A Menon-type Identity with Multiplicative and Additive Characters

Yan Li, Xiaoyu Hu and Daeyeoul Kim*

Abstract. This paper studies Menon-type identities involving both multiplicative characters and additive characters. In the paper, we shall give the explicit formula of the following sum

$$\sum_{\substack{a \in \mathbb{Z}_n^*\\b_1, \dots, b_k \in \mathbb{Z}_n}} \gcd(a-1, b_1, \dots, b_k, n) \chi(a) \lambda_1(b_1) \cdots \lambda_k(b_k),$$

where for a positive integer n, \mathbb{Z}_n^* is the group of units of the ring $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$, gcd represents the greatest common divisor, χ is a Dirichlet character modulo n, and for a nonnegative integer $k, \lambda_1, \ldots, \lambda_k$ are additive characters of \mathbb{Z}_n . Our formula further extends the previous results by Sury [13], Zhao-Cao [17] and Li-Hu-Kim [4].

1. Introduction

In 1965, P. K. Menon [7] proved the following beautiful identity:

(1.1)
$$\sum_{a \in \mathbb{Z}_n^*} \gcd(a-1,n) = \varphi(n)\tau(n),$$

where for a positive integer n, \mathbb{Z}_n^* is the group of units of the ring $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$, gcd represents the greatest common divisor, φ is the Euler's totient function and $\tau(n)$ is the number of positive divisors of n.

The Menon's identity (1.1) is very interesting and appealing. Many mathematicians made contributions on it. It has been proved by B. Sury [13] that

(1.2)
$$\sum_{\substack{a \in \mathbb{Z}_n^*\\b_1, \dots, b_k \in \mathbb{Z}_n}} \gcd(a-1, b_1, \dots, b_k, n) = \varphi(n)\sigma_k(n),$$

where $\sigma_k(n) = \sum_{d|n} d^k$ by using the Cauchy-Frobenius-Burnside lemma. It is also interesting to note that Miguel [8,9] extended identities (1.1) and (1.2) from \mathbb{Z} to any residually finite Dedekind domain.

Received February 13, 2018; Accepted July 10, 2018.

Communicated by Yu-Ru Liu.

²⁰¹⁰ Mathematics Subject Classification. 11A07, 11A25.

Key words and phrases. Menon's identity, Dirichlet character, additive character, divisor function, Euler's totient function, Iverson bracket, Chinese remainder theorem.

^{*}Corresponding author.

Recently, Zhao and Cao [17] derived the following elegant Menon-type identity with a Dirichlet character

(1.3)
$$\sum_{a \in \mathbb{Z}_n^*} \gcd(a-1,n)\chi(a) = \varphi(n)\tau\left(\frac{n}{d}\right),$$

where χ is a Dirichlet character modulo n and d is the conductor of χ .

From the point of view of Fourier analysis on finite Abelian groups, Zhao and Cao's results in fact give the explicit expression of Fourier transformation of the function $f(a) = \gcd(a-1,n)$ on the Abelian group $(\mathbb{Z}/n\mathbb{Z})^*$. Therefore, the identity (1.3) is not only graceful but also gives more information.

In [4], Li, Hu and Kim further extended identities (1.2) and (1.3). They obtained the following identity with Dirichlet character χ :

(1.4)
$$\sum_{\substack{a \in \mathbb{Z}_n^*\\b_1, \dots, b_k \in \mathbb{Z}_n}} \gcd(a-1, b_1, \dots, b_k, n) \chi(a) = \varphi(n) \sigma_k\left(\frac{n}{d}\right),$$

where d is the conductor of χ and k is a nonnegative integer.

For other related works on Menon's identity, see [1–3, 5, 6, 10–12, 14–16] and references therein.

Denote

(1.5)
$$S_{\chi,\underline{\lambda}}(n,k) = \sum_{\substack{a \in \mathbb{Z}_n^*\\b_1,\dots,b_k \in \mathbb{Z}_n}} \gcd(a-1,b_1,\dots,b_k,n)\chi(a)\lambda_1(b_1)\cdots\lambda_k(b_k),$$

where $\lambda_1, \ldots, \lambda_k$ are additive characters of \mathbb{Z}_n and $\underline{\lambda}$ represents the vector $(\lambda_1, \ldots, \lambda_k)$. For $1 \leq i \leq k$, each λ_i can be uniquely written as

(1.6)
$$\lambda_i(b) = \exp(2\pi\sqrt{-1}w_ib/n), \quad 0 \le w_i \le n-1, \ w_i \in \mathbb{Z}$$

where $b \in \mathbb{Z}_n$ and $\sqrt{-1}$ is the square root of -1 whose imaginary part is positive. Denote the order of λ_i by d_i , that is,

(1.7)
$$d_i = \frac{n}{\gcd(w_i, n)}.$$

Theorem 1.1. Let n be a positive integer and χ be a Dirichlet character modulo n whose conductor is d. Assume k is a nonnegative integer. Let $\lambda_1, \ldots, \lambda_k$ be additive characters of \mathbb{Z}_n , explicitly given in (1.6). Let d_1, \ldots, d_k as in (1.7) be the orders of $\lambda_1, \ldots, \lambda_k$, respectively. Then, we have the following identity:

$$\sum_{\substack{a \in \mathbb{Z}_n^*\\b_1,\dots,b_k \in \mathbb{Z}_n}} \gcd(a-1,b_1,\dots,b_k,n)\chi(a)\lambda_1(b_1)\cdots\lambda_k(b_k) = \varphi(n)\sigma_k\left(\frac{n}{\operatorname{lcm}(d,d_1,\dots,d_k)}\right)$$

where lcm represents the least common multiple. Equivalently, it can also be written as

$$\sum_{\substack{a \in \mathbb{Z}_n^*\\b_1,\dots,b_k \in \mathbb{Z}_n}} \gcd(a-1,b_1,\dots,b_k,n)\chi(a)\lambda_1(b_1)\cdots\lambda_k(b_k) = \varphi(n)\sigma_k\left(\gcd\left(\frac{n}{d},w_1,\dots,w_k\right)\right).$$

From the point of view of Fourier analysis, Theorem 1.1 gives the explicit expression of Fourier coefficients of the function $f(a, b_1, \ldots, b_k) = \gcd(a-1, b_1, \ldots, b_k, n)$ on the Abelian group $(\mathbb{Z}/n\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^k$.

Remark 1.2. If additive characters $\lambda_1, \ldots, \lambda_k$ are trivial, then Theorem 1.1 reduces to identity (1.4). If both additive characters $\lambda_1, \ldots, \lambda_k$ and multiplicative character χ are trivial, Theorem 1.1 reduces to Sury's identity (1.2). If k = 0, Theorem 1.1 reduces to Zhao and Cao's identity (1.3).

The rest of paper is organized as follows. In Section 2, we prove Theorem 1.1 in the special case of n being a prime power. The general case is treated in Section 3 by combining prime power cases with the Chinese remainder theorem.

2. Prime power case

In this section, we assume $n = p^m$, where p is a prime number and m is a positive integer. Let χ be a Dirichlet character modulo n with conductor d. Since $d \mid n$, we denote $d = p^t$, where $0 \leq t \leq m$. Let $\lambda_1, \ldots, \lambda_k$ be additive characters of \mathbb{Z}_n with orders d_1, \ldots, d_k , respectively. For $1 \leq i \leq k$, since $d_i \mid n$, we denote $d_i = p^{v_i}$, where $0 \leq v_i \leq m$.

Since $n = p^m$ is a prime power, the whole subgroups of \mathbb{Z}_n form a chain:

$$0 = p^m \mathbb{Z}_n \subset p^{m-1} \mathbb{Z}_n \subset \dots \subset p \mathbb{Z}_n \subset \mathbb{Z}_n.$$

Clearly, for $0 \le s \le m$, $\#(p^s \mathbb{Z}_n) = p^{m-s}$, where # denote the cardinality of sets.

In the following, we adopt the similar method as in [4] to calculate $S_{\chi,\underline{\lambda}}(p^m,k)$. From (1.5), we obtain

(2.1)

$$\sum_{\substack{a \in \mathbb{Z}_n^*\\b_1, \dots, b_k \in \mathbb{Z}_n}} \gcd(a - 1, b_1, \dots, b_k, n) \chi(a) \lambda_1(b_1) \cdots \lambda_k(b_k) \\
= \sum_{s=0}^m \sum_{\substack{g \in d(b_1, \dots, b_k, n) = p^s \\ b_1, \dots, b_k \in \mathbb{Z}_n}} \sum_{a \in \mathbb{Z}_n^*} \gcd(a - 1, p^s) \chi(a) \lambda_1(b_1) \cdots \lambda_k(b_k) \\
= \sum_{s=0}^m \left(\sum_{a \in \mathbb{Z}_n^*} \gcd(a - 1, p^s) \chi(a) \right) \left(\sum_{\substack{g \in d(b_1, \dots, b_k, n) = p^s \\ b_1, \dots, b_k \in \mathbb{Z}_n}} \lambda_1(b_1) \cdots \lambda_k(b_k) \right).$$

Therefore, we need to compute

$$\sum_{a \in \mathbb{Z}_n^*} \gcd(a-1, p^s) \chi(a) \quad \text{and} \quad \sum_{\substack{\gcd(b_1, \dots, b_k, n) = p^s \\ b_1, \dots, b_k \in \mathbb{Z}_n}} \lambda_1(b_1) \cdots \lambda_k(b_k)$$

explicitly. The first summation is already treated in [4]. We quote it here as Lemma 2.1. The second summation is computed in Lemma 2.3.

Lemma 2.1. [4, Lemma 2.2] Let $n = p^m$ and χ be a Dirichlet character modulo n with conductor p^t , where $0 \le t \le m$. Let s be an integer such that $0 \le s \le m$. Then we obtain

$$\sum_{a \in \mathbb{Z}_n^*} \gcd(a-1, p^s) \chi(a) = \begin{cases} (s-t+1)(p^m - p^{m-1}) & \text{if } s \ge t, \\ 0 & \text{otherwise} \end{cases}$$

Note that in Lemma 2.1, if s = m, this is just Lemma 3.1 of [17].

The following lemma is important to prove Lemma 2.3. It is a standard fact on characters of finite Abelian groups. For convenience of readers, we give a concrete proof here.

Lemma 2.2. Let $n = p^m$ and λ be an additive character of \mathbb{Z}_n with order p^v . Then, for $0 \leq s \leq m$, we have

$$\sum_{b \in p^s \mathbb{Z}_n} \lambda(b) = p^{m-s} [s \ge v],$$

where $[s \ge v]$ is the Iverson bracket, that is,

$$[s \ge v] = \begin{cases} 1 & \text{if } s \ge v, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. For $b \in p^s \mathbb{Z}_n$, write $b = p^s b'$ with some $b' \in \mathbb{Z}_n$. Then $\lambda(b) = \lambda^{p^s}(b')$. If $s \ge v$, then λ^{p^s} is a trivial character. In this case, $\lambda(b) = 1$ for every $b \in p^s \mathbb{Z}_n$. Therefore, we obtain

$$\sum_{b \in p^s \mathbb{Z}_n} \lambda(b) = \#(p^s \mathbb{Z}_n) = p^{m-s}.$$

Otherwise, λ^{p^s} is nontrivial on \mathbb{Z}_n . Hence, there exists some $b_0 = p^s b'_0 \in p^s \mathbb{Z}_n$ such that $\lambda(b_0) = \lambda^{p^s}(b'_0) \neq 1$. We have

$$\sum_{b \in p^s \mathbb{Z}_n} \lambda(b) = \sum_{b \in p^s \mathbb{Z}_n} \lambda(b+b_0) = \lambda(b_0) \sum_{b \in p^s \mathbb{Z}_n} \lambda(b).$$

As a result, we obtain

$$\sum_{b \in p^s \mathbb{Z}_n} \lambda(b) = 0.$$

Lemma 2.3. Let $n = p^m$ be a prime power and $0 \le s \le m$ be an integer. Assume $k \ge 0$ is an integer. Let $\lambda_1, \ldots, \lambda_k$ be additive characters of \mathbb{Z}_n with orders p^{v_1}, \ldots, p^{v_k} , respectively. Denote $v = \max\{v_1, \ldots, v_k\}$. Then for $0 \le s \le m - 1$,

$$\sum_{\substack{b_1,\dots,b_k \in \mathbb{Z}_n \\ \gcd(b_1,\dots,b_k,p^m) = p^s}} \lambda_1(b_1) \cdots \lambda_k(b_k) = p^{(m-s)k} [s \ge v] - p^{(m-s-1)k} [s+1 \ge v],$$

where $[s \ge v]$ is the Iverson bracket. Otherwise, for s = m, it is equal to 1.

Proof. The case k = 0 is obvious. Thus, we assume $k \ge 1$. Clearly,

(2.2)
$$\sum_{b_1,\dots,b_k \in p^s \mathbb{Z}_n} \lambda_1(b_1) \cdots \lambda_k(b_k) = \prod_{i=1}^k \sum_{b_i \in p^s \mathbb{Z}_n} \lambda_i(b_i).$$

Substituting Lemma 2.2 into (2.2), we get that

(2.3)
$$\sum_{b_1,\dots,b_k \in p^s \mathbb{Z}_n} \lambda_1(b_1) \cdots \lambda_k(b_k) = \prod_{i=1}^k p^{m-s} [s \ge v_i] = p^{(m-s)k} [s \ge v].$$

Note that $p^s | \operatorname{gcd}(b_1, \ldots, b_k, p^m)$ if and only if $b_1, \ldots, b_k \in p^s \mathbb{Z}_n$ holds. Therefore, for $0 \leq s \leq m-1$,

$$gcd(b_1,\ldots,b_k,p^m) = p^s \iff (b_1,\ldots,b_k) \in (p^s \mathbb{Z}_n)^k - (p^{s+1} \mathbb{Z}_n)^k.$$

Hence, we obtain

(2.4)
$$\sum_{\substack{b_1,\dots,b_k \in \mathbb{Z}_n \\ \gcd(b_1,\dots,b_k,p^m) = p^s}} \lambda_1(b_1) \cdots \lambda_k(b_k) = \sum_{b_1,\dots,b_k \in p^s \mathbb{Z}_n} \lambda_1(b_1) \cdots \lambda_k(b_k) - \sum_{b_1,\dots,b_k \in p^{s+1} \mathbb{Z}_n} \lambda_1(b_1) \cdots \lambda_k(b_k).$$

It then follows from (2.3) and (2.4) that

$$\sum_{\substack{b_1,\dots,b_k \in \mathbb{Z}_n \\ \gcd(b_1,\dots,b_k,p^m) = p^s}} \lambda_1(b_1) \cdots \lambda_k(b_k) = p^{(m-s)k} [s \ge v] - p^{(m-s-1)k} [s+1 \ge v].$$

Thus, the case $0 \le s \le m - 1$ is done.

Clearly, for s = m, one can readily check that

$$gcd(b_1,\ldots,b_k,p^m) = p^s \iff (b_1,\ldots,b_k) \in (p^s \mathbb{Z}_n)^k$$

In this case, there is only one summation term $\lambda_1(p^m) \cdots \lambda_k(p^m)$, which is equal to 1. This concludes the proof.

Finally, we prove the following result, which is a special case of Theorem 1.1.

Theorem 2.4. Let $n = p^m$ be a prime power and χ be a Dirichlet character whose conductor is $d = p^t$. Assume k is a nonnegative integer. Let λ_i be an additive character of \mathbb{Z}_n with order $d_i = p^{v_i}$ such that $0 \le v_i \le m$, where $1 \le i \le k$. Then, the following identity holds

$$\sum_{\substack{a \in \mathbb{Z}_n^*\\b_1,\dots,b_k \in \mathbb{Z}_n}} \gcd(a-1,b_1,\dots,b_k,n)\chi(a)\lambda_1(b_1)\cdots\lambda_k(b_k) = \varphi(n)\sigma_k\left(\frac{n}{\operatorname{lcm}(d,d_1,\dots,d_k)}\right),$$

where $lcm(d, d_1, \ldots, d_k)$ is the least common multiple of d, d_1, \ldots, d_k .

Proof. By equation (2.1), $S_{\chi,\underline{\lambda}}(p^m,k)$ equals to

(2.5)
$$\sum_{s=0}^{m} \left(\sum_{a \in \mathbb{Z}_n^*} \gcd(a-1, p^s) \chi(a) \right) \left(\sum_{\substack{b_1, \dots, b_k \in \mathbb{Z}_n \\ \gcd(b_1, \dots, b_k, p^m) = p^s}} \lambda_1(b_1) \cdots \lambda_k(b_k) \right).$$

Substituting Lemma 2.1 into (2.5), we get

(2.6)
$$S_{\chi,\underline{\lambda}}(p^m,k) = \sum_{s=t}^m (s-t+1)(p^m-p^{m-1}) \left(\sum_{\substack{b_1,\dots,b_k \in \mathbb{Z}_n \\ \gcd(b_1,\dots,b_k,p^m) = p^s}} \lambda_1(b_1) \cdots \lambda_k(b_k) \right).$$

Denote $v = \max\{v_1, \ldots, v_k\}$. Then substituting Lemma 2.3 into (2.6), we have that $S_{\chi,\underline{\lambda}}(p^m,k)$ equals to

$$\varphi(p^m) \left(\sum_{s=t}^{m-1} (s-t+1) \left(p^{(m-s)k} [s \ge v] - p^{(m-s-1)k} [s+1 \ge v] \right) + (m-t+1) \right)$$

= $\varphi(p^m) \left(\sum_{s=t}^m (s-t+1) p^{(m-s)k} [s \ge v] - \sum_{s=t}^{m-1} (s-t+1) p^{(m-s-1)k} [s+1 \ge v] \right)$
= $\varphi(p^m) \left(\sum_{s=t}^m (s-t+1) p^{(m-s)k} [s \ge v] - \sum_{s=t+1}^m (s-t) p^{(m-s)k} [s \ge v] \right).$

The last equality is obtained by substituting s + 1 with s in the posterior summation. It is easy to see that

$$S_{\chi,\underline{\lambda}}(p^m,k) = \varphi(p^m) \sum_{s=t}^m p^{(m-s)k} [s \ge v]$$
$$= \varphi(p^m) \sum_{s=\max\{t,v\}}^m p^{(m-s)k}$$
$$= \varphi(p^m) \sum_{s=0}^{m-\max\{t,v\}} p^{sk}.$$

Further, the last equality is obtained by substituting m-s with s. Therefore,

$$S_{\chi,\underline{\lambda}}(p^m,k) = \varphi(p^m)\sigma_k\left(\frac{p^m}{p^{\max\{t,v\}}}\right) = \varphi(p^m)\sigma_k\left(\frac{p^m}{\operatorname{lcm}(p^t,p^{v_1},\ldots,p^{v_k})}\right),$$
ncludes the proof.

which concludes the proof.

3. The general case

In this section, we will prove the main theorem. First, we show that $S_{\chi,\underline{\lambda}}(n,k)$ is multiplicative with respect to n by the Chinese remainder theorem. Then, using multiplicative property, we prove Theorem 1.1 by combining prime power cases, which are already treated in Section 2.

Let $n = n_1 n_2$ be the product of positive integers n_1 and n_2 such that $gcd(n_1, n_2) = 1$. By the Chinese remainder theorem, we have the ring isomorphism: $\mathbb{Z}_n \simeq \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2}$, which induces the multiplicative group isomorphism: $\mathbb{Z}_n^* \simeq \mathbb{Z}_{n_1}^* \times \mathbb{Z}_{n_2}^*$. Therefore, each Dirichlet character modulo n can be uniquely written as $\chi = \chi' \cdot \chi''$, where χ, χ' and χ'' are Dirichlet characters modulo n, n_1 and n_2 , respectively. Similarly, any additive character λ of \mathbb{Z}_n can be uniquely written as $\lambda = \lambda' \cdot \lambda''$, where λ' and λ'' are additive characters of \mathbb{Z}_{n_1} and \mathbb{Z}_{n_2} , respectively. Explicitly, we obtain that

(3.1)
$$\chi(c \mod n) = \chi'(c \mod n_1) \cdot \chi''(c \mod n_2)$$

and

(3.2)
$$\lambda(c \mod n) = \lambda'(c \mod n_1) \cdot \lambda''(c \mod n_2)$$

for any integer c such that gcd(c,n) = 1. For $1 \le i \le k$, we denote $\lambda_i = \lambda'_i \cdot \lambda''_i$ with the same meaning as above.

To simplify notations, for $a \in \mathbb{Z}_n$, we let $a' \in \mathbb{Z}_{n_1}$ and $a'' \in \mathbb{Z}_{n_2}$ denote the image of a in \mathbb{Z}_{n_1} and \mathbb{Z}_{n_2} , respectively, i.e.,

$$a' \equiv a \mod n_1$$
 and $a'' \equiv a \mod n_2$.

Let d, d' and d'' be the conductors of χ , χ' and χ'' , respectively. It is well known that d = d'd''. For $1 \le i \le k$, let d_i , d'_i and d''_i be the orders of λ_i , λ'_i and λ''_i , respectively. Since d'_i and d''_i are coprime to each other, we have $d_i = d'_i \cdot d''_i$, where $1 \le i \le k$. Denote the vectors $(\lambda'_1, \ldots, \lambda'_k)$ and $(\lambda''_1, \ldots, \lambda''_k)$ by $\underline{\lambda}'$ and $\underline{\lambda}''$, respectively.

The following lemma shows that $S_{\chi,\underline{\lambda}}(n,k)$ is multiplicative with respect to n.

Lemma 3.1. With the above notations we have

$$S_{\chi,\underline{\lambda}}(n,k) = S_{\chi',\underline{\lambda}'}(n_1,k) \cdot S_{\chi'',\underline{\lambda}''}(n_2,k).$$

Proof. From (1.5), (3.1) and (3.2), we have

The last equality is obtained by the Chinese remainder theorem. Indeed, as (a, b_1, \ldots, b_k) runs over $\mathbb{Z}_n^* \times (\mathbb{Z}_n)^k$, $(a', b'_1, \ldots, b'_k, a'', b''_1, \ldots, b''_k)$ runs over $\mathbb{Z}_{n_1}^* \times (\mathbb{Z}_{n_1})^k \times \mathbb{Z}_{n_2}^* \times (\mathbb{Z}_{n_2})^k$, too. Therefore, we have

$$S_{\chi,\underline{\lambda}}(n,k) = S_{\chi',\underline{\lambda}'}(n_1,k) \cdot S_{\chi'',\underline{\lambda}''}(n_2,k).$$

Remark 3.2. The proof of Lemma 3.1 is similar to that of Lemma 3.1 in [4]. Also see the proof of Theorem 1.1 and Theorem 1.2 in [17].

Proof of Theorem 1.1. We prove the first identity by induction on $\omega(n)$, where $\omega(n)$ is the number of distinct prime factors of n.

If $\omega(n) = 1$, i.e., n is a prime power, this is proved in Theorem 2.4. Assume it is true for $\omega(n) = u - 1$, where $u \ge 2$ is an integer. Now we consider the case $\omega(n) = u$.

Let p^m be a prime power, exactly dividing n. Denote $n_1 = p^m$ and $n_2 = n/p^m$. Then $gcd(n_1, n_2) = 1$.

Factor $\chi = \chi' \cdot \chi''$, where χ' and χ'' are Dirichlet characters modulo n_1 and n_2 with conductors d' and d'', respectively. Similarly, for $1 \leq i \leq k$, decompose $\lambda_i = \lambda'_i \cdot \lambda''_i$ where λ'_i and λ''_i are additive characters of \mathbb{Z}_{n_1} and \mathbb{Z}_{n_2} with orders d'_i and d''_i .

We note that

(3.3)
$$d = d'd'', \quad \gcd(d', d'') = 1 \quad \text{and} \quad d_i = d'_i d''_i, \quad \gcd(d'_i, d''_i) = 1,$$

where $1 \leq i \leq k$. Denote the vectors $(\lambda'_1, \ldots, \lambda'_k)$ and $(\lambda''_1, \ldots, \lambda''_k)$ by $\underline{\lambda}'$ and $\underline{\lambda}''$, respectively. By Theorem 2.4 and the assumption, we have (3.4)

$$S_{\chi',\underline{\lambda}'} = \varphi(n_1) \left(\frac{n_1}{\operatorname{lcm}(d', d_1', \dots, d_k')} \right) \quad \text{and} \quad S_{\chi'',\underline{\lambda}''} = \varphi(n_2) \left(\frac{n_2}{\operatorname{lcm}(d'', d_1'', \dots, d_k'')} \right)$$

Combining Lemma 3.1 and (3.4), we get

$$S_{\chi,\underline{\lambda}}(n,k) = S_{\chi',\underline{\lambda}'}(n_1,k)S_{\chi'',\underline{\lambda}''}(n_2,k)$$

= $\varphi(n_1)\varphi(n_2)\sigma_k\left(\frac{n_1}{\operatorname{lcm}(d',d'_1,\ldots,d'_k)}\right)\sigma_k\left(\frac{n_2}{\operatorname{lcm}(d'',d''_1,\ldots,d''_k)}\right)$

Since arithmetic functions φ , σ_k and lcm are multiplicative, by (3.3), we get the desired result

$$S_{\chi,\underline{\lambda}}(n,k) = \varphi(n)\sigma_k\left(\frac{n}{\operatorname{lcm}(d,d_1,\ldots,d_k)}\right).$$

The second identity can be justified as follows:

$$\frac{n}{\operatorname{lcm}(d, d_1, \dots, d_k)} = \frac{n}{\operatorname{lcm}(n/(n/d), n/\operatorname{gcd}(w_1, n), \dots, n/\operatorname{gcd}(w_k, n))}$$
$$= \frac{n}{n/\operatorname{gcd}(n/d, \operatorname{gcd}(w_1, n), \dots, \operatorname{gcd}(w_k, n))}$$
$$= \operatorname{gcd}(n/d, w_1, \dots, w_k).$$

This completes the proof of Theorem 1.1.

Acknowledgments

We are grateful to the anonymous referee, who carefully read the paper in a short time and gave valuable suggestions, which made the paper more elegant and readable.

References

- P. Haukkanen, Menon's identity with respect to a generalized divisibility relation, Aequationes Math. 70 (2005), no. 3, 240–246.
- [2] P. Haukkanen and J. Wang, A generalization of Menon's identity with respect to a set of polynomials, Portugal. Math. 53 (1996), no. 3, 331–337.
- [3] _____, High degree analogs of Menon's identity, Indian J. Math. 39 (1997), no. 1, 37–42.
- [4] Y. Li, X. Hu and D. Kim, A generalization of Menon's identity with Dirichlet characters, to appear in Int. J. Number Theory.
- [5] Y. Li and D. Kim, A Menon-type identity with many tuples of group of units in residually finite Dedekind domains, J. Number Theory 175 (2017), 42-50.
- [6] _____, Menon-type identities derived from actions of subgroups of general linear groups, J. Number Theory 179 (2017), 97–112.

- [7] P. K. Menon, On the sum $\sum (a-1,n)[(a,n)=1]$, J. Indian Math. Soc. (N.S.) **29** (1965), 155–163.
- [8] C. Miguel, Menon's identity in residually finite Dedekind domains, J. Number Theory 137 (2014), 179–185.
- [9] _____, A Menon-type identity in residually finite Dedekind domains, J. Number Theory 164 (2016), 43–51.
- [10] I. M. Richards, A remark on the number of cyclic subgroups of a finite group, Amer. Math. Monthly 91 (1984), no. 4, 571–572.
- [11] V. Sita Ramaiah, Arithmetical sums in regular convolutions, J. Reine Angew. Math. 303/304 (1978), 265–283.
- [12] R. Sivaramakrishnan, A number-theoretic identity, Publ. Math. Debrecen 21 (1974), 67–69.
- B. Sury, Some number-theoretic identities from group actions, Rend. Circ. Mat. Palermo (2) 58 (2009), no. 1, 99–108.
- [14] M. Tărnăuceanu, A generalization of Menon's identity, J. Number Theory 132 (2012), no. 11, 2568–2573.
- [15] L. Tóth, Menon's identity and arithmetical sums representing functions of several variables, Rend. Semin. Mat. Univ. Politec. Torino 69 (2011), no. 1, 97–110.
- [16] _____, Menon-type identities concerning Dirichlet characters, Int. J. Number Theory 14 (2018), no. 4, 1047–1054.
- [17] X.-P. Zhao and Z.-F. Cao, Another generalization of Menon's identity, Int. J. Number Theory 13 (2017), no. 9, 2373–2379.

Yan Li

Department of Applied Mathematics, China Agricultural University, Beijing 100083, China

E-mail address: liyan_00@cau.edu.cn, liyan_00@mails.tsinghua.edu.cn

Xiaoyu Hu

Department of Applied Mathematics, China Agricultural University, Beijing 100083, China

E-mail address: hxyyzptx@126.com

Daeyeoul Kim

Department of Mathematics and Institute of Pure and Applied Mathematics, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea

E-mail address: kdaeyeoul@jbnu.ac.kr