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An alternative to Osiris wavelet systems is introduced in two dimensions. The basic build-
ing blocks are continuous piecewise linear functions supported on equilateral triangles
instead of on squares. We refer to wavelets generated in this way as Set wavelets. We in-
troduce a Set wavelet system whose homogeneous mode density is 2/5. The system is not
orthonormal, but we derive a positive lower bound on the overlap matrix.

1. Introduction

The decomposition of a scalar field into continuous piecewise-linear wavelets is the cen-
tral approach in a new hierarchical modeling program [1, 2, 3, 4, 5] for studying the crit-
ical behavior of certain classical systems in equilibrium statistical mechanics (such as the
classical dipole gas and the Ginzburg-Landau spin system). Naturally, such a wavelet de-
composition must be based on a multiscale triangulation of space, and in two dimensions
we have been generating it [4, 5] from the triangulation of the next-to-minimum-scale
square given by the diagram in Figure 1.1. The notion of orthogonality between contin-
uous piecewise-linear functions that is natural to the modeling is based on the Sobolev
inner product

〈 f ,g〉 =
∫
∇ f ·∇g, (1.1)

where the functions are real-valued. Choosing the unit scale as the minimum scale, con-
sider the two functions given in [0,2]2 by the gradient diagrams in Figures 1.2(a) and
1.2(b) where each arrow represents a constant gradient in its triangle. The set of all 2Z2-
translations and 2r-scalings thereof for all r ∈ Z is Sobolev-orthogonal, as was easily veri-
fied in [4]. One can certainly normalize these functions with respect to the Sobolev norm
given by

‖ f ‖2 =
∫
|∇ f |2, (1.2)
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Figure 1.1
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Figure 1.2

but the orthonormal set is not a basis. We measure this lack of completeness with the
homogeneous mode density [1, 4].

Indeed, consider the set of all such wavelets of scale greater than or equal to 1 sup-
ported in the region [0,2N ]2. The largest-scale wavelets are of scale 2N−1, and there is a
pair of them. Clearly, there are four pairs of 2N−2-scale wavelets, sixteen pairs of 2N−3-
scale wavelets, . . . , and 4N−1 pairs of unit-scale wavelets. The total number of wavelets is
therefore

2
N−1∑
k=0

4k = 2
3

(
4N − 1

)
. (1.3)

How does this compare to the number of degrees of freedom generated by this mul-
tiscale scheme? The triangulation in this case is simply the triangulation of each unit
square given by the diagram in Figure 1.3. The dimension of this space of continuous
piecewise-linear functions is precisely the number of vertices in the triangulation, and
these vertices are either centers of unit squares or their corners. Obviously, there are
4N such centers and (2N + 1)2 vertices that are corners of these squares. The homoge-
neous mode density of the system of wavelets is defined as the infinite-volume limit of
the ratio of the number of wavelets to the number of degrees of freedom—in this case,
the N =∞ limit of the ratio of the number of wavelets to the number of vertices. Thus
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Figure 1.3
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Figure 1.4

we calculate

lim
N→∞

(2/3)
(
4N − 1

)
4N +

(
2N + 1

)2 =
1
3
. (1.4)

In [1, 2, 3, 4, 5] we have referred to these wavelets as Osiris wavelets, and the lack of
completeness may be regarded as a hierarchical cutoff on the scalar field. Notice that every
wavelet in our system is supported by its localization block, and this is the property that the
term “hierarchical” refers to in the context of statistical mechanics. The idea introduced
in [2] is to replace the hierarchical cutoff with a hierarchical approximation by scaling the
Gaussian part of the functional integration with scale factor equal to the square root of
the homogeneous mode density. For this particular orthonormal set, this is equivalent to
a 3-fold replication of wavelet amplitudes in the functional integration [2].

One can enhance this system of wavelets—preserving the hierarchical property—by
sacrificing some of the multiscale Sobolev orthogonality. We introduce two additional
functions in [0,2]2 given by the gradient diagrams in Figures 1.4(a) and 1.4(b). These
functions are obviously Sobolev-orthogonal to the other two, but not to all of their copies
on the next scale down. On the other hand, we proved in [4] that the Sobolev overlap
matrix has a positive lower bound. We also showed that the homogeneous mode density
of this enlarged system of Osiris wavelets is just 4/9.
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(a) + (b) −

Figure 1.5

In this paper, we investigate the option of basing a system of continuous piecewise-
linear wavelets on equilateral triangles instead of on squares. We can obviously tile the
plane with unit equilateral triangles (i.e., whose sides are one unit in length) having either
a south side and a north vertex or a north side and a south vertex. We will refer to the
former as a + triangle and to the latter as a − triangle. Let ∆+ denote the + triangle
in the first quadrant with one vertex at the origin—that is, with vertices (0,0), (1,0),
and (1/2,(1/2)

√
3). Let ∆− denote the triangle with vertices (1,0), (1/2,(1/2)

√
3), and

(3/2,(1/2)
√

3). Clearly, all of the ± triangles are the translates

∆± + ν0 î+ ν1

(
1
2
î+

1
2

√
3 ĵ
)

, ν∈ Z
2. (1.5)

To each such triangle we associate a triangulation given by the diagrams in Figures 1.5(a)
and 1.5(b). Each 120◦ isosceles triangle in this division of an equilateral triangle is a pri-
mary basic triangle. To avoid serious multiscale orthogonality problems in our wavelet
construction, we must have the centers of these triangles coincide with vertices of their
copies on the next scale down. Since the center of a unit equilateral triangle is a distance
1/3 from each side, the scale factor must therefore be 3 instead of 2.

Now consider two successive scales, where the larger-scale equilateral triangle is, say,
a + triangle. The triangulation is given by the diagram in Figure 1.6 where the dashed
lines determine the larger-scale division. Notice that twelve right triangles in particular
have been formed by the two scales of division. Such triangles are secondary basic tri-
angles, and they appear in groups of four, with each group forming a rhombus. Now a
primary basic function in this master triangle is supported by any one of the nine equi-
lateral sub-triangles and is given by the gradient diagrams in Figures 1.7(a) and 1.7(b).
as the case may be. Each of the three rhombuses in the master triangle supports a sec-
ondary basic function, and these functions are given by the gradient diagrams in Figures
1.8(a), 1.8(b), and 1.8(c). We will label these functions 1st, 2nd, and 3rd, respectively, with
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Figure 1.6

(a) + (b) −

Figure 1.7

the understanding that the master triangle is a + triangle. For the purpose of labeling the
primary basic functions in the master triangle, we choose the schemes in Figures 1.9(a)
and 1.9(b) for a + triangle and a − triangle, respectively. In the latter case, the secondary
basic functions are given by the same gradient diagrams as in Figure 1.8. The only differ-
ence is that the 1st is now northwest, the 2nd is now south, and the 3rd is now northeast.
We regard both types of functions as unit-scale basic functions if each side of the master
triangle is 3 units long. Let ϕ±i denote the ith primary unit-scale basic function and η±i
the ith secondary unit-scale basic function in the respective master triangles 3∆±, where
the gradient vectors are unit vectors.

We are now ready to define Set wavelets. The unit-scale Set wavelets are combinations
of unit-scale basic functions in the same 3-scale master triangle, and that triangle is the
support triangle of those particular unit-scale wavelets. In the respective support triangles
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3∆± we define the unit-scale Set wavelets as follows:

Ψ1± = 3−1/4
√

2
(
ϕ±1 −ϕ±7

)
,

Ψ2± = 3−1/4
√

2
(
ϕ±3 −ϕ±8

)
,

Ψ3± = 3−1/4
√

2
(
ϕ±5 −ϕ±9

)
,

Ψ4± = βη±1 −αϕ±2 ,

Ψ5± = βη±2 −αϕ±4 ,

Ψ6± = βη±3 −αϕ±6 ,

(1.6)

where we have normalized these wavelets with respect to the Sobolev norm. In particular,

1
4

√
3α2 +

1
2
√

3
β2 = 1, (1.7)
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but we have yet to fix α and β. All of the unit-scale Set wavelets have the form

Ψι±
ν

(⇀
x
)=Ψι±

(
⇀
x − 3ν0 î− 3ν1

(
1
2
î+

1
2

√
3 ĵ
))

, ν∈ Z
2, (1.8)

while all of the 3r-scale Set wavelets for arbitrary r ∈ Z have the form

Ψι±
rν

(⇀
x
)=Ψι±

ν

(
3−r

⇀
x
)
, ν∈ Z

2. (1.9)

The twelve wavelets Ψι± are the mother wavelets which generate this system through these
scalings and skewed translations in the plane. For ι = 1,2,3 (resp., ι = 4,5,6) we refer to
the wavelets Ψι±

rν as Set wavelets of the first kind (resp., second kind).
As we will see in Section 2, this system of wavelets is not orthonormal, but we will fix

β = α√3 to endow it with a certain orthogonality property. Consider the overlap matrix,
which is given by

Srr′;νν′;ιι′;±±′ =
∫
∇Ψι±

rν ·∇Ψι′±′
r′ν′ . (1.10)

The aim of this paper is to obtain a positive lower bound on S. We calculate the elements
of this matrix in Section 2, but we can verify here and now that

Srr;νν′;ιι′;±±′ = δνν′διι′δ±±′ , (1.11)

that is, that Set wavelets on the same scale are orthonormal. We choose the unit scale
without loss and note that

intsuppΨι±
ν ∩ intsuppΨι′±′

ν′ = ∅, ν′ 
= ν,

intsuppΨι+
ν ∩ intsuppΨι′−

ν =∅,
(1.12)

so the verification of (1.11) is reduced to showing that∫
∇Ψι±

ν ·∇Ψι′±
ν = 0, ι 
= ι′. (1.13)

Again without loss, we set ν= 0 and choose 3∆+ over 3∆−. Now clearly,{
intsuppΨι+ : ι= 1,2,3

}
,{

intsuppΨι+ : ι= 4,5,6
} (1.14)

are both collections of disjoint sets. Moreover,

intsuppΨ1+∩ intsuppΨ2+ =∅, ι 
= 5,

intsuppΨ2+∩ intsuppΨι+ =∅, ι 
= 6,

intsuppΨ3+∩ intsuppΨι+ =∅, ι 
= 4,

(1.15)
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Figure 1.10

so we only need to examine the inner product of Ψ1+ (resp., Ψ2+,Ψ3+) with Ψ5+ (resp.,
Ψ6+,Ψ4+). Obviously,

intsuppΨ1+∩ intsuppΨ5+ = intsuppη+
2 ,

intsuppΨ2+∩ intsuppΨ6+ = intsuppη+
3 ,

intsuppΨ3+∩ intsuppΨ4+ = intsuppη+
1 .

(1.16)

Moreover, the gradient diagram for Ψ1+, Ψ2+, and Ψ3+ together in their support triangle
is just as in Figure 1.10. Note that∇Ψ1+ (resp.,∇Ψ2+,∇Ψ3+) is constant on suppη+

2 (resp.,
suppη+

3 , suppη+
1 ). On the other hand, ∫

∇η+
ι = 0, (1.17)

so it follows that ∫
∇Ψ1+ ·∇Ψ5+ = β

∫
∇Ψ1+ ·∇η+

2 = 0,∫
∇Ψ2+ ·∇Ψ6+ = β

∫
∇Ψ2+ ·∇η+

3 = 0,∫
∇Ψ3+ ·∇Ψ4+ = β

∫
∇Ψ3+ ·∇η+

1 = 0.

(1.18)

This concludes the proof of (1.11).
This system of wavelets is not complete. To calculate the homogeneous mode density,

we consider the equilateral triangle 3N∆+. It is the support triangle for six 3N−1-scale
wavelets; it also contains nine 3N−1-scale equilateral triangles, each one of which is the
support triangle for six 3N−2-scale wavelets. Further, it contains 81 support triangles for
3N−3-scale wavelets, 729 support triangles for 3N−4-scale wavelets, . . . ,9N−1 support tri-
angles for unit-scale wavelets. The total number of wavelets in 3N∆+ is exactly

6
N−1∑
k=0

9k = 3
4

(
9N − 1

)
. (1.19)
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How many vertices are involved in the total triangulation? Consider a 3k-scale equilateral
triangle with k ≥ 1. Each vertex of this triangle is a vertex of some unit-scale equilateral
triangle, and so is the center. Thus, all vertices of these two types are accounted for by
the centers and vertices of the 9N unit-scale equilateral triangles in 3N∆+. Obviously, the
number of the former is just 9N , while the number of the latter is just

3N+1∑
n=1

n=
(
3N + 1

)(
3N + 2

)
2

. (1.20)

The remaining type of vertex is the center of some 3k−1-scale rhombus in some 3k-scale
equilateral triangle for some k ≥ 1. As we have already discussed, there are three such
rhombuses to such an equilateral triangle. Thus 3N∆+ contains three 3N−1-scale rhom-
buses, but it also contains

(1) nine equilateral triangles, each containing three 3N−2-scale rhombuses,
(2) eighty-one equilateral triangles, each containing three 3N−3-scale rhombuses,

...
(N − 1) 9N−1 equilateral triangles, each containing three unit-scale rhombuses.

Therefore, the total number of rhombus centers is precisely

3
N−1∑
k=0

9k = 3
8

(
9N − 1

)
. (1.21)

In summary, the total number of vertices is given by

9N +

(
3N + 1

)(
3N + 2

)
2

+
3
8

(
9N − 1

)= 15
8

9N +
1
2

3N+1 +
5
8

, (1.22)

and so the homogeneous mode density is the limit

lim
N→∞

(3/4)
(
9N − 1

)
(15/8)9N + (1/2)3N+1 + 5/8

= 2
5
. (1.23)

In the next section, we investigate Sobolev orthogonality properties of the system of
Set wavelets and calculate the nonzero elements of the overlap matrix S. The key calcula-
tion will involve Sobolev inner products between 3-scale wavelets supported by 9∆+ and
unit-scale wavelets whose support triangles lie in 9∆+. With the nine 3-scale equilateral
triangles labeled as in Figure 1.9(a), we will adopt the special notation Ψι

0µ for the ιth
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unit-scale wavelet whose support triangle is the µth triangle. Thus

Ψι
01 =Ψι+,

Ψι
02 =Ψι+

(1,0),

Ψι
03 =Ψι+

(2,0),

Ψι
04 =Ψι+

(1,1),

Ψι
05 =Ψι+

(0,2),

Ψι
06 =Ψι+

(0,1),

Ψι
07 =Ψι−,

Ψι
08 =Ψι−

(1,0),

Ψι
09 =Ψι−

(0,1).

(1.24)

In Section 3, we reduce the goal of the paper to the study of nine 6× 6 matrices. In
Section 4, we use these matrices to show that

S≥ 1− 1
12

√
26− 1

36

√
42. (1.25)

This result also requires a standard operator lemma [3, 6], which we state here.

Lemma 1.1. Let X be a bounded operator on a Hilbert space such that∥∥XN
∥∥≤ aN−1b (1.26)

for all N and fixed a,b > 0. Then ∥∥X +X∗
∥∥≤ a+ b. (1.27)

2. Sobolev orthogonality properties

Although the system of Set wavelets is not orthonormal, it has certain orthogonality prop-
erties that are needed to establish a positive lower bound on the overlap matrix. Our first
observation is a very obvious one.

Orthogonality Property 2.1. If the support of a basic function is contained in a basic tri-
angle of a larger-scale basic function, then the functions are Sobolev-orthogonal.

Consider an r-level Set wavelet of the first kind, and assume that it is a southwest
wavelet without loss of generality—which also means that we have chosen a + triangle
for its support triangle. The wavelet is given by the diagram in Figure 2.1 and we wish to
compare it to an arbitrary s-level Set wavelet for s≥ r + 2. By Orthogonality Property 2.1,
the wavelets are orthogonal unless a line associated with the larger-scale wavelet divides
the support triangle of the given wavelet. In that case, there is only one such line, and
it belongs to one of the two basic functions comprising the larger-scale wavelet. This is
a consequence of the assumption that the difference in scales is at least two levels. The
only possibilities are illustrated by the diagrams in Figures 2.2(a), 2.2(b), and 2.2(c). In
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Figure 2.1

the first two cases, the line does not divide the support of the given wavelet, so
Orthogonality Property 2.1 still applies. Only the third case falls outside the domain of
that property, and it yields an inner product with the decomposition given by the dia-
grams in Figures 2.3(a) and 2.3(b). Consider the contribution given by the first diagram

and denote the constant gradient of the s-level basic function on that side of the line by
⇀
v .

By our discussion in the introduction, the left, middle, and right arrows in the diagram
represent the gradients

⇀
vL = 3−r−1/4

√
2
(
− 1

2

√
3î− 1

2
ĵ
)

,

⇀
vM = 3−r−1/4

√
2
(

1
2

√
3î− 1

2
ĵ
)

,

⇀
vR = 3−r−1/4

√
2 ĵ,

(2.1)

respectively. Moreover, each triangle has area (1/4)32r−1/2, so this contribution to the
Sobolev inner product is just

1
4

32r−1/2⇀vL ·⇀v +
1
4

32r−1/2⇀vM ·⇀v +
1
4

32r−1/2⇀vR ·⇀v = 1
4

3r−1/2⇀v · (⇀vL +
⇀
vM +

⇀
vR
)
. (2.2)

Since

⇀
vL +

⇀
vM +

⇀
vR = 0, (2.3)

this contribution vanishes. The same reasoning shows that the other contribution also
vanishes, so we have established orthogonality in this case as well.

Now suppose the r-level wavelet is a Set wavelet of the second kind. Is it orthogonal to
an arbitrary s-level Set wavelet for s ≥ r + 2? Without loss, we assume that it is a south-
west wavelet, so for this kind of piecewise linear function we have the gradient diagram
in Figure 2.4. The cases for the larger-scale wavelet are still covered by the diagrams of
Figure 2.2, and Orthogonality Property 2.1 still applies to the first two cases. In the third
case, the inner product decomposes into the contributions given by the diagrams in Fig-
ures 2.5(a) and 2.5(b). Again, consider the contribution given by the first diagram and

denote the constant gradient of the s-level basic function on that side of the line by
⇀
v .
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(a) (b) (c)

Figure 2.2

(a) (b)

Figure 2.3

From left to right, the first two arrows represent the gradients

⇀
v 1 = 3−rα

(
− 1

2

√
3î+

1
2
ĵ
)

,

⇀
v 2 =−3−rα ĵ,

(2.4)

respectively. Recall from the introduction that the third and forth arrows represent the
gradients

⇀
v 3 = 3−rβî,

⇀
v 4 = 3−rβ

(
− 1

2
î+

1
2

√
3 ĵ
)

,
(2.5)

respectively. The area of the second triangle is (1/4)32r−1/2, while the area of each of the
other three triangles is (1/8)32r−1/2, so this contribution to the Sobolev inner product is
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Figure 2.4

just

1
8

32r−1/2⇀v 1 ·⇀v +
1
4

32r−1/2⇀v 2 ·⇀v +
1
8

32r−1/2⇀v 3 ·⇀v +
1
8

32r−1/2⇀v 4 ·⇀v

= 1
8

32r−1/2⇀v · (⇀v 1 + 2
⇀
v 2 +

⇀
v 3 +

⇀
v 4
)
.

(2.6)

On the other hand,

⇀
v 1 + 2

⇀
v 2 +

⇀
v 3 +

⇀
v 4 = 1

2
3−r
(
β−α√3

)
î+

1
2

3−r
(
β
√

3− 3α
)
ĵ, (2.7)

so the contribution vanishes if we set β = α
√

3 in our definition of the wavelet. (As we
have already pointed out in the introduction, the normalization of the wavelet imposes
the additional condition

3
(

1
4

32r−1/2
)(

3−rα
)2

+ 4
(

1
8

32r−1/2
)(

3−rβ
)2 = 1, (2.8)

which reduces to

1
4

√
3α2 +

1
2
√

3
β2 = 1, (2.9)

so β = α
√

3 implies α= 3−3/42.) With this relation between α and β, the same reasoning
shows that the other contribution vanishes as well. This completes the proof of the
following orthogonality property.

Orthogonality Property 2.2. If the scales of two Set wavelets differ by a scale factor greater
than or equal to 32, then the wavelets are orthogonal.

In the introduction we explained why any two Set wavelets with the same scale are or-
thogonal. The case of successive scales is the only one remaining—and the case where or-
thogonality partially breaks down. Without loss, we will consider inner products between
0-level and 1-level wavelets. Clearly, they are orthogonal unless the support triangle of
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(a) (b)

Figure 2.5
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the 0-level wavelet is contained in the support triangle of the 1-level wavelet. We may
assume that the latter is a + triangle, as our calculations for a − triangle will be identical.
The support triangle of the 0-level wavelet is one of the nine equilateral triangles compris-
ing this + triangle, as illustrated by the diagram in Figure 2.6. For openers, suppose both
wavelets are of the first kind. Then the three possibilities for the 1-level wavelet are given
by the diagram in Figure 2.7. Now, if the support triangle of the 0-level wavelet is triangle
2, 4, or 6, then its orthogonality to every possible 1-level wavelet is obvious. Suppose the
support triangle is one of the other six—say triangle 7. The possibilities for the 0-level
wavelet are given by the diagram in Figure 2.8. To that same triangle, the contribution
of the southwest 1-level wavelet is given by the diagram in Figure 2.9. The Sobolev inner
product of this basic function with, say, the northwest 0-level wavelet in Figure 2.8 has
the decomposition given by the diagrams in Figures 2.10(a) and 2.10(b), but each contri-
bution vanishes by the same calculation that was applied to Figure 2.3. Thus, 0-level Set
wavelets of the first kind are orthogonal to 1-level Set wavelets of the first kind.
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Figure 2.7

Figure 2.8

Figure 2.9

Now suppose the 1-level wavelet is of the second kind while the 0-level wavelet is still
of the first kind. Then the three possibilities for the 1-level wavelet are given by the dia-
gram in Figure 2.11, with rhombus 1–7 paired with triangle 4, rhombus 3–8 paired with
triangle 6, and rhombus 5–9 paired with triangle 2. If the support triangle of the 0-level
wavelet is triangle 2, 4, or 6, then the case is the same as that represented by Figure 2.10,
so we have orthogonality. Suppose the support triangle is one of the other six—again,
choosing triangle 7. The possibilities for the 0-level wavelet are given by Figure 2.8, but
to that same triangle, the contribution of the southwest 1-level wavelet is now given by
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(a) (b)

Figure 2.10
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Figure 2.11

the diagram in Figure 2.12. The Sobolev inner product of this function with the northeast
0-level wavelet in Figure 2.8 is obviously zero. Its inner product with the south 0-level
wavelet is given by the single contribution represented by the diagram in Figure 2.13,
while its inner product with the northwest 0-level wavelet is given by the single con-
tribution represented by the diagram in Figure 2.14, but each contribution vanishes—
once again—by the same calculation we applied to Figure 2.3. We have now established
the following orthogonality property.

Orthogonality Property 2.3. Every 1-level Set wavelet is orthogonal to every 0-level Set
wavelet of the first kind.

We may now assume that the 0-level Set wavelet Ψ is of the second kind. We may
also assume without loss that the support triangle of the 1-level wavelet is the + trian-
gle with southwest vertex at the origin. Suppose the 1-level Set wavelet Ψι′+

1 is of the first
kind—that is, that ι′ = 1,2,3. Then the three possibilities for Ψι′+

1 are given by Figure 2.7.
Orthogonality is obvious in case the support triangle of Ψ is triangle 2, 4, or 6, so as-
sume that it is one of the other six—once again, choosing triangle 7. The possibili-
ties for the 0-level wavelet Ψ are given by the diagrams in Figures 2.15(a), 2.15(b), and
2.15(c). The contribution of the southwest 1-level wavelet to that same triangle is given by
Figure 2.9, and the Sobolev inner product of this basic function with, say, the northwest
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0

0

Figure 2.12

Figure 2.13

Figure 2.14

0-level wavelet (given by Figure 2.15(c)) is represented by the diagram in Figure 2.16,
where we calculate the dot product of each vector with the vector in Figure 2.9 whose
triangle includes the triangle of the given vector. Now, by Orthogonality Property 2.1, the
basic function associated with the equilateral triangle in Figure 2.16 does not contribute
to the inner product. The contribution arising from the basic function associated with
the rhombus in Figure 2.16 has a decomposition represented by the diagrams in Figures
2.17(a) and 2.17(b). These two contributions to the inner product are equal by symmetry,
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(a) (b) (c)

Figure 2.15

Figure 2.16

so we consider Figure 2.17(a) only. The 1-level gradient is just

⇀
v = 3−5/4

√
2
(

1
2

√
3î+

1
2
ĵ
)

, (2.10)

while the 0-level gradients in the left and right triangles are just

⇀
vL = βî,

⇀
vR = β

(
− 1

2
î+

1
2

√
3 ĵ
)

,
(2.11)

respectively. Since
⇀
vR ·⇀v = 0 and the area of the left triangle is (1/24)

√
3, the Sobolev

inner product is therefore given by∫
∇Ψ ·∇Ψ1+

1 = 2
(

1
24

√
3
⇀
vL ·⇀v

)
= 1

24
3−1/4

√
2β. (2.12)

Since we have already determined that β = 3−1/42, it follows that∫
∇Ψ ·∇Ψ1+

1 = 1
6
√

6
(2.13)
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(a) (b)

Figure 2.17

in this case—that is, where Ψ is the northwest wavelet in triangle 7. By the symmetry
property of Figure 2.9, the inner product is the same in the cases where Ψ is the northeast
wavelet or the south wavelet in triangle 7. Thus∫

∇Ψι
07 ·∇Ψ1+

1 = 1
6
√

6
, ι= 4,5,6, (2.14a)

where we adopt the special notation described in the introduction. For the southeast
(resp., north) 1-level wavelet Ψ2+

1 (resp., Ψ3+
1 ) we obviously have∫

∇Ψι
07 ·∇Ψ2+

1 = 0, (2.14b)(
resp.,

∫
∇Ψι

07 ·∇Ψ3+
1 = 0

)
(2.14c)

for ι = 4,5,6 because triangle 7 is disjoint from intsuppΨ2+
1 (resp., intsuppΨ3+

1 ). The
same reduction argument and calculation yield the other inner products:∫

∇Ψι
08 ·∇Ψ1+

1 = 0, (2.15a)∫
∇Ψι

08 ·∇Ψ2+
1 = 1

6
√

6
, (2.15b)∫

∇Ψι
08 ·∇Ψ3+

1 = 0, (2.15c)∫
∇Ψι

09 ·∇Ψ1+
1 = 0, (2.16a)∫

∇Ψι
09 ·∇Ψ2+

1 = 0, (2.16b)∫
∇Ψι

09 ·∇Ψ3+
1 = 1

6
√

6
, (2.16c)∫

∇Ψι
01 ·∇Ψ1+

1 =− 1
6
√

6
, (2.17a)∫

∇Ψι
01 ·∇Ψ2+

1 = 0, (2.17b)∫
∇Ψι

01 ·∇Ψ3+
1 = 0, (2.17c)



514 Osiris wavelets and Set wavelets

∫
∇Ψι

03 ·∇Ψ1+
1 = 0, (2.18a)∫

∇Ψι
03 ·∇Ψ2+

1 =− 1
6
√

6
, (2.18b)∫

∇Ψι
03 ·∇Ψ3+

1 = 0, (2.18c)

∫
∇Ψι

05 ·∇Ψ1+
1 = 0, (2.19a)∫

∇Ψι
05 ·∇Ψ2+

1 = 0, (2.19b)∫
∇Ψι

05 ·∇Ψ3+
1 =− 1

6
√

6
(2.19c)

for ι= 4,5,6. We have already pointed out that

∫
∇Ψι

02 ·∇Ψι′+
1 =

∫
∇Ψι

04 ·∇Ψι′+
1 =

∫
∇Ψι

06 ·∇Ψι′+
1 = 0 (2.20)

for ι= 4,5,6 and ι′ = 1,2,3.
Having calculated the inner product of Ψ with Ψι′+

1 for every case where the 1-level
wavelet is of the first kind—that is, where ι′ = 1,2,3—we now turn to the final set of cases,
where the 1-level wavelet is of the second kind—that is, where ι′ = 4,5,6. The three possi-
bilities for Ψι′+

1 are now given by Figure 2.11. Suppose the support triangle of Ψ is triangle
2. The possibilities for the 0-level wavelet Ψ are given by the diagrams in Figures 2.18(a),
2.18(b), and 2.18(c). The contribution of the north 1-level wavelet ψ4+

1 to that same tri-
angle is given by the diagram in Figure 2.19. This is the same situation reflected by our
comparison of Figure 2.15 with Figure 2.9. Hence

∫
∇Ψ ·∇Ψ4+

1 = 1
6
√

6
(2.21)

in each of the three cases for Ψ given by Figure 2.18 in triangle 2. Thus

∫
∇Ψι

02 ·∇Ψ4+
1 = 1

6
√

6
, ι= 4,5,6. (2.22a)

Since triangle 2 is disjoint from intsuppΨ5+
1 and intsuppΨ6+

1 , we also have

∫
∇Ψι

02 ·∇Ψ5+
1 = 0, (2.22b)∫

∇Ψι
02 ·∇Ψ6+

1 = 0 (2.22c)
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(a) (b) (c)

Figure 2.18

Figure 2.19

for ι= 4,5,6. The situation is similar in the cases where the support triangle of the given
0-level wavelet is triangle 4 or triangle 6. Indeed,∫

∇Ψι
04 ·∇Ψ4+

1 = 0, (2.23a)∫
∇Ψι

04 ·∇Ψ5+
1 = 1

6
√

6
, (2.23b)∫

∇Ψι
04 ·∇Ψ6+

1 = 0, (2.23c)∫
∇Ψι

06 ·∇Ψ4+
1 = 0, (2.24a)∫

∇Ψι
06 ·∇Ψ5+

1 = 0, (2.24b)∫
∇Ψι

06 ·∇Ψ6+
1 = 1

6
√

6
(2.24c)

for ι= 4,5,6.
Now suppose the support triangle of the 0-level wavelet Ψ is triangle 7 in Figure 2.11.

The possibilities for Ψ are given by Figure 2.15, while the contribution of the southwest
1-level wavelet Ψ5+

1 is given by Figure 2.12. (Neither Ψ6+
1 nor Ψ4+

1 contributes anything to
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Figure 2.20

this triangle.) Consider the Sobolev inner product of the south 0-level wavelet Ψ = Ψ4
07

with Ψ5+
1 , which is represented by the diagram in Figure 2.20. The gradients in the small

upper and lower triangles are just

⇀
v± = β

(
1
2
î∓ 1

2

√
3 ĵ
)

, (2.25)

respectively, while the gradient of Ψ5+
1 in the triangle including them is just

⇀
v =−1

3
βî. (2.26)

Since the area of each small triangle is (1/24)
√

3, it follows that

∫
∇Ψ4

07 ·∇Ψ5+
1 =

∑
±

⇀
v± ·⇀v

(
1

24

√
3
)
=− 1

72

√
3β2 =− 1

18
. (2.27)

For the northeast 0-level wavelet Ψ = Ψ5
07, the Sobolev inner product with Ψ5+

1 has the
decomposition into contributions represented by the diagrams in Figures 2.21(a) and
2.21(b). Consider the contribution given by the first diagram. The gradients in the small
upper and lower triangles are just

⇀
v+ = α ĵ,

⇀
v− = α

(
− 1

2

√
3î− 1

2
ĵ
)

,
(2.28)

respectively, while the gradient of Ψ5+
1 in the triangle including them is just

⇀
v = 1

3
β
(
− 1

2
î− 1

2

√
3 ĵ
)
. (2.29)
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The areas of the upper and lower triangles are (1/12)
√

3 and (1/24)
√

3, respectively, so
this contribution has the value

1
12

√
3
⇀
v ·⇀v+ +

1
24

√
3
⇀
v ·⇀v− = 1

12

√
3
(
− 1

6

√
3αβ

)
+

1
24

√
3
(

1
6

√
3αβ

)
=− 1

48
αβ =− 1

36
.

(2.30)

By symmetry, the other contribution has the same value. Hence∫
∇Ψ5

07 ·∇Ψ5+
1 =− 1

18
. (2.31)

For the northwest 0-level wavelet Ψ = Ψ6
07, the Sobolev inner product with Ψ5+

1 is rep-
resented by the diagram in Figure 2.22. By symmetry, this inner product is equal to the
inner product represented by Figure 2.20. Thus∫

∇Ψ6
07 ·∇Ψ5+

1 =− 1
18
. (2.32)

As we have already mentioned, Ψ4+
1 and Ψ6+

1 contribute nothing to triangle 7, so∫
∇Ψι

07 ·∇Ψ6+
1 =

∫
∇Ψι

07 ·∇Ψ4+
1 = 0, ι= 4,5,6. (2.33)

All remaining cases are identical to the cases we have discussed, so we are now in a posi-
tion to evaluate all remaining inner products:∫

∇Ψι
08 ·∇Ψ6+

1 =− 1
18

, (2.34)∫
∇Ψι

08 ·∇Ψ4+
1 =

∫
∇Ψι

08 ·∇Ψ5+
1 = 0, (2.35)∫

∇Ψι
09 ·∇Ψ4+

1 =− 1
18

, (2.36)∫
∇Ψι

09 ·∇Ψ5+
1 =

∫
∇Ψι

09 ·∇Ψ6+
1 = 0, (2.37)∫

∇Ψι
01 ·∇Ψ5+

1 =− 1
18

, (2.38)∫
∇Ψι

01 ·∇Ψ6+
1 =

∫
∇Ψι

01 ·∇Ψ4+
1 = 0, (2.39)∫

∇Ψι
03 ·∇Ψ6+

1 =− 1
18

, (2.40)∫
∇Ψι

03 ·∇Ψ4+
1 =

∫
∇Ψι

03 ·∇Ψ5+
1 = 0, (2.41)∫

∇Ψι
05 ·∇Ψ4+

1 =− 1
18

, (2.42)∫
∇Ψι

05 ·∇Ψ5+
1 =

∫
∇Ψι

05 ·∇Ψ6+
1 = 0 (2.43)

for ι= 4,5,6.
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(a) (b)

Figure 2.21

Figure 2.22

3. The Sobolev overlap matrix

Following the notation adopted in the introduction, we index our set of wavelets with
a support triangle index ±, a mother wavelet index ι, a discrete translation parameter
ν∈ Z2, and a discrete scaling parameter r ∈ Z. The wavelets are given by

Ψι±
rν

(⇀
x
)=Ψι±

(
3−r

⇀
x − 3ν0 î− 3ν1

(
1
2
î+

1
2

√
3 ĵ
))
. (3.1)

The scaling of the amplitude needed for the normalization∫ ∣∣∇Ψι±
rν

∣∣2 = 1 (3.2)

is unity in two dimensions. The overlap matrix is given by

Srr′;νν′;ιι′;±±′ =
∫
∇Ψι±

rν ·∇Ψι′±′
r′ν′ , (3.3)
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and obviously it has the property

Sr+s,r′+s;νν′;ιι′;±±′ = Srr′;νν′;ιι′;±±′ , (3.4)

so it has the form

Srr′;νν′;ιι′;±±′ = Tr−r′;νν′;ιι′;±±′ . (3.5)

This means that if we consider the Fourier series

T̂νν′;ιι′;±±′(ω)=
∞∑

s=−∞
Ts;νν′;ιι′;±±′eisω, (3.6)

a positive lower bound on the manifestly positive matrix S would follow from a posi-
tive, ω-independent lower bound on this positive matrix-valued function of ω. Now the
mutual orthogonality of wavelets on the same scale immediately implies

T0 = 1. (3.7)

Moreover, the orthogonality between r-level wavelets and r′-level wavelets verified in the
previous section for |r− r′| > 1 imposes the condition

Ts = 0, s 
= 0,±1. (3.8)

It is obvious that

T−1 = T∗1 , (3.9)

so our matrix-valued function of ω reduces to

T̂(ω)= 1 +T1e
iω +T∗1 e

−iω. (3.10)

The desired lower bound on T̂(ω) would certainly follow from∥∥T1e
iω +T∗1 e

−iω∥∥≤ c < 1, (3.11)

and the proof of such a bound is the goal of this section and the next.
Our next step is to eliminate the discrete translation parameter from the problem. By

the support properties of the wavelets, we have

T1;νν′;ιι′;±±′ = 0, ν′ − 3ν /∈ {0,1,2}2. (3.12)

On the other hand, the formula

T1;νν′;ιι′;±±′ =
∫
∇Ψι±

1ν ·∇Ψι′±′
0ν′ , (3.13)

together with the translation-covariance property of the wavelets, implies

T1;ν+µ,ν′+3µ;ιι′;±±′ = T1;νν′;ιι′;±±′ . (3.14)
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Hence

T1;ν,3µ+σ ;ιι′;±±′ = T1;00,σ ;ιι′;±±′δµν, σ ∈ {0,1,2}2, (3.15)

and for convenience we decompose this residual matrix into nine 12× 12 submatrices:

Qσ
ιι′;±±′ = T1;00,σ ;ιι′;±±′ , σ ∈ {0,1,2}2. (3.16)

The point is that ∥∥T1
∥∥2 = ∥∥{T1;00,σ ;ιι′;±±′

}∥∥2 ≤
∑

σ∈{0,1,2}2

∥∥Qσ
∥∥2
. (3.17)

Indeed, for each σ we have the 12× 12 matrix equation(
TN

1

)
ν,3µ+σ =

∑
ν′,ν′′,...,ν(N−1)

T1;νν′T1;ν′ν′′ ···T1;ν(N−1),3µ+σ

=
∑

µ′,µ′′,...,µ(N−1)

∑
σ ′,σ ′′,...,σ (N−1)

Qσ ′Qσ ′′ ···Qσ (N−1)
Qσδµ′νδµ′′,3µ′+σ ′ ···δµ,3µ(N−1)+σ (N−1)

=
∑

σ ′,σ ′′,...,σ (N−1)

Qσ ′Qσ ′′ ···Qσ (N−1)
Qσδµ,3N−1ν+3N−2σ ′+···+3σ (N−2)+σ (N−1) .

(3.18)

It follows from the triadic representation

µ= 3N−1νµ + 3N−2σ ′µ + ···+ 3σ (N−2)
µ + σ (N−1)

µ (3.19)

that

δµ,3N−1ν+3N−2σ ′+···+3σ (N−2)+σ (N−1) = δνµµ

N−1∏
k=1

δσ (k)
µ σ (k) , (3.20)

and so (
TN

1

)
ν,3µ+σ = δνµνQ

σ ′µQσ ′′µ ···Qσ (N−1)
µ Qσ . (3.21)

For an arbitrary square-summable 12-vector-valued sequence (γν | ν∈ Z), this yields

(
TN

1 γ
)

ν =
∑

σ ′,σ ′′,...,σ (N−1),σ

Qσ ′Qσ ′′ ···Qσ (N−1)
Qσγ3Nν+3N−1σ ′+···+3σ (N−1)+σ , (3.22)

from which we obtain the generalization∥∥TN
1

∥∥2 ≤
∑

σ ′,σ ′′,...,σ (N−1),σ

∥∥Qσ ′Qσ ′′ ···Qσ (N−1)
Qσ
∥∥2

(3.23)

of (3.17). This estimation lies at the heart of proving (3.11) with a refinement of the
constant c.
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We now use another support property of the wavelet system to deduce that certain
6× 6 submatrices vanish. Indeed,

Qσ
++ = 0, σ = (2,1),(1,2),(2,2), (3.24.++)

Qσ
+− = 0, σ = (0,2),(1,2),(2,2),(1,1),(2,1),(2,0), (3.24.+−)

Qσ
−+ = 0, σ = (0,0),(0,1),(1,0),(1,1),(2,0),(0,2), (3.24.−+)

Qσ
−− = 0, σ = (0,0),(0,1),(1,0), (3.24.−−)

can be inferred from the diagrams in Figure 3.1, where the small equilateral triangles each
support six unit-scale wavelets (so the side of each small triangle is 3 units long) and the
large equilateral triangles each support six 3-scale wavelets. Moreover, isotropy implies

Q00
+± =Q22

−∓, (3.25.±)

Q01
+± =Q21

−∓, (3.26.±)

Q10
+± =Q12

−∓, (3.27.±)

Q02
++ =Q20

−−, (3.28)

Q11
++ =Q11

−−, (3.29)

Q20
++ =Q02

−−. (3.30)

If we now reindex the small triangles in the large + triangle in Figure 1.9(a), then these
relations naturally dictate the reindexing of the small triangles in the large − triangle,
chosen in Figure 1.9(b). The point is that there are only nine distinct 6× 6 matrices—
one for each small triangle in either larger triangle. Let A( j) denote the matrix associated
with the jth small triangle. Thus

A(1) = (3.25.+),

A(2) = (3.27.+),

A(3) = (3.30),

A(4) = (3.29),

A(5) = (3.28),

A(6) = (3.26.−),

A(7) = (3.25.−),

A(8) = (3.27.−),

A(9) = (3.26.−).

(3.31)
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On the other hand, we have the 6× 6 matrix equation

(
Qσ ′Qσ ′′ ···Qσ (N−1)

Qσ (N))
±±(N)

=
∑

±′,±′′,...,±(N−1)

Qσ ′
±±′Q

σ ′′
±′±′′ ···Qσ (N)

±(N−1)±(N)

= [δ±,σ ′(±′)Qσ ′
±±′Q

σ ′′
±′±′′ ···Qσ (N)

±(N−1)±(N)

]
±(k)=σ (k+1)(±(k+1)),k=1,...,N−1,

(3.32)

where σ(±) is the unique value of ±̂ such that Qσ
±̂,± 
= 0. Thus

(0,0)(±)= (1,0)(±)= (0,1)(±)= +,

(1,1)(±)= (2,0)(±)= (0,2)(±)=±,

(2,1)(±)= (1,2)(±)= (2,2)(±)=−
(3.33)

are implied by (3.24). The bound (3.23) is reduced to

∥∥TN
1

∥∥2 ≤
∑

σ ′,σ ′′,...,σ (N)

∥∥∥∥∥∥
[N−1∏
k=0

Qσ (k)

±(k),±(k+1)

]
±(k)=σ (k+1)(±(k+1)), k=0,1,...,N−1

∥∥∥∥∥∥
2

, (3.34)

but since

Qσ
σ(+),+ =



A(1), σ = (0,0),

A(2), σ = (1,0),

A(6), σ = (0,1),

A(4), σ = (1,1),

A(5), σ = (0,2),

A(3), σ = (2,0),

A(8), σ = (1,2),

A(9), σ = (2,1),

A(7), σ = (2,2),

Qσ
σ(−),− =



A(7), σ = (0,0),

A(8), σ = (1,0),

A(9), σ = (0,1),

A(4), σ = (1,1),

A(3), σ = (0,2),

A(5), σ = (2,0),

A(2), σ = (1,2),

A(6), σ = (2,1),

A(1), σ = (2,2),

(3.35)
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+
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+
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−
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−

+

−

Figure 3.1

we can rewrite this bound as

∥∥TN
1

∥∥2 ≤
 N∏
k=1

9∑
jk=1

∥∥A( j1)A( j2) ···A( jN )
∥∥2
. (3.36)

4. The nine matrices A( j)

Following the notation adopted for 0-level wavelets and their support triangles in the
standard support triangle for 1-level wavelets, we have

A
( j)
ιι′ =

∫
∇Ψι

0 j ·∇Ψι′+
1 . (4.1)

By Orthogonality Property 2.3, we know that

A
( j)
ιι′ = 0, ι= 1,2,3, (4.2)

so we choose to write our 6× 6 matrices in 3× 3 blocks:

A( j) =
[

0 0
B( j) C( j)

]
. (4.3)

Clearly,

A( j)A( j′) =
[

0 0
C( j)B( j′) C( j)C( j′)

]
, (4.4)

A( j)∗ =
[

0 B( j)∗

0 C( j)∗

]
, (4.5)

A( j)A( j)∗ =
[

0 0
0 B( j)B( j)∗ +C( j)C( j)∗

]
. (4.6)

In particular, ∥∥A( j)
∥∥2 = ∥∥A( j)A( j)∗∥∥= ∥∥B( j)B( j)∗ +C( j)C( j)∗∥∥. (4.7)
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The matrices B( j) (resp., C( j)) involve Sobolev inner products of 0-level Set wavelets of the
second kind with 1-level Set wavelets of the first kind (resp., second kind). Considering
the case j = 1, we draw on (2.17) to obtain

B(1) =− 1
6
√

6

1 0 0
1 0 0
1 0 0

 , (4.8)

and on (2.38) and (2.39) to obtain

C(1) =− 1
18

1 0 0
1 0 0
1 0 0

 . (4.9)

We calculate

B(1)B(1)∗ +C(1)C(1)∗ = 5
648

1 1 1
1 1 1
1 1 1

 . (4.10)

The eigenvalues of the integer matrix are 0 and 3, so by (4.7) we have

∥∥A(1)
∥∥2 = 5

216
. (4.11)

On the other hand, we infer from (2.20) that

B(2) = B(4) = B(6) = 0. (4.12)

Considering the cases j = 2,4,6, we draw on (2.22), (2.23), and (2.24) to obtain

C(2) = 1
6
√

6

1 0 0
1 0 0
1 0 0

 ,

C(4) = 1
6
√

6

0 1 0
0 1 0
0 1 0

 ,

C(6) = 1
6
√

6

0 0 1
0 0 1
0 0 1

 ,

(4.13)

respectively. Thus

C(2)C(2)∗ = C(4)C(4)∗ = C(6)C(6)∗ = 1
216

1 1 1
1 1 1
1 1 1

 , (4.14)
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and so by (4.7) we have

∥∥A( j)
∥∥2 = ∥∥C( j)C( j)∗∥∥= 1

72
, j = 2,4,6. (4.15)

Considering the case j = 3, we draw on (2.18) to obtain

B(3) =− 1
6
√

6

0 1 0
0 1 0
0 1 0

 , (4.16)

and on (2.40) and (2.41) to obtain

C(3) =− 1
18

1 0 0
1 0 0
1 0 0

 . (4.17)

Considering the remaining cases, we see that (2.19), (2.14), (2.15), and (2.16) imply

B(5) =− 1
6
√

6

0 0 1
0 0 1
0 0 1

 ,

B(7) = 1
6
√

6

1 0 0
1 0 0
1 0 0

 ,

B(8) = 1
6
√

6

0 1 0
0 1 0
0 1 0

 ,

B(9) = 1
6
√

6

0 0 1
0 0 1
0 0 1

 ,

(4.18)

respectively, while (2.42)-(2.43), (2.32)-(2.33), (2.34)-(2.35), and (2.36)-(2.37) imply

C(5) =− 1
18

1 0 0
1 0 0
1 0 0

 ,

C(7) =− 1
18

0 1 0
0 1 0
0 1 0

 ,

C(8) =− 1
18

0 0 1
0 0 1
0 0 1

 ,

C(9) =− 1
18

0 1 0
0 1 0
0 1 0

 ,

(4.19)

respectively.
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Notice that the calculation of B( j)B( j)∗ +C( j)C( j)∗ for j = 3,5,7,8,9 is identical to the
calculation for j = 1. We have

B( j)B( j)∗ +C( j)C( j)∗ = 5
648

1 1 1
1 1 1
1 1 1

 , j = 3,5,7,8,9, (4.20)

and therefore

∥∥A( j)
∥∥2 = 5

216
, j = 3,5,7,8,9. (4.21)

Combining this with (4.11) and (4.15), we see that

9∑
j=1

∥∥A( j)
∥∥2 = 13

72
. (4.22)

It follows from the N = 1 case of (3.36) that

∥∥T1
∥∥≤ 1

12

√
26. (4.23)

Hence

∥∥T1e
iω +T∗1 e

−iω∥∥≤ 2
∥∥T1

∥∥≤ 1
6

√
26, (4.24)

so we have finally established (3.11). This yields

T̂(ω)≥ 1− 1
6

√
26≈ 0.150164, (4.25)

which is also a lower bound on the overlap matrix S.
We now pursue a refinement of this estimation. From our calculation of the matrices

B( j) and C( j), it is an easy observation that

C( j)B( j′) =


− 1

18
B( j′), j 
= 2,4,6,

1
6
√

6
B( j′), j = 2,4,6,

C( j)C( j′) =


− 1

18
C( j′), j 
= 2,4,6,

1
6
√

6
C( j′), j = 2,4,6.

(4.26)

It follows from (4.4) that

A( j)A( j′) =


− 1

18
A( j′), j 
= 2,4,6,

1
6
√

6
A( j′), j = 2,4,6,

(4.27)
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so by (3.36) we have

∥∥TN
1

∥∥2 ≤
 N∏
k=1

9∑
jk=1

κ2
j1κ

2
j2 ···κ2

jN−1

∥∥A( jN )
∥∥2

=
 9∑
j=1

κ2
j

N−1 9∑
jN=1

∥∥A( jN )
∥∥2

,

(4.28)

κj =


− 1

18
, j 
= 2,4,6,

1
6
√

6
, j = 2,4,6.

(4.29)

Since

9∑
j=1

κ2
j =

7
216

, (4.30)

equation (4.22), together with (4.28), implies

∥∥TN
1

∥∥2 ≤
(

7
216

)N−1 13
72

(4.31)

or rather

∥∥TN
1

∥∥≤ ( 1
36

√
42
)N−1 1

12

√
26. (4.32)

Thus

∥∥T1e
iω +T∗1 e

−iω∥∥≤ 1
12

√
26 +

1
36

√
42

≈ 0.6049387
(4.33)

by the standard operator lemma stated in the introduction. We have the improvement

T̂(ω)≥ 1− 1
12

√
26− 1

36

√
42≈ 0.3950613 (4.34)

on the underestimate (4.25).
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Cahiers Scientifiques, vol. 25, Gauthier-Villars, Paris, 1957.

Guy Battle: Department of Mathematics, Texas A&M University, College Station, TX 77843, USA
E-mail address: battle@math.tamu.edu

mailto:battle@math.tamu.edu

