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A Critical Nonlinear Elliptic Equation with Nonlocal Regional Diffusion

César E. Torres Ledesma

Abstract. In this article we are interested in the nonlocal regional Schrödinger equation

with critical exponent

ε2α(−∆)αρu+ u = λuq + u2
∗
α−1 in Rn, u ∈ Hα(Rn),

where ε is a small positive parameter, α ∈ (0, 1), q ∈ (1, 2∗α − 1), 2∗α = 2n/(n− 2α) is

the critical Sobolev exponent, λ > 0 is a parameter and (−∆)αρ is a variational version

of the regional Laplacian, whose range of scope is a ball with radius ρ(x) > 0. We

study the existence of a ground state and we analyze the behavior of semi-classical

solutions as ε→ 0.

1. Introduction

In the present paper, we consider the existence and concentration phenomena of solu-

tions to the nonlinear Schrödinger equation with nonlocal regional diffusion and critical

exponent given by

(1.1) ε2α(−∆)αρu+ u = λuq + u2∗α−1 in Rn, u ∈ Hα(Rn),

where ε is a small positive parameter, α ∈ (0, 1), q ∈ (1, 2∗α − 1), 2∗α = 2n/(n− 2α) is the

critical Sobolev exponent, λ > 0 is a parameter and the operator (−∆)αρ is a variational

version of the non-local regional Laplacian, with range of scope determined by the positive

function ρ ∈ C(Rn,R+), which is defined as∫
Rn

(−∆)αρu(x)ϕ(x) dx =

∫
Rn

∫
B(0,ρ(x))

[u(x+ z)− u(z)][ϕ(x+ z)− ϕ(x)]

|z|n+2α
dzdx.

In recent years, equations involving the fractional Laplacian have attracted much atten-

tion since its appear in several areas such as optimization, finance, phase transitions, strat-

ified materials, crystal dislocation, flame propagation, conservation laws, ultra-relativistic

limits of quantum mechanics, materials science, and water waves, see for instance [8, 13],

and [10,11,15] for an introduction to these topics and their applications.
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In the context of fractional quantum mechanics, non-linear fractional Schrödinger equa-

tion has been proposed by Laskin [25, 26] as a result of expanding the Feynman path

integral, from the Brownian-like to the Lévy-like quantum mechanical paths. Motivated

by these physical aspects, non-linear fractional Schrödinger equation has attracted a lot

of attention of many researchers and some existence and multiplicity results have been

obtained, for example see [7, 9, 12,16,17,20,27,36].

On the other hand, research has been done regarding regional fractional Laplacian,

where the scope of the operator is restricted to a variable region near each point. We

mention the work by Guan [21] and Guan and Ma [22] where they study these operators,

their relation with stochastic processes and they develop integration by parts formula, and

the work by Ishii and Nakamura [24], where the authors studied the Dirichlet problem for

regional fractional Laplacian modeled on the p-Laplacian.

Very recently Felmer and Torres [18, 19], considered positive solutions of nonlinear

Schrödinger equation with non-local regional diffusion

(1.2) ε2α(−∆)αρu+ u = f(u) in Rn, u ∈ Hα(Rn).

The operator (−∆)αρ is a variational version of the non-local regional Laplacian, defined

by ∫
Rn

(−∆)αρuv dx =

∫
Rn

∫
B(0,ρ(x))

[u(x+ z)− u(x)][v(x+ z)− v(x)]

|z|n+2α
dzdx.

Under suitable assumptions on the nonlinearity f and the range of scope ρ, they obtained

the existence of a ground state by mountain pass argument and a comparison method.

Furthermore, they analyzed symmetry properties and concentration phenomena of these

solutions. These regional operators present various interesting characteristics that make

them very attractive from the point of view of mathematical theory of non-local operators.

We also mention the recent works by Alves and Torres [3, 4] and Torres [37–39], where

existence, multiplicity and symmetry results are considered in bounded domain and Rn.

Recently, some papers which analyzed fractional elliptic equations involving the critical

Sobolev exponent, see [28–32]. By using variational methods, Shang and Zhang [33]

studied the existence and the multiplicity of nonnegative solutions for

(1.3) ε2s(−∆)su+ V (x)u = |u|2∗s−2u+ λf(u) in Rn

where ε, λ > 0, V is a positive continuous function and f has subcritical growth. Teng

and He [35] combined the s-harmonic extension method of Caffarelli and Silvestre, the

concentration-compactness principle of Lions and methods of Brezis and Nirenberg to

prove the existence of ground state solutions for

(−∆)su+ V (x)u = P (x)|u|p−2u+Q(x)|u|2∗s−2u in Rn
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where p ∈ (2, 2∗s) and P , Q are continuous functions satisfying suitable assumptions.

In [23], by using penalization technique and Ljusternik-Schnirelmann theory, He and Zou

obtained the existence and concentration results for the problem (1.3) with λ = 1, under

local condition imposed on V and f is a subcritical nonlinearity. Further results concerning

the fractional Schrödinger equations involving critical and subcritical nonlinearities can

be found in [1, 2, 5, 6, 33].

Inspired by the above works, in the present work we aim to investigate the existence and

concentration phenomena of least energy solution for the equation (1.1). For that purpose,

we suppose that the scope function ρ ∈ C(Rn,R+) satisfies the following hypotheses:

(ρ1) There are numbers 0 < ρ0 < ρ∞ ≤ ∞ such that

ρ0 ≤ ρ(x) < ρ∞, ∀x ∈ Rn and lim
|x|→∞

ρ(x) = ρ∞.

(ρ2) In case ρ∞ =∞ we further assume that there exists a ∈ (0, 1) such that

lim sup
|x|→∞

ρ(x)

|x|
≤ a.

(ρ3) For any x0 ∈ Rn, the equation

|x| = ρ(x+ x0), x ∈ Rn,

defines an (n− 1)-dimensional surface of class C1 in Rn.

Now we are in a position to state our main existence theorem.

Theorem 1.1. Suppose that ε, λ > 0, q ∈ (1, 2∗α − 1), ρ verifies (ρ1)–(ρ2). Then, there

exists ε0 > 0 such that (1.1) has a weak solution for all ε ∈ (0, ε0).

In our second main theorem we are interested in the concentration behavior of ground

states for the equation (1.1) when the positive parameter ε approaches zero. In the light

of [19], the scope function ρ, that describes the size of the ball of the influential region

of the non-local operator, plays a key role in deciding the concentration point of ground

states of the equation. Even though, at a first sight, the minimum point of ρ seems to be

the concentration point, there is a non-local effect that needs to be taken in account. We

define the concentration function

H(x) = −|S
n−1|
2α

(
1

ρ(x)2α
− 1

ρ2α
∞

)
+

1

2

∫
C+(x)

dy

|y|n+2α
− 1

2

∫
C−(x)

dy

|y|n+2α
,

where the sets C+(x) and C−(x) are defined as follows

C−(x) = {y ∈ Rn : ρ(x+ y) < |y| < ρ(x)}
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and

C+(x) = {y ∈ Rn : ρ(x) < |y| < ρ(x+ y)}.

Here we interpret the quotient 1/ρ2α
∞ as zero, when ρ∞ = ∞. Now we state our second

theorem.

Theorem 1.2. Suppose that ε, λ > 0, q ∈ (1, 2∗α − 1), ρ verifies (ρ1)–(ρ3). Then for each

sequence εm → 0, there exists a subsequence such that for every m, there is a non-negative

solution um = uεm of (1.1) that concentrates around a global minimum point x0 of H, as

εm → 0. In more precise terms, for every δ > 0 there exists R > 0 and ε0 > 0 such that if

ε < ε0 we have∫
Bc(x0,εmR)

u2
m(x) dx ≤ εnmδ and

∫
B(x0,εmR)

u2
m(x) dx ≥ εnmC, ∀ εm ≤ ε0,

with C a constant independent of δ and m.

This article is organized as follows. In Section 2 we present preliminaries with the main

tools and the functional setting of the problem. In Section 3 we prove the Theorem 1.1.

In Section 4 we complete the study of the semi-classical limit, proving Theorem 1.2.

2. Preliminaries

For any α ∈ (0, 1), the fractional Sobolev space Hα(Rn) is defined by

Hα(Rn) =

{
u ∈ L2(Rn) :

|u(x)− u(z)|
|x− z|(n+2α)/2

∈ L2(Rn × Rn)

}
endowed with the norm

‖u‖α =

(∫
Rn
|u(x)|2 dx+

∫
Rn

∫
Rn

|u(x)− u(z)|2

|x− z|n+2α
dzdx

)1/2

.

For the reader’s convenience, we review the main embedding result for Hα(Rn).

Lemma 2.1. [15] Let α ∈ (0, 1) such that 2α < n. Then there exist a constant C =

C(n, α) > 0, such that

‖u‖L2∗α ≤ C‖u‖α

for every u ∈ Hα(Rn). Moreover, the embedding Hα(Rn) ⊂ Lp(Rn) is continuous for any

p ∈ [2, 2∗α] and is locally compact whenever p ∈ [2, 2∗α).

Furthermore, we introduce the homogeneous fractional Sobolev space

Hα
0 (Rn) =

{
u ∈ L2∗α(Rn) : |ξ|αû ∈ L2(Rn)

}
= C∞0 (Rn)

‖·‖0
,
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where

‖u‖20 =

∫
Rn
|ξ|2α|û(ξ)|2 dξ.

Now we consider the best Sobolev constant S as follows:

(2.1) S = inf
u∈Hα

0 (Rn)\{0}

∫
Rn
∫
Rn
|u(x)−u(z)|2
|x−z|n+2α dzdx(∫

Rn |u(x)|2∗α dx
)2/2∗α .

According to [14], S is attained by the function u0(x) given by

(2.2) u0(x) =
c

(θ2 + |x− x0|2)(N−2α)/2
, x ∈ Rn,

where c ∈ R \ {0}, θ > 0 and x0 ∈ RN are fixed constants. For any ε > 0 and x ∈ Rn, let

Uε(x) = ε−(N−2α)/2ũ
( x

εS1/(2α)

)
, ũ(x) =

u0(x)

‖u0‖L2∗α

which is solution of the problem

(−∆)αu = |u|2∗α−2u, x ∈ Rn.

Given a function ρ as above, we define

(2.3) ‖u‖2ρ =

∫
Rn

∫
B(0,ρ(x))

|u(x)− u(z)|2

|x− z|n+2α
dzdx+

∫
Rn
u(x)2 dx

and the space

Hα
ρ (Rn) = {u ∈ L2(Rn) : ‖u‖2ρ <∞}.

This space is very natural for the study of our problem. Furthermore, we have the following

result.

Proposition 2.2. [19] If ρ satisfies (ρ1) there exists a constant C = C(n, α, ρ0) > 0 such

that

‖u‖α ≤ C‖u‖ρ.

Remark 2.3. By Proposition 2.2 we have that Hα
ρ (Rn) ↪→ Hα(Rn) is continuous and then,

by Lemma 2.1, we have that Hα
ρ (Rn) ↪→ Lq(Rn) is continuous for any q ∈ [2, 2∗α], and

there exists Cq > 0 such that

‖u‖Lq ≤ Cq‖u‖ρ for every u ∈ Hα
ρ (Rn) and q ∈ [2, 2∗α].

Furthermore Hα
ρ (Rn) ↪→ Lqloc(R

n) is compact for any q ∈ [2, 2∗α).

Remark 2.4. Since ‖u‖ρ ≤ ‖u‖α, under the condition (ρ1) Proposition 2.2 implies ‖ · ‖ρ
and ‖ · ‖ are equivalent norms in Hα(Rn).
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Lemma 2.5. [19] Let n ≥ 2. Assume that {un}n∈N is bounded in Hα
ρ (Rn) and it satisfies

lim
n→∞

sup
y∈Rn

∫
B(y,R)

|un(x)|2 dx = 0,

where R > 0. Then un → 0 in Lq(Rn) for q ∈ (2, 2∗α).

Now, we consider the limit equations, namely

(2.4) (−∆)αu+ u = λuq + u2∗α−1 in Rn, u ∈ Hα(Rn).

This equation was studied by Shang, Zhang and Yang in [34]. The solution of problem (2.4)

are the critical point of the functional

I(u) =
1

2
‖u‖2α −

λ

q + 1

∫
Rn
uq+1

+ dx− 1

2∗α

∫
Rn
u

2∗α
+ dx.

Furthermore, they studied the existence of ground state solutions to (2.4), namely, function

in N = {u ∈ Hα(Rn) \ {0} : I ′(u)u = 0} such that

C∗ = inf
u∈N

I(u)

is achieved and they got the following characterization:

C∗ = inf
u∈Hα(Rn)\{0}

sup
t≥0

I(tu) = C,

where C = infγ∈Γ supt∈[0,1] I(γ(t)) > 0 is the mountain pass critical value.

On the other hand, if q ∈ (1, 2∗α − 1), they have proved that there exists λ0 > 0 such

that for all λ ≥ λ0, the critical value satisfies

(2.5) 0 < C <
α

n
Sn/(2α),

where S is the best Sobolev constant given by (2.1) and problem (2.4) has a nontrivial

ground state solution.

3. Ground state

Let ε = 1 and consider the following problem

(3.1) (−∆)αρu+ u = λuq + u2∗α−1 in RN , u ∈ Hα(RN ).

We recall that u ∈ Hα
ρ (Rn) \ {0} is a solution of (1.1) if u(x) ≥ 0 and

〈u, ϕ〉ρ = λ

∫
Rn
uq+ϕdx+

∫
Rn
u

2∗α−1
+ ϕdx, ∀ϕ ∈ Hα

ρ (Rn),
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where

〈u, ϕ〉ρ =

∫
Rn

∫
B(0,ρ(x))

[u(x+ z)− u(x)][ϕ(x+ z)− ϕ(x)]

|z|n+2α
dzdx+

∫
Rn
uϕdx

and u+ = max{u, 0}.
In order to find solution for problem (3.1), we consider the functional Iρ : Hα

ρ (Rn)→ R
defined as

Iρ(u) =
1

2
‖u‖2ρ −

λ

q + 1

∫
Rn
uq+1

+ dx− 1

2∗α

∫
Rn
u

2∗α
+ dx,

which is well defined and belongs to C1(Hα
ρ (R),R) with Fréchet derivative

I ′ρ(u)v = 〈u, v〉ρ − λ
∫
Rn
uq+v dx−

∫
Rn
u

2∗α−1
+ v dx.

Now, we start recalling that the functional Iρ satisfies the mountain pass geometry con-

ditions

Lemma 3.1. The functional Iρ satisfies the following conditions:

(1) There exist β, δ > 0, such that Iρ(u) ≥ β if ‖u‖ρ = δ.

(2) There exists an e ∈ Hα
ρ (Rn) with ‖e‖ρ > δ such that Iρ(e) < 0.

From the previous lemma, by using the mountain pass theorem without (PS)c condition

(see [40]) it follows that there exists a (PS)Cρ sequence {uk} ⊂ Hα
ρ (Rn) such that

(3.2) Iρ(uk)→ Cρ and I ′ρ(uk)→ 0,

where

(3.3) Cρ = inf
γ∈Γρ

sup
t∈[0,1]

Iρ(γ(t)) > 0,

and Γρ = {γ ∈ C([0, 1], Hα
ρ (Rn)) : γ(0) = 0, Iρ(γ(1)) < 0}.

Also, we define

C∗ = inf
u∈Nρ

Iρ(u)

where

Nρ = {u ∈ Hα
ρ (Rn) \ {0} : I ′ρ(u)u = 0}.

Lemma 3.2. C∗ > 0.

Proof. Suppose by contradiction that C∗ = 0. Then there exists uk ∈ Nρ such that

Iρ(uk)→ C∗ = 0 as k →∞.
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But, since uk ∈ Nρ we have

Iρ(uk) = Iρ(uk)−
1

2
I ′ρ(uk)uk

= λ

(
1

2
− 1

q + 1

)
‖uk+‖q+1

Lq+1 +
α

n
‖uk+‖

2∗α
L2∗α
→ 0 as k →∞.

So

‖uk+‖L2∗α → 0 and ‖uk+‖Lq+1 → 0 as k →∞.

Therefore

(3.4) ‖uk‖ρ → 0 as k →∞.

On the other hand, since 0 6= uk ∈ Nρ, then by Remark 2.3 we have

1 ≤ λCq+1‖uk‖q−1
ρ + C2∗α‖uk‖

2∗α−2
ρ , ∀ k.

Combining this inequality with (3.4) we get a contradiction. This proves the lemma.

Lemma 3.3. Let Cρ given by (3.2) and (3.3). Then

C∗ = inf
u∈Hα

ρ (Rn)\{0}
max
t≥0

Iρ(tu) = Cρ.

Proof. We note that our nonlinearity f(t) = λtq + t2
∗
α−1, t > 0, is a C1 function and

f(t)/t is a strictly increasing function. Let u ∈ Nρ, then we can show that the function

h(t) = Iρ(tu), t 6= 0 has a unique maximum point tu such that

(3.5) Iρ(tuu) = max
t≥0

Iρ(tu).

Furthermore, we can show that tu = 1. Now choose t0 ∈ R and ũ = t0u such that

Iρ(ũ) < 0. Then γ(t) = tũ ∈ Γρ then Iρ(u) ≥ Cρ, that is,

(3.6) C∗ ≥ Cρ.

On the other hand, let {uk} be the (PS)Cρ sequence satisfying (3.2) and (3.3). Since {uk}
is bounded, then I ′ρ(uk)uk → 0 as k → ∞, moreover, from (3.5) for each k, there is a

unique tk ∈ R+ such that

(3.7) I ′ρ(tkuk)tkuk = 0, ∀ k.

Hence tkuk ∈ Nρ.
Now we note that by (3.7), we have

(3.8) ‖uk‖2ρ = λtq−1
k ‖uk+‖q+1

Lq+1 + t
2∗α−2
k ‖uk+‖

2∗α
L2∗α

, ∀ k.
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So tk does not converge to 0; otherwise, since {uk} is bounded in Hα
ρ (Rn), using (3.8) we

obtain

‖uk‖ρ → 0 as k →∞,

which is impossible since Cρ > 0. Also, tk does not go to infinity. In fact, by (3.8) we get

(3.9)
‖uk‖2ρ
t
2∗α−2
k

= λt
q−1−2∗α
k ‖uk+‖q+1

Lq+1 + ‖uk+‖
2∗α
L2∗α

, ∀ k.

So, assuming that tk →∞ as k →∞, by (3.9) we get that

uk → 0 in L2∗α(Rn) as k →∞.

Then using interpolation inequality it follows that

(3.10) ‖uk+‖q+1
Lq+1 → 0 as k →∞.

Moreover, since I ′ρ(uk)uk → 0 as k →∞, we obtain

(3.11) ‖uk‖2ρ = λ‖uk+‖q+1
Lq+1 + ‖uk‖

2∗α
L2∗α

+ o(1) as k →∞.

So, by (3.10) and (3.11), we conclude that ‖uk‖2ρ → 0 as k → ∞, contradicting Cρ >

0. Hence, the sequence {tk} is bounded and there exists t0 ∈ (0,∞) such that (up to

subsequence) tk → t0 as k →∞.

Now, from (3.8) and (3.11) we obtain

(3.12) o(1) = λ(tq−1
k − 1)‖uk‖q+1

Lq+1 + (t
2∗α−2
k 1)‖uk‖

2∗α
L2∗α

as k →∞.

From where t0 = 1, namely

(3.13) tk → 1 as k →∞.

Therefore, by (3.13) and recalling that tkuk ∈ Nρ, we get

C∗ ≤ Iρ(tkuk)

= t2k

[
Iρ(uk) +

λ

q + 1
(1− tq−1

k )‖uk+‖q+1
Lq+1 +

1

2∗α
(1− t2

∗
α−2
k )‖uk+‖

2∗α
L2∗α

]
= t2kIρ(uk) + o(1)

= (t2k − 1)Iρ(uk) + Iρ(uk) + o(1).

Passing to the limit we obtain C∗ ≤ Cρ.
On the other hand, by the previous comments, for any u ∈ Hα

ρ (Rn) \ {0} there is a

unique tu = t(u) > 0 such that tuu ∈ Nρ, then

C∗ ≤ inf
u∈Hα

ρ (Rn)\{0}
max
t≥0

Iρ(tu).
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Moreover, for any u ∈ Nρ, we have

Iρ(u) = max
t≥0

Iρ(tu) ≥ inf
u∈Hα

ρ (Rn)\{0}
max
t≥0

Iρ(tu),

so

C∗ = inf
Nρ
Iρ(u) ≥ inf

u∈Hα
ρ (Rn)\{0}

max
t≥0

Iρ(tu).

Remark 3.4. Suppose that (ρ1) holds and without loss of generality take ε = 1, then

Cρ < C.

In fact, let u be a critical point of I with critical value C and for any y ∈ Rn, define

uy(x) = u(x+ y). Then for any t > 0 we have

C = I(uy) ≥ I(tuy) > Iρ(tuy).

By Lemma 3.2, we can take t∗ > 0 such that t∗uy ∈ Nρ and

Iρ(t
∗uy) = sup

t>0
Iρ(tuy),

consequently C > Iρ(t
∗uy) ≥ Cρ. In the same way we can show that

Cρ < Cρ∞ < C.

Remark 3.5. According to (2.5) and by Remark 3.4 we have

0 < Cρ <
α

n
Sn/(2α).

Lemma 3.6. Suppose that Cρ < C. Then there are ν,R > 0 such that∫
B(0,R)

u2
k(x) dx ≥ ν for all k ∈ N.

Proof. By Lemma 3.3, for each k ∈ N , there exist tk ⊂ R such that tk → 1 and

Iρ(tkuk) = max
t≥0

Iρ(tuk).

Furthermore

Iρ(uk) = Iρ(tkuk) + o(1) ≥ Iρ(tuk) + o(1) for all t > 0.

Now we consider two cases, namely, when ρ∞ =∞ and ρ∞ <∞. In the first case, by

(ρ1), for every ε > 0 there exist R > 0 such that

Rn \B(0, ρ(x)) ⊂ Rn \B(0, 1/ε) whenever |x| > R.
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Then

Iρ(tuk) = I(tuk)−
t2

2

∫
Rn

∫
Rn\B(0,ρ(x))

|uk(x+ z)− uk(x)|2

|z|n+2α
dzdx

≥ I(tuk)−
|Sn−1|t2

αρ2α
0

‖uk‖2L2(B(0,R)) +
|Sn−1|t2ε2α

α
‖uk‖2L2(Rn) for all t > 0.

(3.14)

If {τk} is the bounded real sequence given by

I(τkuk) = max
t≥0

I(tuk),

we obtain

(3.15) Iρ(tkuk) ≥ I(τkuk)−
|Sn−1|τ2

k

αρ2α
0

‖uk‖2L2(B(0,R)) +
|Sn−1|τ2

k ε
2α

α
‖uk‖2L2(Rn).

If

(3.16)

∫
B(0,R)

u2
k(x) dx→ 0 as k →∞,

from (3.14), (3.15) and (3.16) yield

Cρ ≥ C,

which is a contradiction with Remark 3.4.

Now we analyze the case ρ∞ < +∞. In this case we compare the functionals Iρ and

Iρ∞ writing

(3.17) Iρ(u) = Iρ∞(u)− 1

2

∫
Rn

∫
B(0,ρ∞)\B(0,ρ(x))

|u(x+ z)− u(x)|2

|z|n+2α
dzdx.

By hypothesis (ρ1), for any ε > 0 there is R > 0 such that

0 < ρ∞ − ρ(x) < ε whenever |x| > R.

Then, we obtain

Iρ(tuk) ≥ Iρ∞(tuk)− C(ε)t2‖uk‖2L2 − Ct2‖uk‖2L2(B(0,R)),

where

C(ε) =
2|Sn−1|
α

(
1

(ρ∞ − ε)2α
− 1

ρ2α
∞

)
and C =

2|Sn−1|
α

(
1

ρ2α
0

− 1

ρ2α
∞

)
.

Proceeding as before, by (3.16) we get Cρ ≥ Cρ∞ , which is a contradiction with Re-

mark 3.4.

The next result shows the existence of positive solution to (1.1) with ε = 1.
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Theorem 3.7. Suppose that λ > 0, q > 1 and (ρ1) hold. Then, problem (1.1) with ε = 1

possesses a positive ground state solution.

Proof. Using (3.2), Lemma 3.6 and the Sobolev embedding we have∫
B(0,R)

u2(x) dx ≥ ν > 0,

which proves that u 6= 0. Furthermore, by standard arguments we have

I ′ρ(u)ϕ = 0 for all ϕ ∈ Hα
ρ (Rn),

so choosing ϕ = u−(x) = max{−u(x), 0} and noting that for x, z ∈ Rn we have

(u(x+ z)− u(x))(u−(x+ z)− u−(x))

= −u+(x+ z)u−(x)− u+(x)u−(x+ z)− (u−(x+ z)− u−(x))2 ≤ 0,

we can conclude that ‖u−‖ρ = 0, thus u(x) ≥ 0 a.e. x ∈ Rn.

Moreover, from Lemma 3.3

(3.18) Cρ ≤ max
t≥0

Iρ(tu) = Iρ(u).

On the other hand, we have

Cρ = Iρ(uk)−
1

2
I ′ρ(uk)uk + ok(1)

= λ

(
1

2
− 1

q + 1

)∫
Rn
uq+1
k+ dx+

1

n

∫
Rn
u

2∗α
k+ dx+ ok(1).

Applying Fatou’s Lemma to the last inequality, we obtain

Cρ ≥ λ
(

1

2
− 1

q + 1

)∫
Rn
uq+1 dx+

1

n

∫
Rn
u2∗α dx

= Iρ(u)− 1

2
I ′ρ(u)u = Iρ(u).

(3.19)

From (3.18) and (3.19) we obtain

Iρ(u) = Cρ,

and hence u is a least energy solution and the proof is finished.

Proof of Theorem 1.1. In what follows, we denote by {uk} ⊂ Hα
ρε(R

n) a sequence satisfy-

ing

Iρε(uk)→ Cρε and I ′ρε(uk)→ 0.

If uk ⇀ 0 in Hα
ρε(R

n), then

(3.20) uk → 0 in Lploc(R
n) for p ∈ [2, 2∗α).
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By (ρ1), we obtain

Iρε(tuk) = Iρ∞/ε(tuk)−
t2

2

∫
Rn

∫
B(0,ρ∞/ε)\B(0,ρ(εx)/ε)

|uk(x+ z)− uk(x)|2

|z|n+2α
dzdx

where

Iρ∞/ε(u) =
1

2

(∫
Rn

∫
B(0,ρ∞/ε)

|u(x+ z)− u(x)|2

|z|n+2α
dxdx+

∫
Rn
u2 dx

)

− λ

q + 1

∫
Rn
uq+1

+ dx− 1

2∗α

∫
Rn
u

2∗α
+ dx.

Now we know that there exists a bounded sequence {τk} such that

Iρ∞/ε(τkuk) ≥ C(ρ∞/ε),

where

C(ρ∞/ε) = inf
v∈Hα(R)\{0}

sup
t≥0

Iρ∞/ε(tv).

Thus,

Cρε ≥ C(ρ∞/ε)−
|Sn−1|
α

(
1

ρ2α
0

− 1

ρ2α
∞

)
τ2
k ε

2α‖uk‖2L2(B(0,R/ε))

− |S
n−1|
α

(
1

(ρ∞ − δ)2α
− 1

ρ2α
∞

)
τ2
k ε

2α‖uk‖2L2(Rn).

Taking the limit as k →∞, and after δ → 0, we find

(3.21) Cρε ≥ C(ρ∞/ε).

A standard argument shows that

lim inf
ε→0

C(ρ∞/ε) ≥ C.

Therefore, if there is εk → 0 such that the (PS)Cρεk
sequence has weak limit equal to zero,

we must have

Cρεk ≥ C(ρ∞/εk), ∀ k ∈ N,

leading to

lim inf
n→+∞

Cρεn ≥ C,

which contradicts Remark 3.4. This proves that the weak limit is non trivial for ε > 0

small enough and standard arguments show that its energy is equal to Cρε , showing the

desired result.
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4. Concentration behaviour

In this section we make a preliminary analysis of the asymptotic behavior of the functional

associated to equation (1.1) when ε → 0. As is pointed up in [19], the scope function ρ,

that describes the size of the ball of the influential region of the non-local operator, plays

a key role in deciding the concentration point of ground states of the equation. Even

though, at a first sight, the minimum point of ρ seems to be the concentration point,

there is a non-local effect that needs to be taken in account. We define the concentration

function

(4.1) H(x) = −|S
n−1|
2α

(
1

ρ(x)2α
− 1

ρ2α
∞

)
+

1

2

∫
C+(x)

dy

|y|n+2α
− 1

2

∫
C−

dy

|y|n+2α
,

where the sets C+(x) and C−(x) are defined as follows

C−(x) = {y ∈ Rn : ρ(x+ y) < |y| < ρ(x)}

and

C+(x) = {y ∈ Rn : ρ(x) < |y| < ρ(x+ y)}.

We start with some basic properties of the function H.

Lemma 4.1. [19] Assuming ρ satisfies (ρ1)–(ρ3), the function H is continuous and

(4.2) lim
|x|→∞

H(x) = 0.

Moreover, there exists x0 ∈ Rn such that

(4.3) inf
x∈Rn

H(x) = H(x0) < 0.

Along this section we will consider a sequence of functions {wm} ⊂ Hα(Rn) such that

‖wm−w‖L2(R2) → 0, where w ∈ Hα(Rn). We will also consider sequences {zm} ⊂ Rn and

{εm} ⊂ R and assume that εm → 0 as m→∞. We define ρm as

(4.4) ρm(x) =
1

εm
ρ(εmx+ εmzm),

and the functional Iρm defined as

Iρm(u) =
1

2

(∫
Rn

∫
B(0,ρm(x))

|u(x+ z)− u(x)|2

|z|n+2α
dzdx+

∫
Rn
u2 dx

)

− λ

q + 1

∫
Rn
uq+1

+ dx− 1

2∗α

∫
Rn
u

2∗α
+ dx.

(4.5)

We will be considering the functionals

Iρ∞/εm , Iρ(x)/εm and the functional I in Rn with ρ ≡ ∞.

As in [19] we have the following key theorem.
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Theorem 4.2. Under hypotheses (ρ1)–(ρ3), we assume as above that wm, w ∈ Hα(Rn)

are such that ‖wm − w‖L2(R2) → 0 and εm → 0 as m→∞. Then we have:

(i) If εmzm → x then

(4.6) lim
m→∞

Iρm(wm)− Iρ∞/εm(wm)

ε2αm
= ‖w‖2L2H(x).

(ii) If |εm|zm →∞ then

(4.7) lim
m→∞

Iρm(wm)− Iρ∞/εm(wm)

ε2αm
= 0.

Now, we rescaling equation (1.1), for this purpose we define ρε(x) = 1
ερ(εx) and con-

sider the rescaled equation

(4.8) (−∆)αρεv + v = λvq + u2∗α−1 in Rn

and we see that u is a weak solution of (1.1) if and only if vε(x) = u(εx) is a weak solution

of (4.8).

In order to study equations (1.1) and (4.8), we consider the functional Iρε on the ε-

dependent Hilbert space Hα
ρε(R

n) with inner product 〈 · , · 〉ρε . The functional Iρε is of class

C1 in Hα
ρε(R

n) and the critical points of Iρε are the weak solutions of (4.8). We further

introduce

Nρε = {v ∈ Hα
ρε(R

n) \ {0} : I ′ρε(v)v = 0},

Γρε = {γ ∈ C([0, 1], Hα
ρε(R

n)) : γ(0) = 0, Iρε(γ(1)) < 0}

and the mountain pass minimax value

Cρε = inf
γ∈Γρε

max
t∈[0,1]

Iρε(γ(t)).

From Lemma 3.3 we also have

(4.9) 0 < Cρε = inf
v∈Nρε

Iρε(v) = inf
v∈Hα

ρε
(Rn)\{0}

max
t≥0

Iρε(tv).

For comparison purposes we consider the functional I, whose critical points are the solu-

tions of (2.4). We also consider the critical value C that satisfies

C = inf
u∈Hα(Rn)\{0}

max
t≥0

I(tu).

Now we start the proof of Theorem 1.2 with some preliminary lemmas.
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Lemma 4.3. Suppose (ρ1) holds. Then

(4.10) lim
ε→0+

Cρε = C.

Proof. Since we obviously have∫
Rn

∫
B(0,ρε(x))

|u(x+ z)− u(x)|2

|z|n+2α
dzdx ≤

∫
Rn

∫
Rn

|u(x+ z)− u(x)|2

|z|n+2α
dzdx

for all u ∈ Hα
ρε(R

n), then we have Iρε(u) ≤ I(u) and therefore

(4.11) lim sup
ε→0+

Cρε ≤ C.

On the other hand, by (ρ1) we have ρ(εx) ≥ ρ0 for all x ∈ Rn then

Cρε ≥ Cρ0/ε.

By standard arguments we can show that

lim
ε→0

Cρ0/ε = C.

Thus

(4.12) lim inf
ε→0

Cρε ≥ C.

Therefore, by (4.11) and (4.12) we obtain (4.10).

Lemma 4.4. There are ε0 > 0, a family yε ⊂ Rn, constants β,R > 0 such that

(4.13)

∫
B(yε,R)

v2
ε dx ≥ β for all ε ∈ [0, ε0].

Proof. By contradiction, there is a sequence εm → 0 such that for all R > 0

lim
m→∞

sup
y∈Rn

∫
B(y,R)

v2
εm dx = 0.

Using the following notation vm = vεm and Cρm = Cρεm , by Lemma 2.5∫
Rn
vq+1
m dx = om(1).

Furthermore, since I ′ρm(vm)vm = 0 then∫
Rn

∫
B(0,ρm(x))

|vm(x+ z)− vm(x)|2

|z|n+2α
dzdx+

∫
Rn
v2
m dx =

∫
Rn
v2∗α
m dx+ om(1).
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Let l ≥ 0 be such that∫
Rn

∫
B(0,ρm(x))

|vm(x+ z)− vm(x)|2

|z|n+2α
dzdx+

∫
Rn
v2
m dx→ l.

Now, since Iρm(vm) = Cρm , we obtain

Cρm =
α

n

(∫
Rn

∫
B(0,ρm(x))

|vm(x+ z)− vm(x)|2

|z|n+2α
dzdx+

∫
Rn
v2
m dx

)
+ om(1),

then by Lemma 4.3

(4.14) l =
n

α
C

hence l > 0. Now, using the definition of the Sobolev constant S and Remark 2.3, we have(∫
Rn
v2∗α
m dx

)2/2∗α

S ≤
∫
Rn

∫
B(0,ρm(x))

|vm(x+ z)− vm(x)|2

|z|n+2α
dzdx+

∫
Rn
v2
m dx.

Therefore, by (4.14) and taking the limit in the above inequality as m→∞ we achieved

that

C ≥ α

n
Sn/(2α)

which is a contradiction with (2.5).

Now let

(4.15) wε(x) = vε(x+ yε) = uε(εx+ εyε),

then by (4.13),

(4.16) lim inf
ε→0+

∫
B(0,R)

w2
ε (x) dx ≥ β > 0.

To continue, we consider the rescaled scope function ρε, as defined in (4.4),

ρε(x) =
1

ε
ρ(εx+ εyε)

and then wε satisfies the equation

(4.17) (−∆)αρεwε(x) + wε(x) = wpε (x) in Rn.

Now we prove the convergence of wε as ε→ 0.

Lemma 4.5. For every sequence {εm} there is a subsequence, we keep calling the same,

so that wεm = wm → w in Hα(Rn), when m→∞, where w is a solution of (2.4).
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Proof. Note that

Cρm = Iρm(vm)− 1

q + 1
I ′ρm(vm)vm

=

(
1

2
− 1

q + 1

)(∫
Rn

∫
B(0, 1

εm
ρ(εmx))

|vm(x+ z)− vm(x)|2

|z|n+2α
dzdx+

∫
Rn
v2
m(x) dx

)

+

(
1

q + 1
− 1

2∗α

)∫
Rn
v2∗α
m (x) dx

≥
(

1

2
− 1

q + 1

)(∫
Rn

∫
B(0,ρ0/εm)

|vm(x+ z)− vm(x)|2

|z|n+2α
dzdx+

∫
Rn
v2
m(x) dx

)

+

(
1

q + 1
− 1

2∗α

)∫
Rn
v2∗α
m (x) dx = Λm.

By Lemma 4.3 we obtain that

(4.18) lim sup
m→∞

Λm ≤ C.

On the other hand, by Fatou’s Lemma and the weak convergence of {wm}, we get

C ≤ I(w)

=

(
1

2
− 1

q + 1

)(∫
Rn

∫
Rn

|w(x+ z)− w(x)|2

|z|n+2α
dzdx+

∫
Rn
w2 dx

)
+

(
1

q + 1
− 1

2∗α

)∫
Rn
w2∗α dx

≤ lim inf
m→∞

Λm + lim inf
m→∞

(
1

2
− 1

q + 1

)∫
Rn

∫
Rn\B(0,ρ0/εm)

|wm(x+ z)− wm(x)|2

|z|n+2α
dzdx

= lim inf
m→∞

Λm.

(4.19)

So, by (4.18) and (4.19), limm→∞ Λm = C, from where we get

lim
m→∞

‖wm − w‖α = 0.

We are now in a position to complete the proof of our second main theorem.

Proof of Theorem 1.2. We first obtain an upper bound for the critical values Cρεm = Cm,

for the sequence {εm} given in Lemma 4.5. Next we consider the scope function

ρ̃m(x) =
1

εm
ρ(εmx+ x0),

where x0 is a global minimum point of H, see Lemma 4.1. To continue, we consider the

function wm = wεm as given in (4.15) and let tm > 0 such that tmwm ∈ Nρ̃m . According

to Lemma 4.5, {wm} converges to w ∈ N , then tm → 1 and tmwm → w.
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Now we apply Theorem 4.2 to obtain that

(4.20) Cm ≤ Iρ̃m(tmwm) = Iρ∞/εm(tmwm) + ε2αm
(
‖w‖2L2H(x0) + o(1)

)
.

We have used Theorem 4.2(i) with zm = x0/εm.

On the other hand, since wm ∈ Hα(Rn) is a critical point of Iρm , we have that

(4.21) Cm = Iρm(wm) ≥ Iρm(tmwm).

We write ym = yεm . If εm|ym| → ∞, then we may apply Theorem 4.2(ii) with zm = ym in

(4.21) and obtain that

Cm ≥ Iρ∞/εm(tmwm) + ε2αm o(1),

which contradicts (4.20). We conclude then, that {εmym} is bounded and that, for a

subsequence, εmym → x, for some x ∈ Rn. Now we apply Theorem 4.2 again, but now

part (i) with zm = ym in (4.21), and we obtain that

(4.22) Cm ≥ Iρ∞/εm(tmwm) + ε2αm
(
‖w‖2L2H(x) + o(1)

)
.

From (4.20) and (4.22) we finally get that

‖w‖2L2H(x) + o(1) ≤ ‖w‖2L2H(x0) + o(1)

and taking the limit as m→∞, we get

(4.23) H(x) ≤ H(x0)

completing the proof of the theorem.
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