A Menon-type Identity with Multiplicative and Additive Characters

Yan Li, Xiaoyu Hu and Daeyeoul Kim*

Abstract. This paper studies Menon-type identities involving both multiplicative characters and additive characters. In the paper, we shall give the explicit formula of the following sum

$$
\sum_{\substack{a \in \mathbb{Z}_{n}^{*} \\ b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n}}} \operatorname{gcd}\left(a-1, b_{1}, \ldots, b_{k}, n\right) \chi(a) \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right),
$$

where for a positive integer n, \mathbb{Z}_{n}^{*} is the group of units of the ring $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$, gcd represents the greatest common divisor, χ is a Dirichlet character modulo n, and for a nonnegative integer $k, \lambda_{1}, \ldots, \lambda_{k}$ are additive characters of \mathbb{Z}_{n}. Our formula further extends the previous results by Sury [13], Zhao-Cao 17 and Li-Hu-Kim [4].

1. Introduction

In 1965, P. K. Menon 7 proved the following beautiful identity:

$$
\begin{equation*}
\sum_{a \in \mathbb{Z}_{n}^{*}} \operatorname{gcd}(a-1, n)=\varphi(n) \tau(n) \tag{1.1}
\end{equation*}
$$

where for a positive integer n, \mathbb{Z}_{n}^{*} is the group of units of the ring $\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}$, gcd represents the greatest common divisor, φ is the Euler's totient function and $\tau(n)$ is the number of positive divisors of n.

The Menon's identity (1.1) is very interesting and appealing. Many mathematicians made contributions on it. It has been proved by B. Sury 13 that

$$
\begin{equation*}
\sum_{\substack{a \in \mathbb{Z}_{n}^{*} \\ b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n}}} \operatorname{gcd}\left(a-1, b_{1}, \ldots, b_{k}, n\right)=\varphi(n) \sigma_{k}(n) \tag{1.2}
\end{equation*}
$$

where $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$ by using the Cauchy-Frobenius-Burnside lemma. It is also interesting to note that Miguel [8,9] extended identities 1.1) and (1.2) from \mathbb{Z} to any residually finite Dedekind domain.
Received February 13, 2018; Accepted July 10, 2018.
Communicated by Yu-Ru Liu.
2010 Mathematics Subject Classification. 11A07, 11A25.
Key words and phrases. Menon's identity, Dirichlet character, additive character, divisor function, Euler's totient function, Iverson bracket, Chinese remainder theorem.
*Corresponding author.

Recently, Zhao and Cao 17 derived the following elegant Menon-type identity with a Dirichlet character

$$
\begin{equation*}
\sum_{a \in \mathbb{Z}_{n}^{*}} \operatorname{gcd}(a-1, n) \chi(a)=\varphi(n) \tau\left(\frac{n}{d}\right), \tag{1.3}
\end{equation*}
$$

where χ is a Dirichlet character modulo n and d is the conductor of χ.
From the point of view of Fourier analysis on finite Abelian groups, Zhao and Cao's results in fact give the explicit expression of Fourier transformation of the function $f(a)=$ $\operatorname{gcd}(a-1, n)$ on the Abelian group $(\mathbb{Z} / n \mathbb{Z})^{*}$. Therefore, the identity 1.3 is not only graceful but also gives more information.

In (4), Li, Hu and Kim further extended identities (1.2) and (1.3). They obtained the following identity with Dirichlet character χ :

$$
\begin{equation*}
\sum_{\substack{a \in \mathbb{Z}_{n}^{*} \\ b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n}}} \operatorname{gcd}\left(a-1, b_{1}, \ldots, b_{k}, n\right) \chi(a)=\varphi(n) \sigma_{k}\left(\frac{n}{d}\right), \tag{1.4}
\end{equation*}
$$

where d is the conductor of χ and k is a nonnegative integer.
For other related works on Menon's identity, see (1-3, 5, 6, 10, 12, 14,16 and references therein.

Denote

$$
\begin{equation*}
S_{\chi, \underline{\lambda}}(n, k)=\sum_{\substack{a \in \mathbb{Z}_{n}^{*} \\ b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n}}} \operatorname{gcd}\left(a-1, b_{1}, \ldots, b_{k}, n\right) \chi(a) \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right), \tag{1.5}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{k}$ are additive characters of \mathbb{Z}_{n} and $\underline{\lambda}$ represents the vector $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$. For $1 \leq i \leq k$, each λ_{i} can be uniquely written as

$$
\begin{equation*}
\lambda_{i}(b)=\exp \left(2 \pi \sqrt{-1} w_{i} b / n\right), \quad 0 \leq w_{i} \leq n-1, w_{i} \in \mathbb{Z} \tag{1.6}
\end{equation*}
$$

where $b \in \mathbb{Z}_{n}$ and $\sqrt{-1}$ is the square root of -1 whose imaginary part is positive. Denote the order of λ_{i} by d_{i}, that is,

$$
\begin{equation*}
d_{i}=\frac{n}{\operatorname{gcd}\left(w_{i}, n\right)} \tag{1.7}
\end{equation*}
$$

Theorem 1.1. Let n be a positive integer and χ be a Dirichlet character modulo n whose conductor is d. Assume k is a nonnegative integer. Let $\lambda_{1}, \ldots, \lambda_{k}$ be additive characters of \mathbb{Z}_{n}, explicitly given in (1.6). Let d_{1}, \ldots, d_{k} as in (1.7) be the orders of $\lambda_{1}, \ldots, \lambda_{k}$, respectively. Then, we have the following identity:

$$
\sum_{\substack{a \in \mathbb{Z}_{n}^{*} \\ b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n}}} \operatorname{gcd}\left(a-1, b_{1}, \ldots, b_{k}, n\right) \chi(a) \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right)=\varphi(n) \sigma_{k}\left(\frac{n}{\operatorname{lcm}\left(d, d_{1}, \ldots, d_{k}\right)}\right)
$$

where 1 cm represents the least common multiple. Equivalently, it can also be written as

$$
\sum_{\substack{a \in \mathbb{Z}_{n}^{*} \\ b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n}}} \operatorname{gcd}\left(a-1, b_{1}, \ldots, b_{k}, n\right) \chi(a) \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right)=\varphi(n) \sigma_{k}\left(\operatorname{gcd}\left(\frac{n}{d}, w_{1}, \ldots, w_{k}\right)\right) .
$$

From the point of view of Fourier analysis, Theorem 1.1 gives the explicit expression of Fourier coefficients of the function $f\left(a, b_{1}, \ldots, b_{k}\right)=\operatorname{gcd}\left(a-1, b_{1}, \ldots, b_{k}, n\right)$ on the Abelian group $(\mathbb{Z} / n \mathbb{Z})^{*} \times(\mathbb{Z} / n \mathbb{Z})^{k}$.

Remark 1.2. If additive characters $\lambda_{1}, \ldots, \lambda_{k}$ are trivial, then Theorem 1.1 reduces to identity (1.4). If both additive characters $\lambda_{1}, \ldots, \lambda_{k}$ and multiplicative character χ are trivial, Theorem 1.1 reduces to Sury's identity (1.2). If $k=0$, Theorem 1.1 reduces to Zhao and Cao's identity (1.3).

The rest of paper is organized as follows. In Section 2, we prove Theorem 1.1 in the special case of n being a prime power. The general case is treated in Section 3 by combining prime power cases with the Chinese remainder theorem.

2. Prime power case

In this section, we assume $n=p^{m}$, where p is a prime number and m is a positive integer. Let χ be a Dirichlet character modulo n with conductor d. Since $d \mid n$, we denote $d=p^{t}$, where $0 \leq t \leq m$. Let $\lambda_{1}, \ldots, \lambda_{k}$ be additive characters of \mathbb{Z}_{n} with orders d_{1}, \ldots, d_{k}, respectively. For $1 \leq i \leq k$, since $d_{i} \mid n$, we denote $d_{i}=p^{v_{i}}$, where $0 \leq v_{i} \leq m$.

Since $n=p^{m}$ is a prime power, the whole subgroups of \mathbb{Z}_{n} form a chain:

$$
0=p^{m} \mathbb{Z}_{n} \subset p^{m-1} \mathbb{Z}_{n} \subset \cdots \subset p \mathbb{Z}_{n} \subset \mathbb{Z}_{n}
$$

Clearly, for $0 \leq s \leq m, \#\left(p^{s} \mathbb{Z}_{n}\right)=p^{m-s}$, where \# denote the cardinality of sets.
In the following, we adopt the similar method as in [4] to calculate $S_{\chi, \lambda}\left(p^{m}, k\right)$. From (1.5), we obtain

$$
\begin{align*}
& \sum_{\substack{a \in \mathbb{Z}_{n}^{*} \\
b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n}}} \operatorname{gcd}\left(a-1, b_{1}, \ldots, b_{k}, n\right) \chi(a) \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right) \\
= & \sum_{s=0}^{m} \sum_{\substack{\operatorname{gcd}\left(b_{1}, \ldots, b_{k}, n\right)=p^{s} \\
b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n}}} \sum_{a \in \mathbb{Z}_{n}^{*}} \operatorname{gcd}\left(a-1, p^{s}\right) \chi(a) \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right) \tag{2.1}\\
= & \sum_{s=0}^{m}\left(\sum_{a \in \mathbb{Z}_{n}^{*}} \operatorname{gcd}\left(a-1, p^{s}\right) \chi(a)\right)\left(\sum_{\substack{\operatorname{gcd}\left(b_{1}, \ldots, b_{k}, n\right)=p^{s} \\
b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n}}} \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right)\right) .
\end{align*}
$$

Therefore, we need to compute

$$
\sum_{a \in \mathbb{Z}_{n}^{*}} \operatorname{gcd}\left(a-1, p^{s}\right) \chi(a) \quad \text { and } \sum_{\substack{\operatorname{gcd}\left(b_{1}, \ldots, b_{k}, n\right)=p^{s} \\ b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n}}} \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right)
$$

explicitly. The first summation is already treated in (4. We quote it here as Lemma 2.1 The second summation is computed in Lemma 2.3 .

Lemma 2.1. [4, Lemma 2.2] Let $n=p^{m}$ and χ be a Dirichlet character modulo n with conductor p^{t}, where $0 \leq t \leq m$. Let s be an integer such that $0 \leq s \leq m$. Then we obtain

$$
\sum_{a \in \mathbb{Z}_{n}^{*}} \operatorname{gcd}\left(a-1, p^{s}\right) \chi(a)= \begin{cases}(s-t+1)\left(p^{m}-p^{m-1}\right) & \text { if } s \geq t \\ 0 & \text { otherwise }\end{cases}
$$

Note that in Lemma 2.1, if $s=m$, this is just Lemma 3.1 of 17 .
The following lemma is important to prove Lemma 2.3. It is a standard fact on characters of finite Abelian groups. For convenience of readers, we give a concrete proof here.

Lemma 2.2. Let $n=p^{m}$ and λ be an additive character of \mathbb{Z}_{n} with order p^{v}. Then, for $0 \leq s \leq m$, we have

$$
\sum_{b \in p^{s} \mathbb{Z}_{n}} \lambda(b)=p^{m-s}[s \geq v]
$$

where $[s \geq v]$ is the Iverson bracket, that is,

$$
[s \geq v]= \begin{cases}1 & \text { if } s \geq v \\ 0 & \text { otherwise }\end{cases}
$$

Proof. For $b \in p^{s} \mathbb{Z}_{n}$, write $b=p^{s} b^{\prime}$ with some $b^{\prime} \in \mathbb{Z}_{n}$. Then $\lambda(b)=\lambda^{p^{s}}\left(b^{\prime}\right)$. If $s \geq v$, then $\lambda^{p^{s}}$ is a trivial character. In this case, $\lambda(b)=1$ for every $b \in p^{s} \mathbb{Z}_{n}$. Therefore, we obtain

$$
\sum_{b \in p^{s} \mathbb{Z}_{n}} \lambda(b)=\#\left(p^{s} \mathbb{Z}_{n}\right)=p^{m-s}
$$

Otherwise, $\lambda^{p^{s}}$ is nontrivial on \mathbb{Z}_{n}. Hence, there exists some $b_{0}=p^{s} b_{0}^{\prime} \in p^{s} \mathbb{Z}_{n}$ such that $\lambda\left(b_{0}\right)=\lambda^{p^{s}}\left(b_{0}^{\prime}\right) \neq 1$. We have

$$
\sum_{b \in p^{s} \mathbb{Z}_{n}} \lambda(b)=\sum_{b \in p^{s} \mathbb{Z}_{n}} \lambda\left(b+b_{0}\right)=\lambda\left(b_{0}\right) \sum_{b \in p^{s} \mathbb{Z}_{n}} \lambda(b) .
$$

As a result, we obtain

$$
\sum_{b \in p^{s} \mathbb{Z}_{n}} \lambda(b)=0
$$

Lemma 2.3. Let $n=p^{m}$ be a prime power and $0 \leq s \leq m$ be an integer. Assume $k \geq 0$ is an integer. Let $\lambda_{1}, \ldots, \lambda_{k}$ be additive characters of \mathbb{Z}_{n} with orders $p^{v_{1}}, \ldots, p^{v_{k}}$, respectively. Denote $v=\max \left\{v_{1}, \ldots, v_{k}\right\}$. Then for $0 \leq s \leq m-1$,

$$
\sum_{\substack{b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n} \\ \operatorname{gcd}\left(b_{1}, \ldots, b_{k}, p^{m}\right)=p^{s}}} \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right)=p^{(m-s) k}[s \geq v]-p^{(m-s-1) k}[s+1 \geq v]
$$

where $[s \geq v]$ is the Iverson bracket. Otherwise, for $s=m$, it is equal to 1 .
Proof. The case $k=0$ is obvious. Thus, we assume $k \geq 1$. Clearly,

$$
\begin{equation*}
\sum_{b_{1}, \ldots, b_{k} \in p^{s} \mathbb{Z}_{n}} \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right)=\prod_{i=1}^{k} \sum_{b_{i} \in p^{s} \mathbb{Z}_{n}} \lambda_{i}\left(b_{i}\right) \tag{2.2}
\end{equation*}
$$

Substituting Lemma 2.2 into (2.2), we get that

$$
\begin{equation*}
\sum_{b_{1}, \ldots, b_{k} \in p^{s} \mathbb{Z}_{n}} \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right)=\prod_{i=1}^{k} p^{m-s}\left[s \geq v_{i}\right]=p^{(m-s) k}[s \geq v] \tag{2.3}
\end{equation*}
$$

Note that $p^{s} \mid \operatorname{gcd}\left(b_{1}, \ldots, b_{k}, p^{m}\right)$ if and only if $b_{1}, \ldots, b_{k} \in p^{s} \mathbb{Z}_{n}$ holds. Therefore, for $0 \leq s \leq m-1$,

$$
\operatorname{gcd}\left(b_{1}, \ldots, b_{k}, p^{m}\right)=p^{s} \quad \Longleftrightarrow \quad\left(b_{1}, \ldots, b_{k}\right) \in\left(p^{s} \mathbb{Z}_{n}\right)^{k}-\left(p^{s+1} \mathbb{Z}_{n}\right)^{k}
$$

Hence, we obtain

$$
\begin{align*}
& \sum_{\substack{b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n} \\
\operatorname{gcd}\left(b_{1}, \ldots, b_{k}, p^{m}\right)=p^{s}}} \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right) \tag{2.4}\\
& =\sum_{b_{1}, \ldots, b_{k} \in p^{s} \mathbb{Z}_{n}} \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right)-\sum_{b_{1}, \ldots, b_{k} \in p^{s+1} \mathbb{Z}_{n}} \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right) .
\end{align*}
$$

It then follows from (2.3) and (2.4) that

$$
\sum_{\substack{b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n} \\ \operatorname{gcd}\left(b_{1}, \ldots, b_{k}, p^{m}\right)=p^{s}}} \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right)=p^{(m-s) k}[s \geq v]-p^{(m-s-1) k}[s+1 \geq v] .
$$

Thus, the case $0 \leq s \leq m-1$ is done.
Clearly, for $s=m$, one can readily check that

$$
\operatorname{gcd}\left(b_{1}, \ldots, b_{k}, p^{m}\right)=p^{s} \quad \Longleftrightarrow \quad\left(b_{1}, \ldots, b_{k}\right) \in\left(p^{s} \mathbb{Z}_{n}\right)^{k}
$$

In this case, there is only one summation term $\lambda_{1}\left(p^{m}\right) \cdots \lambda_{k}\left(p^{m}\right)$, which is equal to 1 . This concludes the proof.

Finally, we prove the following result, which is a special case of Theorem 1.1.
Theorem 2.4. Let $n=p^{m}$ be a prime power and χ be a Dirichlet character whose conductor is $d=p^{t}$. Assume k is a nonnegative integer. Let λ_{i} be an additive character of \mathbb{Z}_{n} with order $d_{i}=p^{v_{i}}$ such that $0 \leq v_{i} \leq m$, where $1 \leq i \leq k$. Then, the following identity holds

$$
\sum_{\substack{a \in \mathbb{Z}_{n}^{*} \\ b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n}}} \operatorname{gcd}\left(a-1, b_{1}, \ldots, b_{k}, n\right) \chi(a) \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right)=\varphi(n) \sigma_{k}\left(\frac{n}{\operatorname{lcm}\left(d, d_{1}, \ldots, d_{k}\right)}\right)
$$

where $\operatorname{lcm}\left(d, d_{1}, \ldots, d_{k}\right)$ is the least common multiple of d, d_{1}, \ldots, d_{k}.
Proof. By equation (2.1), $S_{\chi, \underline{\lambda}}\left(p^{m}, k\right)$ equals to

$$
\sum_{s=0}^{m}\left(\sum_{a \in \mathbb{Z}_{n}^{*}} \operatorname{gcd}\left(a-1, p^{s}\right) \chi(a)\right)\left(\sum_{\begin{array}{c}
b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n} \tag{2.5}\\
\operatorname{gcd}\left(b_{1}, \ldots, b_{k}, p^{m}\right)=p^{s}
\end{array}} \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right)\right)
$$

Substituting Lemma 2.1 into (2.5), we get

$$
\begin{equation*}
S_{\chi, \underline{\lambda}}\left(p^{m}, k\right)=\sum_{s=t}^{m}(s-t+1)\left(p^{m}-p^{m-1}\right)\left(\sum_{\substack{b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n} \\ \operatorname{gcd}\left(b_{1}, \ldots, b_{k}, p^{m}\right)=p^{s}}} \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right)\right) \tag{2.6}
\end{equation*}
$$

Denote $v=\max \left\{v_{1}, \ldots, v_{k}\right\}$. Then substituting Lemma 2.3 into (2.6), we have that $S_{\chi, \underline{\lambda}}\left(p^{m}, k\right)$ equals to

$$
\begin{aligned}
& \varphi\left(p^{m}\right)\left(\sum_{s=t}^{m-1}(s-t+1)\left(p^{(m-s) k}[s \geq v]-p^{(m-s-1) k}[s+1 \geq v]\right)+(m-t+1)\right) \\
= & \varphi\left(p^{m}\right)\left(\sum_{s=t}^{m}(s-t+1) p^{(m-s) k}[s \geq v]-\sum_{s=t}^{m-1}(s-t+1) p^{(m-s-1) k}[s+1 \geq v]\right) \\
= & \varphi\left(p^{m}\right)\left(\sum_{s=t}^{m}(s-t+1) p^{(m-s) k}[s \geq v]-\sum_{s=t+1}^{m}(s-t) p^{(m-s) k}[s \geq v]\right) .
\end{aligned}
$$

The last equality is obtained by substituting $s+1$ with s in the posterior summation. It is easy to see that

$$
\begin{aligned}
S_{\chi, \underline{\lambda}}\left(p^{m}, k\right) & =\varphi\left(p^{m}\right) \sum_{s=t}^{m} p^{(m-s) k}[s \geq v] \\
& =\varphi\left(p^{m}\right) \sum_{s=\max \{t, v\}}^{m} p^{(m-s) k} \\
& =\varphi\left(p^{m}\right) \sum_{s=0}^{m-\max \{t, v\}} p^{s k} .
\end{aligned}
$$

Further, the last equality is obtained by substituting $m-s$ with s. Therefore,

$$
S_{\chi, \underline{\lambda}}\left(p^{m}, k\right)=\varphi\left(p^{m}\right) \sigma_{k}\left(\frac{p^{m}}{p^{\max \{t, v\}}}\right)=\varphi\left(p^{m}\right) \sigma_{k}\left(\frac{p^{m}}{\operatorname{lcm}\left(p^{t}, p^{v_{1}}, \ldots, p^{v_{k}}\right)}\right)
$$

which concludes the proof.

3. The general case

In this section, we will prove the main theorem. First, we show that $S_{\chi, \underline{\underline{\lambda}}}(n, k)$ is multiplicative with respect to n by the Chinese remainder theorem. Then, using multiplicative property, we prove Theorem 1.1 by combining prime power cases, which are already treated in Section 2,

Let $n=n_{1} n_{2}$ be the product of positive integers n_{1} and n_{2} such that $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$. By the Chinese remainder theorem, we have the ring isomorphism: $\mathbb{Z}_{n} \simeq \mathbb{Z}_{n_{1}} \oplus \mathbb{Z}_{n_{2}}$, which induces the multiplicative group isomorphism: $\mathbb{Z}_{n}^{*} \simeq \mathbb{Z}_{n_{1}}^{*} \times \mathbb{Z}_{n_{2}}^{*}$. Therefore, each Dirichlet character modulo n can be uniquely written as $\chi=\chi^{\prime} \cdot \chi^{\prime \prime}$, where χ, χ^{\prime} and $\chi^{\prime \prime}$ are Dirichlet characters modulo n, n_{1} and n_{2}, respectively. Similarly, any additive character λ of \mathbb{Z}_{n} can be uniquely written as $\lambda=\lambda^{\prime} \cdot \lambda^{\prime \prime}$, where λ^{\prime} and $\lambda^{\prime \prime}$ are additive characters of $\mathbb{Z}_{n_{1}}$ and $\mathbb{Z}_{n_{2}}$, respectively. Explicitly, we obtain that

$$
\begin{equation*}
\chi(c \bmod n)=\chi^{\prime}\left(c \bmod n_{1}\right) \cdot \chi^{\prime \prime}\left(c \bmod n_{2}\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda(c \bmod n)=\lambda^{\prime}\left(c \bmod n_{1}\right) \cdot \lambda^{\prime \prime}\left(c \bmod n_{2}\right) \tag{3.2}
\end{equation*}
$$

for any integer c such that $\operatorname{gcd}(c, n)=1$. For $1 \leq i \leq k$, we denote $\lambda_{i}=\lambda_{i}^{\prime} \cdot \lambda_{i}^{\prime \prime}$ with the same meaning as above.

To simplify notations, for $a \in \mathbb{Z}_{n}$, we let $a^{\prime} \in \mathbb{Z}_{n_{1}}$ and $a^{\prime \prime} \in \mathbb{Z}_{n_{2}}$ denote the image of a in $\mathbb{Z}_{n_{1}}$ and $\mathbb{Z}_{n_{2}}$, respectively, i.e.,

$$
a^{\prime} \equiv a \quad \bmod n_{1} \quad \text { and } \quad a^{\prime \prime} \equiv a \quad \bmod n_{2} .
$$

Let d, d^{\prime} and $d^{\prime \prime}$ be the conductors of χ, χ^{\prime} and $\chi^{\prime \prime}$, respectively. It is well known that $d=d^{\prime} d^{\prime \prime}$. For $1 \leq i \leq k$, let d_{i}, d_{i}^{\prime} and $d_{i}^{\prime \prime}$ be the orders of $\lambda_{i}, \lambda_{i}^{\prime}$ and $\lambda_{i}^{\prime \prime}$, respectively. Since d_{i}^{\prime} and $d_{i}^{\prime \prime}$ are coprime to each other, we have $d_{i}=d_{i}^{\prime} \cdot d_{i}^{\prime \prime}$, where $1 \leq i \leq k$. Denote the vectors $\left(\lambda_{1}^{\prime}, \ldots, \lambda_{k}^{\prime}\right)$ and $\left(\lambda_{1}^{\prime \prime}, \ldots, \lambda_{k}^{\prime \prime}\right)$ by $\underline{\lambda}^{\prime}$ and $\underline{\lambda}^{\prime \prime}$, respectively.

The following lemma shows that $S_{\chi, \lambda}(n, k)$ is multiplicative with respect to n.
Lemma 3.1. With the above notations we have

$$
S_{\chi, \underline{\lambda}}(n, k)=S_{\chi^{\prime}, \underline{\lambda}^{\prime}}\left(n_{1}, k\right) \cdot S_{\chi^{\prime \prime}, \underline{\lambda}^{\prime \prime}}\left(n_{2}, k\right) .
$$

Proof. From (1.5), (3.1) and (3.2), we have

$$
\begin{aligned}
& \sum_{\substack{a \in \mathbb{Z}_{n}^{*} \\
b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n}}} \operatorname{gcd}\left(a-1, b_{1}, \ldots, b_{k}, n\right) \chi(a) \lambda_{1}\left(b_{1}\right) \cdots \lambda_{k}\left(b_{k}\right) \\
&= \sum_{\substack{a \in \mathbb{Z}_{n}^{*} \\
b_{1}, \ldots, b_{k} \in \mathbb{Z}_{n}}} \operatorname{gcd}\left(a-1, b_{1}, \ldots, b_{k}, n_{1}\right) \operatorname{gcd}\left(a-1, b_{1}, \ldots, b_{k}, n_{2}\right) \\
&=\sum_{\substack{a^{\prime} \in \mathbb{Z}_{n_{1}}^{*} \\
b_{1}^{\prime}, \ldots, b_{k}^{\prime} \in \mathbb{Z}_{n_{1}}}} \operatorname{gcd}\left(a^{\prime}-1, b_{1}^{\prime}, \ldots, b_{k}^{\prime}, n_{1}\right) \chi^{\prime}\left(a^{\prime}\right) \lambda_{1}^{\prime}\left(b_{1}^{\prime}\right) \cdots \lambda_{k}^{\prime}\left(b_{k}^{\prime}\right) \\
& \sum_{\substack{\prime \prime \\
a^{\prime \prime} \in \mathbb{Z}_{n}^{*} \\
b_{1}^{\prime \prime}, \ldots, b_{k}^{\prime} \in \mathbb{Z}_{n_{2}}}} \operatorname{gcd}\left(a^{\prime \prime}-1, b_{1}^{\prime \prime}, \ldots, b_{k}^{\prime \prime}, n_{2}\right) \chi^{\prime \prime}\left(a^{\prime \prime}\right) \lambda_{1}^{\prime \prime}\left(b_{1}^{\prime \prime}\right) \cdots \lambda_{k}^{\prime \prime}\left(b_{k}^{\prime \prime}\right) .
\end{aligned}
$$

The last equality is obtained by the Chinese remainder theorem. Indeed, as $\left(a, b_{1}, \ldots, b_{k}\right)$ runs over $\mathbb{Z}_{n}^{*} \times\left(\mathbb{Z}_{n}\right)^{k},\left(a^{\prime}, b_{1}^{\prime}, \ldots, b_{k}^{\prime}, a^{\prime \prime}, b_{1}^{\prime \prime}, \ldots, b_{k}^{\prime \prime}\right)$ runs over $\mathbb{Z}_{n_{1}}^{*} \times\left(\mathbb{Z}_{n_{1}}\right)^{k} \times \mathbb{Z}_{n_{2}}^{*} \times\left(\mathbb{Z}_{n_{2}}\right)^{k}$, too. Therefore, we have

$$
S_{\chi, \underline{\lambda}}(n, k)=S_{\chi^{\prime}, \underline{\lambda}^{\prime}}\left(n_{1}, k\right) \cdot S_{\chi^{\prime \prime}, \underline{\lambda}^{\prime \prime}}\left(n_{2}, k\right) .
$$

Remark 3.2. The proof of Lemma 3.1 is similar to that of Lemma 3.1 in (4). Also see the proof of Theorem 1.1 and Theorem 1.2 in (17].

Proof of Theorem 1.1. We prove the first identity by induction on $\omega(n)$, where $\omega(n)$ is the number of distinct prime factors of n.

If $\omega(n)=1$, i.e., n is a prime power, this is proved in Theorem 2.4. Assume it is true for $\omega(n)=u-1$, where $u \geq 2$ is an integer. Now we consider the case $\omega(n)=u$.

Let p^{m} be a prime power, exactly dividing n. Denote $n_{1}=p^{m}$ and $n_{2}=n / p^{m}$. Then $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$.

Factor $\chi=\chi^{\prime} \cdot \chi^{\prime \prime}$, where χ^{\prime} and $\chi^{\prime \prime}$ are Dirichlet characters modulo n_{1} and n_{2} with conductors d^{\prime} and $d^{\prime \prime}$, respectively. Similarly, for $1 \leq i \leq k$, decompose $\lambda_{i}=\lambda_{i}^{\prime} \cdot \lambda_{i}^{\prime \prime}$ where λ_{i}^{\prime} and $\lambda_{i}^{\prime \prime}$ are additive characters of $\mathbb{Z}_{n_{1}}$ and $\mathbb{Z}_{n_{2}}$ with orders d_{i}^{\prime} and $d_{i}^{\prime \prime}$.

We note that

$$
\begin{equation*}
d=d^{\prime} d^{\prime \prime}, \quad \operatorname{gcd}\left(d^{\prime}, d^{\prime \prime}\right)=1 \quad \text { and } \quad d_{i}=d_{i}^{\prime} d_{i}^{\prime \prime}, \quad \operatorname{gcd}\left(d_{i}^{\prime}, d_{i}^{\prime \prime}\right)=1, \tag{3.3}
\end{equation*}
$$

where $1 \leq i \leq k$. Denote the vectors $\left(\lambda_{1}^{\prime}, \ldots, \lambda_{k}^{\prime}\right)$ and $\left(\lambda_{1}^{\prime \prime}, \ldots, \lambda_{k}^{\prime \prime}\right)$ by $\underline{\lambda}^{\prime}$ and $\underline{\lambda}^{\prime \prime}$, respectively. By Theorem 2.4 and the assumption, we have

$$
\begin{equation*}
S_{\chi^{\prime}, \lambda^{\prime}}=\varphi\left(n_{1}\right)\left(\frac{n_{1}}{\operatorname{lcm}\left(d^{\prime}, d_{1}^{\prime}, \ldots, d_{k}^{\prime}\right)}\right) \quad \text { and } \quad S_{\chi^{\prime \prime}, \bar{\lambda}^{\prime \prime}}=\varphi\left(n_{2}\right)\left(\frac{n_{2}}{\operatorname{lcm}\left(d^{\prime \prime}, d_{1}^{\prime \prime}, \ldots, d_{k}^{\prime \prime}\right)}\right) . \tag{3.4}
\end{equation*}
$$

Combining Lemma 3.1 and (3.4), we get

$$
\begin{aligned}
S_{\chi, \underline{\lambda}}(n, k) & =S_{\chi^{\prime}, \underline{\lambda}^{\prime}}\left(n_{1}, k\right) S_{\chi^{\prime \prime}, \underline{\lambda}^{\prime \prime}}\left(n_{2}, k\right) \\
& =\varphi\left(n_{1}\right) \varphi\left(n_{2}\right) \sigma_{k}\left(\frac{n_{1}}{\operatorname{lcm}\left(d^{\prime}, d_{1}^{\prime}, \ldots, d_{k}^{\prime}\right)}\right) \sigma_{k}\left(\frac{n_{2}}{\operatorname{lcm}\left(d^{\prime \prime}, d_{1}^{\prime \prime}, \ldots, d_{k}^{\prime \prime}\right)}\right) .
\end{aligned}
$$

Since arithmetic functions φ, σ_{k} and lcm are multiplicative, by (3.3), we get the desired result

$$
S_{\chi, \underline{\lambda}}(n, k)=\varphi(n) \sigma_{k}\left(\frac{n}{\operatorname{lcm}\left(d, d_{1}, \ldots, d_{k}\right)}\right) .
$$

The second identity can be justified as follows:

$$
\begin{aligned}
\frac{n}{\operatorname{lcm}\left(d, d_{1}, \ldots, d_{k}\right)} & =\frac{n}{\operatorname{lcm}\left(n /(n / d), n / \operatorname{gcd}\left(w_{1}, n\right), \ldots, n / \operatorname{gcd}\left(w_{k}, n\right)\right)} \\
& =\frac{n}{n / \operatorname{gcd}\left(n / d, \operatorname{gcd}\left(w_{1}, n\right), \ldots, \operatorname{gcd}\left(w_{k}, n\right)\right)} \\
& =\operatorname{gcd}\left(n / d, w_{1}, \ldots, w_{k}\right)
\end{aligned}
$$

This completes the proof of Theorem 1.1.

Acknowledgments

We are grateful to the anonymous referee, who carefully read the paper in a short time and gave valuable suggestions, which made the paper more elegant and readable.

References

[1] P. Haukkanen, Menon's identity with respect to a generalized divisibility relation, Aequationes Math. 70 (2005), no. 3, 240-246.
[2] P. Haukkanen and J. Wang, A generalization of Menon's identity with respect to a set of polynomials, Portugal. Math. 53 (1996), no. 3, 331-337.
[3] , High degree analogs of Menon's identity, Indian J. Math. 39 (1997), no. 1, 37-42.
[4] Y. Li, X. Hu and D. Kim, A generalization of Menon's identity with Dirichlet characters, to appear in Int. J. Number Theory.
[5] Y. Li and D. Kim, A Menon-type identity with many tuples of group of units in residually finite Dedekind domains, J. Number Theory 175 (2017), 42-50.
[6] \qquad , Menon-type identities derived from actions of subgroups of general linear groups, J. Number Theory 179 (2017), 97-112.
[7] P. K. Menon, On the sum $\sum(a-1, n)[(a, n)=1]$, J. Indian Math. Soc. (N.S.) 29 (1965), 155-163.
[8] C. Miguel, Menon's identity in residually finite Dedekind domains, J. Number Theory 137 (2014), 179-185.
[9] , A Menon-type identity in residually finite Dedekind domains, J. Number Theory 164 (2016), 43-51.
[10] I. M. Richards, A remark on the number of cyclic subgroups of a finite group, Amer. Math. Monthly 91 (1984), no. 4, 571-572.
[11] V. Sita Ramaiah, Arithmetical sums in regular convolutions, J. Reine Angew. Math. 303/304 (1978), 265-283.
[12] R. Sivaramakrishnan, A number-theoretic identity, Publ. Math. Debrecen 21 (1974), 67-69.
[13] B. Sury, Some number-theoretic identities from group actions, Rend. Circ. Mat. Palermo (2) 58 (2009), no. 1, 99-108.
[14] M. Tărnăuceanu, A generalization of Menon's identity, J. Number Theory 132 (2012), no. 11, 2568-2573.
[15] L. Tóth, Menon's identity and arithmetical sums representing functions of several variables, Rend. Semin. Mat. Univ. Politec. Torino 69 (2011), no. 1, 97-110.
[16] _, Menon-type identities concerning Dirichlet characters, Int. J. Number Theory 14 (2018), no. 4, 1047-1054.
[17] X.-P. Zhao and Z.-F. Cao, Another generalization of Menon's identity, Int. J. Number Theory 13 (2017), no. 9, 2373-2379.

Yan Li
Department of Applied Mathematics, China Agricultural University, Beijing 100083, China
E-mail address: liyan_00@cau.edu.cn, liyan_00@mails.tsinghua.edu.cn

Xiaoyu Hu
Department of Applied Mathematics, China Agricultural University, Beijing 100083, China
E-mail address: hxyyzptx@126.com

Daeyeoul Kim
Department of Mathematics and Institute of Pure and Applied Mathematics, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea
E-mail address: kdaeyeoul@jbnu.ac.kr

