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Abstract. The main purpose of this paper is to study multi-parameter singular integral

operators which commute with Zygmund dilations. We develop the theory of the

weighted multi-parameter Hardy space Hp
z,w and prove the boundedness for these

operators on Hp
z,w for certain p ≤ 1, which provide endpoint estimates for those

singular integral operators studied by Ricci-Stein [31] and Fefferman-Pipher [15]. We

also establish the Calderón-Zygmund decomposition and interpolation theorem in this

setting.

1. Introduction

Ricci-Stein [31] introduced multi-parameter singular integral operators and Fefferman-

Pipher [15] considered specific singular integral operators associated with Zygmund dila-

tions. The boundedness for these operators on Lp and weighted Lpw, 1 < p < ∞, was

obtained by Ricci-Stein [31] and Fefferman-Pipher [15], respectively. In [21], the first four

authors of this paper introduced a class of singular integral operators associated with Zyg-

mund dilations and prove the boundedness for such a class on Lp and Lpw, 1 < p < ∞.

The operators in this class and the boundedness results for these operators generalize some

those studied by Ricci-Stein [31], Fefferman-Pipher [15] and Nagel-Wainger [29]. In the

endpoint case, it is natural to expect that Hardy space bounds are available.

The main purpose of this paper is to prove the boundedness of this class of operators on

the weighed Hardy spaces Hp
z,w associated with Zygmund dilations for certain p ≤ 1, which,

in particular, provides the endpoint estimates for operators studied by Ricci-Stein [31]

and Fefferman-Pipher [15]. We also establish the Calderón-Zygmund decomposition and

deduce interpolation theorems in this setting.

To achieve our results, we use a “standard strategy”, but one that has to be adapted

to our special situation, of the structure with Zygmund dilations. More specifically, we
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have to construct a Calderón reproducing formula associated with Zygmund dilations,

to discretize the operators according to it, to apply almost orthogonal estimates, and to

implement various stopping time arguments.

We now set our work in context. In their well-known theory, Calderón and Zygmund [1]

introduced certain convolution singular integral operators on Rn which generalize the

Hilbert transform on R1. They proved that if T (f) = K∗ f , where K is defined on Rn and

satisfies the analogous estimates as 1/x does on R1, namely

|K(x)| ≤ C

|x|n
, |∇K(x)| ≤ C

|x|n+1
and

∫
a<|x|<b

K(x) dx = 0 for all 0 < a < b,

then T is bounded on Lp(Rn) for 1 < p < ∞. The core of this theory is that the

regularity and cancelation conditions are invariant with respect to the one-parameter

family of dilations on Rn defined by δ(x1, x2, . . . , xn) = (δx1, . . . , δxn), δ > 0, in the

sense that the kernel δnK(δx) satisfies the same conditions with the same bound as K(x).

Indeed, the classical singular integrals, maximal functions and multipliers are invariant

with respect to such one-parameter dilations. The one-parameter theory is currently well

understood.

The multiparameter theory of Rn began with Zygmund’s study of the strong maximal

function, which is defined by

Mn(f)(x) = sup
R3x

1

|R|

∫
R
|f(y)| dy,

where R are the rectangles in Rn with sides parallel to the axes, and then continued

with Marcinkiewicz’s proof of his multiplier theorem. The strong maximal function and

Marcinkiewicz’s multiplier are invariant with respect to the product dilations defined by

δ(x1, x2, . . . , xn) = (δ1x1, . . . , δnxn), δi > 0, i = 1, . . . , n. The multiparameter dilations

are also associated with problems in the theory of differentiation of integrals. Jensen-

Marcinkiewicz-Zygmund [22] proved that the strong maximal function in Rn is bounded

from the Orlicz space L(1 + (log+ L)n−1) to weak L1. Zygmund further conjectured that

if the rectangles in Rn had n side lengths which involve only k independent variables, then

the resulting maximal operator should behave like Mk, the k-parameter strong maximal

operator. More precisely, for 1 ≤ k ≤ n, and for positive functions φ1, . . . , φn as the side-

lengths of the given collection of rectangles where the maximal function is defined, each

one depending on parameters t1 > 0, t2 > 0, . . . , tk > 0, assuming arbitrarily small values

and increasing in each variable separately, then the resulting maximal function would

be bounded from L(1 + (log+ L)k−1) to weak L1 according to Zygmund’s conjecture.

A. Córdoba [7] showed that for the unit cube Q in R3,

|{x ∈ Q :Mf(x) > λ}| ≤ C

λ
‖f‖L logL(Q),
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where Mf denotes the maximal function on R3 defined by

Mf(x) = sup
R3x

1

|R|

∫
R
|f(u)| du.

The supremum above is taken over all rectangles with sides parallel to the axes and side

lengths of the form s, t, and φ(s, t). Córdoba’s result was generalized to the case of φ1(s, t),

φ2(s, t), φ3(s, t) by Soria [32] with some assumptions on φ1, φ2, φ3. Moreover, Soria

showed that Zygmund’s conjecture is not true even when φ1(s, t) = s, φ2(s, t) = sφ(t),

φ3(s, t) = sψ(t), with φ, ψ being positive and increasing functions.

In [16] R. Fefferman and Stein generalized the singular integral operator theory to the

product space. They took the space Rn × Rm along with the two-parameter family of

dilations (x, y) 7→ (δ1x, δ2y), (x, y) ∈ Rn × Rm, δ1, δ2 > 0. Those operators considered

in [16] generalize the double Hilbert transform on R2 given by H(f) = f ∗ 1
xy and are of

the form T (f) = K ∗ f , where the kernel K is characterized by the cancelation properties∫
a<|x|<b

K(x, y) dx = 0 for all 0 < a < b and y ∈ Rm,(1.1) ∫
a<|y|<b

K(x, y) dy = 0 for all 0 < a < b and x ∈ Rn,(1.2)

and the regularity conditions

(1.3) |∂αx ∂βyK(x, y)| ≤ Cα,β|x|−n−|α||y|−m−|β|.

Under the conditions (1.1)–(1.3), Fefferman and Stein proved the Lp, 1 < p < ∞,

boundedness of the product convolution operators T (f) = K∗f . See [16] for more details.

Note that the kernel K satisfying the conditions (1.1)–(1.3) is invariant with respect to the

product dilation in the sense that the kernel δn1 δ
m
2 K(δ1x, δ2y) satisfies conditions (1.1)–

(1.3) with the same bound. For more discussions about the multiparameter product

theory, see [2–6, 8, 10–14, 20, 23–25, 30] among others and in particular the survey article

of R. Fefferman [14] for development in this area. For the multiparameter flag theory,

see [26–28] among others.

It has been widely considered that the next simplest multiparameter group of dilations

after the product multiparameter dilations is the so-called Zygmund dilation defined on

R3 by ρs,t(x1, x2, x3) = (sx1, tx2, stx3) for s, t > 0. There are two operators associated

with the Zgymund dilations. The first is the maximal operator Mz defined via

Mzf(x) = sup
R∈Rz

R3x

1

|R|

∫
R
|f(y)| dy,

where Rz is the collection of all rectangles in R3 with side length t, s and ts, respectively,

for t, s > 0. The other is the singular integral operator f ∗ K introduced by Ricci and
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Stein [31], where

K(x1, x2, x3) =
∑
k,j∈Z

2−2(k+j)φk,j
(x1

2k
,
x2

2j
,
x3

2k+j

)

and the functions φk,j are supported in a unit cube in R3 satisfying a certain amount of

uniform smoothness and cancelation conditions. It was shown in [31] that Tz is bounded

on Lp(R3) for all 1 < p < ∞. R. Fefferman and Pipher [15] further showed that this

class of singular integral operators is bounded in Lpw spaces for 1 < p < ∞ when the

weights w’s satisfy an analogous condition of Muckenhoupt associated with Zygmund

dilations. The link between the properties of maximal operators Mz and the boundary

value problems for Poisson integrals on symmetric spaces, such as Siegel’s upper half space,

was discovered by E. Stein. See the survey article of R. Fefferman [12] for this link and

for more research directions of multiparameter analysis on Zygmund dilations. Related to

the theory of operators likeMz and Tz, several authors have considered singular integrals

along surfaces. See, for example, Nagel-Wainger [29].

Recently, the first four authors [21] introduced a more general class of singular inte-

gral operators associated with Zygmund dilations, which we now recall. Suppose that

K(x1, x2, x3) is a function defined on R3 away from the union {0, x2, x3} ∪ {x1, 0, x3} ∪
{x1, x2, 0} and all α, β and γ are integers taking only values 0 and 1. Define

∆α
x1,h1K(x1, x2, x3) = αK(x1 + h1, x2, x3)−K(x1, x2, x3), α = 0 or 1;

∆β
x2,h2
K(x1, x2, x3) = βK(x1, x2 + h2, x3)−K(x1, x2, x3), β = 0 or 1;

and

∆γ
x3,h3
K(x1, x2, x3) = γK(x1, x2, x3 + h3)−K(x1, x2, x3), γ = 0 or 1.

We denote ∆x1,h1 = ∆1
x1,h1

, ∆x2,h2 = ∆1
x2,h2

and ∆x3,h3 = ∆1
x3,h3

for simplicity. The

“regularity” conditions are characterized by

(R) |∆α
x1,h1∆β

x2,h2
∆γ
x3,h3
K(x1, x2, x3)| ≤ C|h1|αθ1 |h2|βθ1 |h3|γθ1

|x1|αθ1+1|x2|βθ1+1|x3|γθ1+1
(
|x1x2x3

|+ | x3x1x2
|
)θ2

for all 0 ≤ α ≤ 1, 0 ≤ β + γ ≤ 1 or 0 ≤ α + γ ≤ 1, 0 ≤ β ≤ 1, and |x1| ≥ 2|h1| > 0,

|x2| ≥ 2|h2| > 0, |x3| ≥ 2|h3| > 0, h1, h2, h3 ∈ R and some 0 < θ1 ≤ 1, 0 < θ2 < 1. The

cancelation conditions are given by

(C.a)

∣∣∣∣∣
∫
δ3≤|x3|≤r3

∫
δ2≤|x2|≤r2

∫
δ1≤|x1|≤r1

K(x1, x2, x3) dx1dx2dx3

∣∣∣∣∣ ≤ C
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uniformly for all δ1, δ2, δ3, r1, r2, r3 > 0;∣∣∣∣∣
∫
δ1≤|x1|≤r1

∆β
x2,h2

∆γ
x3,h3
K(x1, x2, x3) dx1

∣∣∣∣∣
≤ C|h2|βθ1 |h3|γθ1
|x2|βθ1+1|x3|γθ1+1

(
1(

| r1x2x3
|+ | x3r1x2

|
)θ2 +

1(
| δ1x2x3

|+ | x3δ1x2
|
)θ2
)(C.b)

for all δ1, r1 > 0, 0 ≤ β + γ ≤ 1, |x2| ≥ 2|h2| > 0, |z| ≥ 2|h3| > 0;

(C.c)

∣∣∣∣∣
∫
δ3≤|x3|≤r3

∫
δ2≤|x2|≤r2

∆α
x1,h1K(x1, x2, x3) dx2dx3

∣∣∣∣∣ ≤ C|h1|αθ1
|x1|αθ1+1

uniformly for all δ2, δ3, r2, r3 > 0, |x1| ≥ 2|h1| > 0 and 0 ≤ α ≤ 1. Or

(C.a′)

∣∣∣∣∣
∫
δ3≤|x3|≤r3

∫
δ2≤|x2|≤r2

∫
δ1≤|x1|≤r1

K(x1, x2, x3) dx1dx2dx3

∣∣∣∣∣ ≤ C
uniformly for all δ1, δ2, δ3, r1, r2, r3 > 0;∣∣∣∣∣

∫
δ2≤|x2|≤r2

∆α
x1,h1∆γ

x3,h3
K(x1, x2, x3) dx2

∣∣∣∣∣
≤ C|h1|αθ1 |h3|γθ1
|x1|αθ1+1|x3|γθ1+1

(
1(

| r2x1x3
|+ | x3r2x1

|
)θ2 +

1(
| δ2x1x3

|+ | x3δ2x1
|
)θ2
)(C.b′)

for all δ2, r2 > 0, 0 ≤ α+ γ ≤ 1, |x1| ≥ 2|h1| > 0 and |x3| ≥ 2|h3| > 0;

(C.c′)

∣∣∣∣∣
∫
δ3≤|x3|≤r3

∫
δ1≤|x1|≤r1

∆β
x2,h2
K(x1, x2, x3) dx1dx3

∣∣∣∣∣ ≤ C|h2|βθ1
|x2|βθ1+1

uniformly for all δ1, δ3, r1, r3 > 0, |x2| ≥ 2|h2| > 0 and 0 ≤ β ≤ 1.

The Lp, 1 < p <∞, boundedness of the singular integral operators was proved in [21].

The purpose of this paper is to establish the endpoint estimates of the singular integral

operators Tz on Hp
z,w(R3) when the kernel of Tz satisfies the above cancelation conditions.

These results in particular provide the endpoint estimates for operators studied by Ricci-

Stein [31] and Fefferman-Pipher [15].

Let S (R3) denote the set of Schwartz functions in R3 and x = (x1, x2, x3) ∈ R3. A

Schwartz function f defined on R3 is said to be a test function in Sz(R3) if f ∈ S (R3)

and ∫
R
f(x1, x2, x3)xα1 dx1 =

∫
R2

f(x1, x2, x3)xβ2x
γ
3 dx2dx3 = 0

for all indices α, β, γ of nonnegative integers. The seminorms of f in Sz(R3) are the

Schwartz seminorms. We denote by S ′
z (R3) the dual of Sz(R3).
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Let ψ(1) ∈ S (R) satisfy

(1.4) supp ψ̂(1)(ξ1) ⊂ {ξ1 : 1/2 < |ξ1| ≤ 2}

and

(1.5)
∑
j∈Z

ψ̂(1)(2jξ1)2 = 1 for all ξ1 ∈ R \ {0},

and let ψ(2) ∈ S (R2) satisfy

(1.6) supp ψ̂(2)(ξ2, ξ3) ⊂ {(ξ2, ξ3) : 1/2 < |(ξ2, ξ3)| ≤ 2}

and

(1.7)
∑
k∈Z

ψ̂(2)(2kξ2, 2
kξ3)2 = 1 for all (ξ2, ξ3) ∈ R2 \ {0}.

Set ψj,k(x1, x2, x3) = 2−2(j+k)ψ(1)(x1/2
j)ψ(2)(x2/2

k, x3/2
j+k).

By taking the Fourier transform, it is easy to see the continuous Calderón’s reproducing

formula on L2(R3)

(1.8) f(x) =
∑
j,k∈Z

ψj,k ∗ ψj,k ∗ f(x).

This continuous Calderón’s reproducing formula was used to prove the Lp(R3), 1 < p <∞,

boundedness of singular integral operators. However, to develop the Hardy space, we feel

that it is more convenient to use the following discrete Calderón’s reproducing formula.

Theorem 1.1. Suppose that ψj,k are the same as in (1.8). Then

(1.9) f(x) =
∑
j,k∈Z

∑
R∈Rj,k

z

|R|ψj,k(x− xR)(ψj,k ∗ f)(xR),

where Rj,kz is the collection of rectangles in R3 and R ∈ Rj,kz means that R = I × J × S
with the side length |I| = 2j, |J | = 2k and |S| = 2j+k, xR denotes the “left lower corner”

of R (i.e., the corner of R with the least value of each coordinate component), and the

series converges in both Sz(R3) and S ′
z (R3).

Remark 1.2. As mentioned in [21], we would like to point out that both cancelation condi-

tions (C.a)–(C.c) and (C.a′)–(C.c′) and regularity condition (R) are invariant with respect

to Zygmund dilations. Indeed (see [21, Theorem 4.1]), if K(x1, x2, x3) =
∑

j,k∈Z ψj,k ∗
ψj,k(x1, x2, x3), thenK(x1, x2, x3) satisfies all cancelation conditions (C.a)–(C.c) and (C.a′)

–(C.c′) and the regularity condition (R). This means that the Calderón reproducing for-

mula above, as a special Calderón-Zygmund operator, is invariant with respect to Zygmund

dilations.
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Based on the above discrete Calderón’s reproducing formula, the Littlewood-Paley

square function of f ∈ S ′
z (R3) is defined by

gψz (f)(x) =

( ∑
j,k∈Z

∑
R∈Rj,k

z

|(ψj,k ∗ f)(xR)|2χR(x)

)1/2

,

where χR is the indicator function for the rectangle R.

Note that the functions ψj,k constructed above belong to Sz(R3), so the Littlewood-

Paley square function gψz is well defined for all distributions in S ′
z (R3).

The natural class of Ap weights with respect to Zygmund dilations was introduced

by R. Fefferman and Pipher [15], which we now recall. For 1 < p < ∞, a nonnegative

measurable function w on R3 is called a Muckenhoupt weight in Az
p(R3) if

sup
R∈Rz

(
1

|R|

∫
R
w(x) dx

)(
1

|R|

∫
R
w(x)−1/(p−1) dx

)p−1

<∞.

A nonnegative measurable function w on R3 is called a Muckenhoupt weight in Az
1(R3)

if Mz(w)(x) ≤ Cw(x) for almost every x ∈ R3. And Az
∞(R3) =

⋃
p≥1A

z
p(R3). If w ∈

Az
∞(R3), the critical index qw of w is defined by

qw := inf{q : w ∈ Az
q(R3)}.

Now we formally define the weighted multi-parameter Hardy space associated with

Zygmund dilations as follows.

Definition 1.3. Let 0 < p < ∞ and w ∈ Az
∞(R3). The weighted Hardy space Hp

z,w(R3)

associated with Zygmund dilations is defined by

Hp
z,w(R3) = {f ∈ S ′

z (R3) : gψz (f) ∈ Lpw(R3)}

with quasi-norm ‖f‖Hp
z,w(R3) := ‖gψz (f)‖Lp

w(R3).

To see that the definition of Hp
z,w(R3) is independent of the choice of {ψj,k}, we will

prove the following

Theorem 1.4. Let 0 < p <∞ and w ∈ Az
∞(R3). Suppose {ψj,k}, {ϕj,k} satisfy conditions

(1.4)–(1.7). Then

‖gψz (f)‖Lp
w(R3) ≈ ‖gϕz (f)‖Lp

w(R3).

Our first main result is the boundedness of singular integral operators associated with

Zygmund dilations, which is given by the following.
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Theorem 1.5. Let w ∈ Az
∞(R3) with critical index qw satisfying qw <

2+ 1
2

min(θ1,θ2)

2 .

Suppose that K is a function defined on R3 and satisfies conditions (R) and (C.a)–(C.c) (or

(R), (C.a′)–(C.c′)). Then the operator Tzf := K∗ f defined initially on L2(R3)∩Hp
z,w(R3)

extends to a bounded operator on Hp
z,w(R3) for p satisfying qw · 2

2+ 1
2

min(θ1,θ2)
< p ≤ 1 and,

moreover,

‖K ∗ f‖Hp
z,w(R3) ≤ A‖f‖Hp

z,w(R3)

with the positive constant A being independent of f .

It is worthwhile to point out that the operators considered in this paper are invariant

with respect to Zygmund dilations and cover the ones studied in [31] and [15] associ-

ated with Zygmund dilations. Thus, Theorem 1.5 (also Theorem 1.6 below) in particular

provides the endpoint estimates for the operators studied in [31] and [15].

In many applications, singular integral operators are of the form K ∗ f where K is a

distribution that equals a function K on R3 away from the union {0, x2, x3}∪{x1, 0, x3}∪
{x1, x2, 0} and the cancelation conditions are described in terms of bump functions. Asso-

ciated with Zygmund dilations, the cancelation conditions defined using bump functions

were introduced in [21]. It was shown that such kind of cancelation conditions are weaker

than the ones considered in Theorem 1.5, and hence the same boundedness result also

holds for singular integrals with these cancelation conditions.

We point out that in the classical case, the main tool to get the Hp−Lp (or Hp
w−Lpw)

boundedness of the classical singular integrals is the atomic decomposition. However, in

the present situation one even does not know whether such an atomic decomposition exists.

We will show the following more general result without using atomic decomposition and,

as a consequence, obtain the Hp
z,w(R3) − Lpw(R3) boundedness for the singular integrals

given in Theorem 1.5.

Theorem 1.6. Suppose 0 < p ≤ 1 and w ∈ Az
∞(R3) with critical index qw satisfying qw <

2+ 1
2

min(θ1,θ2)

2 . Let T be a linear operator mapping L2(R3) into L2(R3). If T is bounded on

Hp
z,w(R3), then T can be extended to a bounded operator from Hp

z,w(R3) to Lpw(R3). As a

consequence, the operator considered in Theorem 1.5 is bounded from Hp
z,w(R3) to Lpw(R3)

for qw · 2
2+ 1

2
min(θ1,θ2)

< p ≤ 1.

We would like to remark that the range of p given in Theorems 1.5 and 1.6 can be

extended to be 0 < p <∞ if more regularity and cancelation conditions are added to the

kernel for operators considered in these theorems.

Our last main results are the Calderón-Zygmund decomposition and interpolation.

Theorem 1.7. Let w ∈ Az
∞(R3), p1 ∈ (0, 1] and p1 < p < p2 < ∞. Given f ∈ Hp

z,w(R3)

and α > 0, we have the decomposition f = g + b, where g ∈ Hp2
z,w(R3) and b ∈ Hp1

z,w(R3)

with ‖g‖p2
H

p2
z,w(R3)

≤ Cαp2−p‖f‖p
Hp

z,w(R3)
and ‖b‖p1

H
p1
z,w(R3)

≤ Cαp1−p‖f‖p
Hp

z,w(R3)
.



Weighted Endpoint Estimates 383

We would like to point out that the above result was first proved by Chang and

R. Fefferman [5] for the product Hardy space H1. As an application of Theorem 1.7, we

immediately have the following interpolation of operators.

Theorem 1.8. Let w ∈ Az
∞(R3) and 0 < p1 < p2 < ∞. If T is a sublinear operator

bounded from Hp1
z,w(R3) to Lp1w (R3) and bounded from Hp2

z,w(R3) to Lp2w (R3), then T is

bounded from Hp
z,w(R3) to Lpw(R3) for all p ∈ (p1, p2). Similarly, if T is bounded both on

Hp1
z,w(R3) and Hp2

z,w(R3), then T is bounded on Hp
z,w(R3) for all p ∈ (p1, p2).

The organization of this paper is as follows. In Section 2, we prove the discrete

Calderón reproducing formula associated with Zygmund dilations. Section 3 is devoted

to proving that the weighted Hardy spaces are well defined. The boundedness of singular

integral operators on the weighted Hardy spaces is proved in Section 4. We establish a

new discrete Calderón-type identity and show the Hp
z,w −Lpw, 1 < p <∞, boundedness in

Section 5. The last section contains the proofs of Theorems 1.7 and 1.8.

2. The Calderón reproducing formula

The following almost orthogonal estimates can be found in [21, Lemma 3.3].

Lemma 2.1. Suppose that ψj,k and φj′,k′ satisfy (1.4)–(1.7). Then

|ψj,k ∗ φj′,k′(x)| ≤ C2−|j−j
′|L2−|k−k

′|L 2M(j∨j′)

(2j∨j′ + |x1|)1+M

2M(k∨k′)

2j?(2k∨k′ + |x2|+ 2−j∗ |x3|)2+M

for any fixed L,M > 0, where x = (x1, x2, x3) ∈ R3, j? = j if k ≥ k′ and j? = j′ if k < k′.

We now use Lemma 2.1 to prove Theorem 1.1.

Proof of Theorem 1.1. As in the classical case, by the Fourier transform, we have the

following continuous version of Calderón reproducing formula

f =
∑
j,k∈Z2

ψj,k ∗ ψj,k ∗ f,

where the series converges in L2(R3) norm. To get a discrete version of Calderón repro-

ducing formula, we need to decompose ψj,k ∗ ψj,k ∗ f . We use some ideas in [17, 18]. Set

g = ψj,k ∗ f and h = ψj,k. For ξ ∈ R3, the Fourier transforms of g and h are respectively

given by

ĝ(ξ1, ξ2, ξ3) = ψ̂(1)(2jξ1)ψ̂(2)(2kξ2, 2
j+kξ3)f̂(ξ1, ξ2, ξ3),

ĥ(ξ1, ξ2, ξ3) = ψ̂(1)(2jξ1)ψ̂(2)(2kξ2, 2
j+kξ3).
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Note that the Fourier transforms of g and h are both compactly supported. More precisely,

both supp ĝ and supp ĥ are contained in

Rj,k :=
{
ξ ∈ R3 : |ξ1| ≤ 2−jπ, |ξ2| ≤ 2−kπ, |ξ3| ≤ 2−(j+k)π

}
.

Now we first expand ĝ in a Fourier series on the rectangle Rj,k

ĝ(ξ) =
∑
`∈Z3

22(j+k)(2π)−3

(∫
Rj,k

ĝ(ξ′)ei[(2
j`1ξ′1+2k`2ξ′2+2j+k`3ξ′3)] dξ′

)
× e−i[(2j`1ξ′1+2k`2ξ′2+2j+k`3ξ′3)]

and then replace Rj,k by R3 since ĝ is supported in Rj,k. We have

ĝ(ξ) =
∑
`∈Z3

22(j+k)g(2j`1, 2
k`2, 2

j+k`3)e−i[(2
j`1ξ′1+2k`2ξ′2+2j+k`3ξ′3)].

Multiplying both sides by ĥ(ξ) and noting

ĥ(ξ)e−i[(2
j`1ξ′1+2k`2ξ′2+2j+k`3ξ′3)] = [h( · − 2j`1, · − 2k`2, · − 2j+k`3)]̂ (ξ),

we obtain

(g ∗ h)(x) =
∑
`∈Z3

22(j+k)g(2j`1, 2
k`2, 2

j+k`3)h(x1 − 2j`1, x2 − 2k`2, x3 − 2j+k`3).

Substituting g by ψj,k ∗f and h by ψj,k into the above identity gives the discrete Calderón

reproducing formula in Theorem 1.1 and the convergence in L2(R3).

To finish the proof of Theorem 1.1, it remains to show that the series in (1.9) converges

in Sz(R3). Note that ψj,k ∈ Sz, it suffices to prove∑
|j1|,|j2|,|j3|>L

∑
`∈Z3

22(j+k)ψj,k(x1 − 2j`1, x2 − 2k`2, x3 − 2j+k`3)(ψj,k ∗ f)(2j`1, 2
k`2, 2

j+k`3)

tends to zero in Sz(R3) as L→∞. It is easy to see that this will follow from the following

inequality

∣∣∣∣ ∑
`∈Z3

22(j+k)[∂αψj,k(x1 − 2j`1, x2 − 2k`2, x3 − 2j+k`3)](ψj,k ∗ f)(2j`1, 2
k`2, 2

j+k`3)

∣∣∣∣
≤ C2−(|j1|+|j2|+|j3|)(1 + |x|)−M

(2.1)

for all x = (x1, x2, x3) ∈ R3 and M > 0. Thus, it remains to verify (2.1).
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We have

|(∂αψj,k)(x)|

= 2−2(j+k)

∣∣∣∣2−jα1

(
dα1

dxα1
1

ψ(1)

)(x1

2j

)
2−kα22−(j+k)α3

(
∂α2
x2 ∂

α3
x3 ψ

(2)
)(x2

2k
,
x3

2j+k

)∣∣∣∣
≤ 2−j(2+α1+α3)2−k(2+α2+α3) 1

(1 + |x1|
2j

)M

1

(1 + |x2|
2k

)M

1

(1 + |x3|
2j+k )M

≤ 2(|j|+|k|)(2+|α|) 2|j|M

(1 + |x1|)M
2|k|M

(1 + |x2|)M
2(|j|+|k|)M

(1 + |x3|)M

≤ 2(|j|+|k|)(2+|α|+2M) 1

(1 + |x|)M
.

(2.2)

Also, from Lemma 2.1,

|(ψj,k ∗ f)(x)| ≤ C2−|j|L2−|k|L
2M(j∨0)

(2j∨0 + |x1|)1+M

2M(k∨0)

2j?(2k∨0 + |x2|+ 2−j∗ |x3|)2+M

≤ 2−|j|(L−2M−1)2−|k|(L−M) 1

(1 + |x|)M
.

(2.3)

Using (2.2) and (2.3), we have∣∣∣∣ ∑
`∈Z3

22(j+k)[∂αψj,k(x1 − 2j`1, x2 − 2k`2, x3 − 2j+k`3)](ψj,k ∗ f)(2j`1, 2
k`2, 2

j+k`3)

∣∣∣∣
≤ C2−(|j|+|k|)L′

∑
`∈Z3

22(j+k) 1

(1 + |2j`1|+ |2k`2|+ |2j+k`3|)M

× 1

(1 + |x1 − 2j`1|+ |x2 − 2k`2|+ |x3 − 2j+k`3|)M
.

Let Rj,k,` denote the Zygmund rectangle centered at (2j`1, 2
k`2, 2

j+k`3) of sidelength 2j ,

2k and 2j+k. Observe that, for any x′ ∈ Rj,k,`,

1 + |2j`1|+ |2k`2|+ |2j+k`3| ≈ 1 + |x′|

1 + |x1 − 2j`1|+ |x2 − 2k`2|+ |x3 − 2j+k`3| ≈ 1 + |x− x′|.

We then have∣∣∣∣ ∑
`∈Z3

22(j+k)[∂αψj,k(x1 − 2j`1, x2 − 2k`2, x3 − 2j+k`3)](ψj,k ∗ f)(2j`1, 2
k`2, 2

j+k`3)

∣∣∣∣
≤ C2−(|j|+|k|)L′

∑
j,k,`∈Z3

∫
Rj,k,`

dx′

(1 + |x′|)M (1 + |x− x′|)M

= 2−(|j|+|k|)L′
∫
R3

dx′

(1 + |x′|)M (1 + |x− x′|)M

≤ C2−(|j|+|k|)L′(1 + |x|)−M .

This proves (2.1) and hence Theorem 1.1 follows.
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3. The definition of weighted Hardy spaces

The following lemmas will be needed to prove Theorem 1.4.

Lemma 3.1 ([15]). Suppose 1 < p < ∞. Then Mz is bounded on Lpw(R3) if and only if

w ∈ Az
p(R3).

Using Lemma 3.1 and the idea of Rubio de Francia’s extrapolation, Cruz-Uribe,

Martell, and Pérez [9] obtained the following weighted version of vector-valued maximal

inequality associated with Zygmund dilations.

Lemma 3.2. Suppose 1 < p, q <∞. If w ∈ Az
p(R3), then

∫
R3

(∑
j∈Z
|Mz(fj)(x)|q

)p/q
w(x) dx ≤ C

∫
R3

(∑
j∈Z
|fj(x)|q

)p/q
w(x) dx.

The following lemma will be used in the proof of Theorems 1.4 and 5.1.

Lemma 3.3. Given any nonnegative integer N and integers j, k, j′, k′, let R ∈ Rj−N,k−Nz

and R′ = I ′ × J ′ × K ′ ∈ Rj
′−N,k′−N
z . Let {aR′} be any given sequence and let x∗R′ =

(x∗I′ , x
∗
J ′ , x

∗
K′) be any point in R′. Then for any u∗ = (u∗1, u

∗
2, u
∗
3), v∗ = (v∗1, v

∗
2, v
∗
3) ∈ R3,

we have

∑
R′∈Rj′−N,k′−N

z

2(j∨j′)M12(k∨k′)M2 |R′|
(2j∨j′ + |u∗1 − x∗I′ |)1+M12j∗(2k∨k′ + |u∗2 − x∗J ′ |+ 2−j∗ |u∗3 − x∗K′ |)2+M2

|aR′ |

≤ C2[4N+2(j−j′)++2(k−k′)+](1/r−1)2|j−j
′|
{
Mz

( ∑
R′∈Rj′−N,k′−N

z

|aR′ |rχR′
)

(v∗)

}1/r

,

where (j−j′)+ = max(j−j′, 0), j∗ = j if k < k′ and j∗ = j′ if k ≥ k′ and max{2/M1, 2/M2}
< r ≤ 1.

Proof. For R′ = I ′ × J ′ ×K ′ ∈ Rj
′−N,k′−N
z , we set

A0 = {I ′ : 2j∨j
′ |u∗1 − x∗I′ | ≤ 1},

B0 = {J ′ ×K ′ : 2k∨k
′
(|u∗2 − x∗J ′ |+ 2−j

∗ |u∗3 − x∗K′ |) ≤ 1}

and for ` ≥ 1, i ≥ 1,

A` = {I ′ : 2`−1 < 2j∨j
′ |u∗1 − x∗I′ | ≤ 2`},

Bi = {J ′ ×K ′ : 2i−1 < 2k∨k
′
(|u∗2 − x∗J ′ |+ 2−j

∗ |u∗3 − x∗K′ |) ≤ 2i}.
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For any fixed `, i ≥ 0, denote

E`,i =
{

(w1, w2, w3) ∈ R3 : |w1 − x∗I′ | ≤ 2`+12(j∨j′), |w2 − x∗J ′ | ≤ 2i+12(k∨k′),

|w3 − x∗K′ | ≤ 2`+i+22j∨j
′
2k∨k

′}
.

Note that every E`,i is a Zygmund rectangle. For R′ ∈ A` × Bi, we have R′ ⊂ E`,i and

obviously

|E`,i| = 22(`+i+2)22(j∨j′)22(k∨k′).

Then, for any v∗ ∈ R, v∗ ∈ E`,i,

∑
R∈Rj′−N,k′−N

z

2(j∨j′)M1+(k∨k′)M2 |R′||aR′ |(
2j∨j′ + |u∗1 − x∗I′ |

)1+M1 2j∗
(
2k∨k′ + |u∗2 − x∗J ′ |+ 2−j∗ |u∗3 − x∗K′ |

)2+M2

≤ 2−j
∗−j∨j′−2(k∨k′)+2(j′+k′)−4N

∑
`,i≥0

2−`(1+M1)2−i(2+M2)

( ∑
I′∈A`,J ′×K′∈Bi

|aR′ |r
)1/r

= 2−j
∗−j∨j′−2(k∨k′)

∑
`,i≥0

2−`(1+M1)2−i(2+M2)

× |R′||E`,i|−1/r

(
1

|E`,i|

∫
E`,i

|R′|−1
∑

I′∈A`,J ′×K′∈Bi

|aR′ |rχR′
)1/r

≤ C24N(1/r−1)2(j∨j′)−j∗22(1/r−1)[(j−j′)++(k−k′)+]

×
∑
`,i≥0

2−`(3+M1−2/r)2−i(4+M2−2/r)

(
Mz

( ∑
I′∈A`,J ′×K′∈Bi

|aR′ |rχR′
)

(v∗)

)1/r

≤ C2[4N+2(j−j′)++2(k−k′)+](1/r−1)2|j−j
′|
(
Mz

( ∑
R′∈Rj′−N,k′−N

z

|aR′ |rχR′
)

(v∗)

)1/r

.

We note that the last inequality in the above string follows from 1 ≥ r > max{2/M1, 2/M2},
which can be done by the assumption and choosing M1 and M2 large enough. Hence the

proof of Lemma 3.3 is concluded.

Proof of Theorem 1.4. We begin with estimating (ψj′,k′ ∗ f)(xR′). To do this, applying

Theorem 1.1 implies the following pointwise identity:

(ψj′,k′ ∗ f)(x) =
∑
j,k∈Z

∑
R∈Rj,k

z

|R|(ψj′,k′ ∗ ϕj,k)(x− xR)(ϕj,k ∗ f)(xR).

For any sufficiently large constant M , applying Lemma 2.1 for (ψj′,k′ ∗ ϕj,k)(xR′ − xR)
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with L > M and then Lemma 3.3 with M1 = M2 = M and N = 0, we have

|(ψj′,k′ ∗ f)(xR′)| ≤ C
∑
j,k∈Z

2−(|j−j′|+|k−k′|)L
∑

R∈Rj,k
z

|R| 2(j∨j′)M

(2(j∨j′) + |u′ − xI |)1+M

× 2(k∨k′)M

2j∗(2(k∨k′) + |v′ − xJ |+ 2−j∗ |w′ − xK |)2+M
|(ϕj,k ∗ f)(xR)|

≤ C
∑
j,k∈Z

2−(|j−j′|+|k−k′|)L2[2(j−j′)++2(k−k′)+](1/r−1)2|j−j
′|

×
{
Mz

( ∑
R∈Rj,k

z

|(ϕj,k ∗ f)(xR)|2χR
)r/2

(x)

}1/r

for any x ∈ R′, where 2/(2 + M) < r < min{p, 2}, and the fact that
(∑

R∈Rj,k
z
|(ϕj,k ∗

f)(xR)|2χR
)r/2

=
∑

R∈Rj,k
z
|(ϕj,k ∗ f)(xR)|rχR is used. Applying Cauchy-Schwarz’s in-

equality and summing over j′, k′ and R′ yield{ ∑
j′,k′∈Z

∑
R′∈Rj′,k′

z

|(ψj′,k′ ∗ f)(xR′)|2χR′(x)

}1/2

≤ C
{ ∑
j,k∈Z

{
Mz

( ∑
R∈Rj,k

z

|(ϕj,k ∗ f)(xR)|2χR
)r/2

(x)

}2/r}1/2

since ∑
j∈Z

2−(|j−j′|+|k−k′|)L2[2(j−j′)++2(k−k′)+](1/r−1)2|j−j
′| ≤ C

and ∑
k∈Z

2−(|j−j′|+|k−k′|)L2[2(j−j′)++2(k−k′)+](1/r−1)2|j−j
′| ≤ C.

Hence, if w ∈ Az
∞, taking M big enough, we may choose r with r < p so that w ∈ Az

p/r.

Applying the weighted vector-valued maximal inequality on L
p/r
w (`2/r), we get∥∥∥∥{ ∑

j′,k′∈Z

∑
R′∈Rj′,k′

z

|(ψj′,k′ ∗ f)(xR′)|2χR′
}1/2∥∥∥∥

Lp
w

≤ C
∥∥∥∥{ ∑

j,k∈Z

∑
R∈Rj,k

z

|(ϕj,k ∗ f)(xR)|2χR
}1/2∥∥∥∥

Lp
w

,

and this completes the proof of Theorem 1.4.

As an immediate consequence of Theorem 1.4, the definition of Hp
z,w(R3) is independent

of the choice of ψj,k. Henceforth, we usually write gz(f) and ‖ · ‖Hp
z,w

to stand for gψz (f)

and ‖ · ‖ψ
Hp

z,w
without specifying ψ.
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The following density result of Hp
z,w is useful for the proof of the boundedness of

operators on Hp
z,w, which follows from the proof of Theorem 1.4.

Corollary 3.4. Let w ∈ Az
∞(R3) and 0 < p < ∞. Then L2 ∩ Hp

z,w(R3) is dense in

Hp
z,w(R3).

Proof. Since Sz(R3) ⊂ L2(R3), we only need to show that Sz(R3) is dense in Hp
z,w(R3)

for 0 < p < ∞. Let f ∈ Hp
z,w(R3). By the discrete Calderón reproducing formula in

Theorem 1.1,

f(x) =
∑
j,k∈Z

∑
R∈Rj,k

z

|R|ψj,k(x− xR)(ψj,k ∗ f)(xR).

For any fixed L > 0, denote

EL = {(j, k,R) : |j|, |k| ≤ L,R ⊂ B(0, L)}

and

fL(x) =
∑

(j,k,R)∈EL

|R|ψj,k(x− xR)(ψj,k ∗ f)(xR).

Since ψj,k ∈ Sz(R3), it is obvious that fL ∈ Sz(R3). Repeating the proof of Theorem 1.4,

we conclude that

‖fL‖Hp
z,w(R3) ≤ C‖f‖Hp

z,w(R3).

To see that fL tends to f inHp
z,w(R3), we again apply the discrete Calderón reproducing

formula in Theorem 1.1 to write

(f − fL)(x) =
∑

(j,k,R)∈Ec
L

|R|ψj,k(x− xR)(ψj,k ∗ f)(xR),

where the series converges in S ′
z (R3). Thus, [gz(f − fL)(x)]2 equals

∑
j′,k′∈Z

∑
R′∈Rj′,k′

z

∣∣∣∣∣∣
∑

(j,k,R)∈Ec
L

|R|(ψj′,k′ ∗ ψj,k)(xR′ − xR)(ψj,k ∗ f)(xR)

∣∣∣∣∣∣
2

χR′(x).

Now repeating the same argument as in the proof of Theorem 1.4 again, we get

‖gz(f − fL)‖Lp
w(R3) ≤ C

∥∥∥∥{ ∑
(j,k,R)∈Ec

L

|(ψj,k ∗ f)(xR)|2χR
}1/2∥∥∥∥

Lp
w(R3)

,

where the last term tends to 0 as L goes to infinity. This implies that fL tends to f in

Hp
z,w(R3) norm and hence the proof of Corollary 3.4 is concluded.
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4. The boundedness of singular integral operators on Hp
z,w(R3)

The following lemma is a variant of Lemma 3.3, which will be needed in the proof of

Theorem 1.5.

Lemma 4.1. Given any integers j, k, j′, k′, let R ∈ Rj,kz and R′ = I ′ × J ′ ×K ′ ∈ Rj
′,k′
z .

Let {aR′} be any given sequence and let x∗R′ = (x∗I′ , x
∗
J ′ , x

∗
K′) be any point in R′. Then for

any u∗ = (u∗1, u
∗
2, u
∗
3), v∗ = (v∗1, v

∗
2, v
∗
3) ∈ R3, we have

∑
R′∈Rj′,k′

z

2(j∨j′)λ

(2(j∨j′) + |u∗1 − x∗I′ |)1+λ

2(k∨k′)λ/2

(2(k∨k′) + |u∗2 − x∗J ′ |)1+λ/2

× 2[(j∨j′)+(k∨k′)]λ/2

(2(j∨j′)+(k∨k′) + |u∗3 − x∗K′ |)1+λ/2
|R′||aR′ |

≤ C2[2(j−j′)++2(k−k′)+](1/r−1)

{
Mz

( ∑
R′∈Rj′,k′

z

|aR′ |rχR′
)

(v∗)

}1/r

,

where 2/(2 + λ) < r ≤ 1 and λ = 1
2 min(θ1, θ2).

Proof. We provide a detailed proof for the reader’s convenience. For R′ = I ′ × J ′ ×K ′ ∈
Rj
′,k′
z , we set

A0 := {I ′ : |u∗1 − x∗I′ | ≤ 2j∨j
′}, B0 := {J ′ : |u∗2 − x∗J ′ | ≤ 2k∨k

′}

and

C0 := {J ′ : |u∗3 − x∗K′ | ≤ 2(j∨j′)+(k∨k′)}.

Moreover, and for integers `1, `2, `3 ≥ 1, we set

A`1 := {I ′ : 2`1−12j∨j
′
< |u∗1 − x∗I′ | ≤ 2`12j∨j

′},

B`2 := {I ′ : 2`2−12j∨j
′
< |u∗1 − x∗I′ | ≤ 2`22j∨j

′}

and

C`3 := {K ′ : 2`3−12(j∨j′)+(k∨k′) < |u∗3 − x∗K′ | ≤ 2`32(j∨j′)+(k∨k′)}.

For each fixed `1, `2, `3 ≥ 0, denote

E`1,`2,`3 :=
{

(w1, w2, w3) ∈ R3 : |w1 − x∗I′ | ≤ 2`1+12(j∨j′), |w2 − x∗J ′ | ≤ 2`2+12(k∨k′),

|w3 − x∗K′ | ≤ 2`3+12(j∨j′)+(k∨k′)}.
Obviously, we have

|E`1,`2,`3 | = 2`1+12`2+12`3+122(j∨j′)22(k∨k′).
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Here we point out that E`1,`2,`3 may not be a Zygmund rectangle any more. Also note

that for R′ ∈ A`1 × B`2 × C`3 , we have R′ ⊂ E`1,`2,`3 , which yields that for any v∗ ∈ R′,
we have v∗ ∈ E`1,`2,`3 .

Now we have

∑
R′∈Rj′,k′

z

2(j∨j′)λ

(2(j∨j′) + |u∗1 − x∗I′ |)1+λ

2(k∨k′)λ/2

(2(k∨k′) + |u∗2 − x∗J′ |)1+λ/2

× 2[(j∨j′)+(k∨k′)]λ/2

(2(j∨j′)+(k∨k′) + |u∗3 − x∗K′ |)1+λ/2
|R′||aR′ |

≤
∑

`1,`2,`3≥0

∑
R′=I′×J′×K′∈Rj′,k′

z

I′∈A`1
,J′∈B`1

,K′∈C`3

2(j∨j′)λ

(2(j∨j′) + |u∗1 − x∗I′ |)1+λ

2(k∨k′)λ/2

(2(k∨k′) + |u∗2 − x∗J′ |)1+λ/2

× 2[(j∨j′)+(k∨k′)]λ/2

(2(j∨j′)+(k∨k′) + |u∗3 − x∗K′ |)1+λ/2
|R′||aR′ |

≤ C
∑

`1,`2,`3≥0

∑
R′=I′×J′×K′∈Rj′,k′

z

I′∈A`1
,J′∈B`1

,K′∈C`3

2−(j∨j′)2−`1(1+λ)2−(k∨k′)2−`2(1+λ/2)

× 2−[(j∨j′)+(k∨k′)]2−`3(1+λ/2)22j′22k′ |aR′ |

≤ C2−2(j∨j′)2−2(k∨k′)22j′22k′
∑

`1,`2,`3≥0

2−`1(1+λ)2−`2(1+λ/2)2−`3(1+λ/2)

×

( ∑
R′=I′×J′×K′∈Rj′,k′

z

I′∈A`1
,J′∈B`1

,K′∈C`3

|aR′ |r
)1/r

= C2−2(j∨j′)2−2(k∨k′)22j′22k′
∑

`1,`2,`3≥0

2−`1(1+λ)2−`2(1+λ/2)2−`3(1+λ/2)(22j′22k′)−1/r|E`1,`2,`3 |1/r

×

(
1

|E`1,`2,`3 |

∫
E`1,`2,`3

∑
R′=I′×J′×K′∈Rj′,k′

z

I′∈A`1
,J′∈B`1

,K′∈C`3

|aR′ |rχR′(x) dx

)1/r

≤ C2−2(j∨j′)(1−1/r)2−2(k∨k′)(1−1/r)(22j′22k′)1−1/r

×
∑

`1,`2,`3≥0

2−`1(1+λ−1/r)2−`2(1+λ/2−1/r)2−`3(1+λ/2−1/r)

(
Mz

( ∑
R′∈Rj′,k′

z

|aR′ |rχR′
)

(v∗)

)1/r

≤ 22(1−1/r)[−(j∨j′)+j′]22(1−1/r)[−(k∨k′)+k′]
(
Mz

( ∑
R′∈Rj′,k′

z

|aR′ |rχR′
)

(v∗)

)1/r

= 2[2(j−j′)++2(k−k′)+](1/r−1)

(
Mz

( ∑
R′∈Rj′,k′

z

|aR′ |rχR′
)

(v∗)

)1/r

.

Here v∗ is any fixed point in R. We note that the last inequality above follows from the

assumption that 1 ≥ r > 2/(2 + λ). The proof of Lemma 4.1 is concluded.
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We now prove Theorem 1.5, one of the main results in this paper.

Proof of Theorem 1.5. By the discrete Calderón reproducing formula in Theorem 1.1,

‖Tz(f)‖Hp
z,w(R3) =

∥∥∥∥{ ∑
j,k∈Z

∑
R∈Rj,k

z

|(ψj,k ∗ K ∗ f)(xR)|2χR
}1/2∥∥∥∥

Lp
w(R3)

=

∥∥∥∥{ ∑
j,k∈Z

∑
R∈Rj,k

z

∣∣∣∣ψj,k ∗ K ∗ ( ∑
j′,k′∈Z

∑
R′∈Rj,k

z

|R′|ψj′,k′ ∗ f(xR′)

× ψj′,k′( · − xR′)
)

(xR)

∣∣∣∣2χR}1/2∥∥∥∥
Lp
w(R3)

=

∥∥∥∥{ ∑
j,k∈Z

∑
R∈Rj,k

z

∣∣∣∣ ∑
j′,k′∈Z

∑
R′∈Rj,k

z

|R′|(ψj′,k′ ∗ f)(xR′)

× (ψj,k ∗ K ∗ ψj′,k′)(xR − xR′)
∣∣∣∣2χR}1/2∥∥∥∥

Lp
w(R3)

,

where Rj,kz is the collection of rectangles in R3 and R ∈ Rj,kz means that R = I × J × S
with the side length |I| = 2j , |J | = 2k and |S| = 2j+k, xR is the left lower corner of R,

similar for the set of rectangles R′.

[21, Proposition 3.1] showed that ψj,k ∗ K ∗ ψj′,k′ satisfies the following orthogonality

estimate

|(ψj,k ∗ K ∗ ψj′,k′)(x1, x2, x3)|

≤ C2−|j−j
′|2−|k−k

′| 2−(j∨j′)

(1 + 2−(j∨j′)|x1|)1+λ

2−(k∨k′)

(1 + 2−(k∨k′)|x2|)1+λ/2

× 2−(j∨j′)−(k∨k′)

(1 + 2−(j∨j′)−(k∨k′)|x3|)1+λ/2

for λ = 1
2 min(θ1, θ2).

Thus, using Lemma 4.1 and repeating the same argument as the proof of Theorem 1.4,

we obtain

‖Tf‖Hp
z,w(R3) ≤ C

∥∥∥∥{ ∑
j′,k′∈Z

[
Mz

( ∑
R′∈Rj,k

z

|(ψj′,k′ ∗ f)(xR′)|2χR′
)r/2]2/r}1/2∥∥∥∥

Lp
w(R3)

,

where 1 ≥ r > 2/(2 + λ).

Now since qw · 2
2+ 1

2
min(θ1,θ2)

< p ≤ 1, we choose r < p such that p/r > qw. Applying

the L
p/r
w (`2/r) boundedness of Mz in Lemma 3.2, we obtain∥∥∥∥{ ∑
j′,k′∈Z

[
Mz

( ∑
R′∈Rj,k

z

|(ψj′,k′ ∗ f)(xR′)|2χR′
)r/2

]2/r
}1/2∥∥∥∥

Lp
w(R3)

≤ C‖f‖Hp
z,w(R3).

This concludes the proof of Theorem 1.5.
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5. A new discrete Calderón-type identity and Hp
z,w(R3)− Lpw(R3) boundedness

To prove the boundedness for singular integral operator from the Hardy space Hp
z,w(R3)

to Lpw(R3) for 0 < p ≤ 1, we need the following discrete Calderón-type identity in terms

of bump functions.

Theorem 5.1. Let 0 < p < ∞ and w ∈ Az
∞(R3). Suppose M0 ≥ 10(N [qw/p − 1] + 1)

(here we use [ · ] to denote the greatest integer function). Given f ∈ L2 ∩Hp
z,w(R3), there

exists h ∈ L2 ∩Hp
z,w(R3) such that, for a sufficiently large N ∈ N,

(5.1) f(x)
L2

=
∑
j,k∈Z

∑
R∈Rj−N,k−N

z

|R|φj,k(x− ϑR)(φj,k ∗ h)(ϑR),

where ϑR denotes any fixed point in R. Moreover,

(5.2) ‖f‖Hp
z,w
≈ ‖h‖Hp

z,w
, ‖f‖2 ≈ ‖h‖2.

If 1 < p <∞ and w ∈ Az
p, then (5.1) holds for f ∈ L2 ∩ Lpw with

‖f‖Lp
w(R3) ≈ ‖h‖Lp

w(R3).

Proof. For f ∈ L2(R3), the Fourier transform gives

f =
∑
j,k∈Z

φj,k ∗ φj,k ∗ f,

where the series converges in L2(R3) norm. Applying Coifman’s idea of the decomposition

for the identity operator, we have

f(x) =
∑
j,k∈Z

∑
R∈Rj−N,k−N

z

|R|(φj,k ∗ f)(ϑR)φj,k(x− ϑR)

+
∑
j,k∈Z

∑
R∈Rj−N,k−N

z

∫
R
φj,k(x− x′)(φj,k ∗ f)(x′)− φj,k(x− ϑR)(φj,k ∗ f)(ϑR) dx′

:= TN (f)(x) +RN (f)(x),

where N is a fixed large integer to be determined later.

We can decompose RN (f) further as

RN (f)(x) =
∑
j,k∈Z

∑
R∈Rj−N,k−N

z

∫
R

[φj,k(x− x′)− φj,k(x− ϑR)](φj,k ∗ f)(x′) dx′

+
∑
j,k∈Z

∑
R∈Rj−N,k−N

z

∫
R
φj,k(x− x′)[(φj,k ∗ f)(x′)− (φj,k ∗ f)(ϑR)] dx′

:= R1
N (f)(x) +R2

N (f)(x).
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We claim that for i = 1, 2,

‖RiN (f)‖Hp
z,w
≤ C2−N‖f‖Hp

z,w
,

where C is a constant independent of f and N .

Assume the claim for the moment. Then by choosing sufficiently large N , both TN

and T−1
N =

∑∞
n=0(RN )n are bounded on L2(R3) and on Hp

z,w(R3). Set h = T−1
N (f). The

estimate (5.5) implies (5.2). Moreover,

f = TN (T−1
N (f)) =

∑
j,k∈Z

∑
R∈Rj−N,k−N

z

|R|φj,k( · − ϑR)(φj,k ∗ h)(ϑR),

where the series converges in L2(R3). Thus, it suffices to verify the claim to finish the

proof of Theorem 5.1.

Since the proofs for R1
N and R2

N are similar, we give the proof for R1
N only. Let

f ∈ L2(R3) ∩Hp
z,w(R3). By Theorem 1.1, we write

[ψj′,k′ ∗R1
N (f)](x)

=
∑
j,k∈Z

∑
R∈Rj−N,k−N

z

∫
R

(ψj′,k′ ∗ [φj,k( · − x′)− φj,k( · − ϑR)])(x)(φj,k ∗ f)(x′) dx′

=
∑
j,k∈Z

∑
R∈Rj−N,k−N

z

∫
R

(ψj′,k′ ∗ [φj,k( · − x′)− φj,k( · − ϑR)])(x)

×
( ∑
j′′,k′′∈Z

∑
R′′∈Rj′′,k′′

z

|R′′| · (ψj′′,k′′ ∗ f)(xR′′)(φj,k ∗ ψj′′,k′′)(x′ − xR′′)
)
dx′,

(5.3)

where xR′′ = (xI′′ , xJ ′′ , xK′′) is the left lower corner of R′′. Set φ̃j,k(u) = φj,k(u − x′) −
φj,k(u − ϑR). Applying Lemma 2.1 with M sufficiently large (which will be determined

later) and L = 10M , we obtain that for some constant C (depending only on M , ψ and

φ, but independent of N),

|(ψj′,k′ ∗ φ̃j,k)(x)| ≤ C2−N2−100M(|j−j′|+|k−k′|)

× 2M(j∨j′)

(2j∨j′ + |x1 − ϑI |)1+M

2M(k∨k′)

2j?(2k∨k′ + |x2 − ϑl,m|+ 2−j∗ |x3 − ϑK |)2+M

≤ C2−N2−10M(|j−j′|+|k−k′|)

× 2Mj′

(2j′ + |x1 − x′1|)1+M

2Mk′

2j′(2k′ + |x2 − x′2|+ 2−j′ |x3 − x′3|)2+M

for any x′ = (x′1, x
′
2, x
′
3) ∈ R3. Similarly,

|(φj,k ∗ ψj′′,k′′)(x′ − xR′′)| ≤ C2−10M(|j−j′′|+|k−k′′|) 2Mj′′

(2j′′ + |x′1 − xI′′ |)1+M

× 2Mk′′

2j′′(2k′′ + |x′2 − xJ ′′ |+ 2−j′′ |x′3 − xK′′ |)2+M
.
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Substituting both estimates into the last term of (5.3) yields

|(ψj′,k′ ∗R1
Nf)(x)|

≤ C
∑

j′′,k′′∈Z

∑
R′′∈Rj′′,k′′

z

|R′′||(ψj′′,k′′ ∗ f)(xR′′)|
∑
j,k∈Z

∑
R∈Rj−N,k−N

z

∫
R

2−N2−|j−j
′|3M2−|k−k

′|3M

× 2Mj′

(2j′ + |x1 − x′1|)1+M

2Mk′

2j′(2k′ + |x2 − x′2|+ 2−j′ |x3 − x′3|)2+M
2−|j−j

′′|3M2−|k−k
′′|3M

× 2Mj′′

(2j′′ + |x′1 − xI′′ |)1+M

2Mk′′

2j′′(2k′′ + |x′2 − xJ ′′ |+ 2−j′′ |x′3 − xK′′ |)2+M
dx′

≤ C2−N
∑

j′′,k′′∈Z

∑
R′′∈Rj′′,k′′

z

2−|j
′−j′′|3M2−|k

′−k′′|3M |R′′| 2M(j′∨j′′)

(2j′∨j′′ + |x1 − xI′′ |)1+M

× 2M(k′∨k′′)

2j∗(2k′∨k′′ + |x2 − xJ ′′ |+ 2−j∗ |x3 − xK′′ |)2+M
|(ψj′′,k′′ ∗ f)(xR′′)|,

(5.4)

where j∗ = j′ if k′ ≥ k′′ and j∗ = j′′ if k′ < k′′. Now we choose M = N [qw/p − 1] + 1,

L = 10M and 3/(N + M) < δ < 1. Then p/δ > qw so that w ∈ Az
p/δ(R

3). We apply R′′

to a similar estimate to Lemma 3.3 and get

‖R1
N (f)‖Hp

z,w(R3)

≤ C‖gz[R1
N (f)]‖Lp

w(R3)

≤ C2−N
∥∥∥∥{ ∑

j′′,k′′∈Z

{
Mz

( ∑
R′′∈Rj′′,k′′

z

|(ψj′′,k′′ ∗ f)(xR′′)|χR′′
)δ}2/δ}1/2∥∥∥∥

Lp
w(R3)

.

Using Lemma 3.2, we obtain the L
p/δ
w (`2/δ) boundedness of Mz and hence

‖R1
N (f)‖Hp

z,w(R3) ≤ C2−N
∥∥∥∥{ ∑

j′′,k′′∈Z

∑
R′′∈Rj′′,k′′

z

|(ψj′′,k′′ ∗ f)(xR′′)|2χR′′
}1/2∥∥∥∥

Lp
w(R3)

≈ 2−N‖f‖Hp
z,w(R3).

Therefore, the claim (5.5) is concluded.

For 1 < p < ∞ and w ∈ Az
p, we assume f ∈ L2 ∩ Lpw. Arguing as above, we see that

the desired conclusions follows if we can show

(5.5) ‖RiN (f)‖Lp
w
≤ C2−N‖f‖Lp

w
,

where C is a constant independent of f and N . We only give the proof for R1
N as R2

N can
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be handled in the same manner. By continuous Calderón’s reproducing formula,

|[ψj′,k′ ∗R1
N (f)](x)|

=

∣∣∣∣ ∑
j,k∈Z

∑
R∈Rj−N,k−N

z

∫
R
ψj′,k′ ∗ [φj,k( · − x′)− φj,k( · − ϑR)](x)(φj,k ∗ f)(x′) dx′

∣∣∣∣
=

∣∣∣∣ ∑
j,k∈Z

∑
R∈Rj−N,k−N

z

∑
j′′,k′′∈Z

∫
R

(ψj′,k′ ∗ φ̃j,k)(x)(φj,k ∗ ψj′′,k′′ ∗ ψj′′,k′′ ∗ f)(x′) dx′
∣∣∣∣.

Arguing as in (5.4), we obtain

|[ψj′,k′ ∗R1
N (f)](x)| ≤ C2−N

∑
j′′,k′′∈Z

2−(|j′−j′′|+|k′−k′′|)M
∫
R3

2M(j′∨j′′)

(2j′∨j′′ + |x1 − x′′1|)1+M

× 2M(k′∨k′′)

2j∗(2k′∨k′′ + |x2 − x′′2|+ 2−j∗ |x3 − x′′3|)2+M
|(ψj′′,k′′ ∗ f)(x′′)| dx′′

≤ C2−N
∑

j′′,k′′∈Z
2−(|j′−j′′|+|k′−k′′|)MMz(ψj′′,k′′ ∗ f)(x),

where in the last inequality we have used Lemma 3.3. Squaring both sides and applying

Cauchy-Schwarz’s inequality, we obtain

|[ψj′,k′ ∗R1
N (f)](x)|2 ≤ C2−N

∑
j′′,k′′∈Z

2−(|j′−j′′|+|k′−k′′|)M [Mz(ψj′′,k′′ ∗ f)(x)]2.

It follows from [14, Theorem 2.9] with w ∈ Az
p(R3), Rubio de Francia’s extrapolation

theorem, and weighted Fefferman-Stein’s vector-valued inequality that

‖R1
N (f)‖Lp

w
≈ ‖gz(R1

N (f))‖Lp
w

=

∥∥∥∥( ∑
j′,k′∈Z

|ψj′,k′ ∗R1
N (f)|2

)1/2∥∥∥∥
Lp
w

≤ C2−N
∥∥∥∥( ∑

j′′,k′′∈Z
[Mz(ψj′′,k′′ ∗ f)]2

)1/2∥∥∥∥
Lp
w

≤ C2−N
∥∥∥∥( ∑

j′′,k′′∈Z
|ψj′′,k′′ ∗ f |2

)1/2∥∥∥∥
Lp
w

= 2−N‖gz(f)‖Lp
w
≈ 2−N‖f‖Lp

w
,

where gz(f)(x) :=
(∑

j,k∈Z |(ψj,k ∗ f)(x)|2
)1/2

. This verifies (5.5) and hence Theorem 5.1

follows.

We would like to point out that the difference between the discrete Calderón repro-

ducing formula in Theorem 1.1 and the discrete Calderón-type identity in Theorem 5.1 is
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that the functions ψj,k in Theorem 1.1 have non-compact supports and all moments van-

ish, while the functions φj,k in Theorem 5.1 have compact supports but only have finite

number of vanishing moments. The crucial fact is that the points xR in Theorem 1.1 are

fixed, namely the left lower corner points, and, however, the points ϑR in Theorem 5.1 are

any fixed points. Note that in Theorem 1.1, the sum runs over all Zygmund rectangles

Rj,kz , while in Theorem 5.1 the sum runs over Zygmund rectangles at the smaller scale

Rj−N,k−Nz . These two facts, compact supports for functions φj,k and the arbitrary fixed

points ϑR, are very important to prove Proposition 5.3 below.

Lemma 5.2. (i) If 1 < p <∞, then w ∈ Az
p if and only if w−1/(p−1) ∈ Az

p′.

(ii) If 1 ≤ p < q <∞, then Az
p ⊂ Az

q.

(iii) If 1 < p <∞ and w ∈ Az
p, then w ∈ Az

p−ε for some ε > 0.

The conclusions (i) and (ii) in Lemma 5.2 are similar to the classical case (see [19]),

while (iii) was proved in [15, page 347].

We are now ready to prove the following result, which, combined with Theorem 1.4,

will imply Theorem 5.1.

Proposition 5.3. Suppose 0 < p ≤ 1 and w ∈ Az
∞(R3). If f ∈ Hp

z,w(R3) ∩ L2(R3), then

f ∈ Lpw(R3) and there is a constant Cp > 0 independent of the L2(R3) norm of f such

that

‖f‖Lp
w(R3) ≤ Cp‖f‖Hp

z,w(R3).

Proof. By Lemma 5.2(ii), we may assume w ∈ Az
q(R3) for some q ∈ [2,∞). Let

g̃z(f)(x) :=

{ ∑
j,k∈Z

∑
R∈Rj−N,k−N

z

|(φj,k ∗ h)(xR)|2χR(x)

}1/2

,

where {φj,k}, h and N are the same as in Theorem 5.1 and xR denotes the left lower

corner of R. Applying Theorem 5.1 and repeating the same argument as in the proof of

Theorem 1.4, we get

‖g̃z(f)‖Lp
w(R3) ≈ ‖h‖Hp

z,w(R3) ≈ ‖f‖Hp
z,w(R3)

for f ∈ L2(R3) ∩Hp
z,w(R3).

Given f ∈ L2(R3) ∩ Hp
z,w(R3), applying the discrete Calderón-type identity in Theo-

rem 5.1 with ϑR = xR, we can write

f =
∑
j,k∈Z

∑
R∈Rj−N,k−N

z

|R|φj,k( · − xR)(φj,k ∗ h)(xR) for f ∈ L2(R3) ∩Hp
z,w(R3).
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We now apply the method for atomic decomposition. For this purpose, set

Ωi = {x ∈ R3 : g̃z(f)(x) > 2i}

and

Bi =

{
(j, k,R) : j, k ∈ Z, R ∈ Rj−N,k−Nz , |R ∩ Ωi| >

1

2
|R|, |R ∩ Ωi+1| ≤

1

2
|R|
}
.

We rewrite

f(x) =
∑
i∈Z

∑
(j,k,R)∈Bi

|R|φj,k(x− xR)(φj,k ∗ h)(xR),

where the series converges for almost every x ∈ R3. We claim that

(5.6)

∥∥∥∥ ∑
(j,k,R)∈Bi

|R|φj,k( · − xR)(φj,k ∗ h)(xR)

∥∥∥∥p
Lp
w(R3)

≤ C2piw(Ωi).

Since 0 < p ≤ 1, the above claim and the definition of Ωi yield

‖f‖p
Lp
w(R3)

≤
∑
i∈Z

∥∥∥∥ ∑
(j,k,R)∈Bi

|R|φ̃j,k( · − xR)(φj,k ∗ h)(xR)

∥∥∥∥p
Lp
w(R3)

≤ C
∑
i∈Z

2piw(Ωi) ≤ C‖g̃z(f)‖p
Lp
w(R3)

≈ ‖f‖p
Hp

z,w(R3)

and Proposition 5.3 follows.

To show claim (5.6), we note that if (j, k,R) ∈ Bi, then R ⊂ Ω̃i := {x :Mz(χΩi)(x) >

1/2} and hence, the function φj,k( ·−xR) is supported on Ω̃i := {x :Mz(χΩi)(x) > 1/100}.
By Hölder’s inequality, we obtain that∥∥∥∥ ∑

(j,k,R)∈Bi

|R|φj,k( · − xR)(φj,k ∗ h)(xR)

∥∥∥∥p
Lp
w(R3)

≤ Cw(Ω̃i)
1−(p/q)

∥∥∥∥ ∑
(j,k,R)∈Bi

|R|φj,k( · − xR)(φj,k ∗ h)(xR)

∥∥∥∥p
Lq
w(R3)

.

(5.7)

We now estimate the last Lqw-norm by the duality argument. For ζ ∈ Lq
′

w1−q′ (R3) with

‖ζ‖
Lq′

w1−q′ (R
3)
≤ 1,

∣∣∣∣〈 ∑
(j,k,R)∈Bi

|R|φj,k( · − xR)(φj,k ∗ h)(xR), ζ

〉∣∣∣∣
=

∣∣∣∣ ∑
(j,k,R)∈Bi

∫
(φj,k ∗ ζ)(xR)(φj,k ∗ h)(xR)χR(x) dx

∣∣∣∣
≤
∥∥∥∥{ ∑

(j,k,R)∈Bi

|(φj,k ∗ h)(xR)|2χR
}1/2∥∥∥∥

Lq
w(R3)

∥∥∥∥{ ∑
(j,k,R)∈Bi

|(φj,k ∗ ζ)(xR)|2χR
}1/2∥∥∥∥

Lq′

w1−q′ (R
3)

:= I1 × I2,
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where φj,k(x) = φj,k(−x).

We first estimate I2. Applying [15, Theorem 2.9] with w ∈ Az
p(R3) and Rubio de

Francia’s extrapolation theorem, we get that if 1 < p < ∞ and w ∈ Az
p(R3), then there

exist constant c, C > 0 (depending only on ‖w‖Az
p
) so that

c‖f‖Lp
w(R3) ≤ ‖gcz (f)‖Lp

w(R3) ≤ C‖f‖Lp
w(R3)

for all f ∈ Lpw(R3).

Since w ∈ Az
q(R3) implies w1−q′ ∈ Az

q′(R
3), applying the above estimates yields

I2 ≤ C
∥∥∥∥{ ∑

j,k∈Z

∑
R∈Rj−N,k−N

z

|(φj,k ∗ ζ)(xR)|2χR
}1/2∥∥∥∥

Lq′

w1−q′ (R
3)

≈ ‖ζ‖
Lq′

w1−q′ (R
3)
≤ 1.(5.8)

As for I1, note that Ωi ⊂ Ω̃i and w(Ω̃i) ≤ Cw(Ωi) due to the Lqw(R3) boundedness

of Mz. For any (j, k,R) ∈ Bi and x ∈ R, then Mz(χR∩Ω̃i\Ωi+1
)(x) > 1/2. Applying

Lemma 3.2 again, we have

Iq1 =

∥∥∥∥{ ∑
(j,k,R)∈Bi

|(φj,k ∗ h)(xR)|2χR
}1/2∥∥∥∥q

Lq
w(R3)

=

∫
R3

{ ∑
(j,k,R)∈Bi

|(φj,k ∗ h)(xR)|2χR(x)

}q/2
w(x) dx

≤ C
∫
R3

{ ∑
(j,k,R)∈Bi

|(φj,k ∗ h)(xR)Mz(χR∩Ω̃i\Ωi+1
)(x)|2

}q/2
w(x) dx

≤ C
∫
R3

{ ∑
(j,k,R)∈Bi

|(φj,k ∗ h)(xR)|2χ
R∩Ω̃i\Ωi+1

(x)

}q/2
w(x) dx

≤ C
∫

Ω̃i\Ωi+1

{ ∑
(j,k,R)∈Bi

|(φj,k ∗ h)(xR)|2χR(x)

}q/2
w(x) dx

≤ C2iqw(Ω̃i) ≤ C2iqw(Ωi).

(5.9)

Combining both estimates (5.8) and (5.9), we obtain∥∥∥∥ ∑
(j,k,R)∈Bi

|R|φ̃j,k( · − xR)(φj,k ∗ h)(xR)

∥∥∥∥
Lq
w(R3)

≤ C2iqw(Ωi).

Plugging this estimate into (5.7) yields claim (5.6), and hence Proposition 5.3 is concluded.

We now show Theorem 1.6.
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Proof of Theorem 1.6. If f ∈ L2(R3)∩Hp
z,w(R3), then Tf ∈ L2(R3)∩Hp

z,w(R3). Thus, by

Proposition 5.3 and Theorem 1.5, we have

‖Tf‖Lp
w
≤ C‖Tf‖Hp

z,w
≤ C‖f‖Hp

z,w

for qw · 2
2+ 1

2
min(θ1,θ2)

< p ≤ 1.

Since L2(R3) ∩Hp
z,w(R3) is dense in Hp

z,w(R3), T extends to a bounded operator from

Hp
z,w(R3) to Lpz,w(R3) and hence the proof of Theorem 1.6 is complete.

As a consequence of Theorems 1.5 and 1.6, we obtain the following endpoint estimates

for the operators studied by Ricci-Stein [31] and R. Fefferman-Pipher [15].

Corollary 5.4. Suppose that the function φ is supported in an unit cube in R3 and satisfies

a certain amount of uniform smoothness with the minimum cancelation conditions∫
R2

φ(x1, x2, x3) dx =

∫
R2

φ(x1, x2, x3) dydz = 0.

Then the singular integral operator Tzf = f ∗K is bounded on Hp
z,w(R3) and bounded from

Hp
z,w(R3) to Lpw for qw · 2

2+ 1
2

min(θ1,θ2)
< p ≤ 1, where

K(x1, x2, x3) =
∑
j,k∈Z

2−2(j+k)φ(2−jx, 2−ky, 2−(j+k)z).

6. Calderón-Zygmund decompositions and interpolations

We first provide the

Proof of Theorem 1.7. According to Corollary 3.4, L2(R3)∩Hp
z,w(R3) is dense in Hp

z,w(R3).

Thus it suffices to prove Theorem 1.7 for f ∈ L2(R3) ∩Hp
z,w(R3). Given any fixed α > 0,

let

Ωl = {x ∈ R3 : g̃z(f)(x) > α2l}, l ∈ Z,

where

g̃z(f)(x) :=

{ ∑
j,k∈Z

∑
R∈Rj−N,k−N

z

|(φj,k ∗ h)(xR)|2χR(x)

}1/2

.

For j, k ∈ Z, let

Rj−N,k−N0 =

{
R ∈ Rj−N,k−Nz : |R ∩ Ω0| <

1

2
|R|
}

and

Rj−N,k−Nl =

{
R ∈ Rj−N,k−Nz : |R ∩ Ωl−1| ≥

1

2
|R|, |R ∩ Ωl| <

1

2
|R|
}

for l ≥ 1,
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where N is given in Theorem 5.1. It also follows from Theorem 5.1 (with ϑR = xR) that

there exists h ∈ L2(R3) ∩Hp
z,w(R3) such that

f(x) =
∑
j,k∈Z

∑
R∈Rj−N,k−N

0

|R|(φj,k ∗ h)(xR)φj,k(x− xR)

+
∑
j,k∈Z

∑
l≥1

∑
R∈Rj−N,k−N

l

|R|(φj,k ∗ h)(xR)φj,k(x− xR)

:= g(x) + b(x).

We first estimate ‖g‖Hp2
z,w

for p2 ∈ (0,∞). Repeating the same argument as in the

proof of Theorem 1.4, we deduce that for 3/(3 +M) < δ < ({p2/qw} ∧ 1),∑
j,k∈Z

∑
R∈Rj,k

z

|(ψj,k ∗ g)(xR)|2χR(x)

≤ C
∑

j′,k′∈Z

{
Mz

[( ∑
R′∈Rj′−N,k′−N

0

|(φj′,k′ ∗ g)(xR′)|2χR′
)δ/2]

(x)

}2/δ

.

Take the square root on both sides and apply Lemma 3.2 on L
p2/δ
w (`2/δ) (note that w ∈

Az
p2/δ

) to derive

‖g‖Hp2
z,w(R3) =

∥∥∥∥{ ∑
j,k∈Z

∑
R∈Rj,k

z

|(ψj,k ∗ g)(xR)|2χR
}1/2∥∥∥∥

L
p2
w (R3)

≤ C
∥∥∥∥{ ∑

j′,k′∈Z

∑
R′∈Rj′−N,k′−N

0

|(φj′,k′ ∗ h)(xR′)|2χR′
}1/2∥∥∥∥

L
p2
w (R3)

.

We claim ∫
{g̃z(f)(x)≤α}

[g̃z(f)(x)]p2w(x) dx

&

∥∥∥∥{ ∑
j′,k′∈Z

∑
R∈Rj′−N,k′−N

0

|(φj′,k′ ∗ h)(xR′)|2χR′
}1/2∥∥∥∥p2

L
p2
w (R3)

,
(6.1)

which implies

‖g‖p2
H

p2
z,w(R3)

≤ C
∫
{g̃z(f)(x)≤α}

[g̃z(f)(x)]p2w(x) dx

≤ αp2−p
∫
{g̃z(f)(x)≤α}

[g̃z(f)(x)]pw(x) dx

≤ Cαp2−p‖f‖p
Hp

z,w(R3)
.
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To verify (6.1), we choose δ < min{p2/qw, 1} and get∫
{g̃z(f)(x)≤α}

[g̃z(f)(x)]p2w(x) dx

=

∫
{Ω0

{ ∑
j,k∈Z

∑
R∈Rj−N,k−N

z

|(φj,k ∗ h)(xR)|2χR(x)

}p2/2
w(x) dx

&
∫
R3

{ ∑
j,k∈Z

∑
R∈Rj−N,k−N

z

|(φj,k ∗ h)(xR)|2χR∩{Ω0
(x)

}p2/2
w(x) dx

&
∫
R3

{ ∑
j,k∈Z

∑
R∈Rj−N,k−N

z

(|(φj,k ∗ h)(xR)|δMz(χR∩{Ω0
)(x))2/δ

}p2/2
w(x) dx

&

∥∥∥∥{ ∑
j,k∈Z

∑
R∈Rj−N,k−N

z

|(φj,k ∗ h)(xR)|2χR
}1/2∥∥∥∥p2

L
p2
w (R3)

,

where in the last inequality we have used the estimate

χR(x) ≤ 21/δMz(χR∩{Ω0
)1/δ(x)

for R ∈ Rj−N,k−Nz , and the second inequality follows from Lemma 3.2 with q = 2/δ and

p = p2/δ.

Now, we turn to the estimate for Hp1
z,w(R3) norm of b. Set

Ω̃l = {x ∈ R3 :Mz(χΩl
) > 1/2}, l ∈ Z.

Then the desired estimate follows from

(6.2)

∥∥∥∥ ∑
j,k∈Z

∑
R∈Rj−N,k−N

l

|R|(φj,k ∗ h)(xR)φj,k( · − xR)

∥∥∥∥p1
H

p1
z,w(R3)

≤ C(2lα)p1w(Ω̃l−1)

for any 0 < p1 ≤ 1 and l ≥ 1. Indeed, by the Lqw(R3), q > qw, boundedness of Mz,

w(Ω̃l−1) ≤ C
∫
R3

[Mz(χΩl−1
)(x)]qw(x) dx ≤ Cw(Ωl−1).

This fact together with (6.2) yields

‖b‖p1
H

p1
z,w(R3)

≤ C
∑
l≥1

(2lα)p1w(Ω̃l−1) ≤ C
∑
l≥1

(2lα)p1w(Ωl−1)

≤ C
∫
{g̃z(f)(x)>α}

[g̃z(f)(x)]p1w(x) dx

≤ Cαp1−p
∫
{g̃z(f)(x)>α}

[g̃z(f)(x)]pw(x) dx

≤ Cαp1−p‖f‖p
Hp

z,w(R3)
.
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Thus to finish the proof, it remains to establish (6.2). Following the same argument as in

the estimation of ∥∥∥∥{ ∑
j,k∈Z

∑
R∈Rj−N,k−N

z

|(ψj,k ∗ g)(xR)|2χR
}1/2∥∥∥∥

L
p1
w (R3)

,

we get ∥∥∥∥ ∑
j,k∈Z

∑
R∈Rj−N,k−N

l

|R|(φj,k ∗ h)(xR)φj,k( · − xR)

∥∥∥∥
H

p1
z,w(R3)

≈
∥∥∥∥{ ∑

j′,k′∈Z

∑
R′∈Rj′−N,k′−N

z

∣∣∣∣ ∑
j,k∈Z

×
∑

R∈Rj−N,k−N
l

|R|(φj,k ∗ h)(xR)(ψj′,k′ ∗ φj,k)(xR′ − xR)

∣∣∣∣2χR′}1/2∥∥∥∥
L
p1
w (R3)

≤ C
∥∥∥∥{ ∑

j,k∈Z

∑
R∈Rj−N,k−N

l

|(φj,k ∗ h)(xR)|2χR
}1/2∥∥∥∥

L
p1
w (R3)

.

(6.3)

Note that R ⊂ Ω̃l−1 for R ∈ Rj−N,k−Nl . Thus, |R ∩ (Ω̃l−1 \ Ωl)| > 1
2 |R| which implies

χR(x) ≤ 21/δMz(χR∩(Ω̃l−1\Ωl)
)1/δ(x).

As in the proof of claim (6.1), choosing 0 < δ < min{2, p1/qw} and applying Lemma 3.2,

we have

(2lα)p1w(Ω̃l−1) ≥
∫

Ω̃l−1\Ωl

[g̃z(f)(x)]p1w(x) dx

=

∫
R3

{ ∑
j,k∈Z

∑
R∈Rj−N,k−N

z

|(φj,k ∗ h)(xR)|2χR∩(Ω̃l−1\Ωl)
(x)

}p1/2
w(x) dx

&
∫
R3

{ ∑
j,k∈Z

∑
R∈Rj−N,k−N

l

|(φj,k ∗ h)(xR)|2Mz(χR∩(Ω̃l−1\Ωl)
)2/δ(x)

}p1/2
w(x) dx

&

∥∥∥∥{ ∑
j,k∈Z

∑
R∈Rj−N,k−N

l

|(φj,k ∗ h)(xR)|2χR
}1/2∥∥∥∥p1

L
p1
w (R3)

.

Combining this with (6.3) yields (6.2), and hence Theorem 1.7 follows.

Finally, let us give the

Proof of Theorem 1.8. Let w ∈ Az
∞(R3). In view of Corollary 3.4, we may assume f ∈

L2(R3) ∩ Hp
z,w(R3). Suppose that T is bounded from Hp1

z,w(R3) to Lp1w (R3) and bounded

from Hp2
z,w(R3) to Lp2w (R3). The Calderón-Zygmund decomposition shows that f = g + b
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with ‖g‖p2
H

p2
z,w(R3)

≤ Cαp2−p‖f‖p
Hp

z,w(R3)
and ‖b‖p1

H
p1
z,w(R3)

≤ Cαp1−p‖f‖p
Hp

z,w(R3)
. Moreover, in

the proof of Theorem 1.7, we have obtained

‖g‖p2
H

p2
z,w(R3)

≤ C
∫
{g̃z(f)(x)≤α}

[g̃z(f)(x)]p2w(x) dx

and

‖b‖p1
H

p1
z,w(R3)

≤ C
∫
{g̃z(f)(x)>α}

[g̃z(f)(x)]p1w(x) dx.

Therefore,

‖Tf‖p
Lp
w(R3)

≤ p
∫ ∞

0
αp−1w({x : |T (g)(x)| > α/2}) dα

+ p

∫ ∞
0

αp−1w({x : |T (b)(x)| > α/2}) dα

≤ C
∫ ∞

0
αp−1

(‖T (g)‖Lp2
w

α

)p2
dα+

∫ ∞
0

αp−1

(‖T (b)‖Lp1
w

α

)p1
dα

≤ C
∫ ∞

0
αp−1

∫
{g̃z(f)(x)≤α}

[g̃z(f)(x)]p1w(x) dxdα

+

∫ ∞
0

αp−1

∫
{g̃z(f)(x)>α}

[g̃z(f)(x)]p2w(x) dxdα

≤ C‖f‖p
Hp

z,w(R3)
.

Thus, ‖Tf‖Lp
w(R3) ≤ C‖f‖Hp

z,w(R3) for any p ∈ (p2, p1). Hence T is bounded from Hp
z,w(R3)

to Lpw(R3).

To prove the second assertion that T is bounded on Hp
z,w(R3) for p ∈ (p2, p1), for any

given α > 0 and f ∈ Hp
z,w(R3), we apply the Calderón-Zygmund decomposition again to

obtain

w({x : |g̃z(Tf)(x)| > α})

≤ w({x : |g̃z(Tg)(x)| > α/2}) + w({x : |g̃z(Tb)(x)| > α/2})

≤ Cα−p2‖T (g)‖p2
H

p2
z,w(R3)

+ α−p1‖T (b)‖p1
H

p1
z,w(R3)

≤ Cα−p2‖g‖p2
H

p2
z,w(R3)

+ α−p1‖b‖p1
H

p1
z,w(R3)

≤ α−p2
∫
{g̃z(f)(x)≤α}

[g̃z(f)(x)]p2w(x) dx+ α−p1
∫
{g̃z(f)(x)>α}

[g̃z(f)(x)]p1w(x) dx,

which, as above, shows that

‖Tf‖Hp
z,w(R3) ≤ C‖g̃z(Tf)‖Lp

w(R3) ≤ C‖f‖Hp
z,w(R3)

for any p ∈ (p2, p1). The proof of Theorem 1.8 is complete.
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