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Two Positive Solutions for Kirchhoff Type Problems with Hardy-Sobolev

Critical Exponent and Singular Nonlinearities

Yu-Ting Tang, Jia-Feng Liao and Chun-Lei Tang*

Abstract. We consider the following singular Kirchhoff type equation with Hardy-

Sobolev critical exponent
−
(
a+ b

∫
Ω

|∇u|2 dx
)

∆u =
u3

|x|
+

λ

|x|βuγ
, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω, 0 ∈ Ω, a, b, λ > 0,

0 < γ < 1, and 0 ≤ β < (5 + γ)/2. Combining with the variational method and

perturbation method, two positive solutions of the equation are obtained.

1. Introduction and main result

In this paper, we consider the positive solutions of the Kirchhoff type equation

(1.1)


−
(
a+ b

∫
Ω
|∇u|2 dx

)
∆u =

u3

|x|
+

λ

|x|βuγ
, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω, 0 ∈ Ω, a, b, λ > 0,

0 < γ < 1 and 0 ≤ β < (5 + γ)/2, and 4 is the Hardy-Sobolev critical exponent.
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Liu and Sun [20] considered the following singular Kirchhoff type equation for the first

time

(1.2)


−
(
a+ b

∫
Ω
|∇u|2 dx

)
∆u = λg(x)

up

|x|s
+ h(x)u−γ , x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where 3 < p < 5−2s, 0 ≤ s < 1 and g, h ∈ C(Ω) are nontrivial nonnegative functions. By

the Nehari method, when λ > 0 small, they obtained two positive solutions for (1.2). Later,

Lei, Liao and Tang studied the critical case of (1.2) with s = 0, p = 5, λ = g(x) ≡ 1, and

obtained two positive solutions by using the variational method and perturbation method,

see [12]. In [21], Liu et al. generalized [12] in dimension four, that is,

(1.3)


−
(
a+ b

∫
Ω
|∇u|2 dx

)
∆u = µu3 +

λ

|x|βuγ
, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω ⊂ R4 is a bounded smooth domain and µ > 0. For all µ > 0, γ ∈ (0, 1) and

0 ≤ β < 3, they obtained (1.3) has a positive solution. When µ > bS2, γ ∈ (0, 1/2) and

2 + 2γ < β < 3, they proved (1.3) has at least two positive solutions. Moreover, when

s = 0, p = 3, the existence and multiplicity of positive solutions for (1.2) are considered

by Liao et al., see [19]. And, Li, Tang and Liao [16] studied (1.2) with 0 ≤ s < 1, p = 3

and g ∈ L∞(Ω) may change sign in Ω.

To the best of our knowledge, the first work on the Kirchhoff-type problem with critical

Sobolev exponent is from Alves, Corrêa and Figueiredo in [1]. After that, the Kirchhoff

type equation with critical exponent has been extensively studied, and some important

and interesting results have been obtained, see [4–8,10,12–15,17,18,21–24,27–29].

However, the Kirchhoff type problem with Hardy-Sobolev critical exponent has few

been considered. Inspired by [12, 20, 21], we study the existence of positive solutions of

(1.1). To the best of our knowledge, most of the Kirchhoff type equation with asymptot-

ically 3-linear are subcritical in R3. One of the main feature of (1.1) is asymptotically

3-linear and critical, the difficulty is due to the lack of compactness of the embedding

H1
0 (Ω) ↪→ L4(Ω, |x|−1dx). And the power of the nonlocal term b

( ∫
Ω |∇u|

2 dx
)
∆u and the

critical term is equal. Furthermore, because of the singular term u−γ , the corresponding

energy functional I does not belong to C1(H1
0 (Ω),R) which leads to the classic critical

point theory for I could not be checked directly. In this article, combining with some anal-

ysis techniques and the definition of solution of (1.1), we obtain a positive local minimizer
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solution of (1.1). While 0 < b < A−2 and 2 + γ < β < (5 + γ)/2, combining with the

perturbation method and variational method, we get another positive solution for (1.1).

Let A be the Hardy-Sobolev constant, and S be the best Sobolev constant, namely

A = inf
u∈H1

0 (Ω)\{0}

‖u‖2(∫
Ω
u4

|x| dx
)1/2

,(1.4)

S = inf
u∈H1

0 (Ω)\{0}

‖u‖2(∫
Ω u

6 dx
)1/3 .(1.5)

For readers’ convenience, we give the definition of the (C)c condition (see Defini-

tion 1.40 in [30]).

Definition 1.1. Suppose ψ ∈ C1(H1
0 (Ω),R). For any c ∈ R, {un} is called a (C)c sequence

of ψ in H1
0 (Ω), if ψ(un)→ c and (1 + ‖un‖)ψ′(un)→ 0 as n→∞. We say that ψ satisfies

the (C)c condition if every (C)c sequence of ψ has a converging subsequence in H1
0 (Ω).

The energy functional of (1.1) is defined by

I(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − 1

4

∫
Ω

(u+)4

|x|
dx− λ

1− γ

∫
Ω

(u+)1−γ

|x|β
dx

for all u ∈ H1
0 (Ω), where u± = max{±u, 0} and ‖u‖ =

( ∫
Ω |∇u|

2 dx
)1/2

is the norm of

H1
0 (Ω). Since 0 < γ < 1, the energy functional I is not a C1 functional on H1

0 (Ω). We

say u is a solution of (1.1), if u ∈ H1
0 (Ω) with u > 0 and for all ϕ ∈ H1

0 (Ω) satisfies

(a+ b‖u‖2)

∫
Ω

(∇u,∇ϕ) dx−
∫

Ω

(u+)3ϕ

|x|
dx− λ

∫
Ω

(u+)−γ

|x|β
ϕdx = 0.

Our main result is described as follows.

Theorem 1.2. Suppose that a, b > 0, 0 < γ < 1, then

(1) when 0 ≤ β < (5 + γ)/2, there exists λ∗ > 0 such that (1.1) has at least a positive

solution for all 0 < λ < λ∗;

(2) when 0 < b < A−2 and 2 + γ < β < (5 + γ)/2, there exist λ∗∗ > 0 (λ∗∗ ≤ λ∗) such

that (1.1) has at least two positive solutions for all 0 < λ < λ∗∗.

Remark 1.3. To the best of our knowledge, (1.1) has not been studied up to now. On

the one hand, (1.1) is equal to (1.2) with s = 1 and p = 5 − 2s. In some sense, our

result generalizes [20] to the Hardy-Sobolev critical case. Moreover, (1.1) is different from

(1.3). Comparing with [21], we consider the Kirchhoff type problem with Hardy-Sobolev

critical exponent in dimension three. On the other hand, the Kirchhoff type problem is
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asymptotically 3-linear and critical, it is worth mentioning that our result demonstrates

the relation between the existence of positive solutions and the value range of b, λ. It is

worth mentioning that the constraint conditions 0 < b < A−2 and 2 + γ < β < (5 + γ)/2

are ensure the existence of the second positive solution. However, we could not obtain the

second solution for (1.1) with 0 ≤ β ≤ 2 + γ.

Remark 1.4. The more general problem of (1.1) is

(1.6)


−
(
a+ b

∫
Ω
|∇u|2 dx

)
∆u =

u5−2s

|x|s
+ λh(x)u−γ , x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω ⊂ R3 and 0 ≤ s ≤ 2. For all u ∈ H1
0 (Ω), the energy functional of (1.6) is defined

by

Is(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − 1

6− 2s

∫
Ω

(u+)6−2s

|x|s
dx− λ

1− γ

∫
Ω
h(x)(u+)1−γ dx.

According to the first result of Theorem 1.2, for any 0 ≤ s ≤ 2, we can also obtain that

(1.6) has at least one positive solution. When s = 0, [12] considered (1.6) and obtained

two positive solutions. However, we could not obtain the existence of the second positive

solution for (1.6) with s ∈ (0, 1) ∪ (1, 2] by the methods of this paper. Because we could

not obtain that Is,α satisfies the local (C)c condition, where Is,α is the energy functional

of the approximating problem of (1.6) which is similar to (2.18). Similar to (2.31), we

have al2 + bl4 + bl2‖u‖2 =
∫

Ω(w+
n )6−2s/|x|s dx ≤ l6−2s/A3−s. But we could not solve this

inequality about l for s ∈ (0, 1). When s ∈ (1, 2], it is difficult to obtain the mountain-pass

geometry structure for Is,α in H1
0 (Ω). Thus, the existence of the second positive solution

for (1.6) with s ∈ (0, 1) ∪ (1, 2] is one of future problems of us.

2. Proof of Theorem 1.2

We will divide two parts to complete the proof of Theorem 1.2. First, we prove that (1.1)

with 0 ≤ β < (5 + γ)/2 has a positive local minimizer solution in first part. Secondly,

for 0 < b < A−2 and 2 + γ < β < (5 + γ)/2, we study the existence of the second

positive solution of (1.1) in second part. In order to overcome the difficulty of the singular

term u−γ , we study an approximating equation of (1.1) and prove that the corresponding

approximating equation has at least a positive mountain-pass solution. Finally, we prove

the sequence of positive solutions of the approximating equation is convergent in H1
0 (Ω)

and the limit is indeed a positive solution of (1.1).



Kirchhoff Problems with Hardy-Sobolev Critical Exponent 235

2.1. The existence of the first positive solution

In order to obtain the first positive solution, we give the following important lemmas.

Lemma 2.1. Assume that a > 0, b > 0, 0 < γ < 1, 0 ≤ β < (5 + γ)/2, then there exist

R, ρ > 0 and λ∗ > 0 such that

(2.1) I(u)|u∈SR ≥ ρ > 0, inf
u∈BR

I(u) < 0

for every 0 < λ < λ∗, where SR = {u ∈ H1
0 (Ω) : ‖u‖ = R}, BR = {u ∈ H1

0 (Ω) : ‖u‖ ≤ R}.

Proof. Let R0 > 0 be a constant such that Ω ⊂ B(0, R0) = {x ∈ R3 : |x| < R0}. By

Hölder’s inequality and (1.5), for all u ∈ H1
0 (Ω), since 0 ≤ β < (5 + γ)/2, one has∫

Ω

(u+)1−γ

|x|β
dx ≤

∫
Ω

|u|1−γ

|x|β
dx

≤
(∫

Ω
|u|6 dx

)(1−γ)/6(∫
Ω

1

|x|6β/(5+γ)
dx

)(5+γ)/6

≤ S−(1−γ)/2‖u‖1−γ
(

4π

∫ R0

0
r

2(5+γ)−6β
5+γ dr

)(5+γ)/6

=

[
4π(5 + γ)

3(5 + γ − 2β)

](5+γ)/6

R
(5+γ−2β)/2
0 S−(1−γ)/2‖u‖1−γ .

(2.2)

By (1.4) and (2.2), we have

I(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − 1

4

∫
Ω

(u+)4

|x|
dx− λ

1− γ

∫
Ω

(u+)1−γ

|x|β
dx

≥ a

2
‖u‖2 − 1− bA2

4A2
‖u‖4 − λR

(5−2β+γ)/2
0

(1− γ)S(1−γ)/2

[
4π(5 + γ)

3(5 + γ − 2β)

](5+γ)/6

‖u‖1−γ

≥ ‖u‖1−γ
{
a

2
‖u‖1+γ − 1− bA2

4A2
‖u‖3+γ − λR

(5−2β+γ)/2
0

(1− γ)S(1−γ)/2

[
4π(5 + γ)

3(5 + γ − 2β)

](5+γ)/6
}
.

(2.3)

For all t ≥ 0, let

H(t) =
a

2
t1+γ − 1− bA2

4A2
t3+γ .

When 0 < b < A−2, it is easy to obtain a constant R1 =
[

2a(1+γ)A2

(1−bA2)(3+γ)

]1/2
> 0 such that

maxt≥0H(t) = H(R1) > 0. Letting λ1 = (1−γ)S(1−γ)/2

2R
(5−2β+γ)/2
0

[
3(5+γ−2β)

4π(5+γ)

](5+γ)/6
H(R1), it follows

that there exists a constant ρ > 0 such that I(u)|u∈SR1
≥ ρ for every λ ∈ (0, λ1). When

b ≥ A−2, from (2.3) we can see that I(u)→ +∞ as ‖u‖ → +∞. Therefore, I is coercive on

H1
0 (Ω). Obviously, we can find an R2 > 0 and a constant ρ > 0 such that I(u)|u∈SR2

≥ ρ
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for every λ ∈ (0, λ2), where λ2 = (1−γ)S(1−γ)/2

2R
(5−2β+γ)/2
0

[
3(5+γ−2β)

4π(5+γ)

](5+γ)/6
H(R2) and H(R2) > 0.

Thus, there exist R, λ∗, ρ > 0 such that I(u)|u∈SR ≥ ρ for every λ ∈ (0, λ∗). Choosing

u ∈ BR with u+ 6= 0, we have

lim
t→0+

I(tu)

t1−γ
= − λ

1− γ

∫
Ω

(u+)1−γ

|x|β
dx < 0,

then I(tu) < 0 for all u+ 6= 0 and t small enough. Therefore, one has

(2.4) m0 = inf
u∈BR

I(u) < 0.

Then the proof of Lemma 2.1 is completed.

Lemma 2.2. Suppose that a > 0, b > 0, 0 < γ < 1, 0 ≤ β < (5 + γ)/2 and 0 < λ < λ∗

(λ∗ defined in Lemma 2.1), then I attains the local minimizer m0 in H1
0 (Ω), that is, there

exists u∗ ∈ H1
0 (Ω) such that I(u∗) = m0 < 0.

Proof. First, we prove that there exists u∗ ∈ BR such that I(u∗) = m0 < 0. Actually, by

(2.1), we can infer that

a

2
‖u‖2 +

b

4
‖u‖4 − 1

4

∫
Ω

(u+)4

|x|
dx ≥ ρ for u ∈ SR,

and

(2.5)
a

2
‖u‖2 +

b

4
‖u‖4 − 1

4

∫
Ω

(u+)4

|x|
dx ≥ 0 for u ∈ BR.

By the definition of (2.4), there exists a minimizing sequence {un} ⊂ BR such that

limn→∞ I(un) = m0 < 0. Clearly, this minimizing sequence is bounded in BR, up to a

subsequence, there exists u∗ ∈ H1
0 (Ω) such that

un ⇀ u∗ weakly in H1
0 (Ω), un → u∗ strongly in Lp(Ω), 1 ≤ p < 6,

u4
n

|x|
⇀

u4
∗
|x|

weakly in L1(Ω), un(x)→ u∗(x) a.e. in Ω.
(2.6)

By (2.2) and (2.6), we have

(2.7) lim
n→∞

∫
Ω

(u+
n )1−γ

|x|β
dx =

∫
Ω

(u+
∗ )1−γ

|x|β
dx+ o(1).

Setting wn = un − u∗, we have

(2.8) ‖un‖2 = ‖wn‖2 + ‖u∗‖2 + o(1),

and

(2.9) ‖un‖4 = ‖wn‖4 + ‖u∗‖4 + 2‖wn‖2‖w0‖2 + o(1).
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Moreover, by Lemma 4.2 in [9], one has

(2.10)

∫
Ω

(u+
n )4

|x|
dx =

∫
Ω

(w+
n )4

|x|
dx+

∫
Ω

(u+
0 )4

|x|
dx+ o(1).

If u∗ = 0, then wn = un, it follows that wn ∈ BR. If u∗ 6= 0, from (2.8), we obtain

wn ∈ BR for n large sufficiently. Hence from (2.5) one has

(2.11)
a

2
‖wn‖2 +

b

4
‖wn‖4 −

1

4

∫
Ω

(w+
n )4

|x|
dx ≥ 0.

By (2.7)–(2.11), then we have

m0 = I(un) + o(1)

= I(u∗) +
a

2
‖wn‖2 +

b

4
‖wn‖4 +

b

2
‖wn‖2‖u∗‖2 −

1

4

∫
Ω

(w+
n )4

|x|
dx+ o(1)

≥ I(u∗) +
b

2
‖wn‖2‖u∗‖2 + o(1)

≥ I(u∗) + o(1),

which implies that I(u∗) ≤ m0. Noting that BR is closed and convex, thus u∗ ∈ BR.

By (2.4), we have I(u∗) ≥ m0. Thus we obtain I(u∗) = m0 < 0, that is, u∗ is a local

minimizer. Then the proof of Lemma 2.2 is completed.

Now, we have the following conclusion.

Theorem 2.3. Assume that a > 0, b > 0, 0 < γ < 1, 0 ≤ β < (5 + γ)/2, then (1.1) has

at least a positive solution for 0 < λ < λ∗ (λ∗ defined in Lemma 2.1).

Proof. By Lemma 2.2, there exists u∗ ∈ BR ⊂ H1
0 (Ω) such that I(u∗) = m0 < 0, we only

need prove that u∗ is a positive solution of (1.1). Then for any ϕ ∈ H1
0 (Ω), ϕ ≥ 0, letting

t > 0 small enough, such that u∗ + tϕ ∈ BR, we have

0 ≤ lim inf
t→0+

∫
Ω

I(u∗ + tϕ)− I(u∗)

t
dx

= (a+ b‖u∗‖2)

∫
Ω

(∇u∗,∇ϕ) dx−
∫

Ω

(u+
∗ )3ϕ

|x|
dx

− λ

1− γ
lim sup
t→0+

∫
Ω

(u+
∗ + tϕ)1−γ − (u+

∗ )1−γ

|x|βt
dx.

(2.12)

By the mean value theorem and Fatou lemma, there exists θ > 0 such that

lim sup
t→0+

∫
Ω

(u+
∗ + tϕ)1−γ − (u+

∗ )1−γ

(1− γ)|x|βt
dx ≥ lim inf

t→0+

∫
Ω

(u+
∗ + tϕ)1−γ − (u+

∗ )1−γ

(1− γ)|x|βt
dx

= lim inf
t→0+

∫
Ω

(u+
∗ + θtϕ)−γϕ

|x|βt
dx

≥ λ
∫

Ω

(u+
∗ )−γϕ

|x|β
dx,
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where θ → 0 and (u+
∗ + θtϕ)−γϕ → (u+

∗ )−γϕ as t → 0+, and (u+
∗ + θtϕ)−γϕ ≥ 0.

Consequently, it follows from (2.12) that

(2.13) (a+ b‖u∗‖2)

∫
Ω

(∇u∗,∇ϕ) dx−
∫

Ω

(u+
∗ )3ϕ

|x|
dx− λ

∫
Ω

(u+
∗ )−γϕ

|x|β
dx ≥ 0, ϕ ≥ 0.

Now, we will prove that (2.13) holds for any ϕ ∈ H1
0 (Ω). By Lemma 2.2, we know that

I(u∗) < 0. Combining with (2.1), one has u∗ /∈ SR, that is, ‖u∗‖ < R. For u∗, there exists

σ ∈ (0, 1) such that (1 + t)u∗ ∈ BR for |t| ≤ σ. Define τ : [−σ, σ] by τ(t) = I((1 + t)u∗).

Clearly, τ(t) achieves its minimum at t = 0, namely

(2.14) τ ′(t)|t=0 = a‖u∗‖2 + b‖u∗‖4 −
∫

Ω

(u+
∗ )4

|x|
dx− λ

∫
Ω

(u+
∗ )1−γ

|x|β
dx = 0.

For any ϕ ∈ H1
0 (Ω) and ε > 0, we define Φ ∈ H1

0 (Ω) by

Φ = (u+
∗ + εϕ)+.

Then it follows from (2.13) and (2.14) that

0 ≤
∫

Ω
(a+ b‖u∗‖2)(∇u∗,∇Φ) dx− λ

∫
Ω

(u+
∗ )−γ

|x|β
Φ dx−

∫
Ω

(u+
∗ )3

|x|
Φ dx

=

∫
{u+

∗ +εϕ>0}
(a+ b‖u∗‖2)(∇u∗,∇(u+

∗ + εϕ)) dx

−
∫
{u+

∗ +εϕ>0}

[
(u+
∗ )3(u+

∗ + εϕ)

|x|
+ λ

(u+
∗ )−γ

|x|β
(u+
∗ + εϕ)

]
dx

=

(∫
Ω
−
∫
{u+

∗ +εϕ≤0}

)[
(a+ b‖u∗‖2)(∇u∗,∇(u+

∗ + εϕ))

− (u+
∗ )3(u+

∗ + εϕ)

|x|
− λ(u+

∗ )−γ

|x|β
(u+
∗ + εϕ)

]
dx

≤ a‖u∗‖2 + b‖u∗‖4 − λ
∫

Ω

(u+
∗ )1−γ

|x|β
dx−

∫
Ω

(u+
∗ )4

|x|
dx

+ ε

∫
Ω

[
(a+ b‖u∗‖2)(∇u∗,∇ϕ)− λ(u+

∗ )−γ

|x|β
ϕ− (u+

∗ )3ϕ

|x|

]
dx

−
∫
{u+

∗ +εϕ≤0}
(a+ b‖u∗‖2)(∇u∗,∇(u+

∗ + εϕ)) dx

+

∫
{u+

∗ +εϕ≤0}

[
λ

(u+
∗ )−γ

|x|β
(u+
∗ + εϕ) +

(u+
∗ )3(u+

∗ + εϕ)

|x|

]
dx

≤ ε
∫

Ω

[
(a+ b‖u∗‖2)(∇u∗,∇ϕ)− λ(u+

∗ )−γ

|x|β
θ − (u+

∗ )3ϕ

|x|

]
dx

− ε
∫
{u+

∗ +εϕ≤0}
(a+ b‖u∗‖2)(∇u∗,∇ϕ) dx.

(2.15)
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Since meas({u+
∗ + εϕ ≤ 0})→ 0 as ε→ 0+, it follows that

lim
ε→0+

∫
{u+

∗ +εϕ≤0}
(∇u∗,∇ϕ) dx = 0.

Therefore, dividing by ε and letting ε→ 0+ in (2.15), we deduce that

(2.16) (a+ b‖u∗‖2)

∫
Ω

(∇u∗,∇ϕ) dx− λ
∫

Ω

(u+
∗ )−γ

|x|β
ϕdx−

∫
Ω

(u+
∗ )3ϕ

|x|
dx ≥ 0.

By the arbitrariness of ϕ, this inequality also holds for −ϕ, i.e.,

(2.17) (a+ b‖u∗‖2)

∫
Ω

(∇u∗,∇ϕ) dx− λ
∫

Ω

(u+
∗ )−γ

|x|β
ϕdx−

∫
Ω

(u+
∗ )3ϕ

|x|
dx = 0.

On the one hand, taking the test function ϕ = u−∗ in (2.17), one has ‖u−∗ ‖ = 0, which

implies that u∗ ≥ 0. Hence, u∗ is a nonzero solution of (1.1). On the other hand, from

(2.16), one has

−∆u∗ ≥ 0 in Ω.

Recalling that u∗ ≥ 0 and u∗ 6≡ 0, by using the maximum principle of the weak solution

(see Theorem 3 in [3]), one has u∗ > 0 in Ω. Therefore, u∗ is a positive solution of (1.1)

with I(u∗) = m0 < 0. This completes the proof of Theorem 2.3.

2.2. The existence of the second positive solution

In the part, we will prove that (1.1) has the second positive solution. It is well known

that the singular term leads to the non-differentiability of the functional I on H1
0 (Ω). In

order to overcome the difficulty caused by the singular term and get the second positive

solution of (1.1), we consider the following approximating equation

(2.18)

−
(
a+ b

∫
Ω
|∇u|2 dx

)
∆u =

u3

|x|
+

λ

|x|β(u+ α)γ
, x ∈ Ω,

u = 0, x ∈ ∂Ω

for any α > 0. The energy functional of (2.18) Iα is defined by

Iα(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − 1

4

∫
Ω

(u+)4

|x|
dx− λ

1− γ

∫
Ω

(u+ + α)1−γ − α1−γ

|x|β
dx.

Obviously, Iα is a C1-function on H1
0 (Ω). As well known, there exists a one to one

correspondence between the nonnegative solutions of (2.18) and the critical points of Iα

on H1
0 (Ω). More precisely, we say that u ∈ H1

0 (Ω) is a solution of (2.18), if u satisfies

(2.19) (a+ b‖u‖2)

∫
Ω

(∇u,∇ϕ) dx−
∫

Ω

(u+)3ϕ

|x|
dx− λ

∫
Ω

ϕ

(u+ + α)γ |x|β
dx = 0
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for any ϕ ∈ H1
0 (Ω).

Now, for any α > 0, we will prove that (2.18) has a mountain-pass solution. First, we

show that Iα satisfies the local (C)c condition.

Lemma 2.4. Suppose that a > 0, 0 < b < A−2, 0 < γ < 1, 0 ≤ β < (5 + γ)/2, then Iα

satisfies the (C)c condition on H1
0 (Ω) with c ∈

(
0, a2A2

4(1−bA2)
−Dλ2/(1+γ)

)
, where

D =
a(1 + γ)

4(1− γ)

(
2R

(5−2β+γ)/2
0

aS−(1−γ)/2

)2/(1+γ) [
4π(5 + γ)

3(5 + γ − 2β)

](5+γ)/[3(1+γ)]

and R0 is defined in (2.2).

Proof. Suppose that {un} is a (C)c sequence, for c ∈
(
0, (aA)2

4(1−bA2)
−Dλ2/(1+γ)

)
, i.e.,

(2.20) Iα(un)→ c, (1 + ‖un‖)I ′α(un)→ 0 as n→∞.

First, we prove that {un} is a bounded sequence. By (2.20), one has limn→∞〈I ′α(un), u−n 〉 =

0, that is,

lim
n→∞

[
−(a+ b‖un‖2)‖u−n ‖2 − λ

∫
Ω

u−n
αγ |x|β

dx

]
= 0,

which implies that

(2.21) lim
n→∞

∫
Ω

u−n
αγ |x|β

dx = 0.

Since 0 < γ < 1, it follows from the subadditivity that

(2.22) (u+ + α)1−γ − α1−γ ≤ (u+)1−γ , ∀u ∈ H1
0 (Ω).

By (2.2), (2.20)–(2.22), we have

c+ 1 ≥ Iα(un)− 1

4
〈I ′α(un), un〉+ o(1)

=
a

4
‖un‖2 +

λ

4

∫
Ω

un

|x|β(u+
n + α)γ

dx− λ

1− γ

∫
Ω

(u+
n + α)1−γ − α1−γ

|x|β
dx+ o(1)

≥ a

4
‖un‖2 −

λ

4

∫
Ω

u−n
αγ |x|β

dx− λ

1− γ

∫
Ω

(u+
n )1−γ

|x|β
dx+ o(1)

≥ a

4
‖un‖2 −

λ

1− γ

[
4π(5 + γ)

3(5 + γ − 2β)

](5+γ)/6

R
(5+γ−2β)/2
0 S−(1−γ)/2‖un‖1−γ + o(1),

since 0 < 1−γ < 1, which implies that {un} is bounded in H1
0 (Ω). Going if necessary to a

subsequence, one can get un ⇀ u in H1
0 (Ω). Up to a subsequence, there exists u ∈ H1

0 (Ω)

such that

un ⇀ u weakly in H1
0 (Ω), un → u strongly in Lp(Ω), 1 ≤ p < 6,

u4
n

|x|
⇀

u4

|x|
weakly in L1(Ω), un(x)→ u(x) a.e. in Ω,

there exists φ ∈ Lp(Ω) (1 ≤ p < 6) such that |un(x)|, |u(x)| ≤ φ(x), a.e. in Ω,

(2.23)
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where the last conclusion is from Lemma A.1 in [26]. From (2.23), we obtain∣∣∣∣ un

|x|β(u+
n + α)γ

∣∣∣∣ ≤ |un|
αγ |x|β

≤ φ(x)

αγ |x|β
.

Since 1 < (5 + 4β)/(5− β) < 6, we choose φ ∈ L(5+4β)/(5−β)(Ω), we have∫
Ω

φ(x)

|x|βαγ
dx

≤ 1

αγ

(∫
Ω
|φ(x)|(5+4β)/(5−β) dx

)(5−β)/(5+4β)(∫
Ω
|x|−(5+4β)/5 dx

)5β/(5+4β)

≤ 1

αγ
|φ|(5+4β)/(5−β)

(∫
B(0,R0)

|x|−(5+4β)/5 dx

)5β/(5+4β)

≤ C

αγ
(R0)2β(5−2β)/(5+4β)|φ|(5+4β)/(5−β).

(2.24)

From (2.24), we know φ(x)/(αγ |x|β) ∈ L1(Ω). Thus, applying the dominated convergence

theorem, one has

lim
n→∞

∫
Ω

un

|x|β(u+
n + α)γ

dx =

∫
Ω

u

|x|β(u+ + α)γ
dx.

For given α > 0 and |u|/[|x|β(u+
n + α)γ ] ≤ |u(x)|/(αγ |x|β), by the dominated convergence

theorem and (2.23), we can obtain

(2.25) lim
n→∞

∫
Ω

u

|x|β(u+
n + α)γ

dx =

∫
Ω

u

|x|β(u+ + α)γ
dx.

Let wn = un−u, we claim that ‖wn‖ → 0 as n→∞. Otherwise, there exists a subsequence

(still denoted by ‖wn‖) such that

lim
n→∞

‖wn‖ = l > 0.

By I ′α(un)→ 0 in (H1
0 (Ω))∗, we can deduce that

a‖un‖2 + b‖un‖4 − λ
∫

Ω

(u+
n + α)−γun
|x|β

dx−
∫

Ω

(u+
n )4

|x|
dx = o(1).

By Brézis-Lieb’s Lemma (see [2]) and (2.25), we obtain

o(1) = a‖wn‖2 + a‖u‖2 + b‖wn‖4 + b‖u‖4 + 2b‖wn‖2‖u‖2

− λ
∫

Ω

(u+ + α)−γ

|x|β
u dx−

(∫
Ω

(u+)4

|x|
dx+

∫
Ω

(w+
n )4

|x|
dx

)
.

(2.26)
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It also follows from (2.20) that

0 = lim
n→∞

〈I ′α(un), u〉

= a‖u‖2 + b

(
lim
n→∞

∫
Ω
|∇wn|2 dx+ 2 lim

n→∞

∫
Ω

(∇wn,∇u) dx+

∫
Ω
|∇u|2 dx

)
‖u‖2

− λ
∫

Ω

(u+ + α)−γ

|x|β
u dx−

∫
Ω

(u+)4

|x|
dx,

which implies that

(2.27) a‖u‖2 + bl2‖u‖2 + b‖u‖4 − λ
∫

Ω

(u+ + α)−γ

|x|β
u dx−

∫
Ω

(u+)4

|x|
dx = 0.

On the one hand, by (2.2), (2.22) and (2.27), one has

Iα(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − λ

1− γ

∫
Ω

(u+ + α)1−γ − α1−γ

|x|β
dx− 1

4

∫
Ω

(u+)4

|x|
dx

≥ a

4
‖u‖2 − 1

4
bl2‖u‖2 − λ

1− γ

∫
Ω

(u+ + α)1−γ − α1−γ

|x|β
dx

+
λ

4

∫
Ω

(u+ + α)−γ

|x|β
u dx

≥ a

4
‖u‖2 − λ

1− γ

∫
Ω

|u|1−γ

|x|β
dx− 1

4
bl2‖u‖2

≥ a

4
‖u‖2 − λ

1− γ

[
4π(5 + γ)

3(5 + γ − 2β)

](5+γ)/6 R
(5−2β+γ)/2
0

S(1−γ)/2
‖u‖1−γ − 1

4
bl2‖u‖2

≥ −a(1 + γ)

4(1− γ)

(
2R

(5−2β+γ)/2
0

aS−(1−γ)/2

)2/(1+γ) [
4π(5 + γ)

3(5 + γ − 2β)

](5+γ)/[3(1+γ)]

λ2/(1+γ)

− 1

4
bl2‖u‖2

= −Dλ2/(1+γ) − 1

4
bl2‖u‖2,

(2.28)

where the last inequality is from the Young inequality. On the other hand, it follows from

(2.26) and (2.27) that

(2.29) Iα(un) = Iα(u) +
a

2
‖wn‖2 +

b

4
‖wn‖4 +

b

2
‖wn‖2‖u‖2 −

1

4

∫
Ω

(w+
n )4

|x|
dx+ o(1)

and

(2.30) a‖wn‖2 + b‖wn‖4 + b‖wn‖2‖u‖2 −
∫

Ω

(w+
n )4

|x|
dx = o(1).

By (2.30) and (1.4), we obtain

(2.31) al2 + bl4 + bl2‖u‖2 =

∫
Ω

(w+
n )4

|x|
dx ≤ l4

A2
.
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Consequently, for 0 < b < A−2, by (2.31), one has

l2 ≥ (a+ b‖u‖2)A2

1− bA2
≥ aA2

1− bA2
.

It follows from (2.29) and (2.30) that

Iα(u) = Iα(un)− a

4
‖wn‖2 −

b

4
‖wn‖2‖u‖2 + o(1).

Consequently, for c < (aA)2/[4(1− bA2)]−Dλ2/(1+γ), letting n→ +∞, we deduce that

Iα(u) = c− a

4
l2 − 1

4
bl2‖u‖2

≤ c− a2A2

4(1− bA2)
− 1

4
bl2‖u‖2

< −Dλ2/(1+γ) − 1

4
bl2‖u‖2,

which contradicts to (2.28). Then, un → u in H1
0 (Ω) as n→∞. Therefore, Iα satisfies the

(C)c condition with 0 < c < (aA)2/[4(1−bA2)]−Dλ2/(1+γ). Thus, the proof of Lemma 2.4

is completed.

By Lemma 2.2 in [11], we know that A is attained when Ω = R3 by the functions

yε(x) =
(2ε)1/2

ε+ |x|

for all ε > 0. Moreover, the functions yε(x) solve the equation

−∆u =
u3

|x|
, x ∈ R3 \ {0}.

Let

cε = (2ε)1/2, Uε(x) =
yε(x)

cε
.

Define a cut-off function ϕ ∈ C∞0 (Ω) such that ϕ(x) = 1 for |x| ≤ R, ϕ(x) = 0 for |x| ≥ 2R,

0 ≤ ϕ(x) ≤ 1, where B2R(0) ⊂ Ω, set uε(x) = ϕ(x)Uε(x), vε = uε(x)( ∫
Ω u

4
ε/|x| dx

)1/4 , so that∫
Ω v

4
ε/|x| dx = 1. According to Lemma 11.1 in [9], one has

(2.32) ‖vε‖2 = A+ o(ε),

and

(2.33) ‖vε‖4 = A2 + o(ε).

Next, we prove that the energy functional Iα satisfies the mountain-pass geometry

structure on H1
0 (Ω).
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Lemma 2.5. Assume that a > 0, 0 < b < A−2, 0 < γ < 1 and 0 ≤ β < (5 + γ)/2,

satisfying 0 < α < 1 and R, ρ > 0, 0 < λ < λ∗ (where λ∗, R and ρ are defined in

Lemma 2.1). Then the functional Iα satisfies the following conditions:

(a) Iα(u) ≥ ρ > 0 for all u ∈ H1
0 (Ω),

(b) there exists a function u0 ∈ H1
0 (Ω) such that ‖u0‖ > R and Iα(u0) < ρ.

Proof. (a) From (2.22), we deduce that

Iα(u) ≥ I(u), ∀u ∈ H1
0 (Ω).

Therefore, from (2.1), we obtain (a).

(b) For every vε ∈ H1
0 (Ω), vε 6= 0 and t > 0. Using (2.32) and (2.33), we have

Iα(tvε) =
at2

2
‖vε‖2 +

bt4

4
‖vε‖4 −

t4

4

∫
Ω

v4
ε

|x|
dx

− λ

1− γ

∫
Ω

(t1−γvε + α)1−γ − α1−γ

|x|β
dx

≤ at2

2
‖vε‖2 +

bt4

4
‖vε‖4 −

t4

4

∫
Ω

v4
ε

|x|
dx

=
at2

2
[A+ o(ε)]− bt4

4
[1− bA2 + o(ε)],

since b < A−2, which implies that limt→+∞ Iα(tvε) = −∞. Thus, let u0 = t0vε choosing

t0 > 0 sufficiently large such that ‖u0‖ > R and Iα(u0) < ρ. This completes the proof of

Lemma 2.5.

Finally, we estimate the level value of the mountain-pass and obtain the following

conclusion.

Lemma 2.6. Assume that a > 0, 0 < b < A−2, 0 < γ < 1 and 2 + γ < β < (5 + γ)/2,

then there exists λ0 > 0, for all 0 < λ < λ0, such that

(2.34) sup
t≥0

Iα(tvε) <
a2A2

4(1− bA2)
−Dλ2/(1+γ),

where D is defined in Lemma 2.4.

Proof. Let λ <
(

a2A2

4(1−bS2)D

)(1+γ)/2
, we have a2A2/[4(1 − bS2)] − Dλ2/(1+γ) > 0. Since

Iα(0) = 0 and limt→∞ Iα(tvε) = −∞, by Lemma 2.5, there exists tε > 0 such that

Iα(tεvε) = maxt>0 Iα(tvε) ≥ ρ > 0. Moreover, by the continuity of Iα, there exist positive

constants t1 and t2 such that 0 < t1 ≤ tε ≤ t2. Set Iα(tεvε) = g(tεvε)− λh(tεvε), where g

and h are defined by

g(tεvε) =
at2ε
2
‖vε‖2 +

bt4ε
4
‖vε‖4 −

t4ε
4
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and

h(tεvε) =
1

1− γ

∫
Ω

(tεvε + α)1−γ − α1−γ

|x|β
dx.

First, we claim that there exists a constant C1 > 0 (independent of λ, ε) such that

g(tεvε) ≤
a2A2

4(1− bA2)
+ C1ε.

Indeed, by (2.32) and (2.33), it holds that

g(tεvε) =
at2ε
2
‖vε‖2 +

bt4ε
4
‖vε‖4 −

t4ε
4

≤ a(A+ o(ε))

2
t2ε −

1− bA2 + o(ε)

4
t4ε

≤ a2A2 + o(ε)

4[1− b(A2 + o(ε))]
+ o(ε)

≤ a2A2

4(1− bA2)
+ C1ε.

(2.35)

Next, we prove that there exists a constant C2 > 0 (independent of λ, ε) such that

h(tεvε) ≥ C2ε
(7+γ−3β)/4.

In fact, for β > 2 + γ, we have

h(tεvε) ≥
1

1− γ

∫
|x|≤ε2/3

(tεvε + α)1−γ − α1−γ

|x|β
dx

≥ 1

1− γ

∫
|x|≤ε2/3

(tεvε)
1−γ − α1−γ

|x|β
dx

≥ C
∫
|x|≤ε2/3

ε(1−γ)/2

(ε+ |x|)1−γ |x|β
dx− C

∫
|x|≤ε2/3

1

|x|β
dx

≥ C
∫
|x|≤ε2/3

ε(1−γ)/2

(ε+ ε2/3)1−γε2β/3
dx− C

∫ ε2/3

0
r2−β dr

≥ C
∫
|x|≤ε2/3

ε(1−γ)/2

ε2(1−γ)/3ε2β/3
dx− C

∫ ε2/3

0
r2−β dr

≥ Cε
1−γ

2
− 2

3
(1−γ)+ 6−2β

3 − Cε(6−2β)/3

≥ Cε(11+γ−4β)/6 − Cε(6−2β)/3

≥ C2ε
(11+γ−4β)/6,

(2.36)

where C and C2 are positive constants and independent of λ and ε. Therefore, combining

(2.35) and (2.36), we have

Iα(tεvε) = g(tεvε)− λh(tεvε) ≤
a2A2

4(1− bA2)
+ C1ε− C2λε

(11+γ−4β)/6.
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Since 2 + γ < β < (5 + γ)/2, let ε = λ2/(1+γ), λ <
(

C2
C1+D

)3(1+γ)/[4(β−γ−2)]
, it holds that

C1ε− C2λε
(11+γ−4β)/6 = C1λ

2/(1+γ) − C2λ
(14+4γ−4β)/[3(1+γ)]

= λ2/(1+γ)
[
C1 − C2λ

4(2+γ−β)/[3(1+γ)]
]

< −Dλ2/(1+γ).

Thus, we conclude that

Iα(tεvε) = g(tεvε)− λh(tεvε)

≤ a2A2

4(1− bA2)
+ C1ε− C2λε

(11+γ−4β)/6

≤ a2A2

4(1− bA2)
−Dλ2/(1+γ),

which implies that (2.34) holds provided that 0 < λ < λ0 where

λ0 = min

{(
C2

C1 +D

)3(1+γ)/[4(β−γ−2)]

,

[
a2A2

4(1− bA2)D

](1+γ)/2
}
.

Then, the proof of Lemma 2.6 is completed.

Thus, Iα satisfies (C)c condition on H1
0 (Ω) provided that 0 < c < (aA)2

4(1−bA2)
−Dλ2/(1+γ).

We have the following result.

Theorem 2.7. Suppose that a > 0, 0 < b < A−2, 0 < γ, α < 1 and 2+γ < β < (5+γ)/2,

then there exists λ∗∗ > 0 such that (2.18) has at least a positive uα ∈ H1
0 (Ω) with Iα(uα) >

ρ (ρ is defined in Lemma 2.1) for all 0 < λ < λ∗∗.

Proof. Let λ∗∗ = min{λ∗, λ0}, Lemmas 2.4–2.6 hold for 0 < λ < λ∗∗. Now, we define

Γ := {η ∈ C([0, 1], H0)1(Ω) | η(0) = 0, η(1) = u0},

cα = inf
η∈Γ

max
t∈[0,1]

Iα(η(t)),

where u0 = t0vε is defined in Lemma 2.5. By Lemma 2.4 and Theorem 2.1 in [25], there

exists a sequence {un} ⊂ H1
0 (Ω), such that

Iα(un)→ cα > ρ and (1 + ‖un‖)I ′α(un)→ 0.

Moreover, from Lemmas 2.5 and 2.6, we obtain

ρ < cα ≤ max
t∈[0,1]

Iα(tu0) = max
t∈[0,1]

Iα(tt0vε)

≤ sup
t≥0

Iα(tt0vε) <
(aA)2

4(1− bA2)
−Dλ2/(1+γ).

(2.37)
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According to Lemma 2.4, we obtain {un} ⊂ H1
0 (Ω) has a convergent subsequence, still

denoted by {un}. Assume that {un} converges to uα ∈ H1
0 (Ω). Thus, we have Iα(uα) =

cα > 0 and I ′α(uα) = 0, that is, uα is a nonzero solution of (2.18). Consequently, uα

satisfies (2.19). Choosing u = uα and ϕ = u−α in (2.19), we obtain (a+ b‖uα‖2)‖u−α ‖2 = 0,

which implies that u−α = 0. Thus, uα ≥ 0 and uα 6≡ 0. By the maximum principle of the

weak solution (see Theorem 3 in [3]), we obtain that uα is a positive solution of (2.18).

Therefore, the proof of Theorem 2.7 is completed.

According to Theorem 2.7, for every α ∈ (0, 1), (2.18) has at least a positive mountain-

pass solution {uα} with Iα(uα) > ρ > 0. Thus, there exist {αn} ⊂ (0, 1) with αn → 0

as n→∞, such that {uαn} is a sequence positive mountain-pass solutions of (2.18) with

Iαn(uαn) > ρ > 0. Now, we shall prove that the limit point of the sequence of positive

solutions {uαn} of problem (2.18) is the second positive solution of (1.1) with 0 < b < A−2

and 2 + γ < β < (5 + γ)/2.

Theorem 2.8. Suppose that a > 0, 0 < b < A−2, 0 < γ < 1 and 2 + γ < β < (5 + γ)/2,

then for any 0 < λ < λ∗∗ (λ∗∗ is defined in Theorem 2.7), (1.1) has a positive solution

u∗∗ satisfying I(u∗∗) > 0.

Proof. Noting that {uαn} is a sequence of positive solutions of (2.18), we have

−(a+ b‖uαn‖2)∆uαn =
u3
αn

|x|
+

λ

|x|β(uαn + αn)γ
≥ min

{
1,

λ

Rβ0 2γ

}
.

Consequently, we obtain

−∆uαn ≥
1

a+ b‖uαn‖2
min

{
1,

λ

Rβ0 2γ

}
.

Let e be the positive solution of the following problem−∆u = 1 in Ω,

u = 0 on ∂Ω,

then e(x) > 0 in Ω. Therefore, by the comparison principle, one has

(2.38) uαn ≥
1

a+ b‖uαn‖2
min

{
1,

λ

Rβ0 2γ

}
e > 0.
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Furthermore, from (2.2), (2.22) and (2.37), we deduce that

(aA)2

4(1− bA2)
−Dλ2/(1+γ)

> Iαn(uαn)− 1

4
〈I ′αn(uαn), uαn〉

=
a

4
‖uαn‖2 −

λ

1− γ

∫
Ω

(uαn + αn)1−γ − α1−γ
n

|x|β
dx

+
λ

4

∫
Ω

uαn
|x|β(uαn + αn)γ

dx

≥ a

4
‖uαn‖2 −

λ

1− γ

[
4π(5 + γ)

3(5 + γ − 2β)

](5+γ)/6

R
(5−2β+γ)/2
0 S−(1−γ)/2‖uαn‖1−γ ,

which implies that {uαn} is bounded in H1
0 (Ω). Up to a subsequence, there exists u∗∗ ≥ 0

with u∗∗ ∈ H1
0 (Ω) such that

uαn ⇀ u∗∗ weakly in H1
0 (Ω), uαn → u∗∗ strongly in Lp(Ω), 1 ≤ p < 6,

u4
αn

|x|
⇀

u4
∗∗
|x|

weakly in L1(Ω), uαn(x)→ u∗∗(x) a.e. in Ω.
(2.39)

Now, we prove that uαn → u∗∗ in H1
0 (Ω) as n→∞. As usual, let wαn = uαn−u∗∗, we

claim that ‖wαn‖ → 0 as n → ∞. By contradiction, assume that ‖wαn‖ 6→ 0, then there

exists a subsequence (still denoted by ‖wαn‖) such that limn→∞ ‖wαn‖ = l > 0. Since

uαn
|x|β(uαn + αn)γ

≤ u1−γ
αn

|x|β
,

by the dominated convergence theorem and (2.39), one gets

lim
n→∞

∫
Ω

uαn
|x|β(uαn + αn)γ

dx =

∫
Ω

u1−γ
∗∗
|x|β

dx.

From I ′αn(uαn)→ 0 in (H1
0 (Ω))∗, we obtain

a‖uαn‖2 + b‖uαn‖4 − λ
∫

Ω

uαn
|x|β(uαn + αn)γ

dx−
∫

Ω

u4
αn

|x|
dx = o(1).

Consequently, by Brézis-Lieb’s Lemma, we deduce that

o(1) = a‖wαn‖2 + a‖u∗∗‖2 + b‖wαn‖4 + b‖u∗∗‖4 + 2b‖wαn‖2‖u∗∗‖2

− λ
∫

Ω

u1−γ
αn

|x|β
dx−

(∫
Ω

u4
∗∗
|x|

dx+

∫
Ω

w4
αn

|x|
dx

)
.

(2.40)

From (2.38), let n→∞, we have u∗∗ > 0. Since uαn satisfies (2.19), choosing u = uαn and

taking the test function ϕ = φ ∈ H1
0 (Ω) ∩ C0(Ω) (C0(Ω) is the subset of C(Ω) consisting

of functions with compact support in Ω), let n→∞, we obtain

(2.41) (a+ bl2 + b‖u∗∗‖2)

∫
Ω

(∇u∗∗,∇φ) dx = λ

∫
Ω

u−γ∗∗
|x|β

φdx+

∫
Ω

u3
∗∗
|x|

φdx.
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We will show that (2.41) holds for any φ ∈ H1
0 (Ω). Indeed, since H1

0 (Ω) ∩ C0(Ω) is dense

in H1
0 (Ω), for any φ ∈ H1

0 (Ω) there exists a sequence {φn} ⊂ H1
0 (Ω) ∩ C0(Ω) such that

φn → φ in H1
0 (Ω) as n → ∞. For n,m ∈ N+ large enough, replacing φ with φn − φm in

(2.41), we obtain

(a+ bl2 + b‖u∗∗‖2)

∫
Ω

(∇u∗∗,∇|φn − φm|) dx = λ

∫
Ω

u−γ∗∗
|x|β
|φn − φm| dx

+

∫
Ω

u3
∗∗
|x|
|φn − φm| dx.

(2.42)

On one hand, since φn → φ, from (2.42) we can infer that {φn/(|x|βuγ∗∗)} is a Cauchy

sequence in L1(Ω). Hence, there exists ψ ∈ L1(Ω) satisfying φn/(|x|βuγ∗∗) → ψ in L1(Ω),

which means that φn/(|x|βuγ∗∗) → ψ(x) in measure. By Riesz’s Theorem, {φn/(|x|βuγ∗∗)}
has a subsequence, still denoted by {φn/(|x|βuγ∗∗)}, such that

(2.43)
φn
|x|βuγ∗∗

→ ψ(x) a.e. x ∈ Ω.

On the other hand, since φn/(|x|βuγ∗∗) → φ/(|x|βuγ∗∗) a.e. in Ω, from (2.43), one has

φ/(|x|βuγ∗∗) = ψ. Thus, ∫
Ω

φn
|x|βuγ∗∗

dx→
∫

Ω

φ

|x|βuγ∗∗
dx

as n → ∞. Then, taking the test function φ = φn in (2.41) and passing to the limit as

n→∞, we deduce that (2.41) holds for any φ ∈ H1
0 (Ω).

In particular, choosing φ = u∗∗ in (2.41), we have

(2.44) a‖u∗∗‖2 + b‖u∗∗‖4 + bl2‖u∗∗‖2 −
∫

Ω

u4
∗∗
|x|

dx− λ
∫

Ω

u1−γ
∗∗
|x|β

= 0.

From (2.40) and (2.44), we can deduce that

(2.45) a‖wαn‖2 + b‖wαn‖4 + b‖wαn‖2‖u∗∗‖2 −
∫

Ω

w4
αn

|x|
dx = o(1).

By (1.4) and let n→∞, it follows from (2.45) that

al2 + bl4 + bl2‖u∗∗‖2 =

∫
Ω

w4
αn

|x|
dx ≤ l4

A2
.

Since 0 < b < A−2, one has

(2.46) l2 ≥ (a+ b‖u∗∗‖2)A2

1− bA2
>

aA2

1− bA2
.

It follows from (2.45) and Brézis-Lieb’s lemma that

(2.47) I(u∗∗) = Iαn(uαn)− a

4
l2 − b

4
l2‖u∗∗‖2 + o(1).
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On the one hand, combining (2.2) and (2.44), similar to obtain (2.28), one obtains

I(u∗∗)

≥ a

2
‖u∗∗‖2 −

(
1

1− γ
− 1

4

)
λ

∫
Ω

u1−γ
∗∗
|x|β

dx− 1

4
bl2‖u∗∗‖2

≥ a

4
‖u∗∗‖2 −

λ

1− γ

∫
Ω

u1−γ
∗∗
|x|β

dx− 1

4
bl2‖u∗∗‖2

≥ a

4
‖u∗∗‖2 −

λ

1− γ

[
4π(5 + γ)

3(5 + γ − 2β)

](5+γ)/6 R
(5−2β+γ)/2
0

S(1−γ)/2
‖u∗∗‖1−γ −

1

4
bl2‖u∗∗‖2

≥ −a(1 + γ)

4(1− γ)

(
2R

(5−2β+γ)/2
0

aS−(1−γ)/2

)2/(1+γ) [
4π(5 + γ)

3(5 + γ − 2β)

]4π(5+γ)/[3(1+γ)]

λ2/(1+γ)

− 1

4
bl2‖u∗∗‖2

= −Dλ2/(1+γ) − 1

4
bl2‖u∗∗‖2.

(2.48)

On the other hand, since Iαn(uαn) < a2A2

4(1−bS2)
−Dλ2/(1+γ), it follows from (2.46) and (2.47)

that

I(u∗∗) =
(aA)2

4(1− bA2)
−Dλ2/(1+γ) − a

4
l2 − 1

4
bl2‖u∗∗‖2

<
(aA)2

4(1− bA2)
−Dλ2/(1+γ) − (aA)2

4(1− bA2)
− 1

4
bl2‖u∗∗‖2

= −Dλ2/(1+γ) − 1

4
bl2‖u∗∗‖2,

which contradicts to (2.48). Thus, l = 0 and our claim is true. That is, uαn → u∗∗ in

H1
0 (Ω) as n→∞. By (2.41), one has

(a+ b‖u∗∗‖2)

∫
Ω

(∇u∗∗,∇φ) dx =

∫
Ω

u3
∗∗
|x|

φdx+ λ

∫
Ω

φ

|x|βuγ∗∗
dx

for any φ ∈ H1
0 (Ω). Consequently, u∗∗ is a positive solution of (1.1). Moreover, one has

I(u∗∗) = limn→∞ Iαn(uαn) > ρ > 0. This completes the proof of Theorem 2.8.

Therefore, according to Theorems 2.3 and 2.8, Theorem 1.2 is proved.
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[1] C. O. Alves, F. J. S. A. Corrêa and G. M. Figueiredo, On a class of nonlocal elliptic

problems with critical growth, Differ. Equ. Appl. 2 (2010), no. 3, 409–417.
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their Applications 24, Birkhäuser Boston, Boston, MA, 1996.

[27] L. Yang, Z. Liu and Z. Ouyang, Multiplicity results for the Kirchhoff type equations

with critical growth, Appl. Math. Lett. 63 (2017), 118–123.

[28] J. Zhang, The critical Neumann problem of Kirchhoff type, Appl. Math. Comput. 274

(2016), 519–530.

[29] C. Zhang and Z. Liu, Multiplicity of nontrivial solutions for a critical degenerate

Kirchhoff type problem, Appl. Math. Lett. 69 (2017), 87–93.

[30] W. Zou and M. Schechter, Critical Point Theory and its Applications, Springer, New

York, 2006.

Yu-Ting Tang

School of Mathematics and Statistics, Southwest University, Chongqing 400715,

P. R. China

E-mail address: 798709382@qq.com

Jia-Feng Liao

College of Mathematics Education, China West Normal University, Nanchong Sichuan

637002, P. R. China

E-mail address: liaojiafeng@163.com

Chun-Lei Tang

School of Mathematics and Statistics, Southwest University, Chongqing 400715,

P. R. China

E-mail address: tangcl@swu.edu.cn


	Introduction and main result
	Proof of Theorem 1.2
	The existence of the first positive solution
	The existence of the second positive solution


