"), the space of symmetric complex-

valued L2-functions on R™, can be represented as

1
fn(tla e at’n) — EDHSOOf(O)(Sh t '5tn7

where J; is the Dirac measure concentrated on the point .
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