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A Menon-type Identity with Multiplicative and Additive Characters

Yan Li, Xiaoyu Hu and Daeyeoul Kim*

Abstract. This paper studies Menon-type identities involving both multiplicative char-

acters and additive characters. In the paper, we shall give the explicit formula of the

following sum ∑
a∈Z∗

n
b1,...,bk∈Zn

gcd(a− 1, b1, . . . , bk, n)χ(a)λ1(b1) · · ·λk(bk),

where for a positive integer n, Z∗n is the group of units of the ring Zn = Z/nZ, gcd

represents the greatest common divisor, χ is a Dirichlet character modulo n, and for

a nonnegative integer k, λ1, . . . , λk are additive characters of Zn. Our formula further

extends the previous results by Sury [13], Zhao-Cao [17] and Li-Hu-Kim [4].

1. Introduction

In 1965, P. K. Menon [7] proved the following beautiful identity:

(1.1)
∑
a∈Z∗n

gcd(a− 1, n) = ϕ(n)τ(n),

where for a positive integer n, Z∗n is the group of units of the ring Zn = Z/nZ, gcd

represents the greatest common divisor, ϕ is the Euler’s totient function and τ(n) is the

number of positive divisors of n.

The Menon’s identity (1.1) is very interesting and appealing. Many mathematicians

made contributions on it. It has been proved by B. Sury [13] that

(1.2)
∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a− 1, b1, . . . , bk, n) = ϕ(n)σk(n),

where σk(n) =
∑

d|n d
k by using the Cauchy-Frobenius-Burnside lemma. It is also inter-

esting to note that Miguel [8,9] extended identities (1.1) and (1.2) from Z to any residually

finite Dedekind domain.
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Recently, Zhao and Cao [17] derived the following elegant Menon-type identity with a

Dirichlet character

(1.3)
∑
a∈Z∗n

gcd(a− 1, n)χ(a) = ϕ(n)τ
(n
d

)
,

where χ is a Dirichlet character modulo n and d is the conductor of χ.

From the point of view of Fourier analysis on finite Abelian groups, Zhao and Cao’s

results in fact give the explicit expression of Fourier transformation of the function f(a) =

gcd(a − 1, n) on the Abelian group (Z/nZ)∗. Therefore, the identity (1.3) is not only

graceful but also gives more information.

In [4], Li, Hu and Kim further extended identities (1.2) and (1.3). They obtained the

following identity with Dirichlet character χ:

(1.4)
∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a− 1, b1, . . . , bk, n)χ(a) = ϕ(n)σk

(n
d

)
,

where d is the conductor of χ and k is a nonnegative integer.

For other related works on Menon’s identity, see [1–3,5,6,10–12,14–16] and references

therein.

Denote

(1.5) Sχ,λ(n, k) =
∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a− 1, b1, . . . , bk, n)χ(a)λ1(b1) · · ·λk(bk),

where λ1, . . . , λk are additive characters of Zn and λ represents the vector (λ1, . . . , λk).

For 1 ≤ i ≤ k, each λi can be uniquely written as

(1.6) λi(b) = exp(2π
√
−1wib/n), 0 ≤ wi ≤ n− 1, wi ∈ Z

where b ∈ Zn and
√
−1 is the square root of −1 whose imaginary part is positive. Denote

the order of λi by di, that is,

(1.7) di =
n

gcd(wi, n)
.

Theorem 1.1. Let n be a positive integer and χ be a Dirichlet character modulo n whose

conductor is d. Assume k is a nonnegative integer. Let λ1, . . . , λk be additive characters

of Zn, explicitly given in (1.6). Let d1, . . . , dk as in (1.7) be the orders of λ1, . . . , λk,

respectively. Then, we have the following identity:∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a− 1, b1, . . . , bk, n)χ(a)λ1(b1) · · ·λk(bk) = ϕ(n)σk

(
n

lcm(d, d1, . . . , dk)

)
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where lcm represents the least common multiple. Equivalently, it can also be written as∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a− 1, b1, . . . , bk, n)χ(a)λ1(b1) · · ·λk(bk) = ϕ(n)σk

(
gcd

(n
d
,w1, . . . , wk

))
.

From the point of view of Fourier analysis, Theorem 1.1 gives the explicit expression of

Fourier coefficients of the function f(a, b1, . . . , bk) = gcd(a−1, b1, . . . , bk, n) on the Abelian

group (Z/nZ)∗ × (Z/nZ)k.

Remark 1.2. If additive characters λ1, . . . , λk are trivial, then Theorem 1.1 reduces to

identity (1.4). If both additive characters λ1, . . . , λk and multiplicative character χ are

trivial, Theorem 1.1 reduces to Sury’s identity (1.2). If k = 0, Theorem 1.1 reduces to

Zhao and Cao’s identity (1.3).

The rest of paper is organized as follows. In Section 2, we prove Theorem 1.1 in

the special case of n being a prime power. The general case is treated in Section 3 by

combining prime power cases with the Chinese remainder theorem.

2. Prime power case

In this section, we assume n = pm, where p is a prime number and m is a positive integer.

Let χ be a Dirichlet character modulo n with conductor d. Since d | n, we denote d = pt,

where 0 ≤ t ≤ m. Let λ1, . . . , λk be additive characters of Zn with orders d1, . . . , dk,

respectively. For 1 ≤ i ≤ k, since di | n, we denote di = pvi , where 0 ≤ vi ≤ m.

Since n = pm is a prime power, the whole subgroups of Zn form a chain:

0 = pmZn ⊂ pm−1Zn ⊂ · · · ⊂ pZn ⊂ Zn.

Clearly, for 0 ≤ s ≤ m, #(psZn) = pm−s, where # denote the cardinality of sets.

In the following, we adopt the similar method as in [4] to calculate Sχ,λ(pm, k). From

(1.5), we obtain∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a− 1, b1, . . . , bk, n)χ(a)λ1(b1) · · ·λk(bk)

=
m∑
s=0

∑
gcd(b1,...,bk,n)=p

s

b1,...,bk∈Zn

∑
a∈Z∗n

gcd(a− 1, ps)χ(a)λ1(b1) · · ·λk(bk)

=

m∑
s=0

∑
a∈Z∗n

gcd(a− 1, ps)χ(a)


 ∑

gcd(b1,...,bk,n)=p
s

b1,...,bk∈Zn

λ1(b1) · · ·λk(bk)

 .

(2.1)
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Therefore, we need to compute∑
a∈Z∗n

gcd(a− 1, ps)χ(a) and
∑

gcd(b1,...,bk,n)=p
s

b1,...,bk∈Zn

λ1(b1) · · ·λk(bk)

explicitly. The first summation is already treated in [4]. We quote it here as Lemma 2.1.

The second summation is computed in Lemma 2.3.

Lemma 2.1. [4, Lemma 2.2] Let n = pm and χ be a Dirichlet character modulo n with

conductor pt, where 0 ≤ t ≤ m. Let s be an integer such that 0 ≤ s ≤ m. Then we obtain

∑
a∈Z∗n

gcd(a− 1, ps)χ(a) =

(s− t+ 1)(pm − pm−1) if s ≥ t,

0 otherwise.

Note that in Lemma 2.1, if s = m, this is just Lemma 3.1 of [17].

The following lemma is important to prove Lemma 2.3. It is a standard fact on

characters of finite Abelian groups. For convenience of readers, we give a concrete proof

here.

Lemma 2.2. Let n = pm and λ be an additive character of Zn with order pv. Then, for

0 ≤ s ≤ m, we have ∑
b∈psZn

λ(b) = pm−s[s ≥ v],

where [s ≥ v] is the Iverson bracket, that is,

[s ≥ v] =

1 if s ≥ v,

0 otherwise.

Proof. For b ∈ psZn, write b = psb′ with some b′ ∈ Zn. Then λ(b) = λp
s
(b′). If s ≥ v, then

λp
s

is a trivial character. In this case, λ(b) = 1 for every b ∈ psZn. Therefore, we obtain∑
b∈psZn

λ(b) = #(psZn) = pm−s.

Otherwise, λp
s

is nontrivial on Zn. Hence, there exists some b0 = psb′0 ∈ psZn such that

λ(b0) = λp
s
(b′0) 6= 1. We have∑

b∈psZn

λ(b) =
∑

b∈psZn

λ(b+ b0) = λ(b0)
∑

b∈psZn

λ(b).

As a result, we obtain ∑
b∈psZn

λ(b) = 0.
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Lemma 2.3. Let n = pm be a prime power and 0 ≤ s ≤ m be an integer. Assume

k ≥ 0 is an integer. Let λ1, . . . , λk be additive characters of Zn with orders pv1 , . . . , pvk ,

respectively. Denote v = max{v1, . . . , vk}. Then for 0 ≤ s ≤ m− 1,∑
b1,...,bk∈Zn

gcd(b1,...,bk,p
m)=ps

λ1(b1) · · ·λk(bk) = p(m−s)k[s ≥ v]− p(m−s−1)k[s+ 1 ≥ v],

where [s ≥ v] is the Iverson bracket. Otherwise, for s = m, it is equal to 1.

Proof. The case k = 0 is obvious. Thus, we assume k ≥ 1. Clearly,

(2.2)
∑

b1,...,bk∈psZn

λ1(b1) · · ·λk(bk) =

k∏
i=1

∑
bi∈psZn

λi(bi).

Substituting Lemma 2.2 into (2.2), we get that

(2.3)
∑

b1,...,bk∈psZn

λ1(b1) · · ·λk(bk) =
k∏
i=1

pm−s[s ≥ vi] = p(m−s)k[s ≥ v].

Note that ps | gcd(b1, . . . , bk, p
m) if and only if b1, . . . , bk ∈ psZn holds. Therefore, for

0 ≤ s ≤ m− 1,

gcd(b1, . . . , bk, p
m) = ps ⇐⇒ (b1, . . . , bk) ∈ (psZn)k − (ps+1Zn)k.

Hence, we obtain ∑
b1,...,bk∈Zn

gcd(b1,...,bk,p
m)=ps

λ1(b1) · · ·λk(bk)

=
∑

b1,...,bk∈psZn

λ1(b1) · · ·λk(bk)−
∑

b1,...,bk∈ps+1Zn

λ1(b1) · · ·λk(bk).
(2.4)

It then follows from (2.3) and (2.4) that∑
b1,...,bk∈Zn

gcd(b1,...,bk,p
m)=ps

λ1(b1) · · ·λk(bk) = p(m−s)k[s ≥ v]− p(m−s−1)k[s+ 1 ≥ v].

Thus, the case 0 ≤ s ≤ m− 1 is done.

Clearly, for s = m, one can readily check that

gcd(b1, . . . , bk, p
m) = ps ⇐⇒ (b1, . . . , bk) ∈ (psZn)k.

In this case, there is only one summation term λ1(p
m) · · ·λk(pm), which is equal to 1. This

concludes the proof.
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Finally, we prove the following result, which is a special case of Theorem 1.1.

Theorem 2.4. Let n = pm be a prime power and χ be a Dirichlet character whose

conductor is d = pt. Assume k is a nonnegative integer. Let λi be an additive character

of Zn with order di = pvi such that 0 ≤ vi ≤ m, where 1 ≤ i ≤ k. Then, the following

identity holds∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a− 1, b1, . . . , bk, n)χ(a)λ1(b1) · · ·λk(bk) = ϕ(n)σk

(
n

lcm(d, d1, . . . , dk)

)
,

where lcm(d, d1, . . . , dk) is the least common multiple of d, d1, . . . , dk.

Proof. By equation (2.1), Sχ,λ(pm, k) equals to

(2.5)
m∑
s=0

∑
a∈Z∗n

gcd(a− 1, ps)χ(a)


 ∑

b1,...,bk∈Zn

gcd(b1,...,bk,p
m)=ps

λ1(b1) · · ·λk(bk)

 .

Substituting Lemma 2.1 into (2.5), we get

(2.6) Sχ,λ(pm, k) =

m∑
s=t

(s− t+ 1)(pm − pm−1)

 ∑
b1,...,bk∈Zn

gcd(b1,...,bk,p
m)=ps

λ1(b1) · · ·λk(bk)

 .

Denote v = max{v1, . . . , vk}. Then substituting Lemma 2.3 into (2.6), we have that

Sχ,λ(pm, k) equals to

ϕ(pm)

(
m−1∑
s=t

(s− t+ 1)
(
p(m−s)k[s ≥ v]− p(m−s−1)k[s+ 1 ≥ v]

)
+ (m− t+ 1)

)

= ϕ(pm)

(
m∑
s=t

(s− t+ 1)p(m−s)k[s ≥ v]−
m−1∑
s=t

(s− t+ 1)p(m−s−1)k[s+ 1 ≥ v]

)

= ϕ(pm)

(
m∑
s=t

(s− t+ 1)p(m−s)k[s ≥ v]−
m∑

s=t+1

(s− t)p(m−s)k[s ≥ v]

)
.

The last equality is obtained by substituting s+ 1 with s in the posterior summation. It

is easy to see that

Sχ,λ(pm, k) = ϕ(pm)
m∑
s=t

p(m−s)k[s ≥ v]

= ϕ(pm)
m∑

s=max{t,v}

p(m−s)k

= ϕ(pm)

m−max{t,v}∑
s=0

psk.
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Further, the last equality is obtained by substituting m− s with s. Therefore,

Sχ,λ(pm, k) = ϕ(pm)σk

(
pm

pmax{t,v}

)
= ϕ(pm)σk

(
pm

lcm(pt, pv1 , . . . , pvk)

)
,

which concludes the proof.

3. The general case

In this section, we will prove the main theorem. First, we show that Sχ,λ(n, k) is multi-

plicative with respect to n by the Chinese remainder theorem. Then, using multiplicative

property, we prove Theorem 1.1 by combining prime power cases, which are already treated

in Section 2.

Let n = n1n2 be the product of positive integers n1 and n2 such that gcd(n1, n2) = 1.

By the Chinese remainder theorem, we have the ring isomorphism: Zn ' Zn1⊕Zn2 , which

induces the multiplicative group isomorphism: Z∗n ' Z∗n1
×Z∗n2

. Therefore, each Dirichlet

character modulo n can be uniquely written as χ = χ′ ·χ′′, where χ, χ′ and χ′′ are Dirichlet

characters modulo n, n1 and n2, respectively. Similarly, any additive character λ of Zn
can be uniquely written as λ = λ′ ·λ′′, where λ′ and λ′′ are additive characters of Zn1 and

Zn2 , respectively. Explicitly, we obtain that

(3.1) χ(c mod n) = χ′(c mod n1) · χ′′(c mod n2)

and

(3.2) λ(c mod n) = λ′(c mod n1) · λ′′(c mod n2)

for any integer c such that gcd(c, n) = 1. For 1 ≤ i ≤ k, we denote λi = λ′i · λ′′i with the

same meaning as above.

To simplify notations, for a ∈ Zn, we let a′ ∈ Zn1 and a′′ ∈ Zn2 denote the image of a

in Zn1 and Zn2 , respectively, i.e.,

a′ ≡ a mod n1 and a′′ ≡ a mod n2.

Let d, d′ and d′′ be the conductors of χ, χ′ and χ′′, respectively. It is well known that

d = d′d′′. For 1 ≤ i ≤ k, let di, d
′
i and d′′i be the orders of λi, λ

′
i and λ′′i , respectively.

Since d′i and d′′i are coprime to each other, we have di = d′i · d′′i , where 1 ≤ i ≤ k. Denote

the vectors (λ′1, . . . , λ
′
k) and (λ′′1, . . . , λ

′′
k) by λ′ and λ′′, respectively.

The following lemma shows that Sχ,λ(n, k) is multiplicative with respect to n.

Lemma 3.1. With the above notations we have

Sχ,λ(n, k) = Sχ′,λ′(n1, k) · Sχ′′,λ′′(n2, k).
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Proof. From (1.5), (3.1) and (3.2), we have∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a− 1, b1, . . . , bk, n)χ(a)λ1(b1) · · ·λk(bk)

=
∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a− 1, b1, . . . , bk, n1) gcd(a− 1, b1, . . . , bk, n2)

× χ′(a)χ′′(a)λ′1(b1)λ
′′
1(b1) · · ·λ′k(bk)λ′′k(bk)

=
∑

a′∈Z∗n1
b′1,...,b

′
k∈Zn1

gcd(a′ − 1, b′1, . . . , b
′
k, n1)χ

′(a′)λ′1(b
′
1) · · ·λ′k(b′k)

×
∑

a′′∈Z∗n2
b′′1 ,...,b

′′
k∈Zn2

gcd(a′′ − 1, b′′1, . . . , b
′′
k, n2)χ

′′(a′′)λ′′1(b′′1) · · ·λ′′k(b′′k).

The last equality is obtained by the Chinese remainder theorem. Indeed, as (a, b1, . . . , bk)

runs over Z∗n × (Zn)k, (a′, b′1, . . . , b
′
k, a
′′, b′′1, . . . , b

′′
k) runs over Z∗n1

× (Zn1)k × Z∗n2
× (Zn2)k,

too. Therefore, we have

Sχ,λ(n, k) = Sχ′,λ′(n1, k) · Sχ′′,λ′′(n2, k).

Remark 3.2. The proof of Lemma 3.1 is similar to that of Lemma 3.1 in [4]. Also see the

proof of Theorem 1.1 and Theorem 1.2 in [17].

Proof of Theorem 1.1. We prove the first identity by induction on ω(n), where ω(n) is the

number of distinct prime factors of n.

If ω(n) = 1, i.e., n is a prime power, this is proved in Theorem 2.4. Assume it is true

for ω(n) = u− 1, where u ≥ 2 is an integer. Now we consider the case ω(n) = u.

Let pm be a prime power, exactly dividing n. Denote n1 = pm and n2 = n/pm. Then

gcd(n1, n2) = 1.

Factor χ = χ′ · χ′′, where χ′ and χ′′ are Dirichlet characters modulo n1 and n2 with

conductors d′ and d′′, respectively. Similarly, for 1 ≤ i ≤ k, decompose λi = λ′i · λ′′i where

λ′i and λ′′i are additive characters of Zn1 and Zn2 with orders d′i and d′′i .

We note that

(3.3) d = d′d′′, gcd(d′, d′′) = 1 and di = d′id
′′
i , gcd(d′i, d

′′
i ) = 1,

where 1 ≤ i ≤ k. Denote the vectors (λ′1, . . . , λ
′
k) and (λ′′1, . . . , λ

′′
k) by λ′ and λ′′, respec-

tively. By Theorem 2.4 and the assumption, we have

(3.4)

Sχ′,λ′ = ϕ(n1)

(
n1

lcm(d′, d′1, . . . , d
′
k)

)
and Sχ′′,λ′′ = ϕ(n2)

(
n2

lcm(d′′, d′′1, . . . , d
′′
k)

)
.
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Combining Lemma 3.1 and (3.4), we get

Sχ,λ(n, k) = Sχ′,λ′(n1, k)Sχ′′,λ′′(n2, k)

= ϕ(n1)ϕ(n2)σk

(
n1

lcm(d′, d′1, . . . , d
′
k)

)
σk

(
n2

lcm(d′′, d′′1, . . . , d
′′
k)

)
.

Since arithmetic functions ϕ, σk and lcm are multiplicative, by (3.3), we get the desired

result

Sχ,λ(n, k) = ϕ(n)σk

(
n

lcm(d, d1, . . . , dk)

)
.

The second identity can be justified as follows:

n

lcm(d, d1, . . . , dk)
=

n

lcm(n/(n/d), n/ gcd(w1, n), . . . , n/ gcd(wk, n))

=
n

n/ gcd(n/d, gcd(w1, n), . . . , gcd(wk, n))

= gcd(n/d,w1, . . . , wk).

This completes the proof of Theorem 1.1.
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