
POLYNOMIAL ALGORITHMS FOR PROJECTING A POINT
ONTO A REGION DEFINED BY A LINEAR CONSTRAINT
AND BOX CONSTRAINTS IN R

n

STEFAN M. STEFANOV

Received 29 September 2003 and in revised form 6 April 2004

We consider the problem of projecting a point onto a region defined by a linear equality or
inequality constraint and two-sided bounds on the variables. Such problems are interest-
ing because they arise in various practical problems and as subproblems of gradient-type
methods for constrained optimization. Polynomial algorithms are proposed for solving
these problems and their convergence is proved. Some examples and results of numerical
experiments are presented.

1. Introduction

Consider the problem of projecting a point x̂ = (x̂1, . . . , x̂n) ∈ Rn onto a set defined by a
linear inequality constraint “≤”, linear equality constraint, or linear inequality constraint
“≥” with positive coefficients and box constraints. This problem can be mathematically
formulated as the following quadratic programming problem:

min

{
c(x)≡

n∑
j=1

cj
(
xj
)≡ 1

2

n∑
j=1

(
xj − x̂ j

)2
}

(1.1)

subject to

x ∈ X , (1.2)

where the feasible region X is defined by

n∑
j=1

djxj ≤ α, dj > 0, j = 1, . . . ,n, (1.3)

aj ≤ xj ≤ bj , j = 1, . . . ,n, (1.4)

Copyright © 2004 Hindawi Publishing Corporation
Journal of Applied Mathematics 2004:5 (2004) 409–431
2000 Mathematics Subject Classification: 90C30, 90C20, 90C25
URL: http://dx.doi.org/10.1155/S1110757X04309071

http://dx.doi.org/10.1155/S1110757X04309071

410 Polynomial algorithms for projecting a point in Rn

in the first case, by

n∑
j=1

djxj = α, dj > 0, j = 1, . . . ,n, (1.5)

aj ≤ xj ≤ bj , j = 1, . . . ,n, (1.6)

in the second case, or by

n∑
j=1

djxj ≥ α, dj > 0, j = 1, . . . ,n, (1.7)

aj ≤ xj ≤ bj , j = 1, . . . ,n, (1.8)

in the third case.
Denote this problem by (P≤) in the first case (problem (1.1)-(1.2) with X defined by

(1.3)-(1.4)), by (P=) in the second case (problem (1.1)-(1.2) with X defined by (1.5)-
(1.6)), and by (P≥) in the third case (problem (1.1)-(1.2) with X defined by (1.7)-(1.8)).

Since c(x) is a strictly convex function and X is a convex closed set, then this is a convex
programming problem and it always has a unique optimal solution when X �= ∅.

Problems of the form (1.1)-(1.2) with X defined by (1.3)-(1.4), (1.5)-(1.6), or (1.7)-
(1.8) arise in production planning and scheduling (see [2]), in allocation of resources (see
[2, 7, 8, 15]), in the theory of search (see [4]), in facility location (see [10, 11, 12, 13, 14]),
and so forth. Problems (P≤), (P=), and (P≥) also arise as subproblems of some projection
optimization methods of gradient (subgradient) type for constrained optimization when
the feasible region is of the form (1.3)-(1.4), (1.5)-(1.6), or (1.7)-(1.8) (see, e.g., [6]).
These projection problems are to be solved at each iteration of algorithm performance
because current points generated by these methods must be projected on the feasible re-
gion at each iteration. That is why projection is the most onerous and time-consuming
part of any projection gradient-type method for constrained optimization and we need
efficient algorithms for solving these problems. This is the motivation to study the prob-
lems under consideration.

Problems like (P≤), (P=), and (P≥) are subject of intensive study. Related problems
and methods for them are considered in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

An algorithm for finding a projection onto a simple polytope is proposed, for example,
in [9]. Projections in the implementation of stochastic quasigradient methods are studied
in [10]. Projected Newton-type methods are suggested in [1, 5].

This paper is devoted to the development of new efficient polynomial algorithms for
finding a projection onto the set X defined by (1.3)-(1.4), (1.5)-(1.6), or (1.7)-(1.8). The
paper is organized as follows. In Section 2, characterization theorems (necessary and suf-
ficient conditions or sufficient conditions) for the optimal solutions to the considered
problems are proved. In Section 3, new algorithms of polynomial complexity are sug-
gested and their convergence is proved. In Section 4, we consider some theoretical and
numerical aspects of implementation of the algorithms and give some extensions of both

Stefan M. Stefanov 411

characterization theorems and algorithms. In Section 5, we present results of some nu-
merical experiments.

2. Main results. Characterization theorems

2.1. Problem (P≤). First consider the following problem:

(P≤)

min

{
c(x)≡

n∑
j=1

cj
(
xj
)≡ 1

2

n∑
j=1

(
xj − x̂ j

)2
}

(2.1)

subject to (1.3) and (1.4).

Suppose that the following assumptions are satisfied:

(1.a) aj ≤ bj for all j = 1, . . . ,n. If ak = bk for some k, 1 ≤ k ≤ n, then the value xk :=
ak = bk is determined in advance;

(1.b)
∑n

j=1djaj ≤ α; otherwise the constraints (1.3)-(1.4) are inconsistent and X =∅
where X is defined by (1.3)-(1.4).

In addition to this assumption we suppose that α ≤∑n
j=1djbj in some cases which are

specified below.
The Lagrangian for problem (P≤) is

L(x,u,v,λ)= 1
2

n∑
j=1

(
xj − x̂ j

)2
+ λ

(n∑
j=1

djxj −α

)
+

n∑
j=1

uj
(
aj − xj

)
+

n∑
j=1

vj
(
xj − bj

)
,

(2.2)

where λ ∈ R1
+, u,v ∈ Rn

+, and Rn
+ consists of all vectors with n real nonnegative compo-

nents.
The Karush-Kuhn-Tucker (KKT) necessary and sufficient optimality conditions for

the minimum x∗ = (x∗1 , . . . ,x∗n) are

x∗j − x̂ j + λdj −uj + vj = 0, j = 1, . . . ,n, (2.3)

uj
(
aj − x∗j

)= 0, j = 1, . . . ,n, (2.4)

vj
(
x∗j − bj

)= 0, j = 1, . . . ,n, (2.5)

λ

(n∑
j=1

djx
∗
j −α

)
= 0, λ∈R

1
+, (2.6)

n∑
j=1

djx
∗
j ≤ α, (2.7)

aj ≤ x∗j ≤ bj , j = 1, . . . ,n, (2.8)

uj ∈R
1
+, vj ∈R

1
+, j = 1, . . . ,n. (2.9)

412 Polynomial algorithms for projecting a point in Rn

Here, λ, uj , vj , j = 1, . . . ,n, are the Lagrange multipliers associated with the constraints
(1.3), aj ≤ xj , xj ≤ bj , j = 1, . . . ,n, respectively. If aj =−∞ or bj = +∞ for some j, we do
not consider the corresponding condition (2.4), (2.5) and Lagrange multiplier uj[vj].

Since λ≥ 0, uj ≥ 0, vj ≥ 0, j = 1, . . . ,n, and since the complementary conditions (2.4),
(2.5), (2.6) must be satisfied, in order to find x∗j , j = 1, . . . ,n, from system (2.3)–(2.9), we
have to consider all possible cases for λ, uj , vj : all λ, uj , vj equal to 0; all λ, uj , vj different
from 0; some of them equal to 0 and some of them different from 0. The number of
these cases is 22n+1, where 2n+ 1 is the number of λ, uj , vj , j = 1, . . . ,n. Obviously this
is an enormous number of cases, especially for large-scale problems. For example, when
n= 1 500, we have 23001 ≈ 10900 cases. Moreover, in each case we have to solve a large-scale
system of (nonlinear) equations in x∗j , λ, uj , vj , j = 1, . . . ,n. Therefore direct application
of the KKT theorem, using explicit enumeration of all possible cases, for solving large-
scale problems of the considered form would not give a result and we need results and
efficient methods to cope with these problems.

The following theorem gives a characterization of the optimal solution to problem
(P≤). Its proof, of course, is based on the KKT theorem. As we will see in Section 5,
by using Theorem 2.1, we can solve problem (P≤) with n = 10000 variables in 0.00055
seconds on a personal computer.

Theorem 2.1 (characterization of the optimal solution to problem (P≤)). A feasible so-
lution x∗ = (x∗1 , . . . ,x∗n)∈ X (1.3)-(1.4) is the optimal solution to problem (P≤) if and only
if there exists some λ∈R1

+ such that

x∗j = aj , j ∈ Jλa
def=
{
j : λ≥ x̂ j − aj

dj

}
, (2.10)

x∗j = bj , j ∈ Jλb
def=
{
j : λ≤ x̂ j − bj

dj

}
, (2.11)

x∗j = x̂ j − λdj , j ∈ Jλ
def=
{
j :

x̂ j − bj

dj
< λ <

x̂j − aj

dj

}
. (2.12)

Proof. (i) Let x∗ = (x∗1 , . . . ,x∗n) be the optimal solution to (P≤). Then there exist constants
λ, uj , vj , j = 1, . . . ,n, such that the KKT conditions (2.3)–(2.9) are satisfied. Consider both
possible cases for λ.

(1) Let λ > 0. Then system (2.3)–(2.9) becomes (2.3), (2.4), (2.5), (2.8), (2.9), and

n∑
j=1

djx
∗
j = α, (2.13)

that is, the inequality constraint (1.3) is satisfied with an equality for x∗j , j =
1, . . . ,n, in this case.
(a) If x∗j = aj , then uj ≥ 0 and vj = 0 according to (2.5). Therefore (2.3) implies

x∗j − x̂ j = uj − λdj ≥−λdj . Since dj > 0, then

λ≥ x̂ j − x∗j
d j

≡ x̂ j − aj

dj
. (2.14)

Stefan M. Stefanov 413

(b) If x∗j = bj , then uj = 0 according to (2.4) and vj ≥ 0. Therefore (2.3) implies
x∗j − x̂ j =−vj − λdj ≤−λdj . Hence

λ≤ x̂ j − x∗j
d j

≡ x̂ j − bj

dj
. (2.15)

(c) If aj < x∗j < bj , then uj = vj = 0 according to (2.4) and (2.5). Therefore (2.3)
implies x∗j = x̂ j − λdj . Since dj > 0, j = 1, . . . ,n, λ > 0 by the assumptions, then
x̂ j > x∗j . It follows from bj > x∗j , x∗j > aj that

x̂ j − bj < x̂ j − x∗j , x̂ j − x∗j < x̂ j − aj . (2.16)

Using dj > 0, we obtain λ = (x̂ j − x∗j)/dj < (x̂ j − aj)/dj , λ = (x̂ j − x∗j)/dj >
(x̂ j − bj)/dj , that is,

x̂ j − bj

dj
< λ <

x̂j − aj

dj
. (2.17)

(2) Let λ= 0. Then system (2.3)–(2.9) becomes

x∗j − x̂ j −uj + vj = 0, j = 1, . . . ,n, (2.18)

and (2.4), (2.5), (2.7), (2.8), (2.9).
(a) If x∗j = aj , then uj ≥ 0, vj = 0. Therefore aj − x̂ j ≡ x∗j − x̂ j = uj ≥ 0. Multi-

plying both sides of this inequality by −(1/dj) (< 0 by the assumption), we
obtain

x̂ j − aj

dj
≤ 0≡ λ. (2.19)

(b) If x∗j = bj , then uj = 0, vj ≥ 0. Therefore bj − x̂ j ≡ x∗j − x̂ j =−vj ≤ 0. Multi-
plying this inequality by −(1/dj) < 0, we get

x̂ j − bj

dj
≥ 0≡ λ. (2.20)

(c) If aj < x∗j < bj , then uj = vj = 0. Therefore x∗j − x̂ j = 0, that is, x∗j = x̂ j . Since
bj > x∗j , x∗j > aj , j = 1, . . . ,n, by the assumption, then

x̂ j − bj < x̂ j − x∗j = 0, 0= x̂ j − x∗j < x̂ j − aj . (2.21)

Multiplying both inequalities by 1/dj > 0, we obtain

x̂ j − bj

dj
< 0≡ λ, λ≡ 0 <

x̂j − aj

dj
, (2.22)

that is, in case (c) we have

x̂ j − bj

dj
< λ <

x̂j − aj

dj
. (2.23)

414 Polynomial algorithms for projecting a point in Rn

In order to describe cases (a), (b), (c) for both (1) and (2), it is convenient to introduce
the index sets Jλa , Jλb , Jλ defined by (2.10), (2.11), and (2.12), respectively. Obviously Jλa ∪
Jλb ∪ Jλ = {1, . . . ,n}. The “necessity” part is proved.

(ii) Conversely, let x∗ ∈ X and let components of x∗ satisfy (2.10), (2.11), and (2.12),
where λ∈R1

+.

(1) If λ > 0, then x∗j − x̂ j < 0, j ∈ Jλ, according to (2.12) and dj > 0. Set

λ= x̂ j − x∗j
d j

(> 0) obtained from
∑
j∈Jλa

djaj +
∑
j∈Jλb

djbj +
∑
j∈Jλ

dj
(
x̂ j − λdj

)= α;

uj = vj = 0 for j ∈ Jλ;

uj = aj − x̂ j + λdj
(≥ 0 according to the definition of Jλa

)
, vj = 0 for j ∈ Jλa ;

uj = 0, vj = x̂ j − bj − λdj
(≥ 0 according to the definition of Jλb

)
for j ∈ Jλb .

(2.24)

By using these expressions, it is easy to check that conditions (2.3), (2.4), (2.5),
(2.6), (2.9) are satisfied; conditions (2.7) and (2.8) are also satisfied according to
the assumption x∗ ∈ X .

(2) If λ= 0, then x∗j = x̂ j , j ∈ Jλ, according to (2.12), and

Jλ=0 =
{
j :

x̂ j − bj

dj
< 0 <

x̂j − aj

dj

}
. (2.25)

Since dj > 0, x̂ j − bj < 0, x̂ j − aj > 0, j ∈ J0. Therefore x∗j = x̂ j ∈ (aj ,bj). Set

λ= x̂ j − x∗j
d j

(= 0), uj = vj = 0 for j ∈ Jλ=0,

uj = aj − x̂ j + λdj = aj − x̂ j (≥ 0), vj = 0 for j ∈ Jλ=0
a ,

uj = 0, vj = x̂ j − bj − λdj = x̂ j − bj (≥ 0) for j ∈ Jλ=0
b .

(2.26)

Obviously conditions (2.3), (2.4), (2.5), (2.9) are satisfied; conditions (2.7), (2.8) are
also satisfied according to the assumption x∗ ∈ X , and condition (2.6) is obviously satis-
fied for λ= 0.

In both cases (1) and (2) of part (ii), x∗j , λ, uj , vj , j = 1, . . . ,n, satisfy KKT conditions
(2.3)–(2.9) which are necessary and sufficient conditions for a feasible solution to be an
optimal solution to a convex minimization problem. Therefore x∗ is the (unique) optimal
solution to problem (P≤). �

In view of the discussion above, the importance of Theorem 2.1 consists in the fact
that it describes components of the optimal solution to (P≤) only through the Lagrange
multiplier λ associated with the inequality constraint (1.3).

Stefan M. Stefanov 415

Since we do not know the optimal value of λ from Theorem 2.1, we define an iterative
process with respect to the Lagrange multiplier λ and we prove convergence of this process
in Section 3.

It follows from dj > 0 and aj ≤ bj , j = 1, . . . ,n, that

ubj
def= x̂ j − bj

dj
≤ x̂ j − aj

dj

def= la j , j = 1, . . . ,n, (2.27)

for the expressions by means of which we define the sets Jλa , Jλb , Jλ.
The problem how to ensure a feasible solution to problem (P≤), which is an assump-

tion of Theorem 2.1, is discussed after the statement of the corresponding algorithm.

2.2. Problem (P=). Consider problem (P=) of finding a projection of x̂ onto a set X of
the form (1.5)-(1.6):

(P=)

min

{
c(x)≡

n∑
j=1

cj
(
xj
)≡ 1

2

n∑
j=1

(
xj − x̂ j

)2
}

(2.28)

subject to (1.5) and (1.6).
We have the following assumptions:

(2.a) aj ≤ bj for all j = 1, . . . ,n;
(2.b)

∑n
j=1djaj ≤ α≤∑n

j=1djbj ; otherwise the constraints (1.5)-(1.6) are inconsistent
and the feasible region (1.5)-(1.6) is empty.

The KKT conditions for problem (P=) are

x∗j − x̂ j + λdj −uj + vj = 0, j = 1, . . . ,n, λ∈R
1,

uj
(
aj − x∗j

)= 0, j = 1, . . . ,n,

vj
(
x∗j − bj

)= 0, j = 1, . . . ,n,

n∑
j=1

djx
∗
j = α,

aj ≤ x∗j ≤ bj , j = 1, . . . ,n,

uj ∈R
1
+, vj ∈R

1
+, j = 1, . . . ,n.

(2.29)

In this case the following theorem, which is analogous to Theorem 2.1, holds true.

Theorem 2.2 (characterization of the optimal solution to problem (P=)). A feasible so-
lution x∗ = (x∗1 , . . . ,x∗n)∈ X (1.5)-(1.6) is the optimal solution to problem (P=) if and only

416 Polynomial algorithms for projecting a point in Rn

if there exists some λ∈R1 such that

x∗j = aj , j ∈ Jλa
def=
{
j : λ≥ x̂ j − aj

dj

}
, (2.30)

x∗j = bj , j ∈ Jλb
def=
{
j : λ≤ x̂ j − bj

dj

}
, (2.31)

x∗j = x̂ j − λdj , j ∈ Jλ
def=
{
j :

x̂ j − bj

dj
< λ <

x̂j − aj

dj

}
. (2.32)

The proof of Theorem 2.2 is omitted because it is similar to that of Theorem 2.1.

2.3. Problem (P≥). Consider problem (P≥) of finding a projection of x̂ onto a set X of
the form (1.7)-(1.8):

(P≥)

min

{
c(x)≡

n∑
j=1

cj
(
xj
)≡ 1

2

n∑
j=1

(
xj − x̂ j

)2
}

(2.33)

subject to (1.7) and (1.8).
We have the following assumptions:

(3.a) aj ≤ bj for all j = 1, . . . ,n;
(3.b) α ≤ ∑n

j=1djbj ; otherwise constraints (1.7)-(1.8) are inconsistent and X = ∅,
where X is defined by (1.7)-(1.8).

Rewrite (P≥) in the form (2.33), (2.34), (1.8), where

−
n∑
j=1

djxj ≤−α, dj > 0, j = 1, . . . ,n. (2.34)

Since the linear function d(x) := −∑n
j=1djxj + α is both convex and concave, (P≥) is a

convex optimization problem.
Let λ, λ≥ be the Lagrange multipliers associated with (1.5) (problem (P=)) and with

(2.34) (problem (P≥)), and let x∗j , x≥j , j = 1, . . . ,n, be components of the optimal solu-
tions to (P=), (P≥), respectively. For the sake of simplicity, we use uj , vj , j = 1, . . . ,n, in-
stead of u≥j , v≥j , j = 1, . . . ,n, for the Lagrange multipliers associated with aj ≤ xj , xj ≤ bj ,
j = 1, . . . ,n, from (1.8), respectively.

The Lagrangian for problem (P≥) is

L
(

x,u,v,λ≥
)= 1

2

n∑
j=1

(
xj − x̂ j

)2
+ λ≥

(
−

n∑
j=1

djxj +α

)

+
n∑
j=1

uj
(
aj − xj

)
+

n∑
j=1

vj
(
xj − bj

) (2.35)

Stefan M. Stefanov 417

and the KKT conditions for (P≥) are

x≥j − x̂ j − λ≥dj −uj + vj = 0, j = 1, . . . ,n, (2.36)

uj
(
aj − x≥j

)= 0, j = 1, . . . ,n, (2.37)

vj
(
x≥j − bj

)= 0, j = 1, . . . ,n, (2.38)

λ≥
(
α−

n∑
j=1

djx
≥
j

)
= 0, λ≥ ∈R

1
+, (2.39)

−
n∑
j=1

djx
≥
j ≤−α, (2.40)

aj ≤ x≥j ≤ bj , j = 1, . . . ,n, (2.41)

uj ∈R
1
+, vj ∈R

1
+, j = 1, . . . ,n. (2.42)

We can replace (2.36) and (2.39) by

x≥j − x̂ j + λ≥dj −uj + vj = 0, j = 1, . . . ,n, (2.43)

λ≥
(n∑

j=1

djx
≥
j −α

)
= 0, λ≥ ∈R

1
−, dj > 0, (2.44)

respectively, where we have redenoted λ≥ :=−λ≥ ∈R1−.
Conditions (2.43) with λ instead of λ≥, (2.37), (2.38), (2.41), (2.42) are among the

KKT conditions for problem (P=).

Theorem 2.3 (sufficient condition for optimal solution). (i) If λ= (x̂ j − x∗j)/dj ≤ 0, then
x∗j , j = 1, . . . ,n, solve problem (P≥) as well.

(ii) If λ= (x̂ j − x∗j)/dj > 0, then x≥j , j = 1, . . . ,n, defined as

x≥j = bj , j ∈ Jλb ;

x≥j =min
{
bj , x̂ j

}
, j ∈ Jλ;

x≥j =min
{
bj , x̂ j

} ∀ j ∈ Jλa such that aj < x̂ j ;

x≥j = aj ∀ j ∈ Jλa such that aj ≥ x̂ j

(2.45)

solve problem (P≥).

Proof. (i) Let λ = (x̂ j − x∗j)/dj ≤ 0 (i.e., x̂ j ≤ x∗j , j ∈ Jλ, because dj > 0). Since x∗j , j =
1, . . . ,n, satisfy KKT conditions for problem (P=) as components of the optimal solution
to (P=), then (2.43), (2.37), (2.38), (2.40) with equality (and therefore (2.44)), (2.41),
(2.42) are satisfied as well (with λ instead of λ≥). Since they are the KKT necessary and
sufficient conditions for (P≥), then x∗j , j = 1, . . . ,n, solve (P≥).

(ii) Let λ = (x̂ j − x∗j)/dj > 0 (i.e., x̂ j > x∗j , j ∈ Jλ). Since x∗ = (x∗j)nj=1 is the opti-
mal solution to (P=) by the assumption, then KKT conditions for (P=) are satisfied.

418 Polynomial algorithms for projecting a point in Rn

If x≥ := (x≥j)nj=1 is the optimal solution to (P≥), then x≥ satisfies (2.43), (2.37), (2.38),
(2.44), (2.40), (2.41), (2.42). Since λ > 0, then λ cannot play the role of λ≥ in (2.43) and
(2.44) because λ≥ must be a nonpositive real number in (2.43) and (2.44). Therefore x∗j ,
which satisfy KKT conditions for problem (P=), cannot play the roles of x≥j , j = 1, . . . ,n,
in (2.43), (2.37), (2.38), (2.44), (2.40), (2.41), (2.42). Hence, in the general case the equal-
ity
∑n

j=1djxj = α is not satisfied for xj = x≥j . Therefore, in order that (2.44) be satisfied,
λ≥ must be equal to 0. This conclusion helps us to prove the theorem.

Let x≥ := (x≥j)nj=1 be defined as in part (ii) of the statement of Theorem 2.3.
Set λ≥ = 0;

(1) uj = 0, vj = x̂ j − bj (≥ 0 according to the definition of Jλb (2.31), λ > 0, dj > 0) for
j ∈ Jλb ;

(2) uj = vj = 0 for j ∈ Jλa such that aj < x̂ j and for j ∈ Jλ such that x̂ j < bj ;
(3) uj = 0, vj = x̂ j − bj (≥ 0) for j ∈ Jλ such that x̂ j ≥ bj ;
(4) uj = aj − x̂ j (≥ 0), vj = 0 for j ∈ Jλa such that aj ≥ x̂ j .

In case (2) we have aj < x̂ j , therefore aj < x̂ j = x≥j according to the definition of x≥j in this
case. In case (3), since bj ≤ x̂ j , that is, bj − x̂ j ≤ 0, then vj := x̂ j − bj ≥ 0. Consequently,
conditions (2.41) and (2.42) are satisfied for all j according to (1), (2), (3), and (4).

As we have proved, (2.44) is satisfied with λ≥ = 0. Since the equality constraint (1.5)∑n
j=1djx

∗
j = α is satisfied for the optimal solution x∗ to (P=), since the components of x≥

defined in the statement of Theorem 2.3(ii) are such that some of them are the same as
the corresponding components of x∗, since some of the components of x≥, namely those
for j ∈ Jλa with aj < x̂ j , are greater than the corresponding components x∗j = aj , j ∈ Jλa , of
x∗, and since dj > 0, j = 1, . . . ,n, then obviously the inequality constraint (2.40) holds for
x≥. It is easy to check that other conditions (2.43), (2.37), (2.38) are also satisfied. Thus,
x≥j , j = 1, . . . ,n, defined above satisfy the KKT conditions for (P≥). Therefore x≥ is the
optimal solution to problem (P≥). �

According to Theorem 2.3, the optimal solution to problem (P≥) is obtained by using
the optimal solution and optimal value of the Lagrange multiplier λ for problem (P=).
That is why we suppose that

∑n
j=1djaj ≤ α in addition to assumption (3.b) (see Step (1)

of Algorithm 3 below) as we assumed this in assumption (2.b) for problem (P=).

3. The algorithms

3.1. Analysis of the optimal solution to problem (P≤). Before the formal statement of
the algorithm for problem (P≤), we discuss some properties of the optimal solution to
this problem, which turn out to be useful.

Using (2.10), (2.11), and (2.12), condition (2.6) can be written as follows:

λ

∑
j∈Jλa

djaj +
∑
j∈Jλb

djbj +
∑
j∈Jλ

dj
(
x̂ j − λdj

)−α

= 0, λ≥ 0. (3.1)

Since the optimal solution x∗ to problem (P≤) obviously depends on λ, we consider

Stefan M. Stefanov 419

components of x∗ as functions of λ for different λ∈R1
+:

x∗j = xj(λ)=


aj , j ∈ Jλa ,

bj , j ∈ Jλb ,

x̂ j − λdj , j ∈ Jλ.

(3.2)

Functions xj(λ), j = 1, . . . ,n, are piecewise linear, monotone nonincreasing, piecewise dif-
ferentiable functions of λ with two breakpoints at λ= (x̂ j − aj)/dj and λ= (x̂ j − bj)/dj .

Let

δ(λ)
def=

∑
j∈Jλa

djaj +
∑
j∈Jλb

djbj +
∑
j∈Jλ

dj x̂ j − λ
∑
j∈Jλ

d2
j −α. (3.3)

If we differentiate (3.3) with respect to λ, we get

δ′(λ)≡−
∑
j∈Jλ

d2
j < 0, (3.4)

when Jλ �= ∅, and δ′(λ)= 0 when Jλ =∅. Hence δ(λ) is a monotone nonincreasing func-
tion of λ, λ∈R1

+, and maxλ≥0 δ(λ) is attained at the minimum admissible value of λ, that
is, at λ= 0.

Case 1. If δ(0) > 0, in order that (3.1) and (2.7) be satisfied, there exists some λ∗ > 0 such
that δ(λ∗)= 0, that is,

n∑
j=1

djx
∗
j = α, (3.5)

which means that the inequality constraint (1.3) is satisfied with an equality for λ∗ in this
case.

Case 2. If δ(0) < 0, then δ(λ) < 0 for all λ ≥ 0, and the maximum of δ(λ) with λ ≥ 0 is
δ(0)=maxλ≥0 δ(λ) and it is attained at λ= 0 in this case. In order that (3.1) be satisfied,
λ must be equal to 0. Therefore x∗j = x̂ j , j ∈ Jλ=0, according to (2.12).

Case 3. In the special case when δ(0) = 0, the maximum δ(0) =maxλ≥0 δ(λ) of δ(λ) is
also attained at the minimum admissible value of λ, that is, for λ = 0, because δ(λ) is a
monotone nonincreasing function in accordance with the above consideration.

As we have seen, for the optimal value of λ, we have λ≥ 0 in all possible cases, as the
KKT condition (2.6) requires. We have shown that in Case 1 we need an algorithm for
finding λ∗ which satisfies the KKT conditions (2.3)–(2.9) but such that λ∗ satisfies (2.7)
with an equality. In order that this be fulfilled, the set (1.5)-(1.6) (i.e., feasible region of
problem (P=)) must be nonempty. That is why we have required α≤∑n

j=1djbj in some
cases in addition to the assumption

∑n
j=1djaj ≤ α (see assumption (1.b)). We have also

used this in the proof of Theorem 2.1, part (ii), when λ > 0.

420 Polynomial algorithms for projecting a point in Rn

Using the equation δ(λ) = 0, where δ(λ) is defined by (3.3), we are able to obtain a
closed-form expression for λ

λ=
∑

j∈Jλ
d2
j


−1∑

j∈Jλa
djaj +

∑
j∈Jλb

djbj +
∑
j∈Jλ

dj x̂ j −α

 , (3.6)

because δ′(λ) < 0 according to (3.4) when Jλ �= ∅ (it is important that δ′(λ) �= 0). This
expression of λ is used in the algorithm suggested for problem (P≤). It turns out that
for our purposes, without loss of generality, we can assume that δ′(λ) �= 0, that is, δ(λ)
depends on λ, which means that Jλ �= ∅.

At iteration k of the implementation of the algorithms, denote by λ(k) the value of
the Lagrange multiplier associated with constraint (1.3) (resp., (1.5), (1.7)), by α(k) the

right-hand side of (1.3) (resp., (1.5), (1.7)), and by J (k), Jλ(k)
a , Jλ(k)

b , Jλ(k) the current sets
J = {1, . . . ,n}, Jλa , Jλb , Jλ, respectively.

3.2. Algorithm 1. The following algorithm for solving problem (P≤) is based on Theo-
rem 2.1.

Algorithm 1 (for problem (P≤)).
(0) (Initialization). J := {1, . . . ,n}, k := 0, α(0) := α, n(0) := n, J (0) := J , Jλa :=∅, Jλb :=∅,

initialize x̂ j , j ∈ J . If
∑

j∈J d jaj ≤ α, go to (1) else go to (9).
(1) Construct the sets J0

a , J0
b , J0 (for λ= 0). Calculate

δ(0) :=
∑
j∈J0

a

djaj +
∑
j∈J0

b

djbj +
∑
j∈J0

dj x̂ j −α. (3.7)

If δ(0)≤ 0, then λ := 0, go to (8)
else if δ(0) > 0, then

if α≤∑ j∈J d jbj , go to (2)
else if α >

∑
j∈J d jbj , go to (9) (there does not exist λ∗ > 0 such that δ(λ∗)= 0).

(2) Jλ(k) := J (k). Calculate λ(k) by using the explicit expression of λ (3.6). Go to (3).

(3) Construct the sets Jλ(k)
a , Jλ(k)

b , Jλ(k) through (2.10), (2.11), (2.12) (with j ∈ J (k) in-

stead of j ∈ J) and find their cardinalities |Jλ(k)
a |, |Jλ(k)

b |, |Jλ(k)|, respectively. Go to
(4).

(4) Calculate

δ(λ(k)) :=
∑

j∈Jλ(k)
a

djaj +
∑

j∈Jλ(k)
b

djbj +
∑

j∈Jλ(k)

dj x̂ j − λ(k)
∑

j∈Jλ(k)

d2
j −α(k). (3.8)

Go to (5).
(5) If δ(λ(k))= 0 or Jλ(k) =∅, then λ := λ(k), Jλa := Jλa ∪ Jλ(k)

a , Jλb := Jλb ∪ Jλ(k)
b , Jλ := Jλ(k),

go to (8)
else if δ(λ(k)) > 0, go to (6)
else if δ(λ(k)) < 0, go to (7).

Stefan M. Stefanov 421

(6) x∗j :=aj for j∈ Jλ(k)
a , α(k+1) := α(k)−∑ j∈Jλ(k)

a
djaj , J (k+1) := J (k) \ Jλ(k)

a , n(k+1) := n(k)−
|Jλ(k)
a |, Jλa := Jλa ∪ Jλ(k)

a , k := k+ 1. Go to (2).

(7) x∗j :=bj for j∈ Jλ(k)
b , α(k+1) := α(k)−∑ j∈Jλ(k)

b
djbj , J (k+1) := J (k) \ Jλ(k)

b , n(k+1) := n(k)−
|Jλ(k)
b |, Jλb := Jλb ∪ Jλ(k)

b , k := k+ 1. Go to (2).
(8) x∗j := aj for j ∈ Jλa ; x∗j := bj for j ∈ Jλb ; x∗j := x̂ j − λdj for j ∈ Jλ. Go to (10).
(9) The problem has no optimal solution because X = ∅ or there does not exist a

λ∗ > 0 satisfying Theorem 2.1.
(10) End.

3.3. Convergence and complexity of Algorithm 1. The following theorem states conver-
gence of Algorithm 1.

Theorem 3.1. Let λ(k) be the sequence generated by Algorithm 1. Then

(i) if δ(λ(k)) > 0, then λ(k) ≤ λ(k+1);
(ii) if δ(λ(k)) < 0, then λ(k) ≥ λ(k+1).

Proof. Denote by x(k)
j the components of x(k) = (xj) j∈J (k) at iteration k of implementation

of Algorithm 1.
Taking into consideration (3.4), Case 1, Case 2, Case 3, and Step (1) (the sign of δ(0))

and Step (2) of Algorithm 1, it follows that λ(k) ≥ 0 for each k. Since x(k)
j are determined

from (2.12), x(k)
j = x̂ j − λ(k)dj , j ∈ Jλ(k), substituted in

∑
j∈Jλ(k) djx

(k)
j = α(k) at Step (2) of

Algorithm 1, and since λ(k) ≥ 0, dj > 0, then x̂ j ≥ x(k)
j .

(i) Let δ(λ(k))>0. Using Step (6) of Algorithm 1 (which is performed when δ(λ(k)) > 0),
we get

∑
j∈Jλ(k+1)

djx
(k)
j ≡

∑
j∈J (k+1)

djx
(k)
j =

∑
j∈J (k)\Jλ(k)

a

djx
(k)
j = α(k)−

∑
j∈Jλ(k)

a

djx
(k)
j . (3.9)

Let j ∈ Jλ(k)
a . According to definition (2.10) of Jλ(k)

a we have

x̂ j − aj

dj
≤ λ(k) = x̂ j − x(k)

j

d j
. (3.10)

Multiplying this inequality by −dj < 0, we obtain aj − x̂ j ≥ x(k)
j − x̂ j . Therefore aj ≥

x(k)
j , j ∈ Jλ(k)

a .
Using that dj > 0 and Step (6), from (3.9) we get

∑
j∈Jλ(k+1)

djx
(k)
j = α(k)−

∑
j∈Jλ(k)

a

djx
(k)
j ≥ α(k)−

∑
j∈Jλ(k)

a

djaj

= α(k+1) =
∑

j∈Jλ(k+1)

djx
(k+1)
j .

(3.11)

422 Polynomial algorithms for projecting a point in Rn

Since dj > 0, j = 1, . . . ,n, there exists at least one j0 ∈ Jλ(k+1) such that x(k)
j0 ≥ x(k+1)

j0 . Then

λ(k) = x̂ j0 − x(k)
j0

dj0
≤ x̂ j0 − x(k+1)

j0

dj0
= λ(k+1). (3.12)

We have used that the relationship between λ(k) and x(k)
j is given by (2.12) for j ∈ Jλ(k)

according to Step (2) of Algorithm 1 and that x̂ j ≥ x(k)
j , j ∈ Jλ(k), according to (2.12) with

λ(k) ≥ 0 and dj > 0.
The proof of part (ii) is omitted because it is similar to that of part (i). �

Consider the feasibility of x∗ = (x∗j) j∈J , generated by Algorithm 1.

Components x∗j = aj , j ∈ Jλa , and x∗j = bj , j ∈ Jλb , obviously satisfy (1.4). It follows
from

x̂ j − bj

dj
< λ≡ x̂ j − x∗j

d j
<
x̂ j − aj

dj
, j ∈ Jλ, (3.13)

and dj > 0 that aj − x̂ j < x∗j − x̂ j < bj − x̂ j , j ∈ Jλ. Therefore aj < x∗j < bj for j ∈ Jλ. Hence
all x∗j , j = 1, . . . ,n, satisfy (1.4).

We have proved that if δ(λ)|λ=0 ≥ 0 and X �= ∅, where X is defined by (1.3)-(1.4),
then there exists a λ∗ ≥ 0 such that δ(λ∗) = 0. Since at Step (2) we determine λ(k) from

the equality
∑

j∈Jλ(k) djx
(k)
j = α(k) for each k, then (1.3) is satisfied with an equality in this

case. Otherwise, if δ(0) < 0, then we set λ= 0 (Step (1)) and we have
∑

j∈J d jxj(0)−α≡
δ(0) < 0, that is, (1.3) is satisfied as a strict inequality in this case.

Therefore Algorithm 1 generates x∗ which is feasible for problem (P≤).

Remark 3.2. Theorem 3.1, definitions of Jλa (2.10), Jλb (2.11), and Jλ (2.12), and Steps (6),

(7), (8) of Algorithm 1 allow us to assert that Jλ(k)
a ⊆ Jλ(k+1)

a , Jλ(k)
b ⊆ Jλ(k+1)

b , and Jλ(k) ⊇
Jλ(k+1). This means that if j belongs to current set Jλ(k)

a , then j belongs to the next index

set Jλ(k+1)
a and, therefore, to the optimal index set Jλa , the same holds true about the sets

Jλ(k)
b and Jλb . Therefore λ(k) “converges” to the optimal λ of Theorem 2.1 and Jλ(k)

a , Jλ(k)
b ,

Jλ(k) “converge” to the optimal index sets Jλa , Jλb , Jλ, respectively. This means that calcula-

tion of λ, operations x∗j := aj , j ∈ Jλ(k)
a (Step (6)), x∗j := bj , j ∈ Jλ(k)

b (Step (7)), and the

construction of Jλa , Jλb , Jλ are in accordance with Theorem 2.1.

At each iteration, Algorithm 1 determines the value of at least one variable (Steps (6),
(7), (8)), and at each iteration, we solve a problem of the form (P≤) but of less dimension
(Steps (2)–(7)). Therefore Algorithm 1 is finite and it converges with at most n = |J|
iterations, that is, the iteration complexity of Algorithm 1 is �(n).

Step (0) takes time �(n). Step (1) (construction of sets J0
a , J0

b , J0, calculation of δ(0),
and checking whether X is empty) also takes time �(n). The calculation of λ(k) requires

constant time (Step (2)). Step (3) takes �(n) time because of the construction of Jλ(k)
a ,

Jλ(k)
b , Jλ(k). Step (4) also requires �(n) time and Step (5) requires constant time. Each of

Steps (6), (7), and (8) takes time which is bounded by �(n): at these steps we assign the
final value to some of xj , and since the number of all xj ’s is n, then Steps (6), (7), and (8)

Stefan M. Stefanov 423

take time �(n). Hence the algorithm has �(n2) running time and it belongs to the class of
strongly polynomially bounded algorithms.

As the computational experiments show, the number of iterations of the algorithm
performance is not only at most n but it is much, much less than n for large n. In fact,
this number does not depend on n but only on the three index sets defined by (2.10),
(2.11), (2.12). In practice, Algorithm 1 has �(n) running time.

3.4. Algorithm 2 (for problem (P=)) and its convergence. After analysis of the optimal
solution to problem (P=), similar to that to problem (P≤), we suggest the following algo-
rithm for solving problem (P=).

Algorithm 2 (for problem (P=)).
(1) (Initialization). J := {1, . . . ,n}, k := 0, α(0) := α, n(0) := n, J (0) := J , Jλa :=∅, Jλb :=∅,

initialize x̂ j , j ∈ J . If
∑

j∈J d jaj ≤ α≤∑ j∈J d jbj , go to (2), else go to (9).
(2) Jλ(k) := J (k). Calculate λ(k) by using the explicit expression of λ. Go to (3).

(3) Construct the sets Jλ(k)
a , Jλ(k)

b , Jλ(k) through (2.30), (2.31), (2.32) (with j ∈ J (k) in-

stead of j ∈ J) and find their cardinalities |Jλ(k)
a |, |Jλ(k)

b |, |Jλ(k)|. Go to (4).
Steps (4)–(8) are the same as Steps (4)–(8) of Algorithm 1, respectively.
(9) Problem (P=) has no optimal solution because the feasible set X (1.5)-(1.6) is

empty.
(10) End.

A theorem analogous to Theorem 3.1 holds for Algorithm 2 which guarantees the

“convergence” of λ(k), Jλ(k), Jλ(k)
a , Jλ(k)

b to the optimal λ, Jλ, Jλa , Jλb , respectively.

Theorem 3.3. Let λ(k) be the sequence generated by Algorithm 2. Then

(i) if δ(λ(k)) > 0, then λ(k) ≤ λ(k+1);
(ii) if δ(λ(k)) < 0, then λ(k) ≥ λ(k+1).

The proof of Theorem 3.3 is omitted because it is similar to that of Theorem 3.1.
It can be proved that Algorithm 2 has �(n2) running time, and point x∗ = (x∗1 , . . . ,x∗n)

generated by this algorithm is feasible for problem (P=), which is an assumption of
Theorem 2.2.

The following algorithm for solving problem (P≥) is based on Theorem 2.3 and Algori-
thm 2.

3.5. Algorithm 3 (for problem (P≥))

Algorithm 3.
(1) (Initialization). J := {1, . . . ,n}, k := 0, J (0) := J , α(0) := α, n(0) := n, Jλa :=∅ Jλb :=∅,

initialize x̂ j , j ∈ J . If
∑

j∈J d jaj ≤ α≤∑ j∈J d jbj , then go to (2), else go to (9).
Steps (2)–(7) are the same as Steps (2)–(7) of Algorithm 2, respectively.
(8) If λ ≤ 0, then x≥j := aj for j ∈ Jλa , x≥j := bj for j ∈ Jλb , x≥j := x̂ j − λdj for j ∈ Jλ, go

to (10)
else if λ > 0, then
x≥j := bj for j ∈ Jλb ,

424 Polynomial algorithms for projecting a point in Rn

x≥j :=min{bj , x̂ j} for j ∈ Jλ,

if j ∈ Jλa and aj < x̂ j , then x≥j :=min{bj , x̂ j}
else if j ∈ Jλa and aj ≥ x̂ j , then x≥j := aj ;
go to (10).

(9) Problem (P≥) has no optimal solution because X =∅, where X is defined by (1.7)-
(1.8), or there do not exist x∗j ∈ [aj ,bj], j ∈ J , such that

∑
j∈J d jx

∗
j = α.

(10) End.

Since Algorithm 3 is based on Theorem 2.3 and Algorithm 2 and since the “itera-
tive” steps (2)–(7) of Algorithm 2 and Algorithm 3 are the same, then “convergence” of
Algorithm 3 follows from Theorem 3.3 as well. Because of the same reason, computa-
tional complexity of Algorithm 3 is the same as that of Algorithm 2.

3.6. Commentary. Methods proposed for solving problems (P≤), (P=), and (P≥) are
first-order methods because they use values of the first derivatives (see (2.3)) of the objec-
tive function c(x)≡∑n

j=1 cj(xj)≡ (1/2)
∑n

j=1(xj − x̂ j)2. Also, they are dual variables sad-
dle point methods because they are based on “convergence” with respect to the Lagrange
multiplier (dual variable) λ associated with the single constraint (1.3) (resp., constraint
(1.5) or (1.7)). Moreover, they are exact methods because there are only round-off errors
and there is no error of the methods.

Methods suggested in this paper, due to specificity of problems solved, are less restric-
tive than other methods for solving general convex quadratic programming problems,
such as active set methods and gradient projection methods, with respect to dimension
(number of variables) of the problem, convergence conditions, subproblems to be solved
at each iteration, and so forth.

4. Extensions

4.1. Theoretical aspects. If it is allowed that dj = 0 for some j in problems (P≤), (P=),
and (P≥), then, for such indices j, we cannot construct the expressions (x̂ j − aj)/dj and
(x̂ j − bj)/dj by means of which we define sets Jλa , Jλb , Jλ for the corresponding problem. In
such cases, xj ’s are not involved in (1.3) (resp., in (1.5) or in (1.7)) for such indices j. It
turns out that we can cope with this difficulty and solve problems (P≤), (P=), (P≥) with
dj = 0 for some j’s.

Denote

J = {1, . . . ,n}, Z0= { j ∈ J : dj = 0
}
. (4.1)

Here “0” means the “computer zero.” In particular, when J = Z0 and α= 0, X is defined
only by (1.4) (resp., by (1.6), by (1.8)).

Theorem 4.1 (characterization of the optimal solution to problem (P≤): an extended
version). Problem (P≤) can be decomposed into two subproblems: (P1≤) for j ∈ Z0 and
(P2≤) for j ∈ J \Z0.

Stefan M. Stefanov 425

The optimal solution to (P1≤) is

x∗j =


aj , j ∈ Z0, x̂ j ≤ aj ,

bj , j ∈ Z0, x̂ j ≥ bj ,

x̂ j , j ∈ Z0, aj < x̂ j < bj ,

(4.2)

that is, the subproblem (P1≤) itself is decomposed into n0 ≡ |Z0| independent problems. The
optimal solution to (P2≤) is given by (2.10), (2.11), (2.12) with J := J \Z0.

Proof

Necessity. Let x∗ = (x∗j) j∈J be the optimal solution to (P≤).

(1) Let j ∈ Z0, that is, dj = 0. The KKT conditions are

x∗j − x̂ j −uj + vj = 0, j ∈ Z0 from (2.3) and (2.4)–(2.9). (4.3)

(a) If x∗j = aj , then uj ≥ 0, vj = 0. It follows from (4.3) that x∗j − x̂ j = uj ≥ 0; that
is, x∗j ≡ aj ≥ x̂ j .

(b) If x∗j = bj , then uj = 0, vj ≥ 0. Therefore x∗j − x̂ j =−vj ≤ 0; that is, x∗j ≡ bj ≤
x̂ j .

(c) If aj < x∗j < bj , then uj = vj = 0. Therefore x∗j − x̂ j = 0; that is, x∗j = x̂ j .
(2) Components of the optimal solution to (P2≤) are obtained by using the same

approach as that of the proof of Theorem 2.1(i) but with the reduced index set
J := J \Z0.

Sufficiency. Conversely, let x∗ ∈ X and let the components of x∗ satisfy (4.2) for j ∈ Z0,
and (2.10), (2.11), (2.12) with J := J \Z0. Set

uj = vj = 0 for aj < x∗j < bj , j ∈ Z0,

uj = aj − x̂ j , vj = 0 for x∗j = aj , j ∈ Z0,

uj = 0, vj = x̂ j − bj for x∗j = bj , j ∈ Z0.

(4.4)

If λ > 0, set

λ= x̂ j − x∗j
d j

= λ(x∗) (> 0) from (2.12),

uj = vj = 0 for aj < x∗j < bj , j ∈ J \Z0,

uj = aj − x̂ j + λdj (≥ 0), vj = 0 for x∗j = aj , j ∈ J \Z0,

uj = 0, vj = x̂ j − bj − λdj (≥ 0) for x∗j = bj , j ∈ J \Z0.

(4.5)

If λ= 0, set

uj = vj = 0 for aj < x∗j < bj , j ∈ J \Z0,

uj = aj − x̂ j (≥ 0), vj = 0 for x∗j = aj , j ∈ J \Z0,

uj = 0, vj = x̂ j − bj (≥ 0) for x∗j = bj , j ∈ J \Z0.

(4.6)

426 Polynomial algorithms for projecting a point in Rn

It can be verified that x∗, λ, uj , vj , j ∈ J , satisfy the KKT conditions (4.3), (2.4)–(2.9).
Then x∗ with components (4.2), for j ∈ Z0, and (2.10), (2.11), (2.12), with J := J \Z0, is
the optimal solution to problem (P≤)= (P1≤)∪ (P2≤). �

An analogous result holds for problem (P=).

Theorem 4.2 (characterization of the optimal solution to problem (P=): an extended
version). Problem (P=) can be decomposed into two subproblems: (P1=) for j ∈ Z0 and
(P2=) for j ∈ J \Z0.

The optimal solution to (P1=) is also given by (4.2). The optimal solution to (P2=) is
given by (2.30), (2.31), (2.32) with J := J \Z0.

The proof of Theorem 4.2 is omitted because it repeats in part the proofs of Theorems
2.1 and 4.1.

Thus, with the use of Theorems 4.1 and 4.2, we can express components of the optimal
solutions to problems (P≤), (P=), and (P≥) without the necessity of constructing the
expressions (x̂ j − aj)/dj and (x̂ j − bj)/dj with dj = 0.

Since Theorem 2.3 and Algorithm 3 are based on the sets of indices Jλa , Jλb , Jλ of prob-
lem (P=), Theorem 4.2 solves the problem of decomposition of problem (P≥) as well.

4.2. Computational aspects. Algorithms 1, 2, and 3 are also applicable in cases when
aj =−∞ for some j, 1≤ j ≤ n and/or bj =∞ for some j, 1 ≤ j ≤ n. However, if we use
the computer values of −∞ and +∞ at the first step of the algorithms to check whether
the corresponding feasible region is empty or nonempty and at Step (3) in the expressions
(x̂ j − xj)/dj with xj =−∞ and/or xj = +∞, by means of which we construct sets Jλa , Jλb , Jλ,
this could sometimes lead to arithmetic overflow. If we use other values of −∞ and +∞
with smaller absolute values than those of the computer values of −∞ and +∞, it would
lead to inconvenience and dependence on the data of the particular problems. To avoid
these difficulties and to take into account the problems considered above, it is convenient
to do the following.

Construct the sets of indices

SVN = { j ∈ J \Z0 : aj >−∞, bj < +∞},

SV1= { j ∈ J \Z0 : aj >−∞, bj = +∞},

SV2= { j ∈ J \Z0 : aj =−∞, bj < +∞},

SV = { j ∈ J \Z0 : aj =−∞, bj = +∞}.
(4.7)

It is obvious that Z0∪ SV ∪ SV1∪ SV2∪ SVN = J , that is, the set J \Z0 is partitioned
into the four subsets SVN , SV1, SV2, SV defined above.

When programming the algorithms, we use computer values of −∞ and +∞ for con-
structing the sets SVN , SV1, SV2, SV .

In order to construct the sets Jλa , Jλb , Jλ without the necessity of calculating the values
(x̂ j − xj)/dj with xj =−∞ or +∞, except for the sets J , Z0, SV , SV1, SV2, SVN , we need
some subsidiary sets defined as follows.

Stefan M. Stefanov 427

For SVN ,

JλSVN =
{
j ∈ SVN :

x̂ j − bj

dj
< λ <

x̂j − aj

dj

}
,

JλSVN
a =

{
j ∈ SVN : λ≥ x̂ j − aj

dj

}
,

JλSVN
b =

{
j ∈ SVN : λ≤ x̂ j − bj

dj

}
;

(4.8)

for SV1,

JλSV1 =
{
j ∈ SV1 : λ <

x̂j − aj

dj

}
,

JλSV1
a =

{
j ∈ SV1 : λ≥ x̂ j − aj

dj

}
;

(4.9)

for SV2,

JλSV2 =
{
j ∈ SV2 : λ >

x̂j − bj

dj

}
,

JλSV2
b =

{
j ∈ SV2 : λ≤ x̂ j − bj

dj

}
;

(4.10)

for SV ,

JλSV = SV. (4.11)

Then

Jλ := JλSVN ∪ JλSV1∪ JλSV2∪ JλSV ,

Jλa := JλSVN
a ∪ JλSV1

a ,

Jλb := JλSVN
b ∪ JλSV2

b .

(4.12)

We use the sets Jλ, Jλa , Jλb (4.12) as the corresponding sets with the same names in
Algorithms 1, 2, and 3.

With the use of results of this section, Steps (0), (1), and (3) of Algorithm 1 can be
modified, respectively as follows.

About Algorithm 1.

Step (0)1. (Initialization). J := {1, . . . ,n}, k := 0, α(0) := α, n(0) := n,
J (0) := J , Jλa :=∅, Jλb :=∅, initialize x̂ j , j ∈ J .
Construct the set Z0. If j ∈ Z0, then

if x̂ j ≤ aj , then x∗j := aj ,
else if x̂ j ≥ bj , then x∗j := bj ,
else if aj < x̂ j < bj , then x∗j := x̂ j .

428 Polynomial algorithms for projecting a point in Rn

If J = Z0 and α= 0, go to Step (10)

else if J = Z0 and α �= 0, go to Step (9).

Set J := J \Z0, J (0) := J , n(0) := n−|Z0|.
Construct the sets SVN , SV1, SV2, SV .
If SVN ∪ SV1= J , then

if
∑

j∈J d jaj ≤ α, go to Step (1)
else go to Step (9) (feasible region X is empty)

else if SV2∪ SV �= ∅, then

if SVN ∪ SV1 �= ∅, then
if
∑

j∈SVN∪SV1djaj ≤ α, go to Step (1)
else go to Step (9) (feasible region is empty)

else go to Step (1) (feasible region is always nonempty).

Step (1)1. Construct the sets J0SVN , J0SVN
a , J0SVN

b , J0SV1, J0SV1
a , J0SV2, J0SV2

b , J0SV (for λ=0).
Construct the sets J0

a , J0
b , J0 through (4.12). Calculate

δ(0) :=
∑
j∈J0

a

djaj +
∑
j∈J0

b

djbj +
∑
j∈J0

dj x̂ j −α. (4.13)

If δ(0)≤ 0, then λ := 0, go to Step (8)
else if δ(0) > 0, then

if SV2∪ SVN = J , then
if α≤∑ j∈J d jbj , go to Step (2)
else go to Step (9) (there does not exist a λ∗ > 0 such that δ(λ∗)= 0)

else if SV1∪ SV �= ∅, go to Step (2) (there exists a λ∗ > 0 such that δ(λ∗)= 0).

Step (3)1. Construct the sets JλSVN , JλSVN
a , JλSVN

b , JλSV1, JλSV1
a , JλSV2, JλSV2

b , JλSV (with J (k)

instead of J).
Construct the sets Jλ(k)

a , Jλ(k)
b , Jλ(k) by using (4.12) and find their cardinalities |Jλ(k)

a |,
|Jλ(k)
b |, |Jλ(k)|, respectively. Go to Step (4).

Similarly, we can modify Steps (1) and (3) of both Algorithm 2 and Algorithm 3.
Modifications of the algorithms connected with theoretical and computational aspects

do not influence their computational complexity, which has been discussed in Section 3,
because these modifications do not affect the “iterative” steps of algorithms.

5. Computational experiments

In this section, we present results (Table 5.1) of some numerical experiments obtained by
applying algorithms suggested in this paper to problems under consideration. The com-
putations were performed on an Intel Pentium II Celeron Processor 466 MHz/128 MB
SDRAM IBM PC compatible. Each problem was run 30 times. Coefficients dj > 0, j =
1, . . . ,n, and data x̂ = (x̂1, . . . , x̂n) were randomly generated according to uniform and
Gaussian (normal) distribution. It is also possible to use values generated according to

Stefan M. Stefanov 429

Table 5.1

Problem (P≤)

Number of variables n= 1200 n= 1500 n= 5000 n= 10000

Average number of iterations 2.09 2.11 3.58 5.53

Average run time (in seconds) 0.0001 0.00011 0.00026 0.00055

Problem (P=)

Number of variables n= 1200 n= 1500 n= 5000 n= 10000

Average number of iterations 2.07 2.10 3.67 5.64

Average run time (in seconds) 0.00009 0.0001 0.00032 0.00057

Problem (P≥)

Number of variables n= 1200 n= 1500 n= 5000 n= 10000

Average number of iterations 2.09 2.12 3.78 5.57

Average run time (in seconds) 0.000101 0.00011 0.00037 0.00061

other distributions as well as data of real problems. Efficiency of Algorithms 1, 2, and 3
does not depend on the data.

When n < 1 200, the run time of the algorithms is so small that the timer does not
recognize the corresponding value from its computer zero. In such cases the timer displays
0 seconds.

Effectiveness of algorithms for problems (P≤), (P=), and (P≥) has been tested by many
other examples. As we can observe, the (average) number of iterations is much less than
the number of variables n for large n.

We provide below the solution of two simple particular problems of the form (P=)
obtained by using the approach suggested in this paper.

Example 5.1. Find the projection of x̂ = (55,12,15,85,30) on a set defined as follows:

x1 + x2 + 2x3 + 3x4 + x5 = 200,

0≤ x1 ≤ 50,

0≤ x2 ≤ 7,

0≤ x3 ≤ 7,

0≤ x4 ≤ 80,

0≤ x5 ≤ 25.

(5.1)

The projection of x̂ on this set is

x∗ = (42.27,0.0,0.0,46.81,17.27). (5.2)

The Euclidean distance between x̂ and x∗ is

dist
(

x∗, x̂
)= ∥∥x∗ − x̂

∥∥= (5∑
j=1

(
x∗j − x̂ j

)2
)1/2

= 46.37691. (5.3)

430 Polynomial algorithms for projecting a point in Rn

Example 5.2. Find the projection of x̂ = (2,3,1,2) on a feasible region defined as follows:

x1 + x2 + x3 + x4 = 1,

0≤ xj ≤ 1, j = 1,2,3,4.
(5.4)

The projection of x̂ on this region is

x∗ = (0,1,0,0). (5.5)

The Euclidean distance between x̂ and x∗ is

dist
(

x∗, x̂
)= ∥∥x∗ − x̂

∥∥= (4∑
j=1

(
x∗j − x̂ j

)2
)1/2

= 3.60555. (5.6)

6. Concluding remarks

The approach proposed in this paper could be modified for strictly convex quadratic
objective functions and, more generally, for strictly convex separable objective functions.

Acknowledgment

The author is grateful to the anonymous referees for their comments and suggestions.

References

[1] D. P. Bertsekas, Projected Newton methods for optimization problems with simple constraints,
SIAM J. Control Optim. 20 (1982), no. 2, 221–246.

[2] G. R. Bitran and A. C. Hax, Disaggregation and resource allocation using convex knapsack prob-
lems with bounded variables, Management Sci. 27 (1981), no. 4, 431–441.

[3] P. Brucker, An O(n) algorithm for quadratic knapsack problems, Oper. Res. Lett. 3 (1984), no. 3,
163–166.

[4] A. Charnes and W. W. Cooper, The theory of search: optimum distribution of search effort, Man-
agement Sci. 5 (1958), 44–50.

[5] S. M. Grzegórski, Orthogonal projections on convex sets for Newton-like methods, SIAM J. Numer.
Anal. 22 (1985), no. 6, 1208–1219.

[6] M. Held, P. Wolfe, and H. P. Crowder, Validation of subgradient optimization, Math. Program-
ming 6 (1974), 62–88.

[7] N. Katoh, T. Ibaraki, and H. Mine, A polynomial time algorithm for the resource allocation prob-
lem with a convex objective function, J. Oper. Res. Soc. 30 (1979), no. 5, 449–455.

[8] H. Luss and S. K. Gupta, Allocation of effort resources among competing activities, Operations
Res. 23 (1975), no. 2, 360–366.

[9] C. Michelot, A finite algorithm for finding the projection of a point onto the canonical simplex of
Rn, J. Optim. Theory Appl. 50 (1986), no. 1, 195–200.

[10] R. T. Rockafellar and R. J.-B. Wets, A note about projections in the implementation of sto-
chastic quasigradient methods, Numerical Techniques for Stochastic Optimization (Yu. Er-
moliev and R. J.-B. Wets, eds.), Springer Ser. Comput. Math., vol. 10, Springer, Berlin, 1988,
pp. 385–392.

[11] S. M. Stefanov, On the implementation of stochastic quasigradient methods to some facility loca-
tion problems, Yugosl. J. Oper. Res. 10 (2000), no. 2, 235–256.

Stefan M. Stefanov 431

[12] , Convex separable minimization subject to bounded variables, Comput. Optim. Appl. 18
(2001), no. 1, 27–48.

[13] , Separable Programming. Theory and Methods, Applied Optimization, vol. 53, Kluwer
Academic Publishers, Dordrecht, 2001.

[14] , Convex separable minimization problems with a linear constraint and bounds on the
variables, Applications of Mathematics in Engineering and Economics (Sozopol, 2001),
Heron Press, Sofia, 2002, pp. 392–402.

[15] P. H. Zipkin, Simple ranking methods for allocation of one resource, Management Sci. 26 (1980),
no. 1, 34–43.

Stefan M. Stefanov: Department of Mathematics, South-West University “Neofit Rilski,” 2700 Bla-
goevgrad, Bulgaria

E-mail address: stefm@aix.swu.bg

mailto:stefm@aix.swu.bg

