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A Multiplicity Result for a Non-local Critical Problem

Hui Guo and Tao Wang*

Abstract. In this paper, we are interested in the multiple solutions of the following
fractional critical problem

(—=A)u = |u|*2u+ A u inQ,

u=0 on RV \ Q,

where s € (0,1), N > 4s, 2¥ = 2N/(N —2s), Q is a smooth bounded domain in R™ and
(—A)*® is the fractional Laplace operator. Because the nonlocal property of fractional
Laplacian makes the variational functional of the fractional critical problem different
from the one of local operator —A. To the best of our knowledge, it is still unknown
whether multiple solutions of the fractional critical problem exist for all A > 0. In this
paper, we give a partial answer. Precisely, by introducing some new ideas and careful
estimates, we prove that for any s € (0, 1), the fractional critical problem has at least
[(N 4+ 1)/2] pairs of nontrivial solutions if 0 < A # X, and has [(N + 1 —1)/2] pairs if
A = A, with multiplicity number 0 < I < min{n, N + 2}, via constraint method and
Krasnoselskii genus. Here A, denotes the n-th eigenvalue of (—A)?® with zero Dirichlet
boundary data in © and [a] denotes the least positive integer k such that k& > a.

1. Introduction

The critical problem is an important topic in the development of mathematics, which has
been widely studied in the literature. One can see |3,27] and references therein for more
details. Recently, many fruitful results for the critical problem with nonlocal operators
have appeared in the papers, especially for the ones with fractional Laplacian operator.
This operator describes an anomalous diffusion phenomena, like flames propagation and
chemical reactions of liquids, which appears in several fields such as physics, biology
and probability. It can also be viewed as the infinitesimal generator of a stable Lévy
process in probability theory (for details about backgrounds, please see [1,/4,/17,[19] and
references therein). In differential geometry, the Yamabe problem is an important well-

known critical problem and has been widely studied. Recently, as a nonlocal counterpart,
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the fractional Yamabe problem and related critical problems have attracted much attention
from mathematicians. For more details and applications, one can refer to [2/19,[21] and
references therein.

In this paper, we focus our attention on the following critical problem involving frac-

tional Laplacian

(—A)u = |u|*>"2u+ \u  in Q,

(1.1)
uw=0 on RV \ Q,

where s € (0,1) is a fixed parameter, A > 0, N > 4s, 2% = 2N /(N — 2s) is the fractional
critical Sobolev exponent and {2 is a smooth bounded domain. Here the fractional Lapla-
cian (—A)?® is the nonlocal integro-differential operator defined by, up to a normalization
number,

u(z +y) + u(x —y) — 2u(z)
|y’N+25

(1.2) (—A)’u(z) == P.V./ dy.

RN

One can refer to [19] for more results and properties about fractional Laplacian. Note
that the homogeneous Dirichlet datum in is given on RV \ ©, not simply on 99 as in
the case of classical Laplacian, consistently with the nonlocal property of (—A)®. For the
works related to the fractional Laplacian defined by , or to a more general integro-
differential operator, one can see [21,22,24,25] and references therein. In particular, it
was proved in [21,22,24-26] that admits a nontrivial solution, provided

e N >4sand )\ € (0,+00);
e N =4sand X € (0,+00) with A # \; for all i = 1,2,..;
e 25 < N < 4s and X € (0, +00) is sufficiently large.

Here ();):2, denote the eigenvalues of (—A)® with zero Dirichlet boundary data. Note
that these results can be viewed as analog of that for Laplacian [6},28], and there are
many multiplicity results for with —A operator in the literature. For instance,
Devillanova and Solimini [12] proved that for any A > 0, it has infinitely many solutions
provided N > 7. Clapp and Weth [10] showed that for N > 4, if A € (0, 1), then it
has at least [(INV + 2)/2] pairs of nontrivial solutions; if A € (p;, iti+1), then it has at least
[(N 4 1)/2] pairs; if A = p; is an eigenvalue of multiplicity | < N + 2, then it has at least
[(N +1—1)/2] pairs. Here u; denotes the eigenvalue of —A with homogeneous Dirichlet
boundary condition in 2. Later, Chen, Shioji and Zou [§] extended the multiplicity results
to A = p;, that is, the problem has at least [(N + 1)/2] pairs for N > 5 and A > p;. For
the history and more results about multiple solutions of with —A, one can refer
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to [3,8,/12,/13] and references therein. A natural question arises whether multiple solutions
of exist for A > 0 like that for Laplacian?

Up to our knowledge, there are few results in the literature on the multiplicity of
solutions to (1.1). In [14], the authors proved that the number of solutions to
is bounded below by the number of eigenvalues A; lying in the open interval (A, A +
S|0Q|~25/N), where |Q] is the Lebesgue measure of Q and S is the best constant defined
in Section [2| Let us remark that it is not certain whether the interval (\, A 4+ S|Q|~25/V)
contain any eigenvalues or not.

In this paper, we give a partial answer. Let [a] denote the least positive integer k such
that £ > a.

Theorem 1.1. Let s € (0,1), N > 4s and 2 be a smooth bounded domain in RY. Then

(i) if A > 0 with X # A, for some n > 1, problem (1.1)) possesses at least [(N + 1)/2]

pairs of nontrivial solutions;

(i) of Apei < Ap—ig1 = = A = A < A\pp1 with 0 < I < min{n, N + 2}, problem (1.1)

possesses at least [(N + 1 —1)/2] pairs of nontrivial solutions.

Moreover, these solutions satisfy I(u) < %SN/(QS).

This result will be proved by developing the method of [8], via a constraint method and
Krasnoselskii genus theory. Compared to Laplacian, the fractional Laplacian is nonlocal
and there are two difficulties to obtain our results. The first difficulty lies in that prob-
lem is a critical problem. As usual, we use (PS), condition instead of (PS) condition.
Here we say that I satisfies (PS), (or (PS)) condition: if any sequence (u,,) satisfying
I(upm) — ¢ (or I(uy,) being bounded) and I'(uy,,) — 0 as n — oo is relatively compact,
(also see |27, Chapter I1.2, Chapter I11.2] for the definitions). Precisely, we shall apply the
global compactness results of fractional Sobolev space in this paper, which were obtained
in [20]. However, the nonexistence of nontrivial solutions to following limiting equation

are unknown,

(=A)*u = |u|*"2u  in RY,

(1.3) NN
u=0 in RV \ RY.

To overcome this difficulty, via the so-called “energy doubling” property, we show that
admits no solutions such that the energy is less than or equal to twice the least
energy. Then the compactness is recovered for the functional between 0 and twice the
least energy.

The second difficulty lies in that fractional Laplacian operator defined in is non-

local. This nonlocal property makes some calculations difficult, and a careful analysis is
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necessary in lots of estimates. See Lemma [2.1] and following sections for details. On the
other hand, a fractional power of the Laplacian defined by using spectral decomposition
is also nonlocal, but it can be transformed into a local problem via the extension tech-
nique introduced by Caffarelli and Silvestre in [5]. In this sense, many methods used for
Laplacian can be applied for fractional power of the Laplacian. As in [9], it has been
proved that the problem with spectral fractional Laplacian admits infinitely many
solutions for N > 6s and A > 0. In [15], it is showed that has at least [(N + 1)/2]
for N > 2(1++/2)s and A > 0. However, this transformation is invalid here for fractional
Laplacian defined in , so it make this problem interesting and challenging. That’s
why we are interested in multiplicity results of problem . For more multiplicity results
and details about the equations involving the spectral fractional Laplacian, one can refer
to [9}/15].

The paper is organized as follows. In Section [2, we introduce notations and some
preliminary results for problem . In Section [3] we discuss the limiting problems of
and a compactness lemma. Some useful estimates are obtained in Section (4| Finally,
we give a proof of Theorem [I.1]in Section

2. Notations and preliminaries results
In this section, we introduce some notations and preliminary results.

e We denote by C the positive constants (possibly different), by N the set of all positive
integers and by [ull, = ( [q ul? dz) YP the norm of LP(Q).

e The homogeneous fractional Sobolev space D*(RY), as the completion of C§°(RY)

under the norm [[ul| psgn)y, is equivalently defined by

2
DS(RN) .= 125 (RN :/ u(z) — u(y)| dad
(R™) {ue (R™) on Tz — g xdy < 400

with inner product

and the corresponding norm

2 _ u(z) — u(y)|?
HuHDs(RN) — AQN Wdl’dy

For more details and related results, one can refer to [19).
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e Denote by S the best fractional critical Sobolev constant from D*(RY) into L2 (RN),

a3
e., S = inf,cpsmrn)\fo) ﬁ. It follows from [11, Theorem 1.1] that S is
attained at the functions

U(z) = k(p® + |z — 20)?)"N=2)/2 2 e RN

with k € R\ {0}, u > 0 and 29 € RY. Equivalently, the function u(z) :=
u(x)/|[tll 25 gy satisfies S = ||ﬂ||25(RN) with |G 2 vy = 1. In the following
sections, we always assume p = 1 and let u*(z) := u(z/S?*). According to [25], u

is an explicit solution of the problem

(—A)su = |u|*>"2u in RY,

21 u € D3(RN),

and HU*H = SN/(25) Moreover, the family of functions

LQ* (RN)

€

m s €>O,Z€RN,

(N—25)/2
(22) U..(z) = N292y(z/e) =& < >

are solutions of (2.1 and verify

(2.3) ||U€,z”§)s(RN HUEZ”L?* &) SN/(2S)'

e We write D*(RY) as the completion of C§°(RY) in D*(RM).
e The space X{§(Q2) is a Hilbert space defined by
X5Q) ={ue D’RY):u=0ae in RV \Q}

with inner product (u,v)xs := (u,v)ps@~y and norm |ul|xs := [|u| ps@~). From
[24], we know that X§(Q) is a subspace of D*(RY). Moreover, X§(f2) is embedded
continuously into L% (), and compactly into L(Q) for any ¢ € [1,2%) if Q has a
Lipschitz boundary.

o Let (\;)$2, be the eigenvalues of (—A)® with zero Dirichlet boundary data and (e;)5°

be the L?-normalized orthogonal eigenfunctions corresponding to \;, that is,
(—A)Sei = )\iei in Q,

(2.4) e;=0 on RV \ Q,
Jo leil? dz = 1.
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Then

2 Y. X
Heiuxg(g) =\ for each i > 1,
(2.5)
(ei,ej)Xg(Q) =0 and / eiejdr =0 for any 4,7 > 1 with i # j.
Q

According to [23, Proposition 9], there holds 0 < A\; < Ag < -+ < N < Ajyp < -+
and \; — 0o as ¢ — o0o. For more information about the spectrum of fractional

Laplacian, one can refer to [23] and references therein. If A\, < A\ < \,41 for some

n > 1, we set

H™ :=span{ey,...,e,}, HT :=span{e;:i>n+1}.

Before discussing problem (1.1f), we first show some necessary lemmas.

Lemma 2.1. For any w,v € D*(RN) with suppw Nsuppv = (), we have

(2.6) (w,v) ps(rvy = —2 /RQN Mdzdy
e @v(y)
o+ 01sqay = ol + Wolgan =4 || 20 dody

Proof. Set

Ay ={(z,y) e RN s w(z) # 0,0(y) # 0}, Az = {(z,y) € R*N : w(x) # 0,v(y) = 0};

A3 = {(x,y) S R2N : 'LU(IIJ) - O,U(y) 7& 0}7 A4 = {(%,y) € R2N : w(x) - O?”(y) - 0}
By direct computations, we have

[w(z) — w(y)lfv(z) —v(y)] [w(z) — w(y)][v(z) — v(y)]

/AQ 7 — N dxdy = /Ag 7 — |2 dxdy = 0,

[w(z) — w(y)][v(z) — v(y)] _ [ wlly) oo w(z)vly)
/A1 dxdy—/ dxdy = / dxdy,

|z — y| N2 Ay |z =y N2

[w(z) — w(y)][v(z) —v(y)] _ [ —wyv(z) _ —w(y)v(z)
/A4 dxdy = / ——2 = dxdy = /R ——2——dxdy

|:L._y|N+2S Ay |$_y‘N+23 2N ‘x_y’NJrZs

:_/R w@W) g,

2N ’1‘ — y’N"'QS

Then

(’LU,’U)DS(]RN) = AlquuA3uA4 ) _;U(_y)y]’[}\)fia;l mit)) dxdy

[ e
_ /R dzdy

on |z — y|N+2s
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and
[Jw + U”%)SURN) = ||’LUH2D3(RN) + HUH2Ds(RN) + 2(“)7”)DS(RN)
— 0l + PlBery =4 | R dady
The lemma follows. O]

Remark 2.2. As a consequence of this lemma, the Lebesgue integral on the right-hand

side of (2.6) is well defined, because |(w, v) ps@ny| < [|wl| ps@nyl[v] ps RNy

Set uy = max{+u,0}. Then v = uy —u_.

Lemma 2.3. Suppose that u € D*(RYN) is a weak solution of [2.1) with uy # 0, that is,
for any ¢ € D*(RY), there holds

(u, @) ps S(RN) = /RN |u\2§_2u¢>d:c.

Then 5
~ 25 GN/(2s)
J(u) > NS ,

where J(u) = $|u|? S®N) % Jan |uf? dz is the corresponding functional of (2.)).

Proof. Since uy # 0, by (2.6), we have

u
(Ut, u—) ps Ny = —2/]R +()|N£25)d dy

on @ —

u(z)u(y)
9 / / _ul@)uly) gy < 0.
(u>0} J{u<oy [ — y|NF2s

Note that 0 = 7' (u)us = (u, Ut) ps(RN) T Jpn |ut|? dx and (U, ut) psrny = ||uiH2DS(RN) —
(w4, u—)ps@ny- Then by (2.7), we deduce

(2.7)

/RN us ] do = [lutl| ey = (ur, us) po@ny > luslpa gy,

and there exists a unique positive number ¢+ given by

: 1
o8 b (b ol %2 s 12 vy =5
fRN |2 HU:I:H%S(RN) — (U, u") ps(ry

such that tyusr € N = {v € D5RN)\ {0} : ¥'(v)v = 0}. Hence, ||tiUiH2Ds(RN) =

2% . .
RIS [ (') This together with ||tLu|? S@®N) 2 > Strusl|?

125 (RN) gives that

(2.9) J(trus) > SN/(2S)
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Consequently, by (2.8)) and (2.9)), we get from tyuy € N that

11 . 11 - -
Ju)=(=-= d - - — t sd t_u_|*sd
() <2 2z>/RN ol dv > (2 2:) </RN'*“*' “/RN' - x)
2
= I(tyuy) + It u) > NSSN/(QS).
The proof is completed. ]
Lemma 2.4. Suppose that u € DS(R{X) is a weak solution of (L.3). Then

i) if u has constant sign in RY , we have u = 0.
+

(ii) if u is sign-changing in Rf, we have
2
(2.10) C(u) > =2 gN/2s)
N
where £(u) == 3||ul|? S®N) T % f]Rj\_’ \u|? da is the corresponding functional of (1.3)).

Proof. (i) According to [18, Corollary 2.5], it follows that if u € D*(RY) is a constant sign
solution of , then u = 0.

(ii) If w is a sign-changing solution of , by using the same argument as in Lemma
we can obtain and the details are omitted. O

Now, we turn to problem ([1.1). Recall that problem (1.1)) is variational and its weak

formulation is given by

(2.11)
fRz (2) o y}|[¢( 2)—¢()] dxdy = f |u|? ~2u¢p da + )\fﬂ updr for any ¢ € X5(Q),
u € X§(Q).

Then (2.11) is the Euler-Lagrange equation of functional : X§(2) — R defined by

L0 Jule) - uly)? [ )~ L [
I = — — " _dxdy — \ d S— s dax.
(u) 2(/Rw g Wy = A fulde ) = on | jul de

Then I € C*(X§(Q),R) and the solutions of problem (I.1)) correspond to critical points
of I.

In order to obtain our results, following the idea of [8], we consider a new functional

lull%s — Allull3

13,

J(u) = = Jlull%e; — Mull3

constraint on the manifold

M = {u e X§() : ||ull2x =1}
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It is easy to see that M C X{(Q2) is a complete manifold and invariant under the involution
u — —u. Moreover, J € C'(M,R) and v € M is a critical point of J with J(u) = 8 > 0,
1
if and only if uw = 22w is a critical point of I with I(u) = %BN/@S) > 0. Evidently,
(Um)m>1 C M is a (PS)s sequence for J if and only if (Um)m>1 C X§(2) is a (PS)5
- 1
sequence for I, where 8 = %BN/(ZS) and Uy, := 8% 2u,,. Here, we say that a sequence

(Um)m>1 C M is a (PS) 4 sequence for J if

J(um) = B, || (um)]| = 0 as m — oo;
and that (um)m>1 C X§(€) is a (PS); sequence for I if

I(m) — B, | ()| — 0 as m — oco.

Since J(u) = J(—u), it is well known that there exists an odd Lipschitz continuous
map v: M — TM with v(u) € T,M and [[v(u)| < 2|7 ()|, (J'(u),v(w)) > |J(u)|?
where M := {u e M : J(u) # 0} and TM is the tangent space of M. Moreover, similarly
as [8, Lemma 2.1], the following deformation lemma on the manifold M follows without
(PS) condition.

Denote
JP={ueM:Ju)<BY, K°={ueM:J(u)=0and J(u) =g}

Lemma 2.5. Let€,6 >0, 8 € R and D C M with D = —D such that ||J'(u)|| > 4€¢/6 for
u € J7YB — 2¢, 8 + 2€¢] N Das, where Ds = {u € M : dist(u, D) < §}. Then there exists
n € CY([0,1] x M, M) such that n(t,-): M — M is an odd homeomorphism map for any
t €[0,1] and

(1) 77(07u) =u, Yu € M;
(i) n(t,u) =u, Vu & J1[B — 2¢, B+ 2¢] N Dys;
(iii) n(1,J°**N D) c JP~¢N D;.

Proof. The proof is similar to that of [8, Lemma 2.1]. But for the sake of completeness,

we give a sketch of the proof below. Define

A:=JB—2¢,+4+2NDys, B:=JB—¢€B+€ND;s

and ¢: M — R by ¥(u) = dist(uc,lji\sj\(%]\i\ﬁz(u’ 5 Then ¢ is locally Lipschitz continuous,

¥ =1on B and ¢ =0on M \ A. Let us define the locally Lipschitz continuous vector
field

—(u) YW ey e M,
0 ifue M\ M,
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and consider the Cauchy problem

9= 50, O =u

Note that || f(u)]| <1 on M. Then the Cauchy problem has a unique solution ((¢,u) for
all t € R such that ((¢,u) is odd and homeomorphism with respect to u € M. Now, let
n(t,u) = ((dt,u). Then it is easy to see that (i) and (ii) hold.

Since

d /s Vo) \
It = =6 (T wln 2 ) < suln L

J(n(-,u)) is nonincreasing. For any u € J5T¢N D,

1" (m)II?
lv ()l

<0,

< | Sl F(w) ds < o,

t
d
Intt = ull = [ fonts.was

which implies that n(t,u) € Ds, Vt € [0,1]. Furthermore, if there is some tg € [0, 1) such
that J(n(tg,u)) < B—¢, then J(n(1,u)) < J(n(to,u)) < f—e. Otherwise, J(n(t,u)) > f—e
for all t € [0,1), and then n(t,u) € B and ¢(n(t,u)) = 1. It follows that

J(n(1,u)) 5/ <J’ ;H>dt<J 5/1” dt < B —e,

that means n(1,u) € J?~¢. Therefore, (iii) holds. O

Now, for any j € N, we define
(2.12) Y, ={AC€&:v(4) >}

and consider

;= inf
= g )

where & = {A C M : A is closed, symmetric} and 7 denotes the usual Krasnoselskii genus.
Note that if 0 < A < A1, then

A
> inf f s de > inf 1-— s
B> i )= et < [ uPde> e (1= ) Tl > o

if A, < XA < Ayyq for some n > 1, then for any j > n+ 1 and A € ¥;, we have
An{ue H* : ||lul2: =1} # 0 and so

,3j>0.

Furthermore, by using Lemma and following the similar arguments as in the proof

of |8, Lemmas 2.2 and 2.4], we have the following two lemmas.
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Lemma 2.6. The following statements are true:
(i) If 0 < A < A1, then for each j € N, there exists a (PS)ﬁj sequence (ug)>1 for J.

(i) If Ay < A < Apy1 for some n > 1, then for each j > n + 1, there exists a (PS)BJ'

sequence (ug)p>1 for J.

Proof. Let j € Nfor 0 < A < A, and 57 > n+ 1 for Ay < A < A1 If there is
no (PS), sequence (uy) for J, then by Lemma there exists n € C1([0,1] x M, M)
such that n(1,J%%¢) ¢ J%~¢. By the definition of Bj, there is a set A € ¥; such that
supy J(u) < Bj +e. Since n(1,-) is odd, v(n(1,A4)) > v(A) > j. Then n(1,A4) € ¥;.
However, 1(1, A) C n(1, J%*€) C J%~¢ which contradicts with the definition of 8;. [

Lemma 2.7. If0 < 8 = Bj11 < 225/NS then K5 is infinite.

Proof. The proof is similar to [8, Lemma 2.4] and the details are omitted here. O

In view of ([2.2)), set
E:={U.:e>0,zcR"}.

According to [7] or |16], E contains all positive solutions of (2.1)) in D*(RY). In addition,
by using Lemmas and |20, Theorem 1.1], we have the following lemma.

Lemma 2.8. Let (um)m>1 be a (PS),Bj sequence for functional J. Up to a subsequence,

the following conclusions hold.
(a) If Bj € (0,95), then (um)m>1 converges in M and f3; is a critical value of J.
(b) If B; € (S, 225/N ), then one of the following cases holds true:

(bl) (um)m>1 converges in M and fB; is a critical value of J.

(b2) There exists a critical point u of J in M with J(u) = B« = (ﬂ;v/(Zs)—SN/(QS))QS/N
€ (0,5) such that
(2.13)

1 1 1 1
dist (ﬁ;sz Um — B 2w, E) — 0 or dist (6;52 Um — B 2w, —E) — 0.

(c) If Bj = S, then one of the following cases holds true:

(c1) (um)m>1 converges in M and f; is a critical value of J.

_1 _1
(2.14) dist <5J?’s‘2um,E> =0 or dist (szszum,—E> — 0.
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Proof. Let (um)m>1 be a (PS) s, sequence for .J. Then it follows that the sequence (Um),

1
given by t,, := 5]-2?2 U, 1S & (PS)E sequence for I with g = %ﬂ;v/(Qs)

. It is easy to see
that (W )m>1 are bounded in X§(£2) and thus there exists a (possibly trivial) solution
u® € X§(Q) of (L.1) such that

U — v’ in X§5(Q).
By applying splitting lemma (see |20, Theorem 1.1]) to problem (1.1]), we get that either
(2.15) Uy — u® strongly in X§(Q),

or there exists two finite sets 71, Jo, nontrivial solutions {u/};e 7 to [2-1) in D*(R"Y) and
solutions {u/};e 7, to (L.3) in D*(RY) such that

(2.16) I(ty,) = I(u®) + Zj(uj) + Zﬁ(uj) +o(1)
J1 T2
and
(2.17) ||Um||§(g(9) = HUOH%(g + Z ||Uj||§)s(RN) + Z ||Uj||§)s(Rf) +o(1),
JjeEN JjET2

where J, £ are defined in Lemmas and respectively. If happens, then we are
done. Otherwise, for any Bj € (0, 2—]\‘;5’]\’/(25)), since I(u?),J(u), £(v7) > 0, it follows from
and Lemma that J, = (0. Furthermore, it yields from (2.16)) and Lemma
that either J3 = {1} or J;3 = 0. Then, and are reduced to

(2.18) I(y) = T(u®) + > 3(w!) + o(1)
JjET
and
(2.19) amlis = lu’lzg + Y 11/ gy + 0(1),
JjeETL

where J1 = {1} or 4 = 0.

Thus, it follows from (2.18)) and (2.19) that if Bj e (0, £ GN/(29)) then J; = 0 and Ej
is a critical value of I, so (a) holds. If Ej € (%SN/@S), ?V—SSN/@S)), then J; = {1} and Bj
is a critical value of I and thus (bl) holds. Otherwise, J; = {1} and there is a critical
point u with I(u) = Bj — £5N/(29) = %55/(28) such that holds, which implies (b2).
Similarly, if Ej = %SN/ (25)  then Ej is a critical value of I and (cl) follows. Otherwise,

(2.14]) holds and (c2) follows.

The proof is completed. O
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3. Some useful estimates

For any point z € €, denote B,(z) = {y € RY : |y — 2| < r}. Without loss of generality,
we may assume that 0 € Q and Bg,(0) C Q with some dy > 0. For any 0 < n < dp, we
define

0 if z € B, 5(0),
(3.1) (@) = § 2Jz| =1 if 2 € B,(0) \ By(0),
1 if z € RV \ B,(0)

Clearly, |V&,| <2/n.
Lemma 3.1. [pon %7]%’635?'2 dxdy < ConN=2% for some Cy > 0 independent of 1.
Proof. Set

Pi={@y) o=yl 2 5,2 € By(0),y e RV\ B,(0) }

L= {(z.9): | —yl < J.2 € B,(0).y € BV \ B,(0)}.

According to the definition of §, and mean value theorem, we have

&0 (@) — & (y)[? / 1
dedy <2 | ——— dzdy
~/F1 |$_y|N+2S It |‘T_y|N+2S

(3.2) B 2/ / ;d p
— ydz
By(0) J{la—ylzn/2y |2 — Y[V
S C’I7N_28
and
|§17(.CE) _gn(y)|2 4 ’x—yP
dedy < — [ 7 dydx
/Fz ’.’E - y|N+28 772 Ty \x — y‘N+25
(3.3) _ 4/ / ; o
— __ dydz
12 JBy0) Ja—yl<nsoy lo — y|N 272
< CT,N72S‘
Note that

6ala) — &) / / =y
dedy < — dydzx
/Bn /B” |x— e o0 )0 |x— e
4

1
_ =  dyde
Ua /Bnm) /{|x—y|<zn} |z — y| V2o

N-—2s

(3.4)

<

Q

n
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Then we conclude from . that
& (x) — & (y)]?
/R?N z — ’N+2s dxdy
2 . 2
o S [ e
By(0) /B, (0) \x - y\ B,(0) Jev\B,(0) |t~ Yl

(e <de &)~ &P,
/Bn /Bn) |x_ ‘N+2s xy+2/1“1 |z — y|NT2s ray

ra [ BO-G0E,,,
I

|{L‘ _ y|N+2s

< ConN—Qs
for some Cy independent of 7. The proof is completed. O

Now, for any m > 1 with 2/m < dy and any integer i > 1, we set
e () = Eoym(w)ei(z) for all z € RN
and

span{el’,....ep't  if Ay, < A < Apga;
H;m()\) = qspan{el”,...,el" ;} X <A1 ==X =A< 1
for some 0 < I < min{n, N + 2}.

Lemma 3.2. Suppose A\, < A < Apy1 and 0 < | < min{n, N + 2}, then there exists
mg > 1 such that for any m > my,

An + ClmQS’N if AE ()\n, )\n+1)7

(35)  max Julk <
UEHH‘v‘TLngA) An—1+ C’lm%*N if At < Ap_ip1 = = Ap = A < Apt1
ulj2=

for some C7 > 0 independent of m.

Proof. We first prove the following estimates:

(3.6) He;"H_ZXS <N+ Cm* N for any i € N;
(3.7) |(ef", el ) xg| < Cm2>~—N for any i,7 € N, i # j;
(3.8) (ef*,ef)o| < Cm~™N for any i,j € N, i # j;
(3.9) ler])3 >1—Cm™™ for any i € N;
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According to [21, Proposition 2.4], it follows that e; € L>(Q). Together with Lemma [3.1]
this gives that

/ ei(z)ei(y) [f2/m(=’13) - fQ/m(y)]
R2N

2
|z — y[N+2s drdy

(3.10)
[§Q/m(x) - éZ/m(y)]

2
dady < Cm*~ N,
R2N |z — y|N+2s V=

<C

In addition, multiplying (2.4]) by [fg Jm (z) — 1]e; and integrating by parts, we have
(3.11)
5 [ 16(e) — ek do
Q

= (&30 (@) — ey, ei)xg
_ / 163 (@) = Llei(@) — e ()] + i) (&3, () — &, (W] [e(x) — €i(y)]
~ Jrew |z — y| N2

Then, it follows from (3.10) and (3.11)) that

HeZ”H?XS - H%H%{g

_ / [E2/m(@)ei(x) — Eom(y)ei(y)]? — [ei(x) — ei(y))?
R2N

|l’ _ y‘N+28

dxdy

dxdy

_ / 165/ (@) = Wlei(@) = ei)]” + €iW)[€),(7) = &, W)]lei (@) — €i()] dndy
R2N

|.CU _ y|N+2s

+/ ei(@)ei (1) [§a/m (%) — Eo/m (y))? dxdy
RQN

|33‘ _ y|N+25
=i /Q[é:%/m(x) — )¢} dz + /RZN ,;_ y[N+2s : dudy

ez(x)ez(y)KQ/m(‘r) - gZ/m(y)]
= /R2N

|ZZT _ y|N+23

2
dxdy

S Cm287N.

This combined with (2.4) yields ({3.6]).
Multiplying (2.4) by [£2 /m(x) — 1]e; and integrating, we have
)\i/[fg/m — 1]esej dx
Q

= (ei, (§3/m — 1)ej) x;
_ / lei(@) — es()]([€3),, () — Lej(x) — [€3,,(y) — Le;(y))
R2N

|z — y|[N+2s

dxdy

_ / 163/ (%) — Ules(x) — ei(y)lle; () — €; ()] + [ei(x) — eiW)]IE5 1 (¥) — 63, (W)]e ()

z — y|[N+2s dxdy.
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Similarly,

/\j/ﬂ[gg/m — 1leje; dx

= (63‘7 (fg/m - 1)€i)xg

:/‘[QQO—Q@N@Qm@%—WM@—%ﬁmﬂD—Um@»
R2N

o=y

dxdy

_ / 163/ () = Wlei(x) — eiW)lle;(z) — e; )] + [e; (@) — ;W& () = & W)]ei(y) dvdy
R2N

o=V
Then it follows that

Ai t A /[fg/m(x) — 1leje;j dx
2 Ja

_ / slei(@)ej(y) + ei(y)ej () — 2ei(y)e; (WES ), (%) — €5, (¥)]
R2N

|IL' _ y|N+23

€5/ () — lei(x) — ei(w)][e; (@) — e;(y)]
+ 2 |z — y’N—i-?s ddy.

This together with e; € L°(RY), (2.5) and Lemma gives that for any i # 7,

(el

= |(ef",€e]" ) xg — (ei,e5) xz]

_ / [E2/m(T)ei(x) — Eaym(Y)ei()][E2/m (T)es () — Eoym (y)e; (y)]
R2N

|z — y|N+2s
[ei(x) — ei(y)lle;(x) — €;(y)]
- & — y|1$+28 T dudy
At A SN | / ei(2)e;(y) + e;(@)es ()] [Eoym (@) — E2ym (y)]?
= 3 /9(52/m 1ese; dx .. P E=T dxdy
i + A 1 lei(z)e;(y) + € (@)e; (y)|[Ea/m (@) — Eo/m (y)]?

<t 7J . 2z

< /Bg/m lesesl da + 5 /Rw it drdy
_ 2

<C wrc [ Cm® ff/ ;”(y” dxdy

Ba/m ran o -y
<Cm N +com* N
< Om?st

if m is large enough. So (3.7)) follows.
By (2.5) and (3.1)), it follows that for i # j,

<C de < Cm™N.
BQ/m

(e, €] = \ [ &wseie; e

/ €2 () — Vese; du
Q

So (3.8)) holds.
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By (24) and (B.1), we get

lepl3= [ o [1-&), @ldde=1- [ ddoz1-0m ™
Q Q B2/m

which gives (3
Now, we are ready to prove (3.5)) by using the estimates . Let u,, €
with ||um,||2 = 1 be such that

lumlks = max ]| % -
UEHp n(A),|lull2=1

Thus, for the first case A\, < A < A41, there exist real numbers a?’, ...,

Um = Y iy a™e™. Then we have

HumH?Xg:Z( )HemHXs+2 Z a;*aj (e, €j") xg

=1 1<i<j<n
and
n
(3.12) L= lluml3 =Y (a5 +2 Y af'a]'(ef, ef)a.
i=1 1<i<j<n

Thanks to (3.8)) and (3.9), there exists mo > 1 such that for any m > my,

1

m 3 .,
He H% 1 and ’(ez ) €4 )LQ(Q)| Z for any v #J

Hence it follows from (3.12]) that

n

L= @l +2 Y afal (el ef)s

i=1 1<i<y<n
n
>3 @llells =2 Y lallall(ef, ezl
i=1 1<i<j<n
3 — 1
> @ =7 >, (6" + o))
i=1 1<i<j<n
1 n
> 4 > (@),
i=1

which derives

(3.13) lai*| < C  for some constant C' independent of m and i.

1405

9

man(A)

a such that



1406 Hui Guo and Tao Wang

Then by (3.9), (3.12)and (3.13)), we conclude
1> @?efl3—=2 > lafall(ef, €] )l
i=1

1<i<j<n
n n
(3.14) > (@3 —C Y0 e eal = Y (@3~ CmY
=1 1<i<j<n i=1

> Zn:(a;-")Q - Czn:(azn)%n_N —Ccm™ N > zn:(a;”)2 —Ccm™V,
i=1 =1

=1

This combined with (3.6, (3.7) and (3.13)), (3.14]), implies that

n

lanllBes = S (@l 3s +2 S0 alal(el, o) x
i=1 1<i<j<n

S (1 4+ Cm_N)()\n + Csz—N) + Cst—N
< A+ Cym® N

(3.15)

for some Cj > 0. Therefore, (3.5)) follows for A\, < A < Ap41.
For the second case A\ < Ap—i4+1 =+ = Ay = A < Ap41, by using similar argument

as above, we can prove
(3.16) HuM@S < Apg + Cym* N

and the details are omitted.

Thus, the conclusion follows from (3.15)) and (3.16]). O

As a consequence of Lemma the following lemma holds true.
Lemma 3.3. The following statements are true:

(i) If Ap < X < Apt1, then there exists my > mg such that for any m > my,

A=A,
sup I(u)+\|u||2s> <0.
Hinn () < 2()\ + )\n) X5
(i) If Mt < Ap—ig1 = - = Ay = A < Apy1 with 0 < I < min{n, N + 2}, then there
exists m1 > mq such that for any m > mq,
A— Anfl 2
sup | I(u) + -~———||ull s> <0.
Hin () < 2(A + Api) X§

Proof. (i) For A, < A < Ayy1, by Lemma there exists my > myg such that for any
m >my and u € Hy, ,,(N),

A+
2

-N
lull%; < O+ Crm® =) Jul3 < 3
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Then

A=A o A , A ) 1 / .
L0 s = ——ful|%s — 2 do — — id

< 1/\
<—— 1 |u

2% Jo
< 0.

I(u) +

% dx

Thus, (i) follows immediately.
(ii) For \p—y < Apgg1 = -+ = Ay = A < Apyq with 0 < [ < min{n, N + 2}, by

using Lemma [3.2] and similar argument as above, there exists m; > mg such that for any

m 2 mla
A— >\n—l 2
I — s <0.
Then (ii) follows. O
Let Ue = U = %(m)(f\f—%)/? and r1 = 1/(6m). For any r € (0,71] and € > 0,

define a cut-off function U/ by

Ue(z) — Uc(r) in B,(0),

Ul'(x) =
() 0 in RN\ B,(0).

Then
(3.17) U (@)| < |Uc(z)| < Ce@N/2 and  |VU! (2)| < |[VU.(z)] < Ces—N)/2-1
for z € RN. Moreover, for any 0 < n < €/2, z€ Qand z € RY, we have

V(& (z = 2)UL ()] < |VEy(z = 2)[|U ()] + [§y (2 = 2)[[VUE ()]

(3.18)
< Cnp7 MU+ |VUT| < Oy tes N2,

In the following, we denote &, = 1 for n = 0. Let 0 < 2 < € < r, then the following

lemma holds true.

Lemma 3.4. For any z € ), we have

o [ el —2)Ul@) — &6 - U @) N o (M
. /RZN ” o=y dady < 5V +0(3)

?

(@) [ Joalo =L@ do = M@ —c ()7 — o (1),

r €

Proof. (i) Note that

T _7rr 2
[ R,
RN\B,(0) JRM\B,(0) |z —y[NH?s
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and

\UZ (x) — / / Ue(z) = Ue(r)?
U dyd:v dydzx
/BT(O) /IRN\BT(O) |z — |N+2s B.(0) JRNM\B,(0) |7 —y[N T2

Ues(x) — U, 2
/ / | (z N+(2?i)| dydz.
B.(0) JRM\B,(0) |T — Y]

Then
U (x) — U (y)|?
€ € d d
/R2N Ix—yIN“S e
U (x) — U (y)|? / / U (x) — U (y)|?
dxdy + 2 dxdy
/T /T \:1:— ‘N+23 0 J2vB,0) \a:— y|N+2s
UT U (y
L e,

(3.19) RN\ B,.(0 RN\BT(O) !95 — |

Uc(x) = Uc(y)|? / / Uc(z) — Ue(y)|?
< dxdy + 2 dxdy
/T / |LU - le”S 0 JrM\B0) T — YN

IU (y)?
dxdy
/]RN /RN \fc*y\N”s
SN/ 2s

In addition, set
D= {(e) cBY < BY [z —y| > 1o € By()y € BV \ By(2)}
Iy = {(z,y) cRY xRN . |z —y| < g,x € Bn(z),yERN\Bn(z)}.

By (3.17)) and (3.18]), we have

& (x — 2)U! (x) — & (y — 2)UL (y)?
£ £ dxdy
/Fl |x _ y|N+2s
UL () + U () ? 5 —N/ 1
3.20 <2 < < < 8 _—
( ) < /1“1 7 — P dzdy < Ce SR dzdy

N-—-2s
< CﬁQS_N/ / ;NHS dydx < C <Q>
By(2) J{z—yl>n/2} 1T — Yl P

and
& (x — 2)U! (2) — & (y — 2)UL (y)?
dxd
/rz |z — y|NH2s Y
2
3.21 < Cn~2 QS—N/ Bl T
(3.21) s en e b, |z — |2 yax

: ) ! n\NV—2s
coren [ [ weee()
By(2) J{lz—y|>n/2) |2 — y|N 2572 <6>
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Moreover,
&yl — 2)U! &y — 2)UL (y)|?
/ / [ (@) =& = IO g,
By (2) J By (2 |$— yl
< O 2 / / — %‘;s dyda
(3.22) By(2) By (2 ’f’f - ?J’ 2
_ —y|
< 077 2 23 N/ / - dyda:
By(2) J{le—y| <20} \1’— [z —y[N+2e
N-—2s
<C(+ )
=C (e)

Then we deduce from ([3.20)—(3.22)) and (3.19) that
/ |6 (@ = 2)UL () — &y — 2)UL (9)|?
R2N

i

Ur Ur 2
S e,
RN\B,(z) JRN\B,(z) [T =Yl

&y (x — 2)U! (z) — & (y — 2)U; (y)?
+2/1“1u1“2 1 o —y |Nn+23 dxdy

_ T T 2
[ eI bR,y
By(2) Bn(z |z —yl

U (@) = Uz () AR
AN /RN |x — |N+28 dudy +C (e)
N—-2s
< e o (1)
€

dxdy

(ii) According to (2.2), we have

N
/ |Ue ()| d = C/oo ( 2 : 2> PN dop
(323) RN\BT(O) r € +p

SCGN/OOp_N_ldOpgcc)N

r

and

_— 2 c (N—2s)/2 ¢ (N+2s)/2
6 s € — K _— —_— d
/Br(o>|U($)| Uelrdz = <62+T2> /T<o> <€2+\wl2> !
- CéN r prl J
(324 SNy (@ en
CéN € prl T prl
= rN—2s </O N+2$ dp + /E pN+2s d,O>

<C’(T>N 25'
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Then by (2.3), (3.23) and (3.24), we get

/ T da = / () — (1) da
Q (0)

> / Ue() % d — 2 / Uex)
+(0) Br(0)

— / Ue(a) % der — / Ue(a) % — 2 / () 51U (r) da
RN RN\ B,.(0) B, (0)

o
RN

S gN/E) _ ¢ (;)N—%.

271U (r) da

This together with (3.17)) shows that

JRCCEEL

% dx—/ U % dx—/[l—gn(x—z)Q]\Ugy%‘ dx
Q Q

z/ o da:—/ U7 da
Q Bn(z)

N—2s
> gN/(2s) _ ¢ <E> - C e Ndx
r By (2)
N—2s N
> GN/(2s) _ € _ T
- S ¢ <r> ¢ <e>
The proof is completed. O

4. Proof of Theorem

Let 6 > 2s/(N — 4s) and ¢, = r?t1 n, = #20+1 Clearly, U! is continuous in X§(£2) with
respect to r € (0,71] = (0,1/(6m)]. Moreover, let r € (0,r1] and n € [0,7,], then the

following lemma holds true.

Proposition 4.1. For each value D > 0, there exists m¥ > mg such that for any m > m?P

and z € ), there holds

T s r S i
sup (I(Tén(- — 2)UL) + DNt | v, (- — Z)Ueruil(g)) < NSN/(z )
7>0

where myq is defined in Lemma . Moreover, m¥ is increasing with respect to D.

Proof. Tt follows from Lemma [3.4] that

/ 60w = UL @) =&y = DULGIE | ovjes) o (1 o
o v — [N = e

(4.1)

< SN/(ZS) + CrG(N72s)
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and

. N—-2s N—2s
1o =0z @ @z 5569 -0 ()" — o (1)
Q

(42) r €r

> SN/(25) _ CTE(N—%)‘

Moreover, by a direct computation,

160z — DU (@) 11y < / U7 (2)| dx < / o V@l

. (N—2s)/2 .
<C — —d
(4.3) - /0 <6$+p2> e
(N—25)/2 « PNfl 21
< Ce, Sdp+ dp
0 61” €

< Cq(ﬂN—Qs)/QTQs _ CT(§+1)(N—2S)/2+25‘

Note that for r small enough, we have ¢, < r and U! (z) = U, (z) — U, (r) > iU, (z) for
T € B,/5(0). Then if n =0,

1
/ PP = / Ue (&) = Ue (R 2 / Ue ()2
0 B,(0) 4 JB, 50
r/2 N—2s
ZC/ (26’" 2) N ldp
(4.4) 0 €& +p

er N-1 r/2 N—1
N-2 P P
> Ce, ™™ (/0 (2¢,2)N—2s + /6T (sz)N23>

> Cefs _ CT25(§+1)

)

and if n > 0,

/w—zUTF Jwzp = [a-ge -

/ ’UT |2 / ’UgT|2 > 0625 N CnNezst > Cr28(§+1).

Note that for any constants By, Bo > 0,

2 2 s B (N—2s)/(2s)
4, _Sp (2 _
s (575 7) -5 (5)

Then by {@.1)-({@.6) and mNT25pN+2s < 6VN+25 e have

I(7& (- = 2)UL) + DmN 2|76, (- = 2)UL |I71(9y
_ 7'2</ ]fn(:z:—z) ( ) — 577( 2)U! (y)‘Q drdy
RQN

2 |x_y|N+25
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) / 6@ — 2)U7 (@) 2 da + 2Dm™ 2 g, (- — 2) ;||%1(m)

< % <SN/(2s) 4+ Opf(N=2s) _ \p2s(0+1) CDmN+28r(§+1)(N_2S)+4s)
- T; (5N/(2s> Cpf(N— 25))

< % < SN/@s) 4 (€ + 6Nt D)y O(N—2s) )\CT2S(§+1)) _ 722; ( GNV/(2s) _ CT@(N_QS))

< i‘i% [ 22 < gN/(25) | + (C + gN+2s D)r O(N—2s) /\CT28(5+1)) _ T22;* ( GN/(2s) _ CTO(NQS)):|

< Jf_f (SN/(QS) + (C+6N+QSD)T§(N—28) _ /\Crgs(aﬂ))

N—-2s)/(2s)

SN/(23)+(C+6N+2$D) O(N—2s) _ ACTQS@JF” (
x SN/(2s) — O O(N—2s)

Since 2s(6 + 1) < O(N — 2s), there exists m? > my increasing on D such that for any
m >mP and r < 1/(6m),

(C+6N+25D) O(N—2s) )\CTQS(EH) <0

and
sup (1(r&y(- = VL) + Dm¥* 2y (- = DU I o))
S N/(2s) 4 N+2s 9(N—2s) 25(0+1) 5 QN/(2s)
<
_N(s 4 (C 4 6N+ D) ACr )<NS .
Thus the lemma follows. ]

For any integer j > 1, we write B/ = {x € R/ : |z| < 1} and S’ = {x ¢ RI*! : |z| = 1}.
By using Proposition the following lemma holds.
Lemma 4.2. Let D > 0 and m¥ be defined in Proposition . Then there exists m& >
mP such that for any m > m¥, there is an odd continuous map h: RN+2 — X§(B1/m(0))
satisfying

2s
I D N+2s 2 < 75]\[/(28)
uef(ﬁé%z)((“” Y 3 0)) < o

and lim, |, (I(h(z)) + DmNHSHh(z)Hil(Q)) = —00.

Proof. For any Z € BY and m > m?P, set t = |Z|, § = Z/|Z| and define a continuous map
hy: BY — XOS(Bl/(Qm) (O)) as

ty, /2(+) = &y (Dt (- + 4tr20) if 0<t<1/2,

hi(2)(-) =
Ut(2ry —py)—r1 4y, (= 271280 — 0)) = &, (Dup, (- +2m0) i 1/2 <t <1
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Since &, () =1 for |z| > n,,, we have &, (-)ur, (- + 2r16) = up, (- + 2r10). Then, hy is
odd on SN and it induces an odd continuous map hy: SN — X§(Bj /(2m)(0)) defined by

hl(xl,...,xN) if.%'N_H 20,
hg(l‘l,...,x]\/_H) =
—hi(—x1,...,—zn) ifxyy1 <O0.

According to Proposition one sees that

S
(4.7) sup (I(Thz(e)i) + DN hy (0) 42, (Q)> )

7>0,0eSN

Now, let Z be a cylindric surface in RN¥*2 defined by
7= (SY x [-1,1)) U BV x {~1,1}),

and denote the top by Z; = BN+ x {1}, the bottom by Zs = BV *! x {1} and the lateral
surface by Zz = S x (—1,1). Obviously Z = Z; UZy U Z3, and hy can be extended to an
odd continuous map hs: Z — X§(B1/,,(0)) defined as follows: for § € SN~ #; € [0,1],
to € [—1,1], define

(1 — tQ)[hQ(H)]_ + (1 + tg)[h2(9)]+ ift1 =1 (i.e., if (tle,tg) € Zg),
h3(t10,t2) :=  2t1[ha(0)] 4 + (1 — t1)vo if ty = 1 (i.e., if (t10,t2) € Zy),
2t1[h2(9)], — (1 — 751)7)0 iftg =—1 (i.e., if (tla,tg) S Zg),

where vo(+) = &, (Jur, (- +%0) € M} and yo € Q is a fixed point with |yo| = 3/(4m).
Furthermore, we extend h3 to a map h: RVT2 — X§(B11/(12m)(0)) as follows:

h(tz) :==Ths(z) for z€ Z, T > 0.

By construction, h is an odd continuous map and lim,|_, 1 I(h(2)) = —oc0.
Since vo € X§(Bi1/12m)(0) \ B7/12m)(0)), we see that supp h(z)y Nsupph(z)- = 0.
Then by Lemma [2.1] it follows that for any 7 > 0, if z € Zs,

I(Ths(2)) = I(T(1 — t2)h2(0)+) + I(T(1 + t2)ha(0)-)

(48) —ar gy [ POEROW) g,

< I(7(1 = t2)ho(0)4) + I(7(1 +t2)ha(0)-),
and if z € 7y,
I(Th3(z)) = 1(27t1h2(9)+) + I(T(l — tl)vo)

< I(2Tt1h2(9)+) + I(T(l — tl)’Uo).
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Since Proposition shows that sup,>¢ ez, (I(Tvo) + DmN+25HTv0||i1(Q)) < %SN/@S),

by 7, we have

sup
7>0,26€73

/N

1(h(72)) + D™+ |(r2) [}

= sup
72>0,2€73

/N

I(ths(z)) + DmNHSTQHh?)(Z)H%l(Q))

<  sup

I(7(1 = t2)ha(8)1) + D2 72(1 — £5)2 | ha(0) 4 121 gy
72>0,2€73

/N

(4.10)

+

I(r(1+ 12)ha(6)) + D™ 2 72(1 4 12 | a(6) |31 )

= sup
7>0,2€Z3

+ sup  (L(rha(8)) + D™ rhy(6) |31y )
72>0,2€273

/N

1(7ho(0)+) + D™ 2| ha(0) + |31 g

25 oN/(25)
< NS

and

sup (I(h(m)) - DmN”sHh(Tz)Hil(m)

720,267

— sup (I(Thg,(z))+DmN+2872Hhs(z>Hil<m)
7>0,26€ 7,

< sup (I(2t17h2(9)+) + 4DmN+2ST2t%||h2(0)+||%1(9)
7>0,0eSN-1

(4.11) (7 (1 = t1)oo) + Dm0 = 1) ]2 )

7>0,0eSN-1

+  sup (I(Tvo)+DmN+28H7U0H%1(9)>
720,262

25 (N /(2s)
< NS .

< sup <1(7h2(9)+) + DmN+25H7h2(9)+H%1(Q))

In addition, since dist(supp ha(0)_,suppvg) > r1/2, for any z € Zs, by Lemma (iii)7

we have

8t1(1—t,) /R N [hzéfﬁy(‘jﬁv)fgs(y) dvdy

16t1(1 —
< i{lfmm [ at)-t)dz [ o) dy
Ct2 C(1—t)?

2 2
S Nt5 [172(0) |71 () + N7 [vollZ1 (0
1 1

< CmN By (0) |21 ) + CmN (1 = 1)l -
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Then

(4.12)

sup (1(h(72)) + D2 |h(r2) 310
7>0
2€72

- SEZ% (1(%17[112(9)]) FI(r(1 = t)vo) + 8721 (1 — 1) /R N [hjfﬂ‘y ﬁfgfgs(y) dwdy

+ Dm" 22t mha(0)-|[71 ) + Dm0 (1~ tl)UOH%,l(Q)>

< sup (I (2t17[h2(0)]-) + I((1 = t1)vo) + (C + D)ym N7 ||h(0) - |71 g
>0
2€7o2

+(C + Dy 272 (1 — 11)2 oo 21 )

< swp (I(Th2(9)_)+(o+D)mN“SHThz(e)—H%l(m)
gesN -1

+ sup (I(TUO) +(C+ D)mNHSHTUOH%l(Q)) )
7>0
fesN—1
where C is independent of m and D. By Proposition there exists m?+D > mP such

that if m > mlc+D,

(4.13) sup ([(Thg(e)_) + (C + D)m™N 2| The(0) |12, (Q)> < %SN/(%)
gesN—1
and
s S s
(4.14) sup (1(7e0) + (C + Dy rug 31 ) ) < g,
gesN-1

Now, we take m% := mch“D and m > mb as in Lemma Then by (4.13) and (4.14]), it
follows from (4.12)) that

2

(4.15) sup (I(h(Tz)) 4 DmN+2sHh(TZ)”%1(Q)> < jSN/(2S),

>0 N

ZE_ZQ
Thus, we conclude from (4.10)), (4.11f) and (4.15)) that

sup (I(u) + DmN+28||u||%1(Q)) = sup <I(h(7z)) + DmN 25| h(12) H%l(g))
uEh(RN+2) 7>0
2E€71 U7 U 73

25 oN/(25)
< NS .

The proof is completed. O
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From now on, we fix m > m¥, where m& is defined in Lemma

Lemma 4.3. (i) Suppose 0 < A < A1, then there exists an odd continuous map h: RN+2
— X§(2) such that lim|,_,o I(h(z)) = —oc0 and

sup  I(u) < §SN/(25).
u€h(RN+2) N

(ii) Suppose Ay, < A < Apy1 for some n > 1, then there exists an odd continuous map
h: R"NH2 5 X§(Q) such that limy, o I(h(x)) = —oc0 and

sup  I(u) < %SN/@S).

ueﬁ(R”+N+2)
(iil) Suppose A\p—; < Ap_jx1 =+ = Ap = XA < A1 with | < N + 2, then there exists an
odd continuous map h: RNT2-1 5 X5(Q) such that 1m0 I(h(z)) = —oc0 and

sup I(u) < §SN/(25).
u€h(Rr+N+2-1) N
Proof. (i) Let h = h, where h: RN+2 X§(92) is defined as in Lemma then (i) follows
easily from Lemma [4.2
(ii) Let Ay < A < Apy1. Noting that " € X§(Q\ By, (0)), we define hy: R” —
X§(Q\ By (0)) by hya(a) = 377 a;ef”. Then according to Lemma we have

A=A
sup Iu)+u|23>§0.
u€hyg(R™) < ( 2(A+ ) Il

Since all norms are equivalent in finite dimension space H,, ,(}), it is easy to see that
lim) 4 o0 I(h(a)) = —o0.
Now, we define h: R*™N+2 — X&(Q) by h(a,b) = ha(a)+h(b) for alla € R™, b € RV+2,

Then h is an odd continuous map, and satisfies

lim  I(h(a,b)) = —oo.

|(a,b)|—o0

Moreover, since supp h(b) C Biy/12m)0) and supp h(a) C By m(), by Young inequality

and fractional Sobolev inequality, it follows that

[ MO0,
R2N

’:L' _ y|N+2S

ha(a)(z) )
- T N7as 4 | h(b)(y) dy
/Bll/(12m)(0) </§2\B1/m(0) ‘m - y’N+2

< Nl 2z @y oy 7 = 812 avrin 20, o
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- (N+2s)/(2N)
> [haa) 2z (Q\Bl/m(o))h<b)(y) dy

(4.16) <C (/ T Nar
Bi1/(12m)(0) 1/(12m)

< CmN T2 0(0) || 11 ) @) || oz )

< CmN I\ h()[| 1 g [l a) | x;
A=A
N+2s 2 n 2
for some constant Co > 0 independent of m. Then by (4.16]), Lemmas and we

have
m(@@hBW) ,

I(A(a, b)) = I(ha(a)) + I(h(D)) + 4 /

RN |z —y[NHs
A=
< I(h4(a)) + m”m(aﬂg{g + I(h(b)) + CmNHSHh(b)H%l(Q)
25 N /(29)
< NS .
Thus, (ii) follows.
(iii) Letting A\p,—; < Ap—j41 =+ = Ap = A < Apy1, we define

Y ={el,...er )
and hy: R™L — X§(Q2\ By, (0)) by hala) = Z?z_ll a;e”. Then by using similar argument
as the proof of (i) above and Lemma [3.3[(ii), we have

sup <I(u) + Hu||Xs> <0.
u€ﬁ4(Rn) 2()‘ + >\n—l) 0

Moreover, lim|,|_o I(h(a)) = —o0.
Define h: R™N+2-1 5 X5(Q) by h(a,b) = ha(a) + h(b) for all a € R, b € RN+2,
where h is defined as in Lemma Then A is an odd continuous map, and satisfies

lim  I(h(a,b)) = —oco.

|(a,b)|—o00

Similar to (4.16]), we can obtain that

E4(a)($)h(b)(y) ~ N+42s 2 A— >\n—l ~ 2
< ERANIIRG Cul )
/RQN g dedy < Com™ 2 hO) [ ) + g ha(@)l;

for some constant Cy > 0 independent of m, and by using Lemmas and again,

I(0a,8) = 1) + 100+ 4 [ MO0 g1,

< I(h4(a)) + 2A — A

m’m4(a)”_2xg + I(h(b)) + CmN+2SHh(b)H%1(Q)

25 (N /(2s)
< NS )

The proof is finished. O
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Furthermore, the following lemmas hold true.
Lemma 4.4. The following statements are true:
(1) IfO< A< A, we have 0 < By < --- < Bnyo < 22/N S,
(il) If Ay < A < Apy1 for somen > 1, then 0 < Bpp1 < -+ < Bpinte < 225/N g

(i) If Ay < M1 = =+ = A = A < A1 with 0 < I < min{n, N + 2}, then
0< Brs1 <+ < Brynsa < 22/NS.

Proof. For any k > 1, let A = {u € h(R¥) : |ju||2: = 1}. By using the same argument as
in [8, Lemma 2.11], it is easy to see that A C M and vy(A) > k. So A € ¥, where ¥ is
defined as in (2.12)).

(i) If 0 < A < A1, by taking k = N +2 and v € A, we have

2 2\ V/(2s)
HUHXg >\||U||2 _ iJ(’U)N/(QS)
N

2
v 2x

2s S
22GN/2s) 5 gy I(u) >supl(tv) > —
N ueh(RgH) ( ) N TZIS ( ) - N

Thus, sup,c4 J(u) < 22NVS. Then by the definition of By 42, we have

2s s
Bria < NSN/@ )

Since 1 > 0 and 1 < --- < By41, (i) follows soon.

(ii) If Ay < A < Apy1 for some n > 1, by taking k = n + N + 2 and similar argument
as (i), we can prove sup,c4 J(u) < 22/NS and then 0 < B,41 < -+ < Bpinye < 22/N8.
Thus (ii) follows.

(i) If Ayt < Apgg1 = -+ = Ay = A < Apgq with 0 < 1 < min{n, N + 2}, let
k=n+ N 42— 1. By similar argument as (i), we can obtain sup,c 4 J(u) < 22N S and
Bn+1 > 0. Hence 0 < Bpq1 < -+ < Braniog < 225/N G Hence (iii) follows. The proof is
completed. ]

Proof of Theorem [1.1] If K A is infinite for some § € (0, 22s/N g ), then J possesses infinitely
many critical points, and so do I. Thus, we may assume that K7 is finite for any 3 €
(0,225/N 8) and

0< B << fBnpa<2¥Ng if0< A<\ or
0<Bpn < < Pninta < 92s/N g if A, < A < Apy1 with some n > 1; or
0< Bot1 <+ < Buanga <22NS N < N1 = = An = A < At

with 0 <! < min{n, N + 2},

due to Lemmas 2.7 and [£.4] Let jo € N be the least integer such that 3,41 > S. Then it
follows from Lemma 2.8 that
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(i) if 0 < A < A1, then J admits at least max{jo, N +2 — jo} > [(N + 1)/2] pairs of
nontrivial critical points;
(ii) if A, < A < Apt1, then J has at least max{jo, N +2 — jo} > [(N + 1)/2] pairs of

nontrivial critical points;

(iii) if Ap—; < Ap—i41 = -+ = Ap = A < A1, then J possesses at least max{jo—n,n+
N+2—1—jo} > [(IN+1—1)/2] pairs of nontrivial critical points. So do the functional
I. The proof is completed. O
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