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The Diameter of Unit Graphs of Rings

Huadong Su* and Yangjiang Wei

Abstract. Let R be a ring. The unit graph of R, denoted by G(R), is the simple graph

defined on all elements of R, and where two distinct vertices x and y are linked by an

edge if and only if x+ y is a unit of R. The diameter of a simple graph G, denoted by

diam(G), is the longest distance between all pairs of vertices of the graph G. In the

present paper, we prove that for each integer n ≥ 1, there exists a ring R such that

n ≤ diam(G(R)) ≤ 2n. We also show that diam(G(R)) ∈ {1, 2, 3,∞} for a ring R

with R/J(R) self-injective and classify all those rings with diam(G(R)) = 1, 2, 3 and

∞, respectively. This extends [12, Theorem 2 and Corollary 1].

1. Introduction

The investigation of the interplay between ring theory and graph theory by associating

a graph to a ring has attracted considerable attention in past two decades. In 1988, the

zero-divisor graph of a commutative ring was first introduced and studied by Beck in [8].

Since then, many authors have studied various forms of zero-divisor graphs associated

to rings and other algebraic structures. Generally speaking, studying the zero divisor

graph is a way to investigate the ring through the properties of its zero divisors. This

is applicable especially when the zero divisors of the ring can be easily identified. This

may explain why most of the publications on the zero divisor graph just concern the finite

rings. The units of a ring are key elements in determining the structure of the ring, and

many properties of a ring are closely connected to these of its units. So it is natural to

associate a ring with a graph whose edge relationships rely on units of the ring instead of

zero divisors. The unit graph of a ring is such a graph, which is the topics in this paper.

This paper concerns with diameters of unit graphs of rings. The study of diameters

of graphs associated with rings is the active topic in this area. For example, Anderson

and Livingston [4], Anderson and Mulay [5] investigated the diameter of the zero-divisor

graph of a commutative ring, respectively. It was proved that the zero-divisor graph of

a commutative ring is always connected with diameter at most three. A similar version

for the zero-divisor graph of a commutative semigroup was shown in [9] by DeMeyer,
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McKenzie and Schneider. However, Anderson and Badawi [3] proved that for each integer

n ≥ 1, there exists a ring R such that its total graph has diameter n. For the unit graph,

Heydari and Nikmehr [12] proved that its diameter is 1, 2, 3 or ∞ for an Artinian ring.

Let R be a ring with identity. Recall that the unit graph of a ring R, denoted G(R), is

the simple graph defined on the elements of R with an edge between two distinct vertices

x and y if and only if x + y is a unit of R. In 1990, the unit graph was first investigated

by Grimaldi for Zn, the ring of integers modulo n, in [10] where the author considered the

degree of a vertex, the Hamilton cycles, the covering number, the independence number

and the chromatic polynomial of the graph G(Zn). In 2010, Ashrafi, et al. [6] generalized

the unit graph G(Zn) to G(R) for an arbitrary ring R and obtained various characterization

results for finite (commutative) rings regarding connectedness, chromatic index, diameter,

girth, and planarity of G(R). Maimani et al. gave the necessary and sufficient conditions

for unit graphs to be Hamiltonian in [15]. Heydari and Nikmehr investigated the unit

graph of a left Artinian ring in [12]. Afkhami and Khosh-Ahang studied the unit graphs

of rings of polynomials and power series in [1]. In 2014, Su and Zhou [18] proved that the

girth of G(R) is 3, 4, 6 or∞ for an arbitrary ring R. Other papers are also devoted to this

topic (see, [2, 16,17]).

In this paper, we study the diameter of the unit graphs, and relate it to the structure of

rings. We first determine when diam(G(R/J(R))) equals diam(G(R)) (see Corollary 3.3).

In [6], the authors have shown that diam(G(R)) ∈ {1, 2, 3,∞} for a finite ring R and

later in [12] for a left Artinian ring R. We extend this result to rings R with R/J(R)

self-injective ring (see Theorem 3.6) and classify the rings R with R/J(R) self-injective

with diam(G(R)) = 1, 2, 3 or ∞, respectively (see Theorem 3.7). We also show that there

exists a ring R such that 3 < diam(G(R)) <∞ (see Corollary 2.7).

Let us first recall some needed notions in graph theory. Let G be a simple graph. A

walk is a sequence of vertices and edges, where each edge’s endpoints are the preceding

and following vertices in the sequence. The length of a walk is the number of edges that it

uses. A path in a graph is a walk that has all distinct vertices (except the endpoints). We

use x—y to denote two vertices x and y in a graph G are adjacent. A graph G is connected

if there is a path between each pair of the vertices of G; otherwise, G is disconnected. The

distance between two vertices x and y, denoted d(x, y), is the length of the shortest path

in G beginning at x and ending at y. The largest distance between all pairs of vertices of

G is called the diameter of G, and is denoted by diam(G). A complete graph is a graph

where each vertex is adjacent to all other vertices. Obviously, G is a complete graph if

and only if diam(G) = 1. We use Km,n and Kn to denote the complete bipartite graph

with partitions of size m and n, and the complete graph of n vertices, respectively.

Throughout the paper, rings are associate and have nonzero identity. Let R be a
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ring. The characteristic of R is denoted by char(R). We use J(R) to denote the Jacobson

radical of R and write R = R/J(R) and a = a + J(R) ∈ R for a ∈ R. We use Zn, R[t]

and R[[t]] to denote the ring of integers modulo n, the polynomial ring over a ring R in

the indeterminate t, and the formal power series ring over a ring R in the indeterminate t,

respectively. Recall that a ring R is called right self-injective if, for any (principal) right

ideal I of R, every homomorphism from IR to RR extends to a homomorphism from RR

to RR.

2. Unit graphs with diameter n

As shown in [6], the connectedness of G(R) is relative to whether the ring R is generated

additively by its units. So we first recall the following definitions. Let R be a ring and

k be a positive integer. An element r ∈ R is said to be k-good if r = u1 + · · · + uk with

ui ∈ U(R) for each 1 ≤ i ≤ k. A ring is said to be k-good if every element of R is k-good.

The unit sum number of a ring R, denoted by u(R), is defined to be

(1) min{k ∈ N | R is a k-good}, if R is k-good for some k ≥ 1;

(2) ω, if R is not k-good for every k ≥ 1, but each element of R is k-good for some k;

(3) ∞, some element of R is not k-good for any k ≥ 1.

For example, u(Z3) = 2, u(Z) = ω and u(Z[t]) = ∞. It is clear that if 2 ∈ U(R),

then r ∈ R being k-good implies that r is l-good for all l ≥ k. The investigation of

rings generated additively by their units started in 1953–1954 when Wolfson [20] and

Zelinsky [21] proved independently that every linear transformation of a vector space V

over a division ring D is the sum of two nonsingular linear transformations, except when

dimV = 1 and D = Z2. For the unit sum number of rings, we refer the reader to [13,14,19].

In [6, Theorem 3.4], the authors characterized when the unit graph of a ring is a

complete graph.

Lemma 2.1. [6, Theorem 3.4] Let R be a ring. Then the unit graph G(R) is a complete

graph (diam(G(R)) = 1) if and only if R is a division ring with char(R) = 2.

Lemma 2.2. Let R be a ring and r ∈ R. Then the following hold:

(1) If r is k-good, then d(r, 0) ≤ k;

(2) If r 6= 0 and d(r, 0) = k, then r is k-good but not l-good for all l < k.

Proof. (1) Let r = u1 + · · ·+ uk, where each ui ∈ U(R). If k is odd, then

0—u1—(−u1 − u2)—· · ·—(−u1 − · · · − uk−1)—(u1 + · · ·+ uk) = r



4 Huadong Su and Yangjiang Wei

is a walk of length k. If k is even, then

0—(−u1)—(u1 + u2)—· · ·—(−u1 − · · · − uk−1)—(u1 + · · ·+ uk) = r

is a walk of length k. Therefore, d(r, 0) ≤ k.

(2) Let r = x0—x1—x2—· · ·—xk = 0 be a path from r to 0. Then ui := xi−1 + xi ∈
U(R) for 1 ≤ i ≤ k, so r =

∑k
i=1(−1)i+1ui. Thus, r is k-good. By part (1), we know that

r is not l-good for all l < k.

Proposition 2.3. Let R be a ring that is not a division ring. If u(R) = k, then

diam(G(R)) = k.

Proof. Let x, y ∈ R. If k is odd, we set x+ y = u1 + u2 + · · ·+ uk, where each ui is a unit

in R. Then there exists a walk

x—(−x + u1)—(x− u1 − u2)—· · ·—(x− u1 − · · · − uk−1)—(−x + u1 + · · ·+ uk) = y

between x and y, so d(x, y) ≤ k. If k is even, we set y − x = u1 + u2 + · · · + uk, where

each ui is a unit in R. Then there exists a walk

x—(−x− u1)—(x + u1 + u2)—· · ·—(x− u1 − · · · − uk−1)—(x + u1 + · · ·+ uk) = y

between x and y, so d(x, y) ≤ k. Thus, diam(G(R)) ≤ k.

On the other hand, as u(R) = k, there exists an element 0 6= r ∈ R, such that

r is k-good but not l-good for any l < k. Then d(r, 0) = k by Lemma 2.2. Thus,

diam(G(R)) = k.

The condition that R is not a division ring is necessary. For example, u(Z2) = ω, but

diam(G(Z2)) = 1. Moreover, the converse of Proposition 2.3 is not true in general. For

example, diam(G(Z4)) = 2, but u(Z4) = ω.

Proposition 2.4. Let R be a ring with diam(G(R)) = k ≥ 2. If 2 ∈ U(R), then u(R) = k.

Proof. By Lemma 2.1, R is not a division ring with char(R) = 2. If R is a division ring

with char(R) 6= 2, then diam(G(R)) = 2. Note that, in this case, u(R) = 2. So the result

follows.

Now we assume R is not a division ring. Let 0 6= r ∈ R. If d(r, 0) = l ≤ k, then by

Lemma 2.2(2), we know that r is l-good. Since 2 is a unit of R, r is k-good and hence R

is k-good. By Proposition 2.3, R is not l-good for all l < k, so u(R) = k.

Proposition 2.5. Let R be a ring with 2 ∈ U(R) and k ≥ 2 an integer. Then diam(G(R))

= k if and only if u(R) = k.

Proof. This follows from Propositions 2.3 and 2.4.
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We note that, however, in the previous example, every element in Z4 can be expressed

as a sum of at most two units. So we recall another slightly different definition which was

introduced in [11]. Let usn(R) be the smallest number n such that every element can be

written as the sum of at most n units. If some element of R is not k-good for any k ≥ 1,

then usn(R) is defined to be ∞. Note that usn(R) and u(R) are different. For example,

u(Z2) = ω and usn(Z2) = 2.

In [12], Heydari and Nikmehr proved that diam(G(R)) ∈ {1, 2, 3,∞} for an Artinian

ring R. It is interesting to know whether there exists a ring R such that 3 < diam(G(R)) <

∞. In [11, Corollary 4], the authors proved that there exists a ring R such that usn(R) = n

for each given n ≥ 2. This result can be used to show that there exists a ring R such that

3 < diam(G(R)) <∞.

Theorem 2.6. Let R be a ring but not a division ring. If usn(R) = n, then n ≤
diam(G(R)) ≤ 2n.

Proof. We can assume that usn(R) = n ≥ 2. Then there exists an element 0 6= r ∈ R,

such that r is a sum of n units but not a sum of m units for any m < n. We claim that

d(r, 0) ≥ n. If d(r, 0) = k < n, then, by Lemma 2.2(2), r is k-good, a contradiction. So

d(r, 0) ≥ n and hence diam(G(R)) ≥ n. On the other hand, For x, y ∈ R, suppose that

x is k-good and y is l-good. By Lemma 2.2(1), d(x, 0) ≤ k ≤ n and d(y, 0) ≤ l ≤ n, so

d(x, y) ≤ k + l ≤ 2n. This implies that diam(G(R)) ≤ 2n.

Corollary 2.7. There exists a ring R such that 3 < diam(G(R)) <∞.

Proof. This follows from Theorem 2.6 and [11, Corollary 4].

The condition that R is not a division ring is necessary in Theorem 2.6. For example,

usn(F4) = 2, but diam(G(F4)) = 1.

We characterize the rings R with diam(G(R)) = 2 for ending this section.

Proposition 2.8. Let R be a ring. Then diam(G(R)) = 2 if and only if usn(R) = 2 and

R is not a division ring with char(R) = 2.

Proof. Assume diam(G(R)) = 2. Then R is not a division ring with char(R) = 2 by

Lemma 2.1. For any nonzero nonunit r in R, as diam(G(R)) = 2, we have d(r, 0) = 2. So

r is 2-good by Lemma 2.2(2). So usn(R) = 2. Conversely, it is clear that diam(G(R)) ≥ 2.

For any x, y ∈ R, if x+ y ∈ U(R), then d(x, y) = 1; if x+ y /∈ U(R), then x+ y is 2-good.

So d(x− y, 0) = 2 and hence d(x, y) = 2 by Lemma 2.2(1). Thus diam(G(R)) = 2.
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3. Self-injective rings

Here, our concern is self-injective rings. In [6], Ashrafi et al. proved that diam(G(R)) is

1, 2, 3 or ∞ for a finite (commutative) ring R, In [12], Heydari and Nikmehr generalized

the result to an Artinian ring R and classified all Artinian rings according to diameters

of their unit graphs. Our purpose in this section is to generalize these results to rings R

with R/J(R) self-injective.

In [12, Remark 1], the authors have pointed out that diam(G(R)) ≤ diam(G(R)) for

any ring R. Here, we first determine when the inequality is strict.

Lemma 3.1. Let R be a ring. If diam(G(R)) ≥ 3, then diam(G(R)) = diam(G(R)).

Proof. Suppose that diam(G(R)) =∞. We need to show that diam(G(R)) =∞. Assume

to the contrary that diam(G(R)) = m <∞. For any x, y ∈ R, if x = y, then x− y ∈ J(R)

and hence 1 + x − y ∈ U(R). So we get a path x—(1 − y)—y from x to y, and so

d(x, y) ≤ 2. If x 6= y, then a path from x to y deduces a path from x to y, which implies

that d(x, y) ≤ d(x, y) ≤ m. So diam(G(R)) <∞, a contradiction.

Suppose that diam(G(R) is finite and diam(G(R)) = k ≥ 3. By [12, Remark 1], we

only need to show that diam(G(R)) ≥ k. There exist x, y ∈ R, such that d(x, y) = k. First

we claim that x 6= y. Otherwise, x = y, then x− y ∈ J(R) and hence 1 + x− y ∈ U(R).

So x—(1 − y)—y is a walk from x to y, so d(x, y) ≤ 2, a contradiction. Assume that

d(x, y) = l < k and x—x1—x2—· · ·—xl−1—y is a path from x to y. Then x—x1—x2—

· · ·—xl−1—y is path of length l, so d(x, y) ≤ l < k, a contradiction. Thus, d(x, y) ≥ k.

This implies diam(G(R)) ≥ k.

Therefore, diam(G(R)) = diam(G(R)).

Now, we determine when diam(G(R)) < diam(G(R)).

Theorem 3.2. Let R be a ring. Then the following are equivalent:

(1) diam(G(R)) < diam(G(R)).

(2) R is a local ring with J(R) 6= 0 and 2 ∈ J(R).

(3) diam(G(R)) = 2 and diam(G(R)) = 1.

Proof. (1) ⇒ (2). Suppose that diam(G(R)) < diam(G(R)). By Lemma 3.1, diam(G(R))

≤ 2. Note that diam(G(R)) = 1 implies diam(G(R)) = 1. Thus, we have diam(G(R)) = 2

and diam(G(R)) = 1. So J(R) 6= 0, and by Lemma 2.1, R is a division ring with

char(R) = 2. Therefore, R is a local ring with J(R) 6= 0 and 2 ∈ J(R).

(2) ⇒ (3). Suppose that R is a local ring with J(R) 6= 0 and 2 ∈ J(R). Then R/J(R)

is a division ring and char(R) = 2. By Lemma 2.1, it follows that G(R) is a complete
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graph and hence diam(G(R)) = 1. On the other hand, for any r ∈ R, either r ∈ J(R)

or r ∈ U(R). For any two distinct elements a, b ∈ R, if a + b ∈ U(R), then d(a, b) = 1.

Suppose that a + b ∈ J(R). If a ∈ J(R), then b ∈ J(R), and we have a path a—1—b, so

d(a, b) = 2 (note that since J(R) 6= 0, such a, b do exist); if a ∈ U(R), then b ∈ U(R),

and we have a path a—(a + b)—b, so d(a, b) = 2. Hence diam(G(R)) = 2.

(3) ⇒ (1). It is clear.

Corollary 3.3. Let R be a ring. Then diam(G(R)) = diam(G(R)) if and only if one of

the following holds:

(1) R is not a local ring.

(2) R is a local ring with 2 ∈ U(R).

(3) R is a division ring.

In [13, Theorem 6], Khurana and Srivastava determined the unit sum number u(R)

of a regular right self-injective ring R. We use the notion usn(R) to restate the theorem

below.

Lemma 3.4. [13] Let R be a regular self-injective ring. Then usn(R) = 2, 3 or ∞.

Moreover,

(1) usn(R) = 2 if and only if R has no nonzero Boolean ring as a ring direct summand

or R ∼= Z2.

(2) usn(R) = 3 if and only if R � Z2 and R has Z2, but no Boolean ring with more than

two elements, as a ring direct summand.

(3) usn(R) = ∞ if and only if R has a Boolean ring with more than two elements as a

ring direct summand.

Lemma 3.5. Let R be a regular right self-injective ring. Then diam(G(R)) ∈ {1, 2, 3,∞}.

Proof. By [13, Theorem 6], u(R) = 2, ω or ∞. Suppose that u(R) = 2. If R is not a

division ring, then diam(G(R) = 2 by Proposition 2.3. If R is a division ring, it is clear

that diam(G(R)) ≤ 2.

Suppose that u(R) = ω. Then, by [13, Theorem 6(2)], we may assume that R =

R1 × Z2, where u(R1) = 1 or 2. If u(R1) = 1, R1 is a trivial ring and R = Z2 and so

diam(G(R)) = 1. Now suppose that u(R1) = 2 and let x, y ∈ G(R). If x = (x1, 0) and

y = (y1, 0), then there exists z1 ∈ R1, such that x1 + z1 and z1 + y1 are units in R1. So a

path (x1, 0)—(z1, 1)—(y1, 0) from (x1, 0) to (y1, 0) deduces d(x, y) ≤ 2; if x = (x1, 1) and

y = (y1, 1), a similar argument shows that d(x, y) ≤ 2; if x = (x1, 0) and y = (y1, 1), then
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there exists z1 ∈ R1, such that x1 + z1 is a unit in R1. With a similar argument, we have

a path (x1, 0)—(z1, 1)—(w1, 0)—(y1, 1) and hence d(x, y) ≤ 3. So diam(G(R)) ≤ 3 always

holds.

Suppose that u(R) = ∞. By [6, Theorem 4.3], we know that G(R) is disconnected.

So diam(G(R) =∞. The proof is complete.

Theorem 3.6. Let R be a ring with R/J(R) right self-injective (in particular, R is right

self-injective). Then diam(G(R)) ∈ {1, 2, 3,∞}.

Proof. We know that in this case R = R/J(R) is a regular right self-injective ring. By

Lemma 3.5, we have diam(R) ∈ {1, 2, 3,∞}. By Lemma 3.1, we get diam(G(R)) ∈
{1, 2, 3,∞}.

Theorem 3.7. Let R be a ring with R/J(R) right self-injective (in particular, R is right

self-injective). Then the following hold:

(1) diam(G(R)) = 1 if and only if R is a division ring with char(R) = 2.

(2) diam(G(R)) = 2 if and only if R is not a division ring with char(R) = 2 and one of

following holds:

(i) R has no nonzero Boolean ring as a ring direct summand.

(ii) R ∼= Z2.

(3) diam(G(R)) = 3 if and only if R � Z2 and R has Z2, but no Boolean ring with more

than two elements, as a ring direct summand.

(4) diam(G(R)) =∞ if and only if R has a Boolean ring with more than two elements

as a ring direct summand.

Proof. (1) This follows from Lemma 2.1.

Next, we assume that R is not a division ring with char(R) = 2 and prove (2), (3)

and (4) together. Note that R is a regular right self-injective ring. So u(R) = 2, ω or ∞
by [13, Theorem 6]. To complete the proof, we determine the diameter for each case.

Case 1: u(R) = 2. In this case, R has no nonzero Boolean ring as a ring direct

summand or R ∼= Z2 by Lemma 3.4. Note that diam(G(R)) ∈ {1, 2}. So diam(G(R)) = 2

by Lemma 3.1.

Case 2: u(R) = ω. If R ∼= Z2, then G(R) is a complete bipartite graph. So

diam(G(R)) = 2. If R � Z2, in this case, usn(R) = 3, so diam(G(R)) = 3 as we shown in

Lemma 3.5. Thus diam(G(R)) = 3 by Lemma 3.1.

Case 3: u(R) =∞. Then G(R) is disconnected by [6, Theorem 4.3]. So diam(G(R)) =

∞. Thus diam(G(R)) =∞ by Lemma 3.1.
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