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Well-posedness and Stability of Two Classes of Plate Equations with

Memory and Strong Time-dependent Delay

Baowei Feng* and Gongwei Liu

Abstract. Two classes of plate equations with past history and strong time-dependent

delay in the internal feedback are considered. Our results contain the global well-

posedness and exponential stability of the two systems. We prove the global well-

posedness of a system with rotational inertia without any restrictions on µ1, µ2, and

the system without rotational inertia under the assumption |µ2| ≤ µ1. For the system

with rotational inertia, we establish exponential stability to the plate equation with

the memory term only to control the delay term if the amplitude of the time delay

term is small, and the stability result also holds for the plate equation with strong

anti-damping. For the system without rotational inertia, we obtain the exponential

stability under the assumption |µ2| <
√

1− dµ1.

1. Introduction

1.1. The model

In this paper, we consider the following plate equation:

(1.1) utt+α∆2u−
∫ t

−∞
g(t−s)∆2u(s) ds−ν∆utt−µ1∆ut−µ2∆ut(t−τ(t))+f(u) = h(x),

defined in a bounded domain Ω ⊂ Rn (n ≥ 1) with a sufficiently smooth boundary ∂Ω. The

function u(x, t) represents the transverse displacement of a plate filament with prescribed

history u0(x, t), t ≤ 0. α is a positive constant and µ1 and µ2 are constants satisfying some

assumptions. Here ν ≥ 0. The function τ(t) represents the time delay. The functions f(u)

and h(x) are source term and nonhomogeneous term, respectively. The knowledge of the

value of u for all past time is assumed, i.e., u(−s)|s>0 = φ0(s), where the function φ0 is a

given datum.

To (1.1), we consider the following initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,(1.2)

ut(x, t) = f0(x, t), x ∈ Ω, t ∈ [−τ(0), 0),(1.3)
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and simply supported boundary conditions:

(1.4) u(x, t) = 0, ∆u(x, t) = 0 on ∂Ω× R+.

Equation (1.1) is a plate equation with strong damping, memory with history and

strong time-dependent delay in the internal feedback. The strong damping term −µ1∆ut

can be regarded as Kelvin-Voigt damping, which occurs in the study of the motion of

viscoelastic materials, for instance, the string is made up of the viscoelastic material of

rate-type [5], and it indicates that the stress is proportional not only to the stain, as with

the Hooke law, but also to the stain rate as in a linearized Kelvin-Voigt material. The

term −ν∆utt is rotational inertia. The viscoelastic term can be regarded as a natural

weak damping which is related to their special property of retaining a long-time range

memory of their past histories.

Since the memory with past history, following the same arguments in Dafermos [2], we

define a new variable η = ηt(x, s) as

ηt(x, s) = u(x, t)− u(x, t− s), (t, s) ∈ R+ × R+,

then

ηt + ηs = ut, (x, t, s) ∈ Rn × R+ × R+

with

ηt(0) = 0 in Rn, t ≥ 0.

Thus the original history can be rewritten as∫ t

−∞
g(t− s)∆2u(s) ds =

∫ ∞
0

g(s)∆2u(t− s) ds

=

(∫ ∞
0

g(s) ds

)
∆2u(t)−

∫ ∞
0

g(s)∆2ηt(s) ds.

(1.5)

Then combining (1.1)–(1.4) with (1.5) and assuming for simplicity that α−
∫∞

0 g(s) ds = 1,

we can get the following problem which is equivalent to problem (1.1)–(1.4):

utt + ∆2u+

∫ ∞
0

g(s)∆2ηt(s) ds− ν∆utt − µ1∆ut − µ2∆ut(t− τ(t)) + f(u) = h(x),

(1.6)

ηtt + ηts = ut,(1.7)

u(x, 0) = u0(x), ut(x, 0) = u1(x), ηt(x, 0) = 0, x ∈ Rn,(1.8)

ut(x, t) = f0(x, t), x ∈ Rn, t ∈ [−τ(0), 0),(1.9)

η0(x, s) = η0(x, s), (x, s) ∈ Rn × R+,(1.10)

u(x, t) = 0, ∆u(x, t) = 0 on ∂Ω× R+,(1.11)

where

η0(x, s) = u0(x)− φ0(s), s ∈ R+.
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1.2. Literature overview

In recent years, many mathematical researchers have been studying partial differential

equations with time delay effects, and established so many results concerning the global

well-posedness of these systems. The delay effects often arise in many practical problems,

for instance, chemical, physical, thermal and economic phenomena and so on, and may

turn a well-behaved system into a wild one. The presence of delay can be a source

of instability and an arbitrarily small delay may destabilize a system that is uniformly

asymptotically stable in the absence of delay unless additional control terms are added.

For some results on wave equation with time delay, one can refer Datko, Lagnese and

Polis [4], Feng [9], Kafini, Messaoudi and Nicaise [13], Liu [16,17], Nicaise and Pignotti [21],

Nicaise, Valein and Fridman [25], Nicaise and Valein [24], Xu, Yung and Li [30], and the

references therein. Here we mention the work of Nicaise and Pignotti [20]. In this work,

the authors studied a wave equation with time delay

utt −∆u+ a(x)(µ1ut + µ2ut(t− τ)) = 0,

and established stability results under the assumption 0 < µ2 < µ1. They also studied

the instability of the system. On the other hand, they considered a wave equation with

a delay term in the boundary and proved the energy decay if 0 < µ2 < µ1. In [22], the

same authors extended the results to a problem with time-dependent delay and studied a

wave equation with boundary or internal time-varying delay feedback in a bounded and

smooth domain. They considered the following wave equation with strong damping of the

form

utt −∆u− a∆ut = 0,

and with a boundary time-varying delay feedback

µutt = −∂(u+ aut)

∂ν
− kut(t− τ(t)) on Γ1 × (0,∞).

They proved the well-posedness and decay of energy to the problem under the assumption

|k| ≤ a
CP

√
1− d, where CP is the Poincaré constant. In addition, they investigated the

case of a internal time-varying delay feedback

utt −∆u+ a0ut + a1ut(t− τ(t)) = 0,

and established the global well-posedness and stability with |a1| <
√

1− da0. For vis-

coelastic wave equation with delay, Kirane and Said-Houari [14] studied the following

equation

utt −∆u+

∫ t

0
g(t− s)∆u(s) ds+ µ1ut + µ2ut(t− τ) = 0,
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and obtained the global well-posedness and energy decay under the condition 0 < µ2 ≤ µ1.

Dai and Yang [3] considered the same equation as in [14], and improved the results in [14].

In this paper, the authors proved the global existence of solutions without restrictions of

µ1, µ2 > 0 and µ2 < µ1, and obtained an exponential decay result of energy in the case

µ1 = 0. In Liu and Zhang [18], the authors considered a wave equation with past history

and time delay of the form

utt − α∆u+

∫ t

−∞
µ(t− s)∆u(s) ds+ µ1ut + µ2ut(t− τ) + f(u) = h.

They proved the global well-posedness of the problem and established the exponential

decay of energy under the assumption 0 < |µ2| < µ1. Recently, Alabau-Boussouira,

Nicaise and Pignotti [1] investigated a wave equation of the form

utt −∆u+

∫ ∞
0

µ(s)∆u(t− s) ds+ kut(t− τ) = 0,

and proved that the system is exponentially stable if the constant k is small enough. They

also established the stability of an anti-damping system, i.e., the case τ = 0 and k < 0.

Messaoudi, Fareh and Doudi [19] considered a wave equation of the form

utt −∆u− µ1∆ut − µ2∆ut(t− τ) = 0,

and proved the well-posedness with |µ2| ≤ µ1 and energy decay with |µ2| < µ1. In

addition, they also considered a wave equation with distributed delay. Feng considered

a viscoelastic wave equation with strong delay and established a general decay result of

energy, see [8].

For plate equation with time delay effects, Park [26] considered a weak viscoelastic

plate equation with a time-varying delay

utt + ∆2u−M(‖∇u‖2)∆u+ σ(t)

∫ t

0
g(t− s)∆u(s) ds+ a0ut + a1ut(t− τ(t)) = 0,

and proved a general decay result of energy under the assumption |a1| <
√

1− da0. Yang

[31] studied a viscoelastic plate equation with a time delay

utt + ∆2u−
∫ t

0
g(t− s)∆2u(s) ds+ µ1ut + µ2ut(t− τ) = 0.

The author proved the global existence of solutions for any real numbers µ1, µ2 > 0, and

established the exponential stability with 0 < |µ2| < µ1 and µ1 = 0. Very recently, the

first author of the present paper considered a plate equation with past history, source term

and time-dependent delay

utt + α∆2u−
∫ t

−∞
g(t− s)∆2u(s) ds+ µ1ut + µ2ut(t− τ(t)) + f(u) = h(x).
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The author obtained the global well-posedness without any restrictions on µ1 and µ2. In

addition, the exponential stability was achieved when f(u) 6= 0 under the assumption

|µ2| <
√

1− dµ1 and when f(u) = 0, µ1 = 0 if the coefficient of delay |µ2| is small, and

then the author obtained the existence of a global attractor and exponential attractor,

see [7] and [10], respectively. Feng [6] considered the following equation

utt + ∆2u−M(‖∇u‖2)∆u−
∫ t

0
g(t− s)∆u(s) ds+ µ1ut + µ2ut(t− τ) = 0,

and obtained the global well-posedness with |µ2| ≤ µ1 and decay rate of energy under

the assumption |µ2| < µ1. Recently, Feng and co-authors [11] considered an extensible

viscoelastic plate equation with a nonlinear time-varying delay feedback and nonlinear

source term, and established a general decay of energy. Nicaise and Pignotti [23] considered

an abstract evolution equations with constant time delay of the form

Ut(t) = AU(t) + F (U(t)) + kBU(t− τ),

U(0) = U0, BU(t− τ) = f(t),

where B is a bounded operator. They proved that the system is exponentially stable

without delay, and also obtained that the model with delay remains exponentially stable

if the coefficient of time delay feedback is sufficiently small. Recently, Pignotti [29] studied

a second-order evolution equations with memory and intermittent delay feedback

utt +Au−
∫ ∞

0
µ(s)Au(t− s) ds+ b(t)ut(t− τ) = 0,

and showed that the stability if b ∈ L1(0,∞) and the length of time intervals is very large.

Furthermore, the author established the stability results for a problem with anti-damping.

On the other hand, there are so many results on plate equation in absence of delay. It has

been stabilized by means of different controls, for example, internal damping, boundary

controls, dynamic boundary conditions, distributed damping and heat damping, and so

on.

1.3. Goals and features

Our goals in the present work are to study the global well-posedness and exponential

stability of two classes of plate equations with strong time-dependent delay. The main

features of this work are as follows:

• Since the delay is time-dependent, so our results are more general than those in [1],

where the authors considered a wave equation with a constant time delay.
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• For global well-posedness, we first consider equation (1.6) with ν > 0, which the

system is new, and prove the global well-posedness of this system without any re-

strictions of µ1 and µ2. The main result is presented in Theorem 3.2. We also obtain

the global well-posedness of system without rotational inertia, i.e., ν = 0 in (1.6),

under the assumption |µ2| ≤ µ1. The result is different from the result in [22], where

the existence of solution holds for |µ2| < µ1
CP

√
1− d. The global well-posedness is

presented in Theorem 3.4. From the proof of Theorems 3.2 and 3.4, one will see

that the rotational inertia −ν∆utt plays a crucial role in restrictions between µ1

and µ2 for the global well-posedness. Since the delay is strong, we need much more

regularity of ut.

• For stability, we consider the following two classes of plate equations:

(1.12) utt + ∆2u+

∫ ∞
0

g(s)∆2ηt(s) ds−∆utt − µ2∆ut(t− τ(t)) = 0,

and

(1.13) utt + ∆2u+

∫ ∞
0

g(s)∆2ηt(s) ds− µ1∆ut − µ2∆ut(t− τ(t)) + f(u) = 0.

For the system with rotational inertia (1.12), we consider the system with the mem-

ory term only to control the strong time-dependent delay term. To establish the

stability, we consider an auxiliary problem. We add the strong damping to the

equation, see (4.3), and obtain the exponential stability to the two systems by using

a perturbative approach. Our results are presented in Theorems 4.1 and 4.7. The

stability result also holds for the plate equation with a strong anti-damping, i.e.,

the case τ(t) = 0 and µ2 < 0, namely a strong damping with an opposite sign with

respect to the standard strong dissipation, and thus it induces instability, see, for

example, Freitas and Zuazua [12]. The result is presented in Remark 4.9. For the

system without rotational inertia (1.13), we establish some multipliers to get expo-

nential stability under the assumption |µ2| <
√

1− dµ1. The result is presented in

Theorem 4.10.

The plan of the paper is as follows. In Section 2, we give some preliminaries. In

Section 3, we shall state and prove the global well-posedness of the problem. The stability

result and proofs will be given in Section 4.

2. Preliminaries

In the following, Lq(Ω), (1 ≤ q ≤ ∞) and H i(Ω), (i = 1, 2, 3), are the standard notations

of Lebesgue integral and Sobolev spaces. The L2-inner product is denoted by ( · , · ) and
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‖ · ‖B denotes the norm in the space B. For simplicity, we use ‖u‖ instead of ‖u‖2 when

q = 2. The constants λ1, λ2, λ3 are the embedding constants

λ1‖u‖2 ≤ ‖∆u‖2, λ2‖∇u‖2 ≤ ‖∆u‖2, λ3‖u‖2 ≤ ‖∇u‖2

for u ∈ H2 ∩H1
0 .

Now we give some assumptions used in this paper. The source term f(u) is a nonlinear

functional that f(0) = 0, and

(2.1) |f(u)− f(v)| ≤ cf (1 + |u|p + |v|p)|u− v|, ∀u, v ∈ R,

where cf is a positive constant and

(2.2) 0 < p ≤ 4

n− 4
if n ≥ 5 and p > 0 if 1 ≤ n ≤ 4.

We assume further that

(2.3) 0 ≤ f̂(u) ≤ f(u)u, ∀u ∈ R,

where f̂(u) =
∫ u

0 f(z) dz. Assumptions (2.1) and (2.3) include the following nonlinear

type

f(u) ≈ |u|pu+ |u|αu, 0 < α < p.

Concerning the relaxation function g, we assume that g : R+ → R+ is a differentiable

function satisfying

(2.4) g(0) > 0,

∫ ∞
0

g(s) ds = l0 > 0,

and there exists a positive constant k such that

(2.5) g′(t) ≤ −kg(t) for t ≥ 0.

With respect to the delay τ(t), we first assume

(2.6) 0 < τ0 ≤ τ(t) ≤ τ1, ∀ t > 0,

where the constants τ0 and τ1 are two positive constants. We assume further that

(2.7) τ(t) ∈W 2,∞(0, T ), and τ ′(t) ≤ d < 1, ∀T, t > 0.

In the following, we consider the Hilbert spaces that will be used in the present work.

Let

V0 = L2(Ω), V1 = H1
0 (Ω), V2 = H2(Ω) ∩H1

0 (Ω)
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and

V3 = {u ∈ H3(Ω) ∩H1(Ω) : ∆u ∈ H1
0 (Ω)}.

To consider the new variable η, we define the weighted L2-spaces

Mi = L2
g(R+, Vi) =

{
η : R+ → Vi :

∫ ∞
0

g(s)‖η(s)‖2Vi ds <∞
}
, i = 0, 1, 2, 3,

which are Hilbert spaces endowed with inner products and norms

(η, ζ)Mi =

∫ ∞
0

g(s)(η(s), ζ(s))Vi ds and ‖η‖2Mi
=

∫ ∞
0

g(s)‖η(s)‖2Vi ds, i = 0, 1, 2, 3.

Finally, we introduce the phase spaces

H = V2 × V1 ×M2, H1 = V3 × V2 ×M3

and

H2 = V2 × V0 ×M2, H3 = V3 × V1 ×M3

equipped with the norms

‖(u, v, η)‖2H = ‖∆u‖2 + ‖∇v‖2 + ‖η‖2M2
,

‖(u, v, η)‖2H1
= ‖∇∆u‖2 + ‖∆v‖2 + ‖η‖2M3

and

‖(u, v, η)‖2H2
= ‖∆u‖2 + ‖v‖2 + ‖η‖2M2

,

respectively.

The following lemma plays a very important role to get the exponential stability of

the problem. One can find the proof in Komornik [15, Theorem 8.1].

Lemma 2.1. Let V (·) be a non-negative decreasing function defined on [0,∞). If there

exists some constant C > 0 such that for any S > 0,∫ ∞
S

V (t) dt ≤ CV (S),

then we have for any t ≥ 0,

V (t) ≤ V (0) exp

(
1− t

C

)
.

We will use the following theorem to prove exponential stability of the problem with

rotational inertia and µ1 = 0, which can be found in Pazy [27, Theorem 1.1 in Chapter 3].

Theorem 2.2. Let X be a Banach space and A is the infinitesimal generator of a C0-

semigroup T (t) on X satisfying ‖T (t)‖ ≤ Meωt. If B is a bounded linear operator on

X, then A + B is the infinitesimal generator of a C0-semigroup S(t) on X satisfying

‖S(t)‖ ≤Me(ω+M‖B‖)t.
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3. Well-posedness

In this section, we shall establish the global well-posedness of problem (1.6)–(1.11), which

will be divided into the following two subsections.

3.1. The system with rotational inertia

In this subsection, we consider (1.6) with ν > 0 and take ν = 1 without loss of generality.

Let us first give the definition of weak solutions.

Definition 3.1. We call a function U(t) = (u, ut, η
t) ∈ C([0, T ],H) a weak solution of the

problem (1.6)–(1.11) for given T > 0 if U(0) = (u0, u1, η0), and

d

dt
[(ut(t), ω) + (∇ut(t),∇ω)] + (∆u(t),∆ω) + (ηt, ω)M2

+ µ1(∇ut(t),∇ω) + µ2(∇ut(t− τ(t)),∇ω) + (f(u)− h, ω) = 0,

(∂tη
t, ξ)M2 = −(∂sη

t, ξ)M2 + (ut(t), ξ)M2 ,

a.e. in [0, T ], for all ω ∈ V2, ξ ∈M2.

The following theorem is concerned with the global well-posedness of problem (1.6)–

(1.11).

Theorem 3.2. Under the assumptions (2.1)–(2.7), we have

(i) If initial data U(0) = (u0, u1, η0) ∈ H, f0(x, t) ∈ H1(Ω × (−τ(0), 0)) and h(x) ∈
L2(Ω), then problem (1.6)–(1.11) has a weak solution (u, ut, η

t) ∈ C(0, T ;H), ∀T >

0, satisfying

u ∈ L∞(0, T ;V2), ut ∈ L∞(0, T ;V1) and ηt ∈ L∞(0, T ;M2).

(ii) If initial data U(0) = (u0, u1, η0) ∈ H1, f0(x, t) ∈ H2(Ω × (−τ(0), 0)) and h(x) ∈
L2(Ω), then problem (1.6)–(1.11) has a stronger weak solution such that for any

T > 0,

u ∈ L∞(0, T ;V3), ut ∈ L∞(0, T ;V2) and ηt ∈ L∞(0, T ;M3).

(iii) In both cases the weak solution depends continuously on the initial data in H ×
H1(Ω× (−τ(0), 0)), i.e., given any two weak solutions U1 and U2 of problem (1.6)–

(1.11) corresponding the initial data U1(0), U2(0) ∈ H and f0(x, t), f̃0(x, t) ∈ H1(Ω×
(−τ(0), 0)), then for some constant CT > 0 depending the initial data in the phase

space H and any time T > 0, for all t ∈ [0, T ],

‖U1(t)− U2(t)‖2H ≤ CT (‖U1(0)− U2(0)‖2H + ‖f0(x, t)− f̃0(x, t)‖2H1(Ω×(−τ(0),0))).

In particular, the weak solution of problem (1.6)–(1.11) is unique.
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Proof. Step 1: Approximate problem. By using the theory of ODEs, we can find a local

approximate solution (um(t), umt (t), ηt,m) in the following form

um(t) =

m∑
j=1

amj(t)ωj(x) ∈ Span{ω1, . . . , ωn}

and

ηt,m(s) =

m∑
j=1

bmj(t)ξj(x, s) ∈ Span{ξ1, . . . , ξm},

satisfying the following approximate problem

(umtt (t), ωj) + (∇umtt ,∇ω) + (∆um(t),∆ωj) + (ηt,m, ωj)M2

+ µ1(∇umt (t),∇ωj) + µ2(∇umt (t− τ(t)),∇ωj) + (f(um)− h, ωj) = 0,
(3.1)

(∂tη
t,m, ξj)M2 = −(∂sη

t,m, ξj)M2 + (umt (t), ξj)M2(3.2)

with initial conditions

(um(0), umt (0), η0,m, umt (t)) = (um0 , u
m
1 , η

m
0 , f

m
0 ),

on some small time interval [0, Tm) with 0 < Tm ≤ T for every m ∈ N, where {ωj}∞j=1 is

the Galerkin basis given by the eigenfunctions of ∆2 in Ω with boundary condition (1.11)

and a smooth orthonormal basis {ξj(x, s)}∞j=1 for M2.

Next we consider the initial data (u0, u1, η0) ∈ H1 and f0(x, t) ∈ H2
0 (Ω × (−τ(0), 0))

in the approximate problem (3.1)–(3.2) satisfying

um0 → u0 in V3, um1 → u1 in V2,

and

ηm0 → η0 in M3, fm0 → f0 in H2
0 (Ω× (−τ(0), 0)).

Step 2: A prior estimate I. Multiplying the equation (1.6) by umt , and using the

equation (1.7), we can get for any t > 0,

d

dt
Em(t) = −µ1‖∇umt ‖2 − µ2

∫
Ω
∇umt (t)∇umt (t− τ(t)) dx

+
1

2

∫ ∞
0

g′(s)‖∆ηt,m(s)‖2 ds+

∫
Ω
humt (t) dx

(3.3)

with

Em(t) =
1

2
‖umt (t)‖2 +

1

2
‖∇umt (t)‖2 +

1

2
‖∆um(t)‖2

+
1

2
‖ηt,m‖2M2

+

∫
Ω
f̂(um(t)) dx,

(3.4)
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where we used the following fact

(∂sη
t,m, ηt,m)M2 =

1

2

∫
Ω

∫ ∞
0

g(s)
d

ds
|∆ηt,m|2 dsdx = −1

2

∫ ∞
0

g′(s)‖∆ηt,m(s)‖2 ds.

By using Young’s inequality, we can easily obtain

(3.5) − µ2

∫
Ω
∇umt (t)∇umt (t− τ(t)) dx ≤ |µ2|

2
‖∇umt (t)‖2 +

|µ2|
2
‖∇umt (t− τ(t))‖2.

It follows from (3.4) that ∫
Ω
humt (t) dx ≤

√
2‖h‖(Em(t))1/2,

which, combined with (3.3) and (3.5), implies

d

dt
Em(t) ≤

(
|µ1|+

|µ2|
2

)
‖∇umt ‖2 +

|µ2|
2
‖∇umt (t− τ(t))‖2 +

√
2‖h‖(Em(t))1/2.

This shows that

Em(t) ≤ Em(0) +

(
|µ1|+

|µ2|
2

)∫ t

0
‖∇umt (s)‖2 ds

+
|µ2|
2

∫ t

0
‖∇umt (s− τ(t))‖2 ds+

√
2‖h‖

∫ t

0
(Em(s))1/2 ds.

(3.6)

On the other hand, we shall see that∫ t

0
‖∇umt (s− τ(t))‖2 ds =

∫ 0

−τ(t)
‖∇umt (s)‖2 ds+

∫ t−τ(t)

0
‖∇umt (s)‖2 ds

=

∫ 0

−τ(t)
‖∇fm0 (s)‖2 ds+

∫ t−τ(t)

0
‖∇umt (s)‖2 ds

≤
∫ 0

−τ(t)
‖∇fm0 (s)‖2 ds+

∫ t

0
‖∇umt (s)‖2 ds,

(3.7)

which, together with (3.6), yields for any t > 0

Em(t) ≤ Em(0) + 2(|µ1|+ |µ2|)
∫ t

0
Em(s) ds+

√
2‖h‖

∫ t

0
(Em(s))1/2 ds

+
|µ2|
2

∫ 0

−τ(t)
‖∇fm0 (s)‖2 ds.

(3.8)

By using the Gronwall inequality to (3.8), we can get for any t ∈ [0, T ],

Em(t) ≤

(Em(0) +
|µ2|
2

∫ 0

−τ(t)
‖∇fm0 (s)‖2 ds

)1/2

+

√
2

2
‖h‖

2

e2(|µ1|+|µ2|)T .
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From the choice of initial data, we can conclude that for all t ∈ [0, T ] and for every m ∈ N,

(3.9) Em(t) ≤ C,

where C = C(‖u1‖, ‖∆u0‖, ‖η0‖M2 , ‖f0‖H1(Ω×(−τ(0),0)), ‖h‖) > 0.

Step 3: A prior estimate II. We multiply the equation (3.1) by −∆umt and (3.2) by

−∆ηt,m, respectively, and integrate the results over Ω to derive that

d

dt
Fm(t) = −µ1‖∆umt ‖2 + µ2(∆umt (t− τ(t)),∆umt )

+
1

2

∫ ∞
0

g′(s)‖∇∆ηt,m(s)‖2 ds+ (f(um)− h,∆umt ),
(3.10)

where

Fm(t) =
1

2
‖∇umt ‖2 +

1

2
‖∆umt ‖2 + ‖∇∆um‖2 + ‖ηt,m‖2M3

.

Using Hölder’s inequality, we can obtain

(3.11) µ2

∫
Ω

∆umt (t− τ(t))∆umt dx ≤
|µ2|
2
‖∆umt ‖2 +

|µ2|
2
‖∆umt (t− τ(t))‖2.

It follows from (2.1)–(2.2), Hölder’s inequality and Young’s inequality that∫
Ω

(f(um)− h)∆umt dx ≤ ‖f(um)− h‖‖∆umt ‖

≤ C + cf‖∆umt ‖2,
(3.12)

where C = C(‖h‖)). Inserting (3.11)–(3.12) into (3.10) and using the same arguments as

(3.8), we know that

Fm(t) ≤ Fm(0) + 2(|µ1|+ |µ2|+ cf )

∫ t

0
Fm(s) ds+

|µ2|
2

∫ 0

−τ(t)
‖∆fm0 (s)‖2 ds+ CT.

Hence, noting the choice of initial data, and applying Gronwall’s inequality, we finally

conclude

(3.13) Fm(t) ≤ C ′, ∀ t ∈ [0, T ], ∀m ∈ N,

where C ′ = C ′(‖∇u1‖, ‖∇∆u0‖, ‖η0‖M3 , ‖f0‖H2(Ω×(−τ(0),0)), ‖h‖, T ) > 0.

The above estimates (3.9) and (3.13) are sufficient to pass limit in the approximate

problem (3.1)–(3.2) and hence we can get a stronger weak solution.

Step 4: Continuous dependence. Let U1(t) = (u, ut, η) and U2(t) = (ũ, ũt, η̃) be two

stronger weak solutions of problem (1.6)–(1.11) with initial data U1(0) = (u0, u1, η0),
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ut(x, t) = f0(x, t) and U2(0) = (ũ0, ũ1, η̃0), ũt(x, t) = f̃0(x, t), respectively. By setting

ω = u− ũ and ξ = η− η̃, we know that the function (ω, ωt, ξ) solves the following problem

ωtt(t) + ∆2ω(t) +

∫ ∞
0

g(s)∆2ξ(s) ds−∆ωtt − µ1∆ωt(t)

− µ2∆ω(t− τ(t)) + f(u)− f(ũ) = 0,

(3.14)

ξt + ξs = ωt,(3.15)

with initial data

(ω(0), ωt(0), ξ0) = (u0 − ũ0, u1 − ũ1, η0 − η̃0) = U1(0)− U2(0),

and

ωt(x, t) = g0(x, t) = f0(x, t)− f̃0(x, t), t < 0.

Multiplying (3.14) by ωt in V0, (3.15) by ξ in M2 respectively, and using integration

by parts, we can deduce

d

dt
W (t) = −(∂sξ

t, ξt)M2 − µ1‖∇ωt‖2 − µ2

∫
Ω
∇ωt(t)∇ωt(t− τ(t)) dx

−
∫

Ω
(f(u)− f(ũ))ωt dx,

where

W (t) =
1

2
‖ωt‖2 +

1

2
‖∇ωt‖2 +

1

2
‖∆ω‖2 +

1

2
‖ξ‖2M2

.

By using Hölder’s and Young’s inequalities, we have∫
Ω

(f(u)− f(ũ))ωt dx ≤ CR(T )(1 + ‖u‖p2(p+1) + ‖ũ‖p2(p+1))‖ω‖2(p+1)‖ωt‖

≤ C1‖∆ω‖2 + cf‖ωt‖2,

where we used the embedding H2 ↪→ L2(p+1).

Following the same arguments as (3.5) and (3.7), we can get that there exists a constant

CR > 0 such that

d

dt
W (t) ≤ CRW (t) +

|µ2|
2

∫
Ω

(∇f0 −∇f̃0)2 dx.

Then we have

W (t) ≤W (0) + CR

∫ t

0
W (s) ds+

|µ2|
2

∫
Ω

∫ 0

−τ(t)
(∇f0 −∇f̃0)2 dsdx,

which, together with Gronwall’s inequality, implies

W (t) ≤

(
W (0) +

|µ2|
2

∫
Ω

∫ 0

−τ(t)
(∇f0 −∇f̃0)2 dsdx

)
eCRt.
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From the definition of W (t), we infer that for all t ∈ [0, T ],

‖ut − ũt‖2 + ‖∇ut −∇ũt‖2 + ‖∆u−∆ũ‖2 + ‖η − η̃‖2M2

≤ CT
(
‖u1 − ũ1‖2 + ‖∇u1 −∇ũ1‖2 + ‖∆u0 −∆ũ0‖2

+ ‖η − η̃‖2M2
+ ‖f0 − f̃0‖2H1(Ω×(−τ(0),0))

)
,

which gives us that stronger weak solutions of problem (1.6)–(1.11) depend continuously

on the initial data. Then we know that the stronger weak solutions of problem (1.6)–(1.11)

is unique.

By using density arguments, we can get the existence of weak solution and continuous

dependence to problem (1.6)–(1.11).

Therefore the proof of Theorem 3.2 is complete.

3.2. The system without rotational inertia

Let us consider (1.6) with ν = 0. The definition of weak solutions is as follows.

Definition 3.3. For given U(0) = (u0, u1, η0) ∈ H2, we say that U(t) = (u, ut, η
t) ∈

C([0, T ],H2) is a weak solution of the problem (1.6)–(1.11) for given T > 0 if U(0) =

(u0, u1, η0), and

d

dt
(ut(t), ω) + (∆u(t),∆ω) + (ηt, ω)M2

+ µ1(∇ut(t),∇ω) + µ2(∇ut(t− τ(t)),∇ω) + (f(u)− h, ω) = 0,

(∂tη
t, ξ)M2 = −(∂sη

t, ξ)M2 + (ut(t), ξ)M2

a.e. in [0, T ], for all ω ∈ V2, ξ ∈M2.

And the global well-posedness of (1.6)–(1.11) with ν = 0 will be given in the following

theorem.

Theorem 3.4. Under the assumptions (2.1)–(2.7) and |µ2| ≤ µ1, we have

(i) If initial data U(0) = (u0, u1, η0) ∈ H2, f0(x, t) ∈ H1(Ω × (−τ(0), 0)) and h(x) ∈
L2(Ω), then problem (1.6)–(1.11) has a weak solution (u, ut, η

t) ∈ C(0, T ;H2), ∀T >

0.

(ii) If initial data U(0) = (u0, u1, η0) ∈ H3, f0(x, t) ∈ H2(Ω × (−τ(0), 0)) and h(x) ∈
L2(Ω), then problem (1.6)–(1.11) has a stronger weak solution (u, ut, η

t) ∈ C(0, T ;H3),

∀T > 0.
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(iii) In both cases the weak solution depends continuously on the initial data in H2 ×
H1(Ω × (−τ(0), 0)). In particular, the weak solution of problem (1.6)–(1.11) is

unique.

Remark 3.5. We can prove Theorem 3.4 by the same argument as the proof of Theorem 3.2.

Here we only give a priori estimate under the assumption |µ2| ≤ µ1.

We multiply the equation (1.6) by umt with ν = 0, and use the equation (1.7) to obtain

for any t > 0

d

dt
Em(t) + µ1‖∇umt ‖2 = −µ2

∫
Ω
∇umt (t)∇umt (t− τ(t)) dx

+
1

2

∫ ∞
0

g′(s)‖∆ηt,m(s)‖2 ds+

∫
Ω
humt (t) dx,

where

Em(t) =
1

2
‖umt (t)‖2 +

1

2
‖∆um(t)‖2 +

1

2
‖ηt,m‖2M2

+

∫
Ω
f̂(um(t)) dx.

By using (3.5) and (3.7), we can get

Em(t) + (µ1 − |µ2|)
∫ t

0
‖∇umt ‖2 ≤

|µ2|
2

∫
Ω

∫ 0

−τ(t)
|∇fm0 |2 dsdx+

√
2‖h‖

∫ t

0
(Em(s))1/2 ds,

which, noting that |µ2| ≤ µ1 and applying Gronwall’s inequality, yields that for all t ∈
[0, T ] and for every m ∈ N,

Em(t) ≤ C.

4. Exponential stability

In this section, we shall study the stability of problem (1.6)–(1.11).

4.1. The system with rotational inertia

Let us consider the following equation

(4.1) utt + ∆2u+

∫ ∞
0

g(s)∆2ηt(s) ds−∆utt − µ2∆ut(t− τ(t)) = 0,

together with (1.7) and initial data and boundary conditions (1.8)–(1.11).

The energy functional of problem (4.1) and (1.7)–(1.11) is defined as

F (t) =
1

2
‖ut‖2 +

1

2
‖∇ut‖2 +

1

2
‖∆u‖2 +

1

2
‖η‖2M2

+
θ|µ2|eτ1

2

∫ t

t−τ(t)
e−(t−s)‖∇ut(s)‖2 ds,

(4.2)
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where θ is any real constant satisfying

θ >
1√

1− d
.

Then we can get the following result concerning the stability of problem (4.1) and

(1.7)–(1.11).

Theorem 4.1. Let the assumptions (2.4)–(2.7) hold. Let the initial data U(0) = (u0, u1, η0)

∈ H and f0(x, t) ∈ H1(Ω×(−τ(0), 0)). For any θ > 1/
√

1− d, then there exists a constant

β > 0 such that the energy, defined by (4.2), to problem (4.1) and (1.8)–(1.11) satisfy for

any t ≥ 0,

F (t) ≤ F (0)e1−βt

holds for |µ2| < µ0, where µ0 is a positive constant defined in (4.35).

Remark 4.2. Since the rotational inertia and memory term, our result is not contained in

Nicaise and Pignotti [23]. But if ν = 0 and the memory is absence, our result is a special

case of result in Nicaise and Pignotti [23].

Motivated by [1], and noting that the energy F (t) of problem (4.1) and (1.7)–(1.11) is

not decreasing, we consider an auxiliary problem. We consider the following problem

(4.3) utt + ∆2u+

∫ ∞
0

g(s)∆2ηt(s) ds−∆utt − θ|µ2|eτ1∆ut − µ2∆ut(t− τ(t)) = 0,

together with (1.7) and initial data and boundary conditions (1.8)–(1.11).

We adopt the method developed by Pignotti [28] to prove Theorem 4.1. For this

purpose, we need the following technical lemmas.

Lemma 4.3. For every solution of problem (4.3) and (1.7)–(1.11), the energy F (t) defined

in (4.2) is decreasing and satisfies for any t > 0,

F ′(t) ≤ 1

2

∫ ∞
0

g′(s)‖∆η(s)‖2 ds− |µ2|(θeτ1
√

1− d− 1)

2
√

1− d
‖∇ut‖2

− |µ2|
√

1− d(θ
√

1− d− 1)

2
‖∇ut(t− τ(t))‖2

− |µ2|θeτ1
2

∫ t

t−τ(t)
e−(t−s)‖∇ut‖2 ds,

(4.4)

and

−1

2

∫ T

S

∫ ∞
0

g′(s)‖∆η(s)‖2 dsdt ≤ F (S),

1

2

∫ T

S

∫ ∞
0

g(s)‖∆η(s)‖2 dsdt ≤ 1

k
F (S).(4.5)
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Proof. Differentiating (4.2) and using (4.3), we obtain

F ′(t) =

∫
Ω
ut

(
−∆2u−

∫ ∞
0

g(s)∆2η(s) ds+ ∆utt + θ|µ2|eτ1∆ut + µ2∆ut(t− τ(t))

)
dx

+

∫
Ω
∇ut · ∇utt dx+

∫
Ω

∆u ·∆ut dx+
1

2

d

dt
‖η‖2M2

+
|µ2|θeτ1

2
‖∇ut‖2

− |µ2|θeτ1
2

e−τ(t)(1− τ ′(t))‖∇ut(t− τ(t))‖2 − |µ2|θeτ1
2

∫ t

t−τ(t)
e−(t−s)‖∇ut(s)‖2 ds.

By using integration by parts, (2.6)–(2.7) and noting that

(∂sη, η)M2 = −1

2

∫ ∞
0

g′(s)‖∆η(s)‖2 ds,

we have

F ′(t) ≤ 1

2

∫ ∞
0

g′(s)‖∆η(s)‖2 ds− |µ2|θeτ1
2

‖∇ut‖2 − µ2

∫
Ω
∇ut · ∇ut(t− τ(t)) dx

− θ|µ2|
2

(1− d)‖∇ut(t− τ(t))‖2 − |µ2|θeτ1
2

∫ t

t−τ(t)
e−(t−s)‖∇ut(s)‖2 ds.

(4.6)

Young’s inequality implies

−µ2

∫
Ω
∇ut · ∇ut(t− τ(t)) dx ≤ |µ2|

2
√

1− d
‖∇ut‖2 +

|µ2|
√

1− d
2

‖∇ut(t− τ(t))‖2,

which, together with (4.6), gives us (4.4).

It follows from (4.4) that

−1

2

∫ T

S

∫ ∞
0

g′(s)‖∆η(s)‖2 dsdt ≤
∫ T

S
(−F ′(t)) dt = F (S)− F (T ) ≤ F (S),

and using the assumption (2.5), we can directly obtain (4.5). The proof of this lemma is

complete.

Lemma 4.4. Assume

(4.7) |µ2| <
√

1− dλ2

2(θeτ1
√

1− d+ 1)
,

then the following estimate holds for any T ≥ S ≥ 0,

(4.8)

∫ T

S
‖∆u(t)‖2 dt ≤ C0

∫ T

S
‖ut(t)‖2 dt+ C1

∫ T

S
‖∇ut(t)‖2 dt+ C2F (S)

with

(4.9) C0 = 2, C1 = 2

(
1 +

θ|µ2|eτ1
2

)
, C2 =

4l0
k

+ 4

(
1 +

1

λ1
+

1

λ2

)
+

2

θ
√

1− d− 1
.
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Proof. We begin by multiplying the equation (4.3) by u, and integrate the result over

Ω× [S, T ], we shall see that∫ T

S
‖∆u(t)‖2 dt =

∫ T

S
(‖ut‖2 + ‖∇ut‖2)(t) dt−

∫
Ω

(u · ut + u ·∆ut) dx
∣∣∣∣T
S

− θ|µ2|eτ1
∫ T

S

∫
Ω
∇ut · ∇u dxdt

− µ2

∫ T

S

∫
Ω
∇ut(t− τ(t)) · ∇u dxdt

−
∫ T

S

∫
Ω

∫ ∞
0

g(s)∆η(s) ·∆u(t) dsdxdt.

(4.10)

It follows from Hölder’s and Young’s inequalities and (4.5) that for any ε > 0,

−
∫ T

S

∫
Ω

∫ ∞
0

g(s)∆η(s) ·∆u(t) dsdxdt

≤
∫ T

S

(∫
Ω
|∆u(t)|2 dx

)1/2

·
∫ ∞

0
g(s)

(∫
Ω
|∆η(s)|2 dx

)1/2

dsdt

≤ ε

2

∫ T

S
‖∆u(t)‖2 dt+

1

2ε

∫ T

S

[∫ ∞
0

g(s)

(∫
Ω
|∆η(s)|2 dx

)1/2

ds

]2

dt

≤ ε

2

∫ T

S
‖∆u(t)‖2 dt+

1

2ε

∫ T

S

(∫ ∞
0

g(s) ds

)(∫ ∞
0

g(s)‖∆η(s)‖2 ds
)
dt

≤ ε

2

∫ T

S
‖∆u(t)‖2 dt+

l0
2ε

∫ T

S

∫ ∞
0

g(s)‖∆η(s)‖2 dsdt

≤ ε

2

∫ T

S
‖∆u(t)‖2 dt+

l0
kε
F (S).

(4.11)

In addition, we can obtain∫
Ω

(u · ut + u ·∆ut) dx ≤
1

2
‖ut‖2 +

1

2
‖∇ut‖2 +

1

2
‖u‖2 +

1

2
‖∇u‖2

≤ F (t) +

(
1

2λ1
+

1

2λ2

)
‖∆u‖2

≤
(

1 +
1

λ1
+

1

λ2

)
F (t),

where we used the fact

1

2
‖ut‖2 +

1

2
‖∇ut‖2 +

1

2
‖∆u‖2 ≤ F (t).

Then we have

(4.12) −
∫

Ω
(u · ut + u ·∆ut) dx

∣∣∣∣T
S

≤ 2

(
1 +

1

λ1
+

1

λ2

)
F (S).
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Inserting (4.11)–(4.12) into (4.10) and using Young’s inequality, we shall see below, for

any ε > 0,∫ T

S
‖∆u(t)‖2 dt ≤

∫ T

S
(‖ut‖2 + ‖∇ut‖2)(t) dt+

ε

2

∫ T

S
‖∆u(t)‖2 dt+

l0
kε
F (S)

+ 2

(
1 +

1

λ1
+

1

λ2

)
F (S) +

θ|µ2|eτ1
2

∫ T

S
‖∇ut(t)‖2 dt

+
θ|µ2|eτ1

2

∫ T

S
‖∇u(t)‖2 dt+

|µ2|
2
√

1− d

∫ T

S
‖∇u(t)‖2 dt

+
|µ2|
2

√
1− d

∫ T

S
‖∇ut(t− τ(t))‖2 dt,

which, by using Poincaré’s inequality, yields∫ T

S

‖∆u(t)‖2 dt ≤
∫ T

S

‖ut(t)‖2 dt+

(
ε

2
+
θ|µ2|eτ1

2λ2
+

|µ2|
2
√

1− dλ2

)∫ T

S

‖∆u(t)‖2 dt

+

(
1 +

θ|µ2|eτ1
2

)∫ T

S

‖∇ut(t)‖2 dt+ 2

(
1 +

1

λ1
+

1

λ2

)
F (S)

+
l0
kε
F (S) +

|µ2|
2

√
1− d

∫ T

S

‖∇ut(t− τ(t))‖2 dt.

(4.13)

Taking into account the following estimate

|µ2|
2

√
1− d

∫ T

S
‖∇ut(t− τ(t))‖2 dt

=
1

θ
√

1− d− 1

|µ2|(θ
√

1− d− 1)

2

√
1− d

∫ T

S
‖∇ut(t− τ(t))‖2 dt

≤ 1

θ
√

1− d− 1

∫ T

S
(−F ′(t)) dt ≤ 1

θ
√

1− d− 1
F (S),

and taking ε = 1/2, we infer from (4.13) that∫ T

S

‖∆u(t)‖2 dt ≤
∫ T

S

‖ut(t)‖2 dt+

(
1

4
+
θ|µ2|eτ1

2λ2
+

|µ2|
2
√

1− dλ2

)∫ T

S

‖∆u(t)‖2 dt

+

(
1 +

θ|µ2|eτ1
2

)∫ T

S

‖∇ut(t)‖2 dt+ 2

(
1 +

1

λ1
+

1

λ2

)
F (S)

+
2l0
k
F (S) +

1

θ
√

1− d− 1
F (S).

(4.14)

By using (4.7), we know that

1−
(

1

4
+
θ|µ2|eτ1

2λ2
+

|µ2|
2
√

1− dλ2

)
>

1

2
.

Then (4.8) follows from (4.14) with constants given by (4.9). Therefore, the proof is

complete.
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Lemma 4.5. Assume

(4.15) |µ2| <
l0
θ
e−τ1 ,

then the following estimate holds for any T ≥ S ≥ 0 and for any ε > 0,

(4.16)

∫ T

S
(‖ut‖2 + ‖∇ut‖2)(t) dt ≤ ε

∫ T

S
‖∆ut(t)‖2 dt+ C3F (S)

with

C3 =
2

l0

[
2

(
1 +

2l0
λ1

)
+

4g(0)

l0λ1
+

2l0
k

+
l0
kε

+
θ|µ2|eτ1 l0

2k

(
1 +

1

λ2

)
+

1

θ
√

1− d− 1
+

|µ2|l0
kλ2

√
1− d

]
.

(4.17)

Proof. Multiplying (4.3) by
∫∞

0 g(s)η(s) ds and integrating the result over Ω× [S, T ], we

get ∫ T

S

∫
Ω

(
utt + ∆2u+

∫ ∞
0

g(s)∆2ηt(s) ds−∆utt − θ|µ2|eτ1∆ut −∆ut(t− τ(t))

)
×
(∫ ∞

0
g(s)η(s) ds

)
dxdt = 0.

(4.18)

Using (1.7) and integration by parts, we conclude that∫ T

S

∫
Ω
utt ·

∫ ∞
0

g(s)η(s) dsdxdt

=

∫
Ω
ut ·

∫ ∞
0

g(s)η(s) dsdx

∣∣∣∣T
S

−
∫ T

S

∫
Ω
ut(t) ·

∫ ∞
0

g(s)(ut(t)− η(s)) dsdxdt

=

∫
Ω
ut ·

∫ ∞
0

g(s)η(s) dsdx

∣∣∣∣T
S

− l0
∫ T

S
‖ut(t)‖2 dt

−
∫ T

S

∫
Ω
ut(t) ·

∫ ∞
0

g′(s)η(s) dsdxdt,

(4.19)

and

−
∫ T

S

∫
Ω

∆utt ·
∫ ∞

0
g(s)η(s) dsdxdt

=

∫ T

S

∫
Ω
∇utt ·

∫ ∞
0

g(s)∇η(s) dsdxdt

=

∫
Ω
∇ut ·

∫ ∞
0

g(s)η(s) dsdx

∣∣∣∣T
S

− l0
∫ T

S
‖∇ut(t)‖2 dt

−
∫ T

S

∫
Ω
∇ut(t) ·

∫ ∞
0

g′(s)η(s) dsdxdt.

(4.20)
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Again using integration by part to the remain terms in (4.18), we derive from (4.19)–(4.20)

that

l0

∫ T

S
(‖ut‖2 + ‖∇ut‖2)(t) dt

=

∫
Ω

(ut +∇ut)(t) ·
∫ ∞

0
g(s)η(s) dsdx

∣∣∣∣T
S︸ ︷︷ ︸

:=I1

−
∫

Ω
(ut +∇ut)(t) ·

∫ ∞
0

g′(s)η(s) dsdxdt︸ ︷︷ ︸
:=I2

+

∫ T

S

∫
Ω

∆u(t) ·
∫ ∞

0
g(s)∆η(s) dsdxdt︸ ︷︷ ︸

:=I3

+

∫ T

S

∫
Ω

(∫ ∞
0

g(s)∆η(s)ds

)2

dxdt︸ ︷︷ ︸
:=I4

+ θ|µ2|eτ1
∫ T

S

∫
Ω
∇ut(t) ·

∫ ∞
0

g(s)∇η(s) dsdxdt︸ ︷︷ ︸
:=I5

+ µ2

∫ T

S

∫
Ω
∇ut(t− τ(t)) ·

∫ ∞
0

g(s)∇η(s) dsdxdt︸ ︷︷ ︸
:=I6

.

(4.21)

In the sequel we shall estimate the terms Ii (i = 1, . . . , 6) on the right-hand side of (4.21).

It follows from Hölder’s inequality and Young’s inequality that∫
Ω

(ut +∇ut)(t) ·
∫ ∞

0
g(s)η(s) dsdx ≤ 1

2
(‖ut‖2 + ‖∇ut‖2) +

∫
Ω

(∫ ∞
0

g(s)η(s) ds

)2

ds

≤ 1

2
(‖ut‖2 + ‖∇ut‖2) +

l0
λ1

∫ ∞
0

g(s)‖∆η(s)‖2 ds

≤ F (t) +
2l0
λ1
F (t),

which gives us

(4.22) I1 ≤ 2

(
1 +

2l0
λ1

)
F (S).

Moreover, we have for any δ > 0,

I2 ≤
δ

2

∫ T

S
(‖ut‖2 + ‖∇ut‖2)(t) dt+

1

δ

∫ T

S

∥∥∥∥∫ ∞
0

g′(s)η(s) ds

∥∥∥∥2

dt

≤ δ

2

∫ T

S
(‖ut‖2 + ‖∇ut‖2)(t) dt

+
1

δ

∫ T

S

∫
Ω

(
−
∫ ∞

0
g′(s) ds

)(∫ ∞
0

(−g′(s))|η(s)|2 ds
)
dxdt

≤ δ

2

∫ T

S
(‖ut‖2 + ‖∇ut‖2)(t) dt− g(0)

δλ1

∫ T

S

∫ ∞
0

g′(s)‖∆η(s)‖2 dsdt

≤ δ

2

∫ T

S
(‖ut‖2 + ‖∇ut‖2)(t) dt+

2g(0)

δλ1
F (S),

(4.23)
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(4.24) I4 ≤ l0
∫ T

S

∫ ∞
0

g(s)‖∆η(s)‖2 dsdt ≤ 2l0
k
F (S).

By virtue of (4.24), we get for any ε > 0,

I3 ≤
ε

2

∫ T

S
‖∆u(t)‖2 dt+

1

2ε

∫ T

S

∥∥∥∥∫ ∞
0

g(s)∆η(s) ds

∥∥∥∥2

dt

≤ ε

2

∫ T

S
‖∆u(t)‖2 dt+

l0
kε
F (S).

(4.25)

By using integration by parts, Hölder’s inequality and Young’s inequality, we derive

I5 =
1

2
θ|µ2|eτ1

∫ T

S

∫
Ω

(−∆ut(t))

∫ ∞
0

g(s)η(s) dsdxdt

+
1

2
θ|µ2|eτ1

∫ T

S

∫
Ω

(−∆ut(t))

∫ ∞
0

g(s)η(s) dsdxdt

= −1

2
θ|µ2|eτ1

∫ T

S

∫
Ω
ut(t)

∫ ∞
0

g(s)∆η(s) dsdxdt

+
1

2
θ|µ2|eτ1

∫ T

S

∫
Ω
∇ut(t)

∫ ∞
0

g(s)∇η(s) dsdxdt

≤ θ|µ2|eτ1
4

∫ T

S
(‖ut‖2 + ‖∇ut‖2)(t) dt+

θ|µ2|eτ1
4

∫ T

S

∥∥∥∥∫ ∞
0

g(s)∆η(s) ds

∥∥∥∥2

dt

+
θ|µ2|eτ1

4

∫ T

S

∥∥∥∥∫ ∞
0

g(s)∇η(s) ds

∥∥∥∥2

dt

≤ θ|µ2|eτ1
4

∫ T

S
(‖ut‖2 + ‖∇ut‖2)(t) dt+

θ|µ2|eτ1 l0
2k

(
1 +

1

λ2

)
F (S)

(4.26)

and

I6 ≤
|µ2|
2

√
1− d

∫ T

S
‖∇ut(t− τ(t))‖2 dt

+
|µ2|

2
√

1− d

∫ T

S

∥∥∥∥∫ ∞
0

g(s)∇η(s) ds

∥∥∥∥2

dt

≤ |µ2|
2

√
1− d

∫ T

S
‖∇ut(t− τ(t))‖2 dt+

|µ2|l0
kλ2

√
1− d

F (S)

≤
(

1

θ
√

1− d− 1
+

|µ2|l0
kλ2

√
1− d

)
F (S).

(4.27)

Inserting (4.22)–(4.27) into (4.21), we have for any ε > 0 and δ > 0,(
l0 −

θ|µ2|eτ1
4

− δ

2

)∫ T

S
(‖ut‖2 + ‖∇ut‖2)(t) dt

≤ ε

2

∫ T

S
‖∆u(t)‖2 dt+

[
2

(
1 +

2l0
λ1

)
+

2g(0)

δλ1
+

2l0
k

+
2l0
kε

+
θ|µ2|eτ1 l0

2k

(
1 +

1

λ2

)
+

1

θ
√

1− d− 1
+

|µ2|l0
kλ2

√
1− d

]
F (S).

(4.28)
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Taking δ = l0/2 and using (4.15), we know that

l0 −
θ|µ2|eτ1

4
− δ

2
>
l0
2
.

Then (4.16) follows from (4.28) with a constant C3 defined by (4.17). The proof is com-

plete.

Lemma 4.6. Assume

|µ2| < min

{ √
1− dλ2

2(θeτ1
√

1− d+ 1)
,
l0
θ
e−τ1

}
then the following estimate holds for any T ≥ S ≥ 0,

(4.29)
1

2

∫ T

S
‖∆u(t)‖2 dt+

1

2

∫ T

S
(‖ut‖2 + ‖∇ut‖2)(t) dt ≤ C4F (S)

with

C4 = (C0C3 + C1C3 + C2) +
C3

2
,

where the constants C0, C1, C2 is defined in (4.9), and

C3 =
2

l0

[
2

(
1 +

2l0
λ1

)
+

4g(0)

l0λ1
+

2l0
k

+
l0(2C0 + 2C1 + 1)

k

+
θ|µ2|eτ1 l0

2k

(
1 +

1

λ2

)
+

1

θ
√

1− d− 1
+

|µ2|l0
kλ2

√
1− d

]
.

Proof. It follows from (4.8) and (4.16) that for any ε > 0,

(4.30)

∫ T

S
‖∆u(t)‖2 dt ≤ (C0 + C1)ε

∫ T

S
‖∆u(t)‖2 dt+ (C0C3 + C1C3 + C2)F (S).

We infer from (4.16) and (4.30) that for any ε > 0,∫ T

S
‖∆u(t)‖2 dt+

1

2

∫ T

S
(‖ut‖2 + ‖∇ut‖2)(t) dt

≤
[
(C0 + C1) +

1

2

]
ε

∫ T

S
‖∆u(t)‖2 dt+

[
(C0C3 + C1C3 + C2) +

C3

2

]
F (S),

which, choosing ε > 0 satisfying

ε =
1

2C0 + 2C1 + 1
,

implies

1

2

∫ T

S
‖∆u(t)‖2 dt+

1

2

∫ T

S
(‖ut‖2 + ‖∇ut‖2)(t) dt ≤

[
(C0C3 + C1C3 + C2) +

C3

2

]
F (S).

Hence the proof is complete.
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For problem (4.3) and (1.7)–(1.11), we can get the following stability result.

Theorem 4.7. Assume

(4.31) |µ2| < µ2 := min

{ √
1− dλ2

2(θeτ1
√

1− d+ 1)
,
l0
θ
e−τ1

}
.

Let the assumptions (2.4)–(2.7) hold. Let the initial data U(0) = (u0, u1, η0) ∈ H and

f0(x, t) ∈ H1(Ω × (−τ(0), 0)). For any θ > 1/
√

1− d, then there exists a constant β̃ > 0

such that the energy F (t) of the auxiliary problem (4.3) and (1.7)–(1.11) defined in (4.2)

satisfies for any t ≥ 0,

(4.32) F (t) ≤ F (0)e1−β̃t.

Proof. It follows from (4.4) that

|µ2|θeτ1
2

∫ t

t−τ(t)
e−(t−s)‖∇ut‖2 ds ≤ −

∫ T

S
F ′(t) dt ≤ F (S),

which, together with (4.5) and (4.29) and noting that |µ2| < µ2, gives us∫ T

S
F (t) dt ≤

(
C4 +

1

k
+ 1

)
F (S).

Then using Lemma 2.1, we can get the desired estimate (4.32) with

(4.33) C = C4 +
1

k
+ 1, β̃ =

1

C
.

The proof is complete.

Proof of Theorem 4.1. By using Theorems 2.2 and 4.7, we can obtain that Theorem 4.1

holds with β = β̃ − eθ|µ2|eτ1 if

−β̃ + eθ|µ2|eτ1 < 0,

i.e., if the coefficient of delay µ2 satisfies

(4.34) |µ2| < π(|µ2|) :=
1

Ceθeτ1
,

and C > 0 is the constant defined in (4.33). Noting that π(0) > 0, we first know that

(4.34) holds for µ2 = 0. In addition, it follows from the definition of the constants C0,

C1, C2 and C3 that the function π : [0,∞) → [0,∞) is a continuous decreasing function

satisfying

π(|µ2|)→ 0 for |µ2| → ∞.

Thus there exists a unique positive constant µ̂2 such that µ̂2 = π(µ̂2). Therefore for any

θ in (4.2), inequality (4.34) is satisfied for every µ2 with

(4.35) |µ2| < µ0 := min{µ̂2, µ2},

where µ2 is defined in (4.31). The proof of Theorem 4.1 is complete.
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Remark 4.8. Following the same arguments as in [1], we can also compute an explicit

lower bound for µ0. Here we omit the proof.

Remark 4.9. The stability result also holds for the plate equation with strong anti-

damping, that is, the case τ(t) = 0 and µ2 < 0. In fact we can take θ = 1 to get

the stability result under the condition

|µ2| <
(

9

2
C3 + C2 +

1

k
+ 1

)−1

e−1,

where

C2 =
4l0
k

+ 4

(
1 +

1

λ1
+

1

λ2

)
and C3 =

2

l0

[
2

(
1 +

2l0
λ1

)
+

4g(0)

l0λ1
+

11l0
k

]
.

4.2. The system without rotational inertia

In this subsection, let us consider (1.6) with ν = 0, and study the following system

(4.36) utt + ∆2u+

∫ ∞
0

g(s)∆2ηt(s) ds− µ1∆ut − µ2∆ut(t− τ(t)) + f(u) = 0,

together with (1.7) and initial data and boundary conditions (1.8)–(1.11).

We define energy functional G(t) of problem (4.36) and (1.7)–(1.11) as

G(t) =
1

2
‖ut(t)‖2 +

1

2
‖∆u(t)‖2 +

1

2
‖ηt‖2M2

+

∫
Ω
f̂(u(t)) dx

+
ξ

2

∫ t

t−τ(t)

∫
Ω
eλ(s−t)|∇ut(x, s)|2 dxds,

(4.37)

where ξ > 0 is a constant will be determined later and the constant λ > 0, as below, has

been introduced in [22],

λ <
1

τ1

∣∣∣∣log
|µ2|√
1− d

∣∣∣∣ .
Then we can get the following stability result for problem (4.36) and (1.7)–(1.11).

Theorem 4.10. Let the assumptions (2.4)–(2.7) hold. Assume |µ2| <
√

1− dµ1. Let

the initial data U(0) = (u0, u1, η0) ∈ H2 and f0(x, t) ∈ H1(Ω × (−τ(0), 0)). Then there

exist two constants γ > 0 and α > 0 such that the energy G(t), defined by (4.37), to

problem (4.36) and (1.8)–(1.11) satisfies

(4.38) G(t) ≤ γe−αt for all t ≥ 0.

In the sequel we shall prove Theorem 4.10, which will be divided into the following

lemmas.
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Lemma 4.11. Under the assumptions of Theorem 4.10, the energy functional defined by

(4.37) satisfies for any t ≥ 0,

G′(t) ≤
(
|µ2|

2
√

1− d
− µ1 +

ξ

2

)
‖∇ut(t)‖2

+

(
|µ2|
2

√
1− d− ξ

2
e−λτ1(1− d)

)
‖∇ut(t− τ(t))‖2

+
1

2

∫ ∞
0

g′(s)‖∆ηt‖2 ds− ξλ

2

∫ t

t−τ(t)
e−λ(t−s)‖∇ut(s)‖2 ds.

(4.39)

Proof. Differentiating (4.37) with respect to t, we have

G′(t) =

∫
Ω
uttut dx+

∫
Ω

∆u ·∆ut dx+

∫
Ω

∫ ∞
0

g(s)∆ηt ·∆ηtt dsdx

+

∫
Ω
f(u)ut dx+

ξ

2
‖∇ut‖2 −

ξ

2
e−λτ(t)(1− τ ′(t))‖∇ut(t− τ(t))‖2

− λξ

2

∫ t

t−τ(t)
e−λ(t−s)‖∇ut(s)‖2 ds.

By using (4.36), (1.7) and (2.6)–(2.7), we can obtain for any t > 0,

G′(t) ≤ 1

2

∫ ∞
0

g′(s)‖∆ηt(s)‖2 ds− µ1‖∇ut‖2

− µ2

∫
Ω
∇ut(t) · ∇ut(t− τ(t)) dx+

ξ

2
‖∇ut‖2

− ξ

2
(1− d)e−λτ1‖∇ut(t− τ(t))‖2 − λξ

2

∫ t

t−τ(t)
e−λ(t−s)‖∇ut(s)‖2 ds.

(4.40)

Using Young’s inequality, we get

−µ2

∫
Ω
∇ut(t) · ∇ut(t− τ(t)) dx ≤ |µ2|

2
√

1− d
‖∇ut‖2 +

|µ2|
2

√
1− d‖∇ut(t− τ(t))‖2,

which, together with (4.40), implies (4.39). The proof is complete.

Lemma 4.12. We define the functional φ(t) by

φ(t) =

∫
Ω
u(t)ut(t) dx.

Then under the assumptions of Theorem 4.10, there exist two positive constants c1 and c2

such that

φ′(t) ≤ −G(t)− 1

4
‖∆u‖2 + c1‖∇ut‖2 + c1‖∇ut(t− τ(t))‖2 −

∫
Ω
f(u)u dx

− c2

∫ ∞
0

g′(s)‖∆ηt(s)‖2 ds+
ξ

2

∫ t

t−τ(t)
eλ(s−t)‖∇ut(s)‖2 ds, ∀ t > 0.

(4.41)
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Proof. It follows from (4.36) and integration by parts that

φ′(t) = ‖ut‖2 − ‖∆u‖2 −
∫

Ω
∆u(t)

∫ ∞
0

g(s)∆ηt(s) dsdx

− µ1

∫
Ω
∇u · ∇ut dx− µ2

∫
Ω
∇u · ∇ut(t− τ(t)) dx−

∫
Ω
f(u)u dx.

(4.42)

By using Hölder’s inequality and Young’s inequality, we derive that for any ε > 0,

(4.43) −
∫

Ω
∆u(t) ·

∫ ∞
0

g(s)∆ηt(s) dsdx ≤ 1

8
‖∆u‖2 + 2l0‖ηt‖2M2

,

(4.44) − µ1

∫
Ω
∇u · ∇ut dx ≤

|µ1|ε
λ2
‖∆u‖2 +

|µ1|
4ε
‖ut‖2

and

−µ2

∫
Ω
∇u · ∇ut(t− τ(t)) dx ≤ |µ2|ε

λ2
‖∆u‖2 +

|µ2|
4ε
‖∇ut(t− τ(t))‖2,

which, along with (4.42)–(4.44), gives us

φ′(t) ≤ −
(

7

8
− |µ1|ε

λ2
− |µ2|ε

λ2

)
‖∆u‖2 + 2l0‖ηt‖2M2

+

(
1

λ1
+
|µ1|
4ε

)
‖∇ut‖2

+
|µ2|
4ε
‖∇ut(t− τ(t))‖2 −

∫
Ω
f(u)u dx.

Noting (4.37), we have for any ε > 0,

φ′(t) ≤ −G(t)−
(

3

8
− |µ1|ε

λ2
− |µ2|ε

λ2

)
‖∆u‖2 +

(
1

2
+ 2l0

)
‖ηt‖2M2

+

(
1

λ2
+

1

λ3
+
|µ1|
4ε

)
‖∇ut‖2 +

|µ2|
4ε
‖∇ut(t− τ(t))‖2

+
ξ

2

∫ t

t−τ(t)
eλ(s−t)‖∇ut(s)‖2 ds−

∫
Ω
f(u)u dx.

At this point, choosing ε > 0 sufficiently small that

|µ1|ε
λ2

+
|µ2|ε
λ2
≤ 1

8
,

and since

‖ηt‖2M2
≤ −1

k

∫ ∞
0

g′(s)‖∆ηt(s)‖2 ds,

thus we can obtain (4.41) with

c1 = max

{
1

λ2
+

1

λ3
+
|µ1|
4ε

,
|µ2|
4ε

}
, c2 =

1

2k
+

2l0
k
.

The proof is hence complete.
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Lemma 4.13. We define the functional ψ(t) as

ψ(t) = −
∫

Ω
ut(t) ·

(∫ ∞
0

g(s)ηt(s) ds

)
dx.

Then under the assumptions of Theorem 4.10, the functional ψ(t) satisfies that for any

δ1 > 0 and δ2 > 0,

ψ′(t) ≤ −3

4
l0‖ut‖2 + δ2‖∆u‖2 + δ1‖∇ut(t− τ(t))‖2 + δ1‖∇ut‖2

− c3

∫ ∞
0

g′(s)‖∆ηt(s)‖2 ds,
(4.45)

where c3 > 0 is a constant.

Proof. First we can easily get

ψ′(t) = −
∫

Ω
utt ·

(∫ ∞
0

g(s)ηt(s) ds

)
dx−

∫
Ω
ut ·

(∫ ∞
0

g(s)ηtt(s) ds

)
dx

=

∫
Ω

(
∆2u+

∫ ∞
0

g(s)∆2ηt(s) ds− µ1∇ut − µ2∇ut(t− τ(t)) + f(u)

)
·
(∫ ∞

0
g(s)ηt(s) ds

)
dx−

∫
Ω
ut ·

(∫ ∞
0

g(s)ηtt(s) ds

)
dx.

(4.46)

Therefore, from integration by parts, Young’s inequality and Hölder’s inequality, we infer

that for any δ1 > 0,∫
Ω

∆2u(t) ·
(∫ ∞

0
g(s)ηt(s) ds

)
dx ≤ δ1‖∆u‖2 +

l0
4δ1
‖ηt‖2M2

,(4.47) ∫
Ω

(∫ ∞
0

g(s)∆2ηt(s) ds

)
·
(∫ ∞

0
g(s)ηt(s) ds

)
dx

=

∫
Ω

n∑
j=1

(∫ ∞
0

g(s)
∂2ηt

∂x2
j

)2

dx ≤ l0‖ηt‖2M2
,

(4.48)

µ1

∫
Ω
∇ut(t) ·

(∫ ∞
0

g(s)ηt(s) ds

)
dx ≤ δ1‖∇ut‖2 +

µ2
1l0

4δ1

∫ ∞
0

g(s)‖ηt(s)‖2 ds

≤ δ1‖∇ut‖2 +
µ2

1l0
4δ1λ1

∫ ∞
0

g(s)‖∆ηt(s)‖2 ds,
(4.49)

µ2

∫
Ω
∇ut(t− τ(t)) ·

(∫ ∞
0

g(s)ηt(s) ds

)
dx

≤ δ1‖∇ut(t− τ(t))‖2 +
µ2

2l0
4δ1λ1

∫ ∞
0

g(s)‖∆ηt‖2 ds.
(4.50)

Noting that∫ ∞
0

g(s)ηtt(s) ds = −
∫ ∞

0
g(s)ηts(s) +

∫ ∞
0

ut(t)g(s) ds =

∫ ∞
0

g′(s)ηt(s) ds+ l0ut,
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we shall deduce that

−
∫

Ω
ut ·

(∫ ∞
0

g(s)ηtt(s) ds

)
dx

≤ −l0‖ut‖2 +
l0
4
‖ut‖2 +

1

l0

∫
Ω

(∫ ∞
0

g′(s)ηt(s) ds

)2

dx

≤ −3

4
l0‖ut‖2 +

1

l0

∫
Ω

(∫ ∞
0
−g′(s) ds

)
·
(∫ ∞

0
−g′(s)(ηt(s))2 ds

)
dx

≤ −3

4
l0‖ut‖2 −

g(0)

l0λ1

∫ ∞
0

g′(s)‖∆ηt(s)‖2 ds.

(4.51)

Clearly, eλτ1 goes to 1 as λ→ 0. By virtue of the continuity of the set of real numbers,

we take λ > 0 sufficiently small that there exists a constant ξ > 0 such that

(4.52)
eλτ1 |µ2|√

1− d
< ξ < µ1,

which implies

(4.53)
|µ2|

2
√

1− d
− µ1 +

ξ

2
< 0 and

|µ2|
2

√
1− d− ξ

2eλτ1
(1− d) < 0.

Thus we know from (4.39) and (4.53) that

(4.54) G′(t) ≤ 0.

It follows from (2.1) and (4.54) that for any δ3 > 0,∫
Ω
f(u) ·

(∫ ∞
0

g(s)ηt(s) ds

)
dx ≤ δ3

λ1
Gp(0)‖∆u‖2 +

l0
4δ3λ1

‖ηt‖2M2
,

which, combined with (4.46)–(4.51), yields (4.45) with

δ2 = δ1 +
δ3

λ1
Gp(0) and c3 =

l20
4δ1k

+
l0
k

+
µ2

1l0
4δ1λ1k

+
µ2

2l0
4δ1λ1k

+
g(0)

l0λ1
+

l20
4δ3λ1k

.

The proof is hence complete.

Now we define the Lyapunov functional L(t) as

(4.55) L(t) := G(t) + ε1φ(t) + ε2ψ(t),

where ε1 > 0 and ε2 > 0 are constants will be taken later. First we can easily deduce, for

ε1 > 0 and ε2 > 0 sufficiently small, that for any t > 0,

(4.56)
1

2
G(t) ≤ L(t) ≤ 3

2
G(t).
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Proof of Theorem 4.10. Combining (4.39), (4.41) and (4.45) with (4.55), we can derive for

any t > 0,

L′(t) = G′(t) + ε1φ
′(t) + ε2ψ

′(t)

≤ −ε1G(t)− 3

4
l0‖ut‖2 +

[
|µ2|

2
√

1− d
− µ1 +

ξ

2
+ c1ε1 + ε2δ1

]
‖∇ut‖2

+

(
|µ2|
2

√
1− d− ξ

2
e−λτ1(1− d) + c1ε1 + ε2δ1

)
‖∇ut(t− τ(t))‖2

+

(
1

2
− c2ε1 − c3ε2

)∫ ∞
0

g′(s)‖∆ηt(s)‖2 ds+
(
ε2δ2 −

ε1

4

)
‖∆u‖2

+

(
ξε1

2
− λξ

2

)∫ t

t−τ(t)
e−λ(t−s)‖∇ut(s)‖2 ds− ε1

∫
Ω
f(u)u dx.

Since (4.52)–(4.53) hold, at this point we first take ε1 > 0 sufficiently small such that

(4.56) holds, and further,

ε1 < min

{
λ

2
,

1

4c2
,
ξ

4c1
e−λτ1(1− d)− |µ2|

4c1

√
1− d, µ1

2c1
− |µ2|

4c1

√
1− d

− ξ

4c1

}
,

which gives us
ξε1

2
− λξ

2
< −λξ

4
,

1

2
− c2ε1 >

1

4
,

and

|µ2|
2

√
1− d− ξ

2
e−λτ1(1− d) + c1ε1 <

|µ2|
4

√
1− d− ξ

4
e−λτ1(1− d),

|µ2|
2
√

1− d
− µ1 +

ξ

2
+ c1ε1 <

|µ2|
4
√

1− d
− µ1

2
+
ξ

4
.

For any fixed δ1, δ2 > 0 and ε1 > 0, we choose ε2 > 0 sufficiently small such that (4.56)

holds, and further,

ε2 < min

{
ε1

8δ2
,

1

8c3
,
ξ

8δ1
e−λτ1(1− d)− |µ2|

8δ1

√
1− d, µ1

4δ1
− |µ2|

8δ1

√
1− d

− ξ

8δ1

}
,

which implies

ε2δ2 −
ε1

4
< −ε1

8
,

1

4
− c3ε2 >

1

8
,

and

|µ2|
4

√
1− d− ξ

4
e−λτ1(1− d) + δ1ε2 <

|µ2|
8

√
1− d− ξ

8
e−λτ1(1− d),

|µ2|
4
√

1− d
− µ1

2
+
ξ

4
+ δ1ε2 <

|µ2|
8
√

1− d
− µ1

4
+
ξ

8
.

From above and (4.37) and (4.56), we can conclude that there exists a positive constant

ρ such that for any t > 0,

L′(t) ≤ −ρG(t) ≤ −ρ
2
L(t),
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then we have

L(t) ≤ L(0)e−
ρ
2
t.

By using (4.56) again, we see that

(4.57) G(t) ≤ 3G(0)e−
ρ
2
t.

Therefore by renaming the constants in (4.57), we can get the desired estimate (4.38).

The proof of Theorem 4.10 is complete.

Remark 4.14. For plate equation without rotational inertia, our result concerning global

well-posedness only holds for |µ2| ≤ µ1, concerning exponential stability only holds for

|µ2| <
√

1− dµ1 and µ1 6= 0. Whether the two results hold for µ1 = 0 is still open.
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